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Abstract: The Cachazo-Strominger subleading soft graviton theorem for a positive helic-
ity soft graviton is equivalent to the Ward identities for SL(2,C) currents. This naturally
gives rise to a SL(2,C) current algebra living on the celestial sphere. The generators of the
SL(2,C) current algebra and the supertranslations, coming from a positive helicity leading
soft graviton, form a closed algebra. We find that the OPE of two graviton primaries in
the Celestial CFT, extracted from MHV amplitudes, is completely determined in terms
of this algebra. To be more precise, 1) The subleading terms in the OPE are determined
in terms of the leading OPE coefficient if we demand that both sides of the OPE trans-
form in the same way under this local symmetry algebra. 2) Positive helicity gravitons
have null states under this local algebra whose decoupling leads to differential equations
for MHV amplitudes. An n point MHV amplitude satisfies two systems of (n − 2) linear
first order PDEs corresponding to (n − 2) positive helicity gravitons. We have checked,
using Hodges’ formula, that one system of differential equations is satisfied by any MHV
amplitude, whereas the other system has been checked up to six graviton MHV amplitude.
3) One can determine the leading OPE coefficients from these differential equations.

This points to the existence of an autonomous sector of the Celestial CFT which holo-
graphically computes the MHV graviton scattering amplitudes and is completely defined
by this local symmetry algebra. The MHV-sector of the Celestial CFT is like a minimal
model of 2-D CFT.
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1 Introduction

The holographic dual of quantum theories of gravity in four dimensional (4-D) asymp-
totically flat spacetimes has been conjectured to be two dimensional (2-D) conformal field
theories (CFT) which live on the celestial sphere at null infinity [9–13, 17, 18, 26–39, 50, 51].
These are aptly referred to as Celestial CFTs. The equivalence between the action of the
4-D Lorentz group and global conformal transformations on the celestial sphere already
hints at the possible existence of such a duality. In fact S-matrix elements, which are the
primary observables of the bulk theory, can be expressed in a particular basis [26, 27] where
they manifestly transform as correlation functions of primary operators in 2-D CFT. For
example in the case of massless particles this change of basis from the traditionally em-
ployed basis of plane waves is implemented via a Mellin transform [4, 6, 26, 27, 30–39]. This
recasting of bulk scattering amplitudes, together with the remarkable connection between
soft theorems and the infinite dimensional asymptotic symmetries [14–18] of asymptoti-
cally Minkowski spacetimes [7, 8, 11, 19, 20] reveals that Celestial CFTs are endowed with
a much larger symmetry group in contrast with more conventional instances of CFTs. In
this paper our objective is to explore the implications of these symmetries for the operator
product expansion (OPE) in Celestial CFTs.

The celestial OPE between two primary operators can be obtained by considering
the limit where the momenta associated with the corresponding particles in the S-matrix
become collinear. At leading order in the collinear limit the scattering amplitude factorises
into a lower point amplitude times a prefactor referred to as the splitting function. The
OPE coefficient of the primary operator that contributes at leading order in the OPE can
then be extracted from the Mellin transform of this splitting function [3, 45]. Now, it is quite
remarkable that one can actually calculate the leading OPE coefficients by demanding that
both sides of the OPE transform in the same way under the (subleading) subsubleading
soft symmetry [3] for (gluons) gravitons. This is a holographic calculation of the leading
OPE coeffiicients and is the primary motivation behind our work in this paper.

Now depending on the helicities of the collinear particles it is possible to have different
channels into which the scattering amplitude can factorise. As we elaborate further in
section 2 of this paper, in the case of tree level graviton amplitudes in the MHV config-
uration in Einstein gravity, the only nontrivial factorisation channel is the one where the
lower point amplitude is again MHV. Then the above mentioned correspondence between
the collinear limit in the S-matrix and the OPE limit in the Celestial CFT tells us that
the Mellin transformed MHV graviton amplitudes are effectively closed under taking the
celestial OPE. One of the central results in this paper is that this “MHV-sector” of the
Celestial CFT is governed by an underlying infinite dimensional local symmetry algebra.
This symmetry algebra comprises of a current algebra which is encoded in the Cachazo-
Strominger subleading soft graviton theorem [1] and supertranslations associated to the
leading soft graviton theorem [2], for a positive helicity soft graviton. The consequences
of the existence of this symmetry, which we study in this paper, then suggest that the
Celestial CFT dual to Einstein gravity admits an autonomous sector which provides a
complete holographic description of tree level MHV graviton amplitudes. In the rest of
this introduction we present a summary of our main results and an outline of the paper.
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In section 3 we use the subleading soft graviton theorem for a positive helicity soft
graviton to define a set of three currents Ja, a = 1, 0,−1. The modes Jam, m ∈ Z, of these
currents are shown to generate a level zero current algebra on the celestial sphere. The
zero modes of these currents are the global SL(2,C), i.e., antiholomorphic Lorentz trans-
formation generators. Throughout this paper, we refer to the algebra of the modes Jam as
the SL(2,C) current algebra. In section 4 we derive the OPE between the subleading soft
graviton operator and a generic conformal matter primary. This OPE allows us to define
descendants created by the current algebra generators and reveals that conformal primaries
are also primaries under the SL(2,C) current algebra. This also serves to provide an impor-
tant consistency check that we use in later sections of the paper. In sections 5 and 6 we use
the leading soft graviton theorem to define a set of two supertranslation currents P0, P−1.
Following that we compute the OPE between the leading soft graviton operator and a
“hard” conformal primary. Form this result we identify the supertranslation descendants
created by the modes {Pn,0, Pn,−1} of P0 and P−1 respectively. As in the case of the sub-
leading soft graviton, this OPE also provides a consistency check for the OPEs of graviton
primaries that we extract from Mellin transform of MHV graviton amplitudes, subsequently
in this paper. Section 7 is devoted to showing that the SL(2,C) current algebra and above
mentioned supertranslation generators form a closed algebra. Section 8 contains a sum-
mary of all the relevant commutation relations, including those with the global SL(2,C),
i.e., holomorphic Lorentz generators {L0, L±1}, and also the definition of a primary oper-
ator under the extended symmetry algebra generated by {Jan , Pn,0, Pn,−1, L0, L±1}, n ∈ Z.

In section 9 we show that consistency of the first set of subleading terms in the celestial
OPE derived from the Mellin transform of the 4-point MHV graviton amplitude [5] requires
a particular combination of descendants to decouple from the 3-point Mellin amplitude.
This is analogous to null state relations familiar from 2-D CFTs and leads to a first order
linear partial differential equation that must be satisfied by the 3-point amplitude. But it
turns out that the due to kinematic constraints some modes of the local symmetry algebra
generators trivially annihilate the 3-point function. However this does not happen for
higher point amplitudes. Therefore in section 10 we consider the Mellin transform of the 6-
point MHV graviton amplitude and extract the celestial OPE for positive helicity outgoing
gravitons upto first few subleading orders. We find that this OPE can indeed be organised
according to representations of the extended symmetry algebra that we referred to above.
In this case we also encounter null state relations which give rise to differential equations
for the 5-point Mellin amplitude. These differential equations play a fundamental role in
the analysis which we undertake in the following sections of the paper. Our findings from
this section are summarised in section 11.1.

In section 12 we show that the local symmetry algebra under consideration admits null
states. We consider in particular two such null states which were independently found by
studying the OPE decomposition of the 6-point MHV amplitude in the previous section.
We then impose that these null states must also decouple from the Mellin transform of
n-point MHV amplitudes. In turn this gives rise to partial differential equations for these
n-point amplitudes. These differential equations can also be translated directly to the Fock
space MHV graviton amplitudes as we describe in section 13. We then turn to explore

– 3 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
6

some of the remarkable implications of the above mentioned differential equations and the
local symmetry algebra for the celestial OPE of graviton primary operators in the “MHV-
sector”. In sections 14, 15 and 16, we show that these equations can be used to completely
determine the structure the of leading OPE. We also illustrate via particular examples how
the subleading OPE coefficients can be systematically obtained by demanding both sides
of the OPE under the action of the extended local symmetry algebra generators.

We conclude the paper with several appendices in section A which collect some of the
results that have been used in various sections of this paper. Amongst these we would like
to highlight in particular section A.6 and section A.7 where we present a direct check of
one of the null state decoupling relations from section 12 for the Mellin transform of the
5-point MHV graviton amplitude and prove the other null state decoupling relation for the
Mellin transform of any n-point MHV graviton amplitude.

2 MHV-sector of the celestial CFT

In this paper we consider the mostly plus MHV graviton scattering amplitudes
〈1−2−3+4+ · · ·n+〉. In GR, at tree-level, the scattering amplitudes with only one or no
negative helicity gravitons vanish, i.e,

〈1−2+3+4+ · · ·n+〉 = 0, 〈1+2+3+4+ · · ·n+〉 = 0 (2.1)

This has the following consequences:

1. Consider the collinear limit of two gravitons. We write the factorisation channels
schematically as [55],

+ +→ +, +− → (−) + (+), −− → − (2.2)

This, together with (2.1), imply that the set of MHV amplitudes is closed under the
collinear limit. Now since the collinear limit corresponds to the OPE limit in the
Celestial CFT, the corresponding statement in the celestial CFT is that the set of
MHV amplitudes is closed under OPE.

2. Now one can use the correspondence between soft theorems and Ward identities [7,
8, 11, 19, 20] to determine the symmetries of the set of all MHV amplitudes. So we
can make a positive helicity graviton soft and the lower point amplitude that we get
due to soft factorisation is again a MHV amplitude. On the contrary, if we make a
negative helicity graviton soft then, due to (2.1), the amplitude vanishes. This means
that there is no negative helicity soft graviton in the MHV sector. This simplifies the
structure of the symmetry algebra significantly. As we will see, the subleading soft
graviton theorem for a positive helicity soft graviton can be cast as the Ward identity
for SL(2,C) current algebra and we also have the supertranslations coming from
the positive helicity soft graviton. They together form a closed algebra and can be
thought of as the symmetry algebra in the MHV sector of the celestial CFT.

