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ABSTRACT

The olfactory system of insects is important for behavioral activities as it recognizes
internal and external volatile stimuli in the environment. Insect odorant degrading
enzymes (ODEs), including antennal-specific carboxylesterases (CXEs), are known
to degrade redundant odorant molecules or to hydrolyze important olfactory sex
pheromone components and plant volatiles. Compared to many well-studied Type-I sex
pheromone-producing lepidopteran species, the molecular mechanisms of the olfactory
system of Type-II sex pheromone-producing Hyphantria cunea (Drury) remain poorly
understood. In the current study, we first identified a total of ten CXE genes based on
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into functions and evolutionary characteristics of CXEs in lepidopteran insects. From
a practical point of view, these HcunCXEs might represent meaningful targets for
developing behavioral interference control strategies against H. cunea.
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INTRODUCTION

A complete insect olfactory process requires the participation and cooperation of various
olfaction-related proteins (Scott et al., 2001; Vogt, 2003; Leal, 2013). During the process,
external liposoluble odor molecules first pass through the polar pores on the sensillum
surface, then enter the lymph under the integument where they further combine with
odorant binding proteins (OBPs) before being transferred to the dendritic membrane
of olfactory receptor neurons (ORNSs) (Tegoni, Campanacci & Cambillau, 2004; Leal,
2013; Pelosi et al., 2018). The molecule-bound odorant receptors (ORs) then convert the
chemical signals into electrical signals that are transmitted to the central nervous system
through axons of the ORNs (Song et al., 2008). This whole process guides insects to make
relevant physiological responses and behavioral decisions. Once the signal transmission is
completed, redundant odorant molecules need to be degraded or inactivated by odorant
degrading enzymes (ODEs) in the antennal sensilla; otherwise, the odorant receptors
will remain in a stimulated state, which may lead to poor spatio-temporal resolution of
the odor signal, and pose fatal hazards to the insects (Vogt ¢ Riddiford, 1981; Steinbrecht,
1998; Durand et al., 2010b; Leal, 2013). ODEs degrade redundant odorant molecules in
the lymph of antennal sensilla and within the cells (He et al., 2014a). Traditionally, ODEs
can be divided into five categories based on the structural difference of various target
substances: carboxylesterase (CXE), cytochrome P450 (CYP), alcohol dehydrogenase
(AD), aldehyde oxidase (AOX) and glutathione S-transferase (GST) (Rybczynski et al.,
1989; Ishida ¢ Leal, 2005; Pelletier et al., 2007; Durand et al., 2010a). However, ODEs of
different categories have been shown to catalytically interact with odor molecules of the
same type and structure. It is currently believed that the different enzyme families of ODEs
may work together in degradation and clearing of the same type of odor molecule (Steiner,
Chertemps ¢ Mabéche, 2019).

As primary metabolic enzymes, CXEs are widely distributed among insects, microbes
and plants (Guo & Wong, 2020). The active site contains several conserved serines, which
promote the cleavage and formation of ester bonds (Bornscheuer, 2002) and play an
important role in the metabolism of heterologous substances, pheromone degradation,
neurogenesis, developmental regulation and many other functions (Yu ef al., 2009). In
addition to the metabolism and detoxification of endobiotics and xenobiotics, another
important role of CXEs is to maintain the sensitivity of ORNs. The CXEs enable rapid
degradation of stray odors and prevent vulnerable ORNs from being continuously
invaded by harmful volatile xenobiotics (Li et al., 2013). So far, a large number of
genes encoding CXEs have been identified and their functions in insect olfaction have
also been investigated in various insects, including Drosophila melanogaster, Mamestra
brassicae, Antheraea polyphemus, Sesamia nonagrioides, Popillia japonica, Spodoptera
littoralis, Epiphyas postvittana, Agrilus planipennis, S. litura, S. exigua. (Vogt, Riddiford
& Prestwich, 1985; Maibeche-Coisne et al , 2004; Ishida ¢ Leal, 2005; Merlin et al., 2007;
Ishida ¢ Leal, 2008; Jordan et al., 2008; Durand et al., 2010b; Mamidala et al., 2013; He
et al., 2014a; He et al., 2014b; He et al., 2014c; He et al., 2015; Chertemps et al., 2015). For
instance, the A. polyphemus pheromone-degrading enzyme CXE (Apol PDE) was shown
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to effectively degrade its sex pheromone acetate component (Maibeche-Coisne et al , 2004;
Ishida & Leal, 2005). In P. japonica and D. melanogaster, the purified native or recombinant
antennal CXEs were found to degrade their sex pheromone constituents (Ishida ¢ Leal,
2008; Younus et al., 2014). In addition, some of CXEs from S. exigua, S. littoralis and

S. litura were also found to degrade both their sex pheromones and plant volatiles, as
well as hydrolyze volatile esters released from their natural food sources (Gomi, Inudo &
Yamada, 2003; Durand et al., 2011; Chertemps et al., 2015).