– 4 –
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Now the graviton-graviton OPE extracted from MHV amplitudes, holds as operator
statements only in the MHV sector of the Celestial CFT. This is of course true by con-
struction. But, what is most surprising is that the OPE is completely determined by the
SL(2,C) current algebra together with the supertranslations coming from the positive he-
licity soft graviton. By completely we mean including the leading OPE coefficients. This
happens because this infinite dimensional symmetry algebra has null states whose decou-
pling forces the MHV amplitudes to satisfy certain linear first order partial differential
equations. One can get the leading OPE coefficients from these equations.

We believe that these facts should be interpreted in the following way: at tree-level, the
Celestial CFT has an autonomous sector which holographically computes the MHV graviton
scattering amplitudes and is governed by the SL(2,C) current algebra and supertranslation
symmetry coming from positive helicity soft gravitons. This sector is neither local nor
unitary. But, it is very likely that it is exactly solvable in the same way as minimal models
of 2-D CFT are exactly solvable.

Before we end this section let us point out that the OPE is particularly simple in the
MHV sector. Because of (2.1) the OPE in this sector is schematically given by,

+ + ∼ +, +− ∼ −, −− ∼ 0 (2.3)

We will see that (2.3) also independently follows from the invariance of the OPE under
the infinite dimensional local symmetry algebra.

3 SL(2,C) current algebra from the subleading soft graviton theorem

Let us start with the subleading soft graviton theorem [1] for a positive helicity soft graviton
in Mellin space,1

〈
S+

1 (z, z̄)
n∏
i=1

φhi,h̄i(zi, z̄i)
〉

=
n∑
k=1

(z̄ − z̄k)2

z − zk

[
2h̄k
z̄ − z̄k

− ∂̄k

]
〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 (3.1)

where
S+

1 (z, z̄) = lim
∆→0

∆G+
∆(z, z̄) (3.2)

is the subleading conformally soft [43–49] graviton and

h̄k = ∆k − σk
2 (3.3)

We treat z and z̄ as independent complex variables and follow a procedure similar to
what was applied to subsubleading soft graviton theorem in [3]. The only difference is that
we are also allowing the (singular) local transformations. The basic idea is the following.
The structure of the soft factor allows us to think of the soft operator as a generating
function of currents. For example, we can see that the r.h.s. of (3.1) is a polynomial in
the coordinate z̄ of the subleading soft operator S+

1 (z, z̄). So it makes sense to expand
1For a brief review of Mellin amplitudes for massless particles and notation used in the paper, please see

the appendix (A.1). We are also setting κ =
√

32πGN = 2.
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the soft operator S+
1 (z, z̄) in powers of z̄ and then from (3.1) it follows that the expansion

coefficients are conserved currents whose correlation functions with a collection of primary
operators are already contained in the soft theorem. We will also apply the same procedure
to the leading soft operator.

So we start by expanding the r.h.s. of (3.1) in powers of z̄

〈
S+

1 (z, z̄)
n∏
i=1

φhi,h̄i(zi, z̄i)
〉

= −
n∑
k=1

z̄2
k∂̄k + 2h̄kz̄k
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉+ 2z̄
n∑
k=1

h̄k + z̄k∂̄k
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉

− z̄2
n∑
k=1

1
z − zk

∂

∂z̄k
〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉

(3.4)

Using this we define three currents Ja(z) where a = 0,±1 whose correlation functions
are given by,

〈
J1(z)

n∏
i=1

φhi,h̄i(zi, z̄i)
〉

=
n∑
k=1

z̄2
k∂̄k + 2h̄kz̄k
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉

=
n∑
k=1

L̄1(k)
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 (3.5)

〈
J0(z)

n∏
i=1

φhi,h̄i(zi, z̄i)
〉

=
n∑
k=1

h̄k + z̄k∂̄k
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉

=
n∑
k=1

L̄0(k)
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 (3.6)

〈
J−1(z)

n∏
i=1

φhi,h̄i(zi, z̄i)
〉

=
n∑
k=1

1
z − zk

∂

∂z̄k
〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉

=
n∑
k=1

L̄−1(k)
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 (3.7)

where we have defined the differential operators,

L̄1(k) = z̄2
k∂̄k + 2h̄kz̄k (3.8)

L̄0(k) = h̄k + z̄k∂̄k (3.9)

and
L̄−1(k) = ∂

∂z̄k
(3.10)

which are the generators of SL(2,C) or the antiholomorphic Lorentz transformations and
Ja(z) are the corresponding currents. In terms of the currents we can write the soft graviton
operator S+

1 (z, z̄) as,

S+
1 (z, z̄) = −J1(z) + 2z̄J0(z)− z̄2J−1(z) (3.11)

– 6 –
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Therefore the soft operator is a generating function for the SL(2,C) currents Ja(z), a =
0,±1.

The modes of the currents Ja(z), which generate local SL(2,C) transformations, are
defined in the standard way and their (classical) commutator is given by,[

Jam, J
b
n

]
= (a− b)Ja+b

m+n (3.12)

The zero-modes or the global symmetry generators are given by J1
0 = L̄1, J

0
0 = L̄0 and

J−1
0 = L̄−1 which are the generators of the antiholomorphic Lorentz transformations. We

will be working with this level zero SL(2,C) current algebra.
The commutator of a primary and the current is given by,[

J1
n, φh,h̄(z, z̄)

]
= zn

(
z̄2∂̄ + 2h̄z̄

)
φh,h̄(z, z̄)[

J0
n, φh,h̄(z, z̄)

]
= zn

(
z̄∂̄ + h̄

)
φh,h̄(z, z̄)[

J−1
n , φh,h̄(z, z̄)

]
= zn∂̄φh,h̄(z, z̄)

(3.13)

Now note that here for simplicity we have expanded the soft operator around z̄ = 0
but we could have expanded around an arbitrary point in the z̄ plane. The effect of this
is nothing but to translate the current Ja(z) from the point z̄ = 0 to the point in the z̄
plane around which we are expanding the soft operator. In fact for the purpose of operator
product expansion we will expand it around points other than z̄ = 0. In the general case
the expansion around a fixed point z̄ = z̄′ gives,

S+
1 (z, z̄) = −J1(z, z̄′) + 2(z̄ − z̄′)J0(z, z̄′)− (z̄ − z̄′)2J−1(z, z̄′) (3.14)

The new and the old currents are related by conjugation by the translation operator
exp(−z̄′L̄−1) and so none of the operator relations change. Similarly, the modes of the
current Ja(z, z̄′) can be defined with respect to some fixed point z = z′ other than z = 0 and
so in general we should denote the modes by Jan(z′, z̄′). They satisfy the same commutation
relation

[Jam(z′, z̄′), Jbn(z′, z̄′)] = (a− b)Ja+b
m+n(z′, z̄′) (3.15)

because commutation relations do not change under conjugation. The generators Jan defined
in (3.12) or (3.13) is given by Jan = Jan(z′ = 0, z̄′ = 0).

3.1 Interpretation as diffeomorphism

Here we want to give a geometric interpretation to this algebra because it may be useful in
order to interpret this as an asymptotic symmetry [21–24]. So let us consider infinitesimal
diffeomorphisms of the form,

z → z, z̄ → z̄ +A(z) +B(z)z̄ + C(z)z̄2 (3.16)

where A,B,C are meromorphic functions. We can do a mode expansion of the functions
and define the following vector fields which form a basis,

J−1
n = −zn d

dz̄
, J0

n = −znz̄ d
dz̄
, J1

n = −znz̄2 d

dz̄
(3.17)
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The commutator of these vector fields is given by,

[Jam, Jbn] = (a− b)Ja+b
m+n, a, b = −1, 0, 1 (3.18)

which is again the level zero SL(2,C) current algebra. So this is a subalgebra of the algebra
of diffeomorphisms on the plane, with analytic singularities.

4 OPE between the subleading soft graviton and a conformal primary

In order to construct the OPE between two hard gravitons it is very useful to know the
OPE between a soft graviton and a hard graviton. Since a hard graviton can be converted
into a soft graviton by taking conformal soft limit [43–49], the OPE between soft and hard
acts as a boundary condition which always needs to be satisfied [5]. Secondly, the OPE
between the soft operator and a hard operator also clarifies the definition of the primary
state with respect to the extended symmetry algebra.

This OPE can be constructed from the subleading soft theorem by bringing the soft
graviton close to the hard operator. So we start from the subleading soft theorem (3.1)

〈
S+

1 (z, z̄)
n∏
i=1

φhi,h̄i(zi, z̄i)
〉

= −
n∑
k=1

(z̄k − z̄)2 ∂̄k + 2h̄k (z̄k − z̄)
z − zk

〈
n∏
i=1

φhi,h̄i(zi, z̄i)〉 (4.1)

and suppose we want to know the OPE between S+
1 (z, z̄) and φh1,h̄1

(z1, z̄1). So we simply
have to expand the subleading soft factor in powers of (z − z1) and (z̄ − z̄1) and there will
be both singular and non-singular terms. Doing this expansion we get,〈

S+
1 (z, z̄)

n∏
i=1

φhi,h̄i(zi, z̄i)
〉

= −

 0
z − z1

+
∞∑
p=1

(z − z1)p−1J 1
−p(z1, z̄1)

 〈 n∏
i=1

φhi,h̄i(zi, z̄i)〉

+ 2(z̄ − z̄1)

 h̄1
z − z1

+
∞∑
p=1

(z − z1)p−1J 0
−p(z1, z̄1)

〈 n∏
i=1

φhi,h̄i(zi, z̄i)
〉

− (z̄ − z̄1)2

 1
z − z1

∂

∂z̄1
+
∞∑
p=1

(z − z1)p−1J −1
−p (z1, z̄1)

〈 n∏
i=1

φhi,h̄i(zi, z̄i)
〉

(4.2)

where the differential operators J a−p(z1, z̄1) are defined as,

J 1
−p(z1, z̄1)〈

n∏
i=1

φhi,h̄i(zi, z̄i)〉 = 〈
(
J1
−pφh1,h̄1

)
(z1, z̄1)

n∏
i=2

φhi,h̄i(zi, z̄i)〉

= −
∑
k 6=1

(z̄k − z̄1)2 ∂̄k + 2h̄k (z̄k − z̄1)
(zk − z1)p 〈

n∏
i=1

φhi,h̄i(zi, z̄i)〉 (4.3)

J 0
−p(z1, z̄1)〈

n∏
i=1

φhi,h̄i(zi, z̄i)〉 = 〈
(
J0
−pφh1,h̄1

)
(z1, z̄1)

n∏
i=2

φhi,h̄i(zi, z̄i)〉

= −
∑
k 6=1

h̄k + (z̄k − z̄1) ∂̄k
(zk − z1)p

〈 n∏
i=1

φhi,h̄i(zi, z̄i)
〉

(4.4)
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and

J −1
−p (z1, z̄1)〈

n∏
i=1

φhi,h̄i(zi, z̄i)〉 = 〈
(
J−1
−pφh1,h̄1

)
(z1, z̄1)

n∏
i=2

φhi,h̄i(zi, z̄i)〉

= −

∑
k 6=1

1
(zk − z1)p

∂

∂z̄k

〈 n∏
i=1

φhi,h̄i(zi, z̄i)
〉 (4.5)

Here the notation is standard. We have defined the current algebra descendant(
Ja−pφh1,h̄1

)
(z1, z̄1), p > 0, whose correlation function with a collection of primary op-

erators is given by the above equations. The residues of the single pole terms in (z − z1),
appearing in (4.2), has the following explanation. The residues are just the operators
Ja0φh1,h̄1

(z1, z̄1). Now

J1
0 (z1, z̄1) = L̄1(z̄1), J0

0 (z1, z̄1) = L̄0(z̄1), J−1
0 (z1, z̄1) = L̄−1(z̄1) (4.6)

and so

J1
0φh1,h̄1

(z1, z̄1) = 0, J0
0φh1,h̄1

(z1, z̄1) = h̄1φh1,h̄1
(z1, z̄1),

J−1
0 φh1,h̄1

(z1, z̄1) = ∂

∂z̄1
φh1,h̄1

(z1, z̄1)
(4.7)

This is exactly what we have obtained as the residue of the pole term in (z − z1)
in (4.2). Now (4.2) can be written in the form of OPE as,

S+
1 (z, z̄)φh1,h̄1

(z1, z̄1)

= −
∞∑
p=1

(z − z1)p−1
(
J1
−pφh1,h̄1

)
(z1, z̄1)

+ 2(z̄ − z̄1)

 h̄1
z − z1

φh1,h̄1
(z1, z̄1) +

∞∑
p=1

(z − z1)p−1
(
J0
−pφh1,h̄1

)
(z1, z̄1)


− (z̄ − z̄1)2

 1
z − z1

∂

∂z̄1
φh1,h̄1

(z1, z̄1) +
∞∑
p=1

(z − z1)p−1
(
J−1
−pφh1,h̄1

)
(z1, z̄1)


(4.8)

If we compute the OPE between a positive helicity graviton G+
∆(z, z̄) and a matter

field φh1,h̄1
(z1, z̄1), which can be another graviton, then in the subleading conformal soft

limit we must have,
lim
∆→0

∆G+
∆(z, z̄)φh1,h̄1

(z1, z̄1) = (4.8) (4.9)

This is an important constraint which needs to be satisfied by any (tree-level) OPE
involving a positive helicity graviton.

Another thing we want to point out is that the OPE (4.8) implies that for any conformal
primary φh,h̄(z, z̄) we have,(

Janφh,h̄

)
(z, z̄) = 0, ∀n > 0, a = 0,±1 (4.10)
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For a = 1 we also have the additional condition(
J1

0φh,h̄

)
(z, z̄) = 0 (4.11)

which is nothing but L̄1(z̄)φh,h̄(z, z̄) = 0.
This means that the conformal primaries are also primaries of the SL(2,C) current

algebra in the standard sense. We want to emphasise the word “standard sense” because
the generators Jan are not quite standard because they are not purely holomorphic. The
antiholomorphic scaling dimension of J1

n is −1 and that of J−1
n is +1. The generator J0

n

has antiholomorphic scaling dimension 0.
Before we end this section let us mention that in the intermediate stages of our cal-

culation we take the conformal primaries to be functions of time [30–32] also and denote
them by φh,h̄(u, z, z̄). With the introduction of time, the new formulas for the differential
operators (4.3) and (4.4) are obtained by making the following replacement

h̄i → h̄i + 1
2(ui − u1) ∂

∂ui
(4.12)

This can be obtained from the subleading soft graviton theorem written in Mellin space
in the presence of the time coordinate and is discussed in the appendix (A.2).

4.1 Commutator with SL(2,C) generators

The generators of SL(2,C) are given by {L0, L±1} with the commutator algebra,

[Lm, Ln] = (m− n)Lm+n, m, n = 0,±1 (4.13)

Note that {L0, L±1} which generate Lorentz transformations, do not belong to the
SL(2,C) current algebra and so we need to specify their action and commutator separately.
These generators act on a primary field φhi,h̄i(zi, z̄i) according to,[

Ln, φhi,h̄i(zi, z̄i)
]

=
(
zn+1
i ∂i + (n+ 1)hizni

)
φhi,h̄i(zi, z̄i) (4.14)

where
2hi = ∆i + σi (4.15)

The commutator between the SL(2,C) generators {L0, L±1} and the generators Jan of
the SL(2,C) current algebra is given by,

[Lm, Jan ] = −nJam+n, m = 0,±1 (4.16)

5 Leading soft theorem and supertranslation generators

The leading soft theorem [2] can be written as [31],2

〈
S+

0 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= −
(

n∑
k=1

z̄ − z̄k
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(5.1)

2In (5.1) we keep the time coordinate because it is more convenient. If we do not want to keep it then
we just have to replace the i∂/∂uk by εkPk where Pkφhi,h̄i

(zi, z̄i) = δkiφhi+1/2,h̄i+1/2(zi, z̄i) and εk = ±1
for an outgoing (incoming) particle.
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where S+
0 (z, z̄) is the leading soft graviton which we take to be outgoing. The following

discussion is essentially identical to that in the case of subleading soft graviton and so we
discuss only the essential formulas which will be used in the paper.

We start by expanding the r.h.s. of (5.1) in powers of z̄,

〈
S+

0 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(5.2)

=
(

n∑
k=1

z̄k
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉
− z̄

(
n∑
k=1

1
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

This leads us to define two currents P0(z) and P−1(z), i.e,

S+
0 (z, z̄) = P0(z)− z̄P−1(z) (5.3)

whose correlation functions or Ward identities are given by,

〈
P0(z)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
(

n∑
k=1

z̄k
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(5.4)

and 〈
P−1(z)

n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
(

n∑
k=1

1
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(5.5)

We can see from the Ward identities (5.4) and (5.5) that P0(z) and P−1(z) generate
the infinitesimal global symmetries

δξφh,h̄(u, z, z̄) = ξz̄i
∂

∂u
φh,h̄(u, z, z̄) (5.6)

and
δξφh,h̄(u, z, z̄) = ξi

∂

∂u
φh,h̄(u, z, z̄) (5.7)

These are the transformation laws of the fields under the global space-time translations
given by u→ u+ ξz̄ and u→ u+ ξ, respectively.

Now we can define the modes of the currents as Pn,0 and Pn,−1 which are the generators
of the supertranslation and they commute among themselves. Their actions on a primary
operator are given by [30, 31],

[
Pn,0, φh,h̄(u, z, z̄)

]
= zn+1z̄i

∂

∂u
φh,h̄(u, z, z̄) (5.8)

and [
Pn,−1, φh,h̄(u, z, z̄)

]
= zn+1i

∂

∂u
φh,h̄(u, z, z̄) (5.9)

If we take the conformal primaries to be time-independent then the action of the time
derivative is given by,

i
∂

∂u
φε
h,h̄

(u, z, z̄)→ εφε
h+ 1

2 ,h̄+ 1
2
(z, z̄) = εPφε

h,h̄
(z, z̄) (5.10)
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where ε = ±1 for an outgoing (incoming) particle and Pφε
h,h̄

(z, z̄) = φε
h+1/2,h̄+1/2(z, z̄). In

other words, the above commutators should be written as,[
Pn,0, φ

ε
h,h̄

(z, z̄)
]

= εzn+1z̄φε
h+ 1

2 ,h̄+ 1
2
(z, z̄) = εzn+1z̄Pφε

h,h̄
(z, z̄) (5.11)

and [
Pn,−1, φ

ε
h,h̄

(z, z̄)
]

= εzn+1φε
h+ 1

2 ,h̄+ 1
2
(z, z̄) = εzn+1Pφε

h,h̄
(z, z̄) (5.12)

Note that every primary carries the additional index ε whose value tells us whether it is
incoming or outgoing. In this paper we have mostly kept it implicit unless its specification
is absolutely necessary for our purpose.

6 OPE between the leading soft graviton and a conformal primary

Proceeding in the same way as in the case of subleading soft theorem we get the following
OPE between the leading soft operator and a conformal primary field,

S+
0 (z, z̄)φh1,h̄1

(u1, z1, z̄1)

=
∞∑
a=2

(z − z1)a−2
(
P−a,0φh1,h̄1

)
(u1, z1, z̄1) (6.1)

− (z̄ − z̄1)
(

1
z − z1

i
∂

∂u1
φh1,h̄1

(u1, z1, z̄1) +
∞∑
a=2

(z − z1)a−2
(
P−a,−1φh1,h̄1

)
(u1, z1, z̄1)

)

where the correlation functions of the supertranslation descendants are given by,

〈(
P−a,0φh1,h̄1

)
(u1, z1, z̄1)

n∏
i=2

φhi,h̄i(ui, zi, z̄i)
〉

= P−a,0(u1, z1, z̄1)
〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= −
∑
k 6=1

z̄k − z̄1
(zk − z1)a−1 i

∂

∂uk

〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(6.2)

and [5]

〈(
P−a,−1φh1,h̄1

)
(u1, z1, z̄1)

n∏
i=2

φhi,h̄i(ui, zi, z̄i)
〉

= P−a,−1(u1, z1, z̄1)
〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= −
∑
k 6=1

1
(zk − z1)a−1 i

∂

∂uk

〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(6.3)

In the absence of the time coordinate the time derivatives are replaced by the substi-
tution (5.10).