The fall webworm, Hyphantria cunea (Drury) (Lepidoptera; Erebidae), native to North
America, is a worldwide quarantine pest insect. This moth has now spread to most
European countries (except the Nordics), South Korea, North Korea and China, and
lately to Central Asia (I16 ¢ Miyashita, 1968; Gomi, 2007). As an invasive pest, H. cunea
was first found in Dandong (Liaoning province, China) and has rapidly spread to Hebei
and adjacent provinces in China (Gomii, 2007; Yang et al., 2008; Tang, Su ¢ Zhang, 2012).
In 2012, the State Forestry Administration’s Forest Pest Inspection and Identification
Center identified the first outbreak of H. cunea in Sanshan district, Wuhu City, Anhui
Province, which was the southernmost known outbreak of H. cunea. Its invasion has
caused serious damage to local forests, agricultural crops and landscaping/ornamental
trees, resulting in great economic and ecological losses. Thus, effective quarantine programs
and environmentally safe pest management solutions are needed to combat this serious
invasive pest insect. More importantly, a better understanding of its chemical ecology
may facilitate more effective pest management strategies. Previous studies have described
four sex pheromone components, including two straight chain aldehydes, (92,122)-
octadecadienal (Z9, Z12-18Ald) and (92,127,157 )-octadecatrienal (Z9, Z12, Z15-18Ald),
and two epoxides, (37,6Z,95,10R)-9,10-epoxy-3,6-heneicosadiene (Z3, Z6-9S, 10R-epoxy-
21Hy) and (3Z7,6Z,9S,10R)-9,10-epoxy-1,3,6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-
21Hy), which are produced by female H. cunea (T6th et al., 1989). There are two major
groups of moth sex pheromones: Type I pheromones and Type II pheromones ( T6th ef al.,
1989; Millar, 2000; Ando, Inomata & Yamamoto, 2004). Type I pheromones mostly contain
C10—C;s unsaturated hydrocarbons and a terminal functional group (>75% moth species).
Type II pheromones lack a terminal functional group and contain C;7;—C,3 unsaturated
hydrocarbons and epoxy derivatives (Millar, 2000; Ando, Inomata & Yamamoto, 2004).
Compared to many well-studied Type-I sex pheromone-producing moth species, the
molecular mechanisms of olfaction in the Type-II sex pheromone-producing H. cunea are
poorly understood. In the current study, a total of 10 CXE genes were identified based on
our previous H. cunea antennal transcriptomic data (Zhang et al., 2016). To understand
the potential physiological roles of these HcunCXEs, we constructed a phylogenetic tree
to evaluate the relationship of HcunCXEs with other insects” CXEs, and used reverse
transcription-quantitative PCR (RT-qPCR) and reverse transcription PCR (RT-PCR)
to investigate the expression of these genes. We found that HcunCXEs displayed either
antennae- or leg/wing-biased expression. The differential expression pattern of HcunCXEs
suggests a potential function in degrading pesticides and/or other xenobiotics.
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MATERIALS AND METHODS

Insect rearing and tissue collection

H. cunea pupae were collected from a first-generation population at Baimao Town, Jiujiang
District, Wuhu City, Anhui province. Insect cages were used for rearing H. cunea pupae at
25 °C, 70-80% RH and 14L:10D hour photoperiod. After eclosion, adults were provided
with 1% honey water. In the fourth hour of the second dark period, antennae, thoraxes,
abdomens, legs, and wings of virgin males and females were dissected under the microscope
and pooled by sex and body part. Male and female pupae and fourth instar larvae were also
sampled. Five samples were taken for each body part with the exception of antennae, of
which 30 pairs were collected by pulling out from the base of the antennae with tweezers.
Dissected body parts or whole-body samples were flash frozen in liquid nitrogen and stored
at —80 °C until use.