Now if we compute the OPE between a positive helicity outgoing graviton G+
∆(z, z̄) and

a conformal primary then the following constraint serves as a boundary condition which
always needs to be satisfied,

lim
∆→1

(∆− 1)G+
∆(z,z̄)φh1,h̄1

(z1, z̄1) = (6.1) (6.4)

Here we have taken the leading conformal soft limit [43–49] on the graviton operator.
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Now the OPE (6.1) unambiguously implies that the following relations hold,(
Pn,0φh,h̄

)
(z, z̄) = 0, ∀n ≥ −1 (6.5)

and (
Pn,−1φh,h̄

)
(z, z̄) = 0, ∀n > −1 (6.6)

We can see that although the supertranslation generator Pn,0 has negative antiholo-
morphic scaling dimension given by −1

2 , Pn,0, for n ≤ −2, does not annihilate a primary
operator. Rather, acting on a primary operator, Pn,0 creates a descendant whose correla-
tion function with a collection of other primaries is given by (6.2). We will see that the
generators P−2,0 and J1

−1 play a central role in the later part of the paper.

7 Commutator between supertranslation and SL(2,C) current algebra
generators

Let us start with the supertranslation generators Pm,n which acts on a conformal primary
field as [30, 31],

[Pm,n, φh,h̄(u, z, z̄)] = izm+1z̄n+1∂uφh,h̄(u, z, z̄) (7.1)

The supertranslation generators commute

[Pm,n, Pm′,n′ ] = 0 (7.2)

The subset of generators given by Pn,−1 and Pn,0, coming from the positive helicity
soft graviton, form a closed algebra with the generators of the SL(2,C) current algebra,

[J1
m, Pn,−1] = Pm+n,0, [J0

m, Pn,−1] = 1
2Pm+n,−1, [J−1

m , Pn,−1] = 0 (7.3)[
J1
m, Pn,0

]
= 0,

[
J0
m, Pn,0

]
= −1

2Pm+n,0, [J−1
m , Pn,0] = −Pm+n,−1 (7.4)

Note that the global space-time translation generators, given by
{P−1,−1, P0,−1, P−1,0, P0,0}, are part of the algebra generated by {Pn,−1, Pn,0, J

a
n}.

Now the commutator of the supertranslations {Pn,−1, Pn,0} with the SL(2,C) genera-
tors, which are not part of the algebra generated by the positive helicity soft graviton, is
given by

[Lm, Pn,a] =
(
m− 1

2 − n
)
Pn+m,a, a = 0,−1 (7.5)

where m = 0,±1.

8 Summary: extended symmetry algebra

For the sake of convenience of the reader, in this section we summarise the commutation
relations and the definition of primary under the extended algebra coming from the positive
helicity soft graviton.
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8.1 SL(2,C) current algebra

[
Jam, J

b
n

]
= (a− b)Ja+b

m+n, a, b = 0,±1, m, n ∈ Z (8.1)

J1
0 = L̄1, J0

0 = L̄0, J−1
0 = L̄−1 (8.2)

8.2 Global SL(2,C)

[Lm, Ln] = (m− n)Lm+n, m, n = 0,±1 (8.3)

8.3 Supertranslation [
Pm,n, Pm′,n′

]
= 0, n, n′ = 0,−1 (8.4)

8.4 Mixed commutators

[J1
m,Pn,−1]=Pm+n,0, [J0

m,Pn,−1]= 1
2Pm+n,−1, [J−1

m ,Pn,−1]=0 (8.5)[
J1
m,Pn,0

]
=0,

[
J0
m,Pn,0

]
=−1

2Pm+n,0, [J−1
m ,Pn,0]=−Pm+n,−1 (8.6)

[Lm,Jan ]=−nJam+n, m=0,±1, n∈Z (8.7)

[Ln,Pa,b]=
(
n−1

2 −a
)
Pa+n,b, n=0,±1, b=0,−1 (8.8)

8.5 Definition of primary (under extended algebra)

(
Janφh,h̄

)
(z, z̄) = 0, ∀n > 0, a = 0,±1 (8.9)(

J1
0φh,h̄

)
(z, z̄) = 0 = L̄1(z̄)φh,h̄(z, z̄) (8.10)

L1(z)φh,h̄(z, z̄) = 0 (8.11)(
Pn,0φh,h̄

)
(z, z̄) = 0, n ≥ −1 (8.12)(

Pn,−1φh,h̄

)
(z, z̄) = 0, n ≥ 0 (8.13)

L0(z)φh,h̄(z, z̄) = hφh,h̄(z, z̄), L̄0(z̄)φh,h̄(z, z̄) = h̄φh,h̄(z, z̄) (8.14)

8.6 Scaling dimensions of generators

Jan −→ (−n,−a) , a = 0,±1 (8.15)

Pn,−1 −→
(
−n− 1

2 ,
1
2

)
(8.16)

Pn,0 −→
(
−n− 1

2 ,−
1
2

)
(8.17)

Ln −→ (−n, 0), n = 0,±1 (8.18)
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9 Differential equation for three graviton scattering amplitude

In this section we obtain a differential equation for the three graviton scattering amplitude
in Mellin space [26, 27, 30, 32], denoted by 〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉.3 This is obtained

in the following way. We start with the four graviton scattering amplitude denoted by
〈G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)〉 and perform the following operations:

1. We first take the OPE limit 3+ → 4+ and then make the graviton 3+ conformally
soft [43–49].

2. Reverse the sequence, i.e, we first make the graviton 3+ conformally soft and then
take the OPE limit 3+ → 4+. The result of this is described by the soft theorems as
discussed in sections 4 and 6.

Finally, we demand that these two operations, performed on the four graviton scat-
tering amplitude, should yield the same result order by order in z34 and z̄34. As we
will see now this gives rise to non-trivial differential equation for the three graviton
scattering amplitude.

So let us start with the four graviton scattering amplitude in Mellin space

M4(1−2−3+4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3

(3)G+
∆4

(4)〉 (9.1)

where both the gravitons 3+ and 4+ are outgoing. In the OPE limit 3+ → 4+, the amplitude
M4(1−2−3+4+) factories as [5],

M4(1−2−3+4+)

=−B(iλ3, iλ4) z̄34
z34
P−1,−1(4)M3(1−2−4+) (9.2)

−B(iλ3, iλ4)z̄34

(
iλ4− iλ3
iλ4 + iλ3

P−2,−1(4)+ iλ3
iλ3 + iλ4

L−1(4)P−1,−1(4)
)
M3(1−2−4+)+ · · ·

where we have defined

M3(1−2−4+) = 〈G−∆1
(1)G−∆2

(2)G+
∆3+∆4−1(4)〉 (9.3)

Now we take the subleading conformal soft limit on the graviton 3+ and using (9.2),
we get

lim
∆3→0

∆3M4(1−2−3+4+) (9.4)

= z̄34

[
2h̄4
z34
P−1,−1(4) + {(1 + iλ4)P−2,−1(4)− L−1(4)P−1,−1(4)}

]
M′3(1−2−4+) + · · ·

3Here G±∆(i) denotes either G±∆(zi, z̄i) or G±∆(ui, zi, z̄i) depending on how we choose to regulate the
graviton Mellin amplitude in GR. But the following arguments do not depend on the choice of regulator
as long as it respects all the symmetries of the problem. As we will see, these differential equations are
ultimately determined by the underlying symmetry algebra. The only thing that depends on the choice of
regulator is the explicit form of the differential operators which we have already explained in (4.12).
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where
M′3(1−2−4+) = 〈G−∆1

(1)G−∆2
(2)G+

∆4−1(4)〉 (9.5)

But we also know from the discussion of the subleading soft graviton theorem in sec-
tion 4 that (9.4) must be equal to (4.2), i.e,

lim
∆3→0

∆3M4(1−2−3+4+) = z̄34

[
2h̄4
z34

+ 2J 0
−1(4)

]
〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉+ · · · (9.6)

So by equating (9.4) to (9.6) we get,

(∆4P−2,−1(4)− L−1(4)P−1,−1(4))M′3 = 2J 0
−1(4)〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉 (9.7)

= 2J 0
−1(4)P−1,−1(4)〈G−∆1

(1)G−∆2
(2)G+

∆4−1(4)〉

Now by shifting the dimension ∆4 → ∆4 + 1 we can write (9.7) as[
L−1(4)P−1,−1(4) + 2J 0

−1(4)P−1,−1(4)− (∆4 + 1)P−2,−1(4)
]
〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉 = 0

(9.8)
This is a first-order linear partial differential equation for the three graviton scattering

amplitude where the positive helicity graviton is outgoing. One can check using the explicit
expression for the differential operators, given in sections 4 and 6 and the three graviton
scattering amplitude in Mellin space, that this equation is indeed satisfied. Note that the
leading conformal soft limit does not produce anything new because the supertranslation
generator P−2,−1 already appears in the OPE (9.2) and so it trivially satisfies the condition
in equation (6.4).

Now (9.8) is a decoupling equation which tells us that a certain linear combination of
descendants of the graviton 4+ vanish. The vanishing condition must be a tensor equation
so that it does not violate any of the symmetries of the theory. This means that the linear
combination, which vanishes, must also be a primary of the symmetry algebra. Since the
descendants generated by the (singular) local transformations appear in (9.8), we should
look for null states or primary descendants of the extended symmetry algebra.

The relevance of null states of (conformally) soft operators in the context of Celestial
CFT were studied in [40, 41]. The null states studied there were null states of the global
conformal group. The null states that we will study in this paper are null states of hard
operators under the local infinite dimensional symmetry algebra. So they are supposed to
be much more powerful, as we will see.

9.1 Limitations of the three point function

Let us now point out some of the limitations of the three point function which follows from
energy-momentum conservation. We know that

〈G−∆1
(1)G−∆2

(2)G+
∆4

(4)〉 ∝ δ(z̄14)δ(z̄24) (9.9)

Now let us consider a subset of supertranslation generators of the form P−a,0, a ≥ 2
or the SL(2,C) current algebra generators J1

−n, n ≥ 1. Their actions on the three point
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function, following from (6.2) and (4.3), are given by

P−a,0(4)〈G−∆1
(1)G−∆2

(2)G+
∆4

(4)〉

= −
∑
k 6=4

z̄k − z̄4
(zk − z4)a−1 i

∂

∂uk
〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉 = 0 (9.10)

J 1
−n(4)〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉

= −
∑
k 6=4

(z̄k − z̄4)2 ∂̄k + 2h̄k (z̄k − z̄4)
(zk − z4)n 〈G−∆1

(1)G−∆2
(2)G+

∆4
(4)〉 = 0 (9.11)

So they annihilate the three point function because of the delta function coming from
the energy-momentum conservation. This means that one cannot get all possible terms
in the OPE, consistent with the extended symmetry algebra, just by studying the four
graviton scattering amplitude. In higher point amplitudes this does not happen and all the
symmetry generators are nontrivial. In this paper we will study the OPE and null states
both from the (extended) symmetry point of view and also explicitly by starting from the
six graviton MHV amplitude.

10 OPE from 6-point MHV amplitude

In this section we analyse the modified Mellin transform of the 6-point tree level MHV
graviton amplitude in Einstein gravity with the goal of extracting the leading as well first
few subleading order terms in the celestial OPE of outgoing positive helicity gravitons.
The subleading terms in the OPE that we obtain can potentially be related to the sub-
leading terms in the collinear expansion of the momentum space amplitude which has been
investigated in [56]. But we will not pursue that direction in this paper.

10.1 6-point MHV graviton amplitude

The elegant representation of tree level MHV graviton amplitudes due to Hodges [52, 53]
turns out to be the most useful for our purposes of studying the celestial OPE. According
to Hodges’ formula, the tree level MHV n-point stripped amplitude is given by

An(1−, 2−, 3+, . . . , n+) = 〈12〉8
det(Φijk

pqr)
〈ij〉〈ik〉〈jk〉〈pq〉〈pr〉〈qr〉

(10.1)

where (1, 2) label the negative helicity gravitons. Φijk
pqr is a (n − 3) × (n − 3) matrix

obtained by deleting the set of rows {i, j, k} and columns {p, q, r} from a n × n matrix Φ
whose elements are defined as follows

Φij =


[ij]
〈ij〉 , i 6= j

−
∑
k 6=i

[ik]〈xk〉〈yk〉
〈ik〉〈xi〉〈yi〉 , i = j

(10.2)

where x, y denote reference spinors. As shown in [52], the representation (10.1) makes
the Sn permutation symmetry of the amplitude manifest. Consequently there is no a

– 17 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
6

priori preferred choice for the set of rows and columns to be removed in order to obtain
Φijk
pqr. Another salient feature of Hodges’ formula is that it elucidates the behaviour of the

amplitude under soft limits.
Now let us consider the n = 6-point amplitude. In this case a convenient choice for

the rows and columns to be removed from Φ is {i, j, k} = {1, 2, 3} and {p, q, r} = {4, 5, 6}
respectively. Then the 6-point MHV graviton amplitude takes the form

A6(1−, 2−, 3+, 4+, 5+, 6+) = 〈12〉8 det
(
Φ123

456
)

〈12〉〈13〉〈23〉〈45〉〈46〉〈56〉 (10.3)

where Φ123
456 is a 3× 3 matrix and it’s determinant is given by

det
(
Φ123

456

)
= [14]
〈14〉

( [25]
〈25〉

[36]
〈36〉 −

[26]
〈26〉

[35]
〈35〉

)
− [24]
〈24〉

( [15]
〈15〉

[36]
〈36〉 −

[16]
〈16〉

[35]
〈35〉

)
+ [34]
〈34〉

( [26]
〈26〉

[15]
〈15〉 −

[25]
〈25〉

[16]
〈16〉

) (10.4)

Now using the following parametrisation of null momenta

pµ = εωqµ(z, z̄), qµ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (10.5)

the spinor helicity brackets can be written as

〈ij〉 = −2εiεj
√
ωiωj zij , [ij] = 2√ωiωj z̄ij (10.6)

where εi = ±1 for outgoing (incoming) particles. Then the amplitude in (10.3) becomes

A6(1−, 2−, 3+, 4+, 5+, 6+)

= −4
(

ω3
1ω

3
2

ω3ω4ω5ω6

)[
z̄14
z14

(
z̄25z̄36
z25z36

− z̄26z̄35
z26z35

)
− z̄24
z24

(
z̄15z̄36
z15z36

− z̄16z̄35
z16z35

)

+ z̄34
z34

(
z̄15z̄26
z15z26

− z̄16z̄25
z16z25

)]
z8

12
z12z13z23z45z46z56

6∏
i=1

εi

(10.7)

10.2 5-point MHV graviton amplitude

In order to obtain the celestial OPE from the 6-point amplitude, we will also require the
expression of the 5-point MHV graviton amplitude. Using Hodge’s formula this is given by

A5(1−, 2−, 3+, 4+, 5+) = 〈12〉8 det
(
Φ123

345
)

〈12〉〈13〉〈23〉〈34〉〈35〉〈45〉 (10.8)

Here we have chosen to remove the set of rows {i, j, k} = {1, 2, 3} and columns
{p, q, r} = {3, 4, 5} from Φ. In this case the minor Φ123

345 is a 2 × 2 matrix and its de-
terminant is

det
(
Φ123

345

)
=
( [14]
〈14〉

[25]
〈25〉 −

[15]
〈15〉

[24]
〈24〉

)
(10.9)

Then using the parametrisation of null momentum in (10.5), the 5-point amplitude
can be expressed as

A5(1−, 2−, 3+, 4+, 5+) = 4 ε1ε2ε4ε5
ω3

1ω
3
2

ω2
3ω4ω5

z8
12

z12z13z23z34z35z45

(
z̄14z̄25
z14z25

− z̄15z̄24
z15z24

)
(10.10)
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10.3 6-point Mellin amplitude

The modified Mellin transform of the 6-point MHV graviton amplitude in (10.7) is given
by [30, 32]

M6 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆5
(5)G+

∆6
(6)
〉

(10.11)

=
∫ ∞

0

6∏
i=1

dωi ω
∆i−1
i e

−i
6∑
i=1

εiωiui
A6(ωi, zi, z̄i)δ(4)

( 6∑
i=1

εiωiq
µ
i (zi, z̄i)

)
, ∆i = 1 + iλi

where G±∆i
(i) ≡ G±∆i

(ui, zi, z̄i) is the primary operator dual to the i-th external graviton
in the S-matrix. The superscript denotes the spin si = ±2. Throughout the rest of this
section we will take the gravitons (5, 6) in the amplitude A6 to be outgoing, i.e., ε5 = ε6 = 1,
but the εi’s for the remaining particles will be left unspecified.

Now let us choose the pair of primary operators corresponding to gravitons (5, 6) in the
amplitude for performing the celestial OPE. The OPE can then be obtained by expanding
the Mellin amplitude around z56 = 0, z̄56 = 0, u56 = 0. In order to carry out this analysis
it is first useful to perform the following change of integration variables

ω5 = ωP t, ω6 = ωP (1− t) (10.12)

where ωP ≥ 0 and t ∈ [0, 1]. Then we get,

M6 =
∫ 1

0
dt tiλ5(1− t)iλ6

∫ ∞
0

dωP ω
iλ5+iλ6
P

∫ ∞
0

4∏
i=1

dωi ω
∆i−1
i e

−i
6∑
i=1

εiωiui

× A6(ωi, zi, z̄i)δ(4)
( 6∑
i=1

εiωiq
µ
i (zi, z̄i)

) (10.13)

Now as shown in section A.3 of the appendix, the delta function in the above integral
can be written as

δ(4)
( 6∑
i=1

εiωiq
µ
i (zi, z̄i)

)
= i

4
1

(r12,34 − r̄12,34)z13z̄13z24z̄24

4∏
i=1

δ(ωi − ω∗i ) (10.14)

where

ω∗i = εiωP [σi,1 + t (z56σi,2 + z̄56σi,3 + z56z̄56σi,4)] , i ∈ 1, 2, 3, 4. (10.15)

and σi,j are functions of zij , z̄ij with (i, j) ∈ (1, 2, 3, 4, 6). Their explicit forms are given
in equations (A.38)–(A.42) . Now this representation of the delta function can be used to
localise the integrals with respect to ωi, i ∈ (1, 2, 3, 4). We are then left with integrals with
respect to the variables ωP and t. Using the expression of the MHV amplitude in (10.7),
the integral over ωP is given by∫ ∞

0
dωP ω

3+iΛ
P exp [−iωP (U1 + z56 tU2 + z̄56 tU3 + z56z̄56 tU4 + tu56)]

= Γ(4 + iΛ)
(iU1)4+iΛ

[
1 + t

U1
(z56U2 + z̄56U3 + z56z̄56U4 + u56)

]−4−iΛ (10.16)
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where Λ =
∑6
i=1 λi and

U1 =
4∑
i=1

σi,1ui6, U2 =
4∑
i=1

σi,2ui6, U3 =
4∑
i=1

σi,3ui6, U4 =
4∑
i=1

σi,4ui6 (10.17)

Then using (10.16) in (10.13), the Mellin amplitude takes the form

M6 = N F
∫ 1

0
dt tiλ5−1(1− t)iλ6−1

4∏
i=1

Θ (εi (σi,1 + z56 tσi,2 + z̄56 tσi,3 + z56z̄56 tσi,4)) I(t)

(10.18)
In the above expression, the integrand I(t) is given by

I(t) =
2∏
i=1

(
1 + z56 t

σi,2
σi,1

+ z̄56 t
σi,3
σi,1

+ z56z̄56 t
σi,4
σi,1

)3+iλi

×
4∏
i=3

(
1 + z56 t

σi,2
σi,1

+ z̄56 t
σi,3
σi,1

+ z56z̄56 t
σi,4
σi,1

)iλi−1

×
[
1 + t

U1
(z56U2 + z̄56U3 + z56z̄56U4 + u56)

]−4−iΛ

(10.19)

The prefactors N and F are given by

N = −i
4∏
i=1

εi

2∏
j=1

(εjσj,1)3+iλj

×
4∏

k=3
(εkσk,1)iλk−1 z8

12
z12z13z14z16z23z24z26z34z36z46

Γ(4 + iΛ)
(iU1)4+iΛ (10.20)

F = 1
z46z56

(
1− z56

z46

)−1 3∑
i=1

zi4z̄i6 σi,1

(
1− z̄56

z̄i6

)(
1− z56

zi6

)−1
(10.21)

The theta functions

Θ (εi (σi,1 + z56 tσi,2 + z̄56 tσi,3 + z56z̄56 tσi,4)) , i = 1, 2, 3, 4 (10.22)

simply ensure that the delta function in (10.14) localises the integration variables ωi, i ∈
(1, 2, 3, 4) in (10.13) to only positive semi-definite values.