Gene annotation

The H. cunea antennal transcriptome (PRJNA605323) (Zhang et al., 2016) was used as a
reference sequence for mapping clean reads for each tested sample. Gene annotation was
carried out using Nr (NCBI non-redundant protein sequences), Nt (NCBI nucleotide),
Pfam (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins/enKaryotic
Ortholog Groups), Swiss-Prot (A manually annotated and reviewed protein sequence
database), KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology)
databases (Figs. S1-54). Based on the results of gene annotation and BLAST comparison, the
candidate genes of HcunCXE were determined and named according to the identification
order from the antennal transcriptomic data.

Homologous search and sequencing analysis of CXE genes in

H. cunea

The H. cunea CXE genes were identified according to the BLAST results on NCBI. The
Open Reading Frame finder (OFR Finder) (https://www.ncbi.nlm.nih.gov/orffinder/)
was used to search for the open reading frame of these CXE genes. An ExPASy tool
(http://web.expasy.org/compute_pi/) (Petersen et al., 2011) was used to calculate their
theoretical isoelectric points (pI) and molecular weights (MW) of the full-length HcunCXEs
gene candidates, and SignalP-5.0 (https://services.healthtech.dtu.dk/service.php?SignalP)
was used to predict signal peptides of the CXE genes (Petersen et al., 2011).

Phylogenetic analysis of CXE genes in H. cunea

Genes related to the CXEs of H. cunea and other reported insects (Seasamia
inferens, Spodoptera littoralis, Spodoptera exigua, Cnaphalocrocis medinalis, Bombyx mori,
Drosophila melanogaster, Tribolium castaneum, Mamestra brassicae and Antheraea
polyphemus) were subjected to multi-sequence alignment with MAFFT (Wong, Suchard
& Huelsenbeck, 2008). Amino acid sequences were automatically aligned by the MAFFT
program version 7 (http://mafft.cbrc.jp/alignment/software/algorithms/algorithms.html),
using L-INS-i strategy (Katoh ¢ Standley, 2013). The phylogenetic tree was constructed
using MEGA-X (Tamura et al., 2011) and maximum likelihood method (1000 bootstrap
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repetitions) for systematic evolution analysis. The adopted model was LG-G+1, and all
sites were used for Gap/Missing Data Treatment. Lastly, the phylogenetic tree was edited
on the website iTOL (https://itol.embl.de/). The genes of insect ODEs required for the
phylogenetic tree are shown in Table S1.

RNA extraction and synthesis of the first-strand cDNA

The sampled body tissues were ground using a Tissue-Tearor which rapidly homogenized
the samples in DEPC-treated sterile water. TRIzol reagent (Invitrogen, USA) was used for
extraction and purification of total RNA from each sample according to the manufacturer’s
instructions. The degradation and contamination of RNA was monitored on 1% agarose
gels, and purity was checked using a NanoPhotometer® spectrophotometer (IMPLEN, CA,
USA). First-stranded cDNA templates were synthesized using 1 pg of RNA template with
the PrimeScript™
Japan).

RT-gPCR and RT-PCR analysis
Expression profiles of the identified H. cunea CXE genes in different body parts of adults

RT reagent Kit according the manufacturer’s instructions (TaKaRa,

and two other life stages were analyzed. Tissues included antenna of 30 adults of each sex,
legs of 5 adults of each sex, wings of 5 adults of each sex, thoraxes and abdomens of 5 adults
of each sex, 5 whole pupae of each sex and 5 larvae (fourth instar).

The RT-qPCR and RT-PCR assays were employed for production of multiple copies of
DNA. RT-qPCR reaction was conducted in a 25 pL reaction mixture system containing
12.5 wL of SYBR® Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa, Japan), 1 pL of each
primer, 2 uL of sample cDNA, and 8.5 pL of sterilized H,O.

The RT-qPCR cycles were set at 95 °C for 30 s, followed by 40 cycles at 95 °C for 55, 60 °C
for 30 s. Each experiment was carried out in a CFX96 real-time PCR detection instrument
(Bio-rad, USA) using 8-strip PCR tubes (Bio-rad, USA). The reaction data were recorded,
and the dissolution curves were appended. Both Elongation factor-1 alpha (EF1-a) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as internal reference.
Three biological replicates were performed, and the reproducibility confirmation of each
RT-gPCR reaction was replicated three times for each sample (Table S2) (Xu et al., 2018).