Note that we have written the various terms in the r.h.s. of (10.18) in a form which is
particularly convenient for expanding the Mellin amplitude around z56 = 0, z̄56 = 0, u56 = 0
for the purposes of extracting the celestial OPE.

10.4 5-point Mellin amplitude

In order to study the factorisation behaviour of the 6-point Mellin amplitude in the OPE
limit, we need to know the 5-point Mellin amplitude. This is given by [30, 32]

M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆5
(5)
〉

=
∫ 5∏

i=1
dωi ω

iλi
i e

−i
5∑
i=1

εiωiui
A5(ωi, zi, z̄i)δ(4)

( 5∑
i=1

εiωiq
µ
i (zi, z̄i)

) (10.23)
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where A5 is the 5-point MHV graviton amplitude given by (10.10). Now as shown in the ap-
pendix, section A.3, the delta function involved in the above integral can be represented as

δ(4)
( 5∑
i=1

εiωiq
µ
i (zi, z̄i)

)
= i

4
1

(r12,34 − r̄12,34)z13z̄13z24z̄24

4∏
i=1

δ(ωi − ω∗i ) (10.24)

where4

ω∗i = εiε5ω5σi,1, i ∈ 1, 2, 3, 4. (10.25)

Due to (10.24), the integrals with respect to ωi, i ∈ (1, 2, 3, 4) in (10.23) can again be
localised. Then plugging in the expression of A5 into (10.23), the remaining integral over
ω5 gives ∫ ∞

0
dω5 ω

2+iΛ′
5 exp

(
−iε5ω5

4∑
i=1

σi,1ui5

)
= Γ(3 + iΛ′)

(iε5U1)3+iΛ′ (10.26)

where Λ′ =
∑5
i=1 λi, U1 =

∑4
i=1 σi,1ui5. Thus, the 5-point Mellin amplitude can be written

as

M5 = i
5∏
i=1

εi

2∏
j=1

(εjσj,1)3+iλi
4∏

k=3
(εkσk,1)iλk−1

4∏
l=1

Θ (εlσl,1) z8
12

z12z13z14z15z23z24z25z34z35z45

× Γ(3 + iΛ′)
(iε5U1)3+iΛ′ (10.27)

Now let us note that the prefactor N in (10.18) is related to the 5-point Mellin am-
plitude. In order to see this let us set ε5 = 1 and perform the following change of labels
in (10.27)

z5 → z6, z̄5 → z̄6, u5 → u6, iλ5 → iλ5 + iλ6 (10.28)

Then the 5-point Mellin amplitude takes the form

M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆5+∆6−1(6)
〉

= i
4∏
i=1

εi

2∏
j=1

(εjσj,1)3+iλi
4∏

k=3
(εkσk,1)iλk−1

4∏
l=1

Θ (εlσl,1) z8
12

z12z13z14z16z23z24z26z34z36z46

× Γ(3 + iΛ)
(iU1)3+iΛ (10.29)

where Λ =
∑6
i=1 λi and the σi,1’s are now given by (A.38) to (A.41). Then from (10.20)

and (10.29) it is evident that

−N
4∏
l=1

Θ (εlσl,1) = i∂u6M5 = P−1,−1M5 (10.30)

In all subsequent references to the 5-point Mellin amplitude in the rest of this section
we will take it to be given by (10.29).

4Note that σi,1 in (10.25) are identical to the σi,1 in (10.15) upto the change of labels z6 → z5, z̄6 → z5.
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10.5 OPE decomposition of 6-point Mellin amplitude

We will now consider the celestial OPE decomposition of the 6-point Mellin amplitude by
expanding it around z56 = 0, z̄56 = 0, u56 = 0 while keeping the remaining zij , z̄ij , uij with
(i, j) ∈ (1, 2, 3, 4, 6) fixed and non-zero. Here we will ignore the delta function contributions
that come from differentiating the theta functions in (10.18) w.r.t. z56, z̄56. The arguments
of these delta functions involve zij , z̄ij with (i, j) ∈ (1, 2, 3, 4, 6). Such contact terms can
be neglected in the OPE regime where all operator insertions, except the pair whose OPE
is being considered, are taken to be at separated points.

Now the prefactor N in (10.18) is independent of z56, z̄56. Thus for extracting the
OPE we only need to keep track of terms coming from expanding the other prefactor F
and the integrand I(t).

10.5.1 Leading term

It can be easily seen from (10.19) and (10.21) that the leading term in the Mellin amplitude
in the OPE limit is of O

(
z̄56
z56

)
. The z̄56z

−1
56 term comes entirely from5 F and is given by

F = − z̄56
z56

3∑
i=1

zi4
z46

σi,1 + · · · (10.31)

where the dots denote terms which are regular as z56 → 0. Then applying the identi-
ties (A.45) and (A.46) given in section A.3 of the appendix, (10.31) simply becomes

F = − z̄56
z56

+ · · · (10.32)

Note that I(t) is regular around z56 = 0, z̄56 = 0 and at leading order we have I(t) ≈ 1.
Thus the leading term in the Mellin amplitude in the OPE limit takes the form

M6 = − z̄56
z56
N
∫ 1

0
dt tiλ5−1(1− t)iλ6−1

4∏
i=1

Θ (εiσi,1) + · · ·

= − z̄56
z56

B(iλ5, iλ6) P−1,−1M5 + · · ·
(10.33)

where we have used the relation (10.30) and B(x, y) is the Euler Beta function. Now this
result implies that the leading term in the celestial OPE is given by

G+
∆5

(z5, z̄5)G+
∆6

(z6, z̄6) = − z̄56
z56

B(iλ5, iλ6) P−1,−1G
+
∆5+∆6−1(z6, z̄6) + · · · (10.34)

This term exactly matches with [3].

5In (10.21) there is also apparently a term of O(z−1
56 ). Using the identities (A.47) and (A.48), it can be

straightforwardly checked that this term actually vanishes.
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10.5.2 Subleading terms: O(z0
56z̄

0
56)

Now let us study the first few subleading terms in the OPE decomposition. We first
consider the terms of O(1), which turn out to be non-trivial here in contrast to the case of
the 4-point Mellin amplitude. The relevant contribution from F at this order is

F
∣∣∣
O(1)

= 1
z46

3∑
i=1

zi4
z̄i6
zi6

σi,1 + 1
z2

46

3∑
i=1

zi4z̄i6 σi,1

= −
3∑
i=1

z̄i6
zi6

σi,1 + 1
z2

46

3∑
i=1

zi6z̄i6 σi,1

(10.35)

Using the identities (A.47) and (A.48) this can be simplified to give

F
∣∣∣
O(1)

= −
4∑
i=1

z̄i6
zi6

σi,1 (10.36)

At this order we again have I(t) ≈ 1. Then after doing the t-integral we find the O(1)
term from the Mellin amplitude to be given by

M6
∣∣∣
O(1)

= −B(iλ5, iλ6)
4∑
i=1

z̄i6
zi6

σi,1 P−1,−1A5 = B(iλ5, iλ6) P−2,0M5 (10.37)

where in obtaining the last equality above we have used (A.62) from section A.5 of the
appendix.

Now let us take the subleading conformal soft limit iλ5 → −1 in (10.37). This gives

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(1)

= −(iλ6 − 1)P−2,0M′5 (10.38)

whereM′5 =M5
∣∣∣
iλ5=−1

. But from the discussion in section 4, we know that the subleading
conformal soft theorem (4.2) requires

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(1)

= −J 1
−1P−1,−1M′5 (10.39)

Then consistency of (10.38) with the (10.39) implies

J 1
−1P−1,−1M′5 = (iλ6 − 1)P−2,0M′5 (10.40)

Shifting iλ6 → 1 + iλ5 + iλ6 in the above, we obtain the following differential equation[
J 1
−1P−1,−1 − (iλ5 + iλ6)P−2,0

]
M5 = 0 (10.41)

Equivalently this equation implies that the following descendant

Φ+ =
[
J1
−1P−1,−1 − (∆− 1)P−2,0

]
G+

∆ (10.42)

is a null state. In section 12 we will determine the null-state Φ+ using the extended
symmetry algebra. We will also subsequently study in this paper the implications of the
decoupling relation (10.41) for the structure of the leading celestial OPE of gravitons.
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10.5.3 Subleading terms: O(z56)

Next let us consider the terms of O(z56). In this case we have

F
∣∣∣
O(z56)

= z56

3∑
i=1

zi4z̄i6 σi,1

(
1

z2
i6z46

+ 1
zi6z2

46
+ 1
z3

46

)

= z56

(
1
z3

46

3∑
i=1

z̄i6 σi,1 −
3∑
i=1

z̄i6
z2
i6
σi,1

)
= −z56

4∑
i=1

z̄i6
z2
i6
σi,1

(10.43)

where in arriving at the last equality above we have used (A.47). Now at this order we
have a non-trivial contribution from I(t) and this is given by

I(t)
∣∣∣∣
O(z56)

=z56 t

(
(3+iλ1)σ1,2

σ1,1
+(3+iλ2)σ2,2

σ2,1
+(iλ3−1)σ3,2

σ3,1
+(iλ4−1)σ4,2

σ4,1
− (4+iΛ)

U1
U2

)
≡z56 tI1,0 (10.44)

where the notation I1,0 has been introduced for convenience. The subscripts (1, 0) can be
regarded as keeping track of the associated orders of z56, z̄56 respectively. Thus we have

M6

∣∣∣∣
O(z56)

= −z56

∫ 1

0
dt tiλ5−1(1− t)iλ6−1

[
F
∣∣∣
O(z56)

I(t)
∣∣∣
O(1)

+ F
∣∣∣
O(1)
I(t)

∣∣∣
O(z56)

]
P−1,−1M5

= −z56B(iλ5, iλ6)
[ 4∑
i=1

z̄i6
z2
i6
σi,1 + iλ5

iλ5 + iλ6
I1,0

4∑
i=1

z̄i6
zi6

σi,1

]
P−1,−1M5 (10.45)

Then using (A.62) and (A.70) given in section A.5 of the appendix, the above can be
written as

M6

∣∣∣∣
O(z56)

= z56 B(iλ5, iλ6)
[
iλ6 − iλ5
iλ5 + iλ6

P−3,0 + iλ5
iλ5 + iλ6

L−1P−2,0

]
M5 (10.46)

Now the subleading conformal soft theorem (4.2) requires that at this order we must
have

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(z56)

= −z56 J 1
−2P−1,−1M′5 (10.47)

But from (10.46) we get

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(z56)

= z56 [−(1 + iλ6)P−3,0 + L−1P−2,0]M′5 (10.48)

Therefore in order for our result (10.46) to be consistent with the subleading conformal
soft theorem, we should have

L−1P−2,0M′5 = (1 + iλ6)P−3,0M′5 − J 1
−2P−1,−1M′5 (10.49)

Replacing iλ6 → 1 + iλ5 + iλ6 in the above we can re-write it as(
L−1P−2,0 + J 1

−2P−1,−1 − (2 + iλ5 + iλ6)P−3,0
)
M5 = 0 (10.50)

We have thus obtained another decoupling relation. Using this we can also ex-
press (10.46) as follows

M6
∣∣∣
O(z56)

= z56 B(iλ5, iλ6)
[
(1 + iλ5)P−3,0 −

iλ5
iλ5 + iλ6

J 1
−2P−1,−1

]
M5 (10.51)
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10.5.4 Subleading terms: O(z̄56)

At O(z̄56), we have the following contribution from F

F
∣∣∣
O(z̄56)

= −z̄56

3∑
i=1

zi4 σi,1

( 1
zi6z46

+ 1
z2

46

)
= z̄56

4∑
i=1

σi,1
zi6

(10.52)

where again we have applied the identity (A.46). Then from I(t) we have

I(t)
∣∣∣
O(z̄56)

= z̄56 t

(
(3 + iλ1)σ1,3

σ1,1
+ (3 + iλ2)σ2,3

σ2,1
+ (iλ3 − 1)σ3,3

σ3,1
+ (iλ4 − 1)σ4,3

σ4,1

− (4 + iΛ)
U1

U3

)
≡ z̄56 tI0,1

(10.53)

Besides the above we also need to include the relevant terms form the preceding orders,
whose products can generate contributions at O(z̄56). Taking such terms into account we
finally get

M6
∣∣∣
O(z̄56)

= z̄56B(iλ5, iλ6)
[

iλ5
iλ5 + iλ6

(
− I0,1

4∑
i=1

z̄i6
zi6

σi,1 − I1,0

)
+

4∑
i=1

σi,1
zi6

]
P−1,−1M5

(10.54)
Now using the results in (A.64), (A.74) and (A.61) from the appendix, we can express

the above as

M6
∣∣∣
O(z̄56)

= z̄56B(iλ5, iλ6)
[

iλ5
iλ5 + iλ6

(
L̄−1P−2,0 − L−1P−1,−1

)
+ iλ5 − iλ6
iλ5 + iλ6

P−2,−1

]
M5

(10.55)
Once again let us consider the subleading conformal soft limit iλ5 → −1 in the above

result. This yields

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(z̄56)

= z̄56
[
L̄−1P−2,0 − L−1P−1,−1 + (1 + iλ6)P−2,−1

]
M′5 (10.56)

But according to the subleading conformal soft theorem (4.2), we should get

lim
iλ5→−1

(1 + iλ5)M6

∣∣∣∣
O(z̄56)

= 2 z̄56 J 0
−1P−1,−1M′5 (10.57)

Comparing (10.56) and (10.57) and shifting iλ6 → 1 + iλ5 + iλ6 we then get(
L−1P−1,−1 + 2J 0

−1P−1,−1 − (2 + iλ5 + iλ6)P−2,−1 − L̄−1P−2,0
)
M5 = 0 (10.58)

We will discuss the role of this decoupling relation in determining the celestial OPE
coefficients of gravitons using the extended symmetry algebra in forthcoming sections of
this paper. Let us also note that using this relation we can write (10.55) as follows

M6

∣∣∣∣
O(z̄56)

= z̄56B(iλ5, iλ6)
[ 2iλ5
iλ5 + iλ6

J 0
−1P−1,−1 − (1 + iλ5)P−2,−1

]
M5 (10.59)
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10.5.5 Subleading terms: O(z56z̄56)

Finally let us consider the O(z56z̄56) terms in the OPE decomposition of the 6-point am-
plitude. Here we have from F

F
∣∣∣
O(z56z̄56)

= −z56z̄56

3∑
i=1

zi4 σi,1

(
1

z2
i6z46

+ 1
zi6z2

46
+ 1
z3

46

)
= z56z̄56

3∑
i=1

σi,1
z2
i6

(10.60)

The O(z56z̄56) contribution from I(t) is given by

I(t)
∣∣∣
O(z56z̄56)

= z56z̄56
(
tI(1)

1,1 + t2 I(2)
1,1

)
(10.61)

where

I(1)
1,1 = (3 + iλ1)σ1,4

σ1,1
+ (3 + iλ2)σ2,4

σ2,1
+ (iλ3 − 1)σ3,4

σ3,1
+ (iλ4 − 1)σ4,4

σ4,1
− (4 + iΛ)

U1
U4 (10.62)

and

I(2)
1,1 = I1,0I0,1 −

[
(3 + iλ1)σ1,2σ1,3

σ2
1,1

+ (3 + iλ2)σ2,2σ2,3
σ2

2,1
+ (iλ3 − 1)σ3,2σ3,3

σ2
3,1

+ (iλ4 − 1)σ4,2σ4,3
σ2

4,1
− (4 + iΛ)

U2
1

U2U3

] (10.63)

I1,0, I0,1 were defined in (10.44) and (10.53). Now we also need to include the O(z2
56)

term from I(t) since this can combine with the leading O(z̄56z
−1
56 ) term from F and generate

an O(z̄56) contribution. So, we have

I(t)
∣∣∣
O(z2

56)
= z2

56 t
2 I2,0 (10.64)

where

I2,0 = −1
2

[
(3 + iλ1)

σ2
1,2
σ2

1,1
+ (3 + iλ2)

σ2
2,2
σ2

2,1
+ (iλ3 − 1)

σ2
3,2
σ2

3,1
+ (iλ4 − 1)

σ2
4,2
σ2

4,1
− (4 + iΛ)

U2
1
U2

2

]
+ 1

2 I
2
1,0 (10.65)

Thus after accounting for all the relevant contributions from F and I(t), we get

M6
∣∣∣
O(z56z̄56)

= z56z̄56 B(iλ5, iλ6)
[

iλ5
iλ5 + iλ6

(
I0,1P−3,0−I1,0P−2,−1 +I(1)

1,1 P−2,0
)

(10.66)

+ iλ5(iλ5 +1)
(iλ5 + iλ6)(iλ5 + iλ6 +1)

(
I(2)

1,1 P−2,0−I2,0P−1,−1
)
−P−3,−1

]
M5

Now we want to express the above completely in terms of symmetry generators acting
on the 5-point Mellin amplitude. To that end, using (A.66), (A.74) and (A.77) from the
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appendix, section A.5, it can be shown that(
I0,1P−3,0 − I1,0P−2,−1 + I(1)

1,1 P−2,0
)
M5

= L−1P−2,−1M5 − L̄−1P−3,0A5 + L−1L̄−1P−2,0M5 − I(2)
1,1 P−2,0M5

− L−1

( 4∑
i=1

1
zi6
P−1,−1M5

)
−

4∑
i=1

z̄i6
z2
i6
σi,3 P−1,−1M5 −

4∑
i=1

σi,2
zi6
P−1,−1M5

+
4∑
i=1

1
zi6
P−2,−1M5

(10.67)

The last three terms in (10.67) can be simplified using the following identity

−
4∑
i=1

z̄i6
z2
i6
σi,3 −

4∑
i=1

σi,2
zi6
−
( 4∑
i=1

1
zi6

) 4∑
j=1

σj,1
zj6

= 1
2

( 4∑
i=1

1
zi6

)2

+
4∑
i=1

1
2z2
i6

(10.68)

Let us also take note of the following relation

2I2,0P−1,−1M5 = L2
−1P−1,−1M5 − 2L−1

( 4∑
i=1

1
zi6
P−1,−1M5

)

+
[ 4∑
i=1

1
z2
i6

+
( 4∑
i=1

1
zi6

)2]
P−1,−1M5

(10.69)

Then using the last two equations (10.68) and (10.69) we get(
I0,1P−3,0 − I1,0P−2,−1 + I(1)