The variability of each gene expression in different body tissues was tested by using the
Q-Gene method (Muller et al., 2002; Simon, 2003). The relative expression of mRNA of
each gene (mean =+ SD) was analyzed using one-way ANOVA (SPSS22.0 for Windows,
IBM, USA), followed by LSD and Duncan’s tests at « = 0.05. GraphPad Prism v5.0 Software
(GraphPad Software Inc, CA, USA) was used for graphical plotting/mapping.

RT-PCR analysis was performed as follows: 94 °C for 2 min of initiation, and 29 cycles
0of 94 °C for 30 s, 52 °C for 30 s, 72 °C for 15 s, and 2 min at 72 °C for final extension.
Elongation factor-1 alpha (EF1-a) of H. cunea was used as an internal reference. In addition,
instead of template cDNA, RNase-free water was used as the blank control. The reaction
mixture contained 12.5 pL of 2x Ex Taq MasterMix (CWBIO, China), 1 wL of each primer,
1 nL of sample cDNA, and H, O to bring the total to 25 wL. A 10 L aliquot of each reaction
product was used for gel electrophoresis. The RT-PCR primer sequences of CXE genes in
H. cunea are listed in Table S3.
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Table 1 Gene name, information of open reading frame and Blastx match of the 10 putative HcunCXEs identified in this study.

Gene name ORF Complete FPKM Best Blastx Match

length ORF value

(bp)

Species Acc.number E -value Identity (%)
HcunCXE1 1668 YES 4.9 S. inferens AlI21990.1 0.0 73
HcunCXE2 777 NO 3.77 S. inferens AlI21980.1 3e—135 73
HcunCXE3 375 YES 3.26 S. inferens AlI21980.1 2e—105 60
HcunCXE4 1389 YES 61.01 S. inferens All21984.1 0.0 59
HcunCXE5 1593 YES 143.14 S. inferens All21984.1 0.0 62
HcunCXE6 1161 NO 17.04 S. inferens All21984.1 4e—174 62
HcunCXE7 1677 YES 13.18 S. inferens All21987.1 0.0 75
HcunCXE8 1608 YES 12.64 S. inferens AlI21980.1 0.0 66
HcunCXE9 1653 YES 6.13 S.inferens All21978.1 0.0 71
HcunCXE10 273 NO 21.32 S. inferens All21984.1 8e—39 64
Notes.

OREF, open reading frame; S. inferens, Sesamia inferens.

Table 2 Gene name and characteristics including molecular weight, isoelectric point and signal pep-
tide of the 10 putative HcunCXEs with open reading frames.

Gene Name MW (Kda) PI SP
HcunCXE1 62.23 7.56 NO
HcunCXE2 28.44 5.67 NO
HcunCXE3 13.98 4.85 NO
HcunCXE4 52.2 5.31 NO
HcunCXE5 59.52 5.41 NO
HcunCXE6 43.17 5.09 NO
HcunCXE7 61.71 6.32 1-17
HcunCXE8 60.68 5.75 NO
HcunCXE9 62.18 8 1-16
HcunCXE10 10.52 8.89 NO
Notes.

SP, signal peptide; pl, isoelectric point; MW, Molecular weight.

RESULTS

Identification of CXE genes from H. cunea
Based on a comparative analysis of the H. cunea antennal transcriptome using BLASTX
databases (Zhang et al., 2016), a total of 10 HcunCXE genes were identified. BLASTX
comparison showed that these 10 HcunCXE genes have high homology with CXE genes
of S. inferens. Six HcunCXEs (HcunCXE1, HcunCXE3-5 and HcunCXE7-8) had complete
OREFs (Table 1). The molecular weights of these HcunCXEs ranged from 10.52 to 62.23 kDa
(Table 2). Only HcunCXE7 and HcunCXE9 have predicted signal peptide sites (Table 2).
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Phylogenetic analysis of H. cunea CXEs

To evaluate the relationship of HcunCXEs with other insects’ CXEs, a phylogenetic tree
was constructed (Fig. 1). The HcunCXEs genes could be divided into two subclasses:
extracellular gene subclass (generally secreted enzymes, substrates include hormone and
pheromones) and generally intracellular enzymes, dietary metabolism/ detoxification
functions (Fig. 1). Three HcunCXEs (HcunCXE1, 7 and 9) were clustered in the generally
secreted enzymes subclass. The other 7 HcunCXEs including HcunCXE2-6, HcunCXE8 and
HcunCXE10 fell into the intracellular gene subclass. In addition, the clade of intracellular
gene subclass formed by HcunCXEs was most closely related to those formed by S. inferens,
C. medinalis, S. exigua and S. littoralis CXEs. Sequence alignments showed that the amino
acid identities of HcunCXE1 and SinfCXE18, HcunCXE9 and SinfCXE1, HcunCXE7 and
SinfCXE13, HcunCXE7 and CmedCXES5 were 73.9%, 71.3%, 74.6% and 65%, respectively
(Fig. S5). These results suggest that the intracellular CXEs in H. cunea shared a more recent
common ancestor with the CXEs in S. inferens, C. medinalis, S. exigua and S. littoralis than
with the CXEs in other insect species.

Tissue distribution of HcunCXEs
We next examined the expression of HcunCXE genes in adult female and male antennae,
legs and wings using RT-qPCR with primers specific for each of the 10 HcunCXEs genes
(Table S2). All HcunCXEs were expressed in the antennae (Fig. 2 and Fig. S6). Among
which, three HcunCXEs (HcunCXE4, 5, 8) were highly expressed in the antennae (Figs. S6C
and Figs. S6D). Two HcunCXEs (HcunCXE1 and 3) were female-biased (Figs. 2A and 2C)
and two HcunCXEs (HcunCXE 9 and 10) were male-biased (Figs. 2I and 2]); although the
sex-biased expression is not statistically significant, there is a clear numerical difference
between expression level in the sexes. These results indicate that the most abundant CXE
genes in the antenna are not extracellular CXEs that likely participate in volatile odorant
degradation. The most abundant CXEs are likely involved in primary metabolic activities
and it would thus seem logical that their expression is much higher than for the other
specialized CXEs in the antenna. The other HcunCXEs, however, were equally expressed
in both sexes. Comparing expression across tissues, five HcunCXEs (2, 3, 5, 7 and 8) were
highly expressed in the legs and wings (Figs. S6A and S6B). Expression of HcunCXE2 and
HcunCXE7 was higher in the legs or wings than that in the antennae (Figs. 2B and 2G).
To investigate whether these HcunCXEs are also expressed in the other body parts or
life stages, a RT-PCR experiment was carried out using total RNA samples taken from
H. cunea adults and other life stages (pupae and larvae). Gel electrophoresis bands were
generated from HcunCXE2 products from the adult thoraxes and abdomens (Fig. 3). In
addition, faint/light bands of HcunCXE7 and HcunCXE8 were detected in both thoraxes
and abdomens, as well as the pupae. Interestingly, nine out of 10 HcunCXEs (HcunCXE1-5
and 7-10) were also detected in the larvae, indicating that HcunCXEs are widely expressed
in the larval stage.
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Figure 1 Molecular phylogeny comparing HcunCXEs with CXEs from other insect species. 10 CEXs
(HcunCXE1-10) from H. cunea (Hcun) and CXEs from S. exigua (Sexi), C. medinalis (Cmed), B. mori
(Bmor), D. melanogaster (Dmel), T. castaneum (Tcas), S. inferens (Sinf), S. littoralis (Slit) were used to
construct the phylogenetic tree. The phylogenetic tree was aligned by MAFFT, and constructed by MEGA-
X using maximum likelihood method. The adopted model is LG-G+1, and the model value is shown in
Table S4. The Bootstrap value of this tree is 1,000, which is to integrate the branch length tree with the
Bootstrap value tree and then beautify it. (A) Extracellular gene subclass (Generally secreted enzymes,
substrates include hormone and pheromones); (B) generally intracellular enzymes, dietary metabolism/
detoxification functions; (C) juvenile hormone esterase (JHE); (D) nerouligins; (E) acetylcholinesterases
(AChE).