1,1 P−2,0
)
M5

=
(
L−1P−2,−1 − L̄−1P−3,0 + L−1L̄−1P−2,0 −

1
2L

2
−1P−1,−1

)
M5

+
(
I2,0P−1,−1 − I(2)

1,1 P−2,0
)
M5

(10.70)

Now in order to express the last set of terms in (10.70) in terms of the action of
symmetry generators on the 5-point amplitude, it is convenient to appeal to the subleading
conformal soft theorem according to which we must have

lim
iλ5→−1

(1 + iλ5)M6
∣∣∣
O(z56z̄56)

= z56z̄56 2J 0
−2P−1,−1M′5 (10.71)

This implies that upon using (10.70) in (10.66) we ought to get(
I(2)

1,1 P−2,0 − I2,0P−1,−1
)
M′5

=
(
L−1P−2,−1 − L̄−1P−3,0 + L−1L̄−1P−2,0 −

1
2L

2
−1P−1,−1

+ (iλ6 − 1)P−3,−1M′5 − 2J 0
−2P−1,−1

)
M′5

(10.72)
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Then assembling the above results and shifting iλ6 → iλ5 +iλ6 +1 in (10.72) we finally
obtain

M6
∣∣∣
O(z56z̄56)

(10.73)

=z56z̄56 B(iλ5,iλ6)
[

2iλ5 iλ6
(iλ5+iλ6)(iλ5+iλ6+1) J

0
−2P−1,−1−

(
1+ iλ5 iλ6

iλ5+iλ6+1

)
P−3,−1

+ iλ5(1+iλ5)
(iλ5+iλ6)(iλ5+iλ6+1)

(
L−1P−2,−1−L̄−1P−3,0+L−1L̄−1P−2,0−

1
2L

2
−1P−1,−1

)]
M5

11 Summary: celestial OPE from MHV Mellin amplitude

Using the results obtained in (10.34), (10.37), (10.51), (10.59) and (10.73), we can now
extract the celestial OPE for outgoing positive helicity gravitons. This takes the following
form

G+
∆5

(z5, z̄5)G+
∆6

(z6, z̄6)
∣∣∣
MHV

=B(iλ5, iλ6)
[
− z̄56
z56

P−1,−1 +P−2,0 +z56

{
(1+ iλ5)P−3,0−

iλ5
iλ5 + iλ6

J1
−2P−1,−1

}
+ z̄56

{ 2iλ5
iλ5 + iλ6

J0
−1P−1,−1−(1+ iλ5)P−2,−1

}
+z56z̄56

{ 2iλ5 iλ6
(iλ5 + iλ6)(iλ5 + iλ6 +1) J

0
−2P−1,−1−

(
1+ iλ5 iλ6

iλ5 + iλ6 +1

)
P−3,−1

+ iλ5(1+ iλ5)
2(iλ5 + iλ6)(iλ5 + iλ6 +1)

(
2L−1P−2,−1−2L̄−1P−3,0 +2L−1L̄−1P−2,0−L2

−1P−1,−1

)}
+ · · ·

]
G+

∆(z6, z̄6) (11.1)

where ∆ = ∆5 + ∆6 − 1 and the dots denote higher order terms in the OPE which we
have not considered here. The subscript MHV in (11.1) denotes that this particular
representation of the celestial OPE in terms of the extended symmetry algebra discussed
in this paper, holds as an operator statement only within MHV graviton amplitudes.

Now the other main result from this section involves the following differential equations[
J 1
−1(6)P−1,−1(6)− (∆− 1)P−2,0(6)

] 〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆(6)
〉

= 0 (11.2)[
L−1(6)P−2,0(6) + J 1

−2(6)P−1,−1(6)− (∆ + 1)P−3,0(6)
]

×
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆(6)
〉

= 0 (11.3)

and[
L−1(6)P−1,−1(6) + 2J 0

−1(6)P−1,−1(6)− (∆ + 1)P−2,−1(6)− L̄−1(6)P−2,0(6)
]

×
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆(6)
〉

= 0
(11.4)

where ∆ = 1 + iλ5 + iλ6. These differential equations, which are equivalent to null state
relations, played a crucial role in arriving at the above structure of the celestial OPE
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in (11.1). In subsequent sections of this paper we will illustrate how the leading as well
as subleading OPE coefficients can be obtained using these differential equations for MHV
amplitudes and the extended symmetry algebra. The results of this section will then serve
as an important check of the symmetry based analysis.

12 Null states and differential equations for MHV amplitudes

Let us consider the graviton primary Gσ∆(z, z̄) where σ = ±2 is the helicity. This is a confor-
mal primary as well as a primary under the SL(2,C) current algebra and supertranslations,
obtained from positive helicity soft graviton. Using the commutation relations and defini-
tion of a primary state one can check that this is also true for the operator P−1,−1G

σ
∆(z, z̄).

12.1 Φσ

We now consider the following descendants of Gσ∆(z, z̄) given by

φ1 = J1
−1P−1,−1G

σ
∆(z, z̄), φ2 = P−2,0G

σ
∆(z, z̄) (12.1)

They have the scaling dimensions
(
h+ 3/2, h̄− 1/2

)
. One can easily check that these

are the only possible descendants with the scaling dimensions
(
h+ 3/2, h̄− 1/2

)
.

Now φ1 and φ2 are primaries of the Poincare group, i.e,

L1φi = L̄1φi = P0,−1φi = P−1,0φi = 0, i = 1, 2 (12.2)

but not of the extended symmetry algebra. So we take a linear combination of them and
construct the state,

Φσ = φ1 + cφ2 (12.3)

Now we impose the conditions

JanΦσ = 0, n ≥ 1 (12.4)

Using the commutators and the fact that Gσ∆ is a primary we get,

J1
nΦσ = J0

nΦσ = 0, n ≥ 1 (12.5)

Similarly, applying J−1
1 we get,

J−1
1 Φσ = 0 =⇒

[
c+ (2h̄+ 1)

]
P−1,−1G

σ
∆(z, z̄) = 0 =⇒ c = −

(
2h̄+ 1

)
(12.6)

So the primary descendant Φσ is given by,

Φσ(z, z̄) =
[
J1
−1P−1,−1 − (2h̄+ 1)P−2,0

]
Gσ∆(z, z̄) (12.7)

The other generators Jan for n ≥ 2 automatically annihilate the state. Also we have
not imposed the vanishing of the supertranslation generators of the form Pn,−1, n ≥ 1 and
Pn,0, n ≥ 0, because the commutators

[J0
m, P0,−1] = 1

2Pm,−1,
[
J0
m, P−1,0

]
= −1

2Pm−1,0 (12.8)
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together with P−1,0Φσ = P0,−1Φσ = J0
m≥1Φσ = 0, imply this. Φσ(z, z̄) is the most inter-

esting null-state because its existence solely requires the local current algebra symmetry.
Finally, we set (12.7) to zero inside a MHV amplitude,〈[

J1
−1P−1,−1 − (2h̄+ 1)P−2,0

]
Gσ∆(z, z̄)

∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0, σ = ±2 (12.9)

Now using the fact that the correlation functions of the descendants can be written in
terms of correlation functions of primaries only, we get the following equation

[
J 1
−1P−1,−1 − (2h̄+ 1)P−2,0

]〈
Gσ∆(z, z̄)

∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0, σ = ±2 (12.10)

where

J 1
−1 = −

∑
i

2h̄i(z̄i − z̄) + (z̄i − z̄)2∂̄i
zi − z

, P−2,0 = −
∑
i

z̄i − z̄
zi − z

εiPi (12.11)

where εi = ±1 for an outgoing (incoming) particle and PiG
σj
∆j

(z, z̄) = δijG
σj
∆j+1(zj , z̄j).

For an explicit check of the equation (12.10) for n point MHV scattering amplitude we
refer the reader to the appendix (A.7).

12.2 Ψ

Let us consider the following descendants of Gσ∆(z, z̄)6

L−1P−1,−1G
σ
∆(z, z̄), J0

−1P−1,−1G
σ
∆(z, z̄), P−2,−1G

σ
∆(z, z̄), L̄−1P−2,0G

σ
∆(z, z̄) (12.12)

They all have the same scaling dimensions given by (h + 3/2, h̄ + 1/2). In the above
list we could have added one more term given by L̄−1J

1
−1P−1,−1G

σ
∆(z, z̄), but note that

this term is proportional to L̄−1P−2,0G
σ
∆(z, z̄) because of the vanishing condition (12.9).

Now we construct a state Ψ which is a linear combination of the above four states and also
a primary under the extended symmetry algebra. So we write

Ψ =
(
L−1P−1,−1 + c1J

0
−1P−1,−1 + c2P−2,−1 + c3L̄−1P−2,0

)
Gσ∆(z, z̄) (12.13)

where c1, c2, c3 are constants to be determined. We fist impose the conditions,

L1Ψ = L̄1Ψ = P0,−1Ψ = P−1,0Ψ = 0 (12.14)

These conditions, together with the vanishing condition (12.9),7 give the following
result

c1 = 2, c2 = −(∆ + 1), c3 = −1, σ = +2 (12.15)
6To be precise, we should write J−1

0 instead of L̄−1. But for the sake of clarity we use the more familiar
notation L̄−1.

7We need to use the vanishing of the primary descendant Φσ because L̄1 acting on Ψ produces a state
proportional to J1

−1P−1,−1G
σ
∆(z, z̄). We then replace the this state with (2h̄+1)P−2,0G

σ
∆(z, z̄) using (12.9).
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Here σ = +2 means that the primary descendant Ψ can exist only for positive helicity
gravitons G+

∆(z, z̄). Now, it turns out that for the above values of c1, c2, c3 and σ = +2,
the operator Ψ is also annihilated by Jan>0, Pn≥0,−1 and Pn≥−1,0. Therefore

Ψ =
(
L−1P−1,−1 + 2J0

−1P−1,−1 − (∆ + 1)P−2,−1 − L̄−1P−2,0
)
G+

∆(z, z̄) (12.16)

is a primary descendant of the extended symmetry algebra.
Finally we can set the state Ψ to zero inside a MHV