Full-size Gl DOI: 10.7717/peerj.10919/fig-1

DISCUSSION

In the current study, 10 putative CXE genes were identified based on our previous H. cunea
antennal transcriptomic data (Zhang et al., 2016). All 10 H. cunea CXE genes showed high
homology to the CXE genes identified in S. inferens (identity >59%, Fig. 1 and Table 1).
We speculated that some of these H. cunea CXE genes mainly degrade sex pheromone
components and host plant volatiles. Unlike many well-studied Type-I sex pheromone-
producing lepidopteran insects (>75% moth species), the H. cunea sex pheromone is
comprised of Type II pheromone components (Ando, Inomata ¢ Yamamoto, 2004). At
present, most of the published moth ODEs are from the Type I sex pheromone producing
lepidopterans; thus, our study represents the first report of ODE genes from a Type 11
sex pheromone-producing moth species. H. cunea is an extremely polyphagous species
with high fecundity (several hundred eggs/female) and dispersal capacity. H. cunea larvae
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are generalists, capable of feeding on over 170 species of host plants, including many
broad-leaved tree species. To cope with such diverse host plant species, this moth must
have developed a series of olfactory receptor neurons to recognize diverse plant volatiles
(Zhang et al., 2016). The number (n= 10) of CXE genes we identified from H. cunea was
lower than those of other reported lepidopterans species: 19 in Chilo suppressalis, 35 in
the tea geometrid Ectropis obliqua Prout and 76 in B. mori (Yu et al., 2009; Liu et al., 2015;
Sun et al., 2017). These results suggest that H. cunea does not seem to require more CXEs,
since the other ODEs including CYP, AD, AOX and GST are likely involved in odorant
degradation in olfactory processes. On the other hand, the difference in number of CXEs
in various species might result from differences in sample preparation and sequencing
method/depth. In addition, the ecological/evolutionary differences across species may also
be a reason. Insects have to adapt to their external environment; different environments
lead to the formation of different physiological and behavioral characteristics.

The phylogenetic tree analysis showed that HcunCXEl, 7 and 9 belong to the
extracellular gene subclass, including the secretory enzymes that likely act on hormones and
pheromones (Fig. 1). The remaining 7 CXE genes fell into the intracellular gene subclass
(Fig. 1), including intracellular enzymes that mostly play roles in dietary metabolism
and detoxification. Chertemps et al. (2012) demonstrated that an extracellular CXE of D.
melanogaster, esterase-6 (EST-6), is responsible in or related to the sensory physiological
and behavioral responses to its pheromone. A subsequent study found that EST-6 was
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able to degrade various volatile esters in vitro and function as expected for an ODE which
plays a role in the response of the flies to esters (Chertemps et al., 2012). Thus, these

H. cunea CXE genes (HcunCXE2, 3, 4, 5, 6, 8 and 10) may also affect the mating and
courtship competitions in H. cunea through degradation of some ester kairomones or
plant allelochemicals. On the other hand, based on the omnivorous nature of H. cunea and
its species-specific sex pheromone, these CXE genes may be a unique category of H. cunea
which degrade odor substances.

Antennal-specific or highly expressed esterases belong to the CXE type in the
carboxy/cholinesterases (CCEs) family. The first ODE was identified form A. polyphemus
(ApolSE) as an antenna-specific esterase, with a high ability to degrade the acetate
component (E6Z11-16: AC) of its pheromone blend (Vogr ¢ Riddiford, 1981). Since then,
antennal-specific esterases have been cloned from A. polyphemus (Ishida ¢ Leal, 2002) and
Mamestra brassicae Linnaeus (Maibeche-Coisne et al., 2004). Recent studies show that many
insect CXEs are expressed specifically in antennae, and their major functions in olfactory
process are to degrade odor molecules. Interestingly, the expression of some HcunCXEs
in the legs and wings were found to be higher than those in the antennae (HcunCXE2, 3
and 7). The ten H. cunea CXEs genes we identified through the gene expression analysis
had a low level of expression in different body tissues of H. cunea adults (Fig. 2 and
Fig. S6). However, they were widely expressed in the larvae, which may be related to
their extremely broad host plant range that needs more CXEs to degrade large amount of

Ye et al. (2021), PeerdJ, DOI 10.7717/peerj.10919 10/18


https://peerj.com
https://doi.org/10.7717/peerj.10919/fig-3
http://dx.doi.org/10.7717/peerj.10919#supp-10
http://dx.doi.org/10.7717/peerj.10919

Peer

carboxylic acid esters. Our quantitative PCR results (Fig. 2 and Fig. 56) indicated that some
HcunCXEs genes were highly expressed in both male and female antennae. HcunCXE1
and HcunCXE9 belong to the same subclass as ApolPDE and MbraCXE (Fig. 1). Previous
studies have shown that ApolPDE and MbraCXE function as pheromone degradation
enzymes (Maibeche-Coisne et al , 2004; Ishida ¢ Leal, 2005). These HcunCXEs are likely
for degradation of sex-pheromones and/or plant volatiles both from hosts or non-hosts.
However, the HcunCXEs genes that were highly expressed in the legs and wings might
be related to the degradation of non-volatile substances for contact signals. In addition, a
previous study of SexiCXE14 and SexiCXE15 (antennae-enriched carboxylesterase genes in
Spodoptera exigua) showed that antenna bias expression plays a role in the degradation of
volatile substances and sex pheromones in plants (He et al., 2015). However, the expression
of SexiCXE11 was much higher in abdomen and wings, and its activity in hydrolyzing plant
volatile substances was stronger than that in degrading ester sex pheromones (He et al.,
2019). In the current study, HcunCXEl, 3, 4, 5, 6, 8, 9, and 10 showed antenna-biased
expression, while the expression of HcunCXE2 and 7 in legs and wings was higher than
that in antennae. These results suggested that HcunCXEs have different functions and may
participate in the degradation of host plant volatiles and/or other xenobiotics.

CXEs play multiple key roles in the hydrolysis of carboxylic acids esters. CXEs also
include some metabolic enzymes that are associated with insecticide resistance (Li,
Schuler & Berenbaum, 2007). Many previous studies in insect CXEs focused on their
functions in mediating insecticide resistance (Hemingway ¢ Karunaratne, 1998; Li,
Schuler & Berenbaum, 2007). In contrast, the mechanisms underlying degradation of
plant allelochemicals are still unclear. It has been shown that phenolic glycosides can
induce expression of Papilio canadensis CXEs (Lindroth, 1989). Moreover, in Lymantria
dispar, the activities of CXEs were positively correlated with the larval survival, indicating
that these esterases might be involved in the glycoside metabolism (Lindroth, 1989; Lindroth
& Weisbrod, 1991). In the current study, nine out of 10 HcunCXEs were expressed in the
larvae (Fig. 3), indicating that the activities of HcunCXEs may positively correlate with
survival of H. cunea larvae. Although the gene expression of HcunCXEs in H. cunea midgut
and some other tissues are still unknown, based on these previous findings, it is reasonable
to speculate that HcunCXEs might also play multiple functions in H. cunea physiology
and metabolism. In addition, a significant increase of CXE activity in the midgut of S.
litura was observed during uptake of the plant glycoside rutin (Ghumare, Mukherjee ¢
Sharma, 1989). The CXEs in Sitobion avenae have been suggested to participate in gramine
detoxification (Cai ef al., 2009). Quercetinrutin and 2-tridaconone were also found to
induce the activities of CXEs in Helicoverpa Armigera (Gao et al., 1998; Mu, Pei ¢ Gao,
2006). Understanding the specific function of HcunCXEs will require further analyses
using in vitro and in vivo methods.

Little is known about H. cunea olfaction mechanisms at the molecular level, especially
concerning how CXEs degrade various semiochemicals in its chemical communication
system. Further research is needed to (1) understand the functions of antennal-specific
CXEs in H. cunea via cloning, expression and purification of these CXEs and enzymatic
kinetic analysis; (2) determine the locations/distributions of related CXEs by in-situ
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hybridization; (3) evaluate the potential correlations between CXE transcription levels
and their corresponding electrophysiological and behavioral responses by silencing CXEs
via RNA interference (Caplen, 2004), and (4) ultimately discover the mode of action or
functionality of CXEs in the olfactory signal conduction (signal inactivation).

CONCLUSIONS

In summary, we identified 10 CXE genes in H. cunea by analyzing its antennal
transcriptomic data. These HcunCXEs displayed an antennae-or leg/wing-biased
expression. The ubiquitous expression of these HcunCXEs in different tissues and life stages
suggest that they have multiple roles, i.e., degradation of odor molecules, metabolism and
detoxification of dietary and environmental xenobiotics. Our findings provide a theoretical
basis for further studies on the olfactory mechanism of H. cunea and offer some new
insights into functions and evolutionary characteristics of CXEs in lepidopteran insects.
From a practical point of view, these HcunCXEs might represent meaningful targets for
developing behavioral interference control strategies against H. cunea.
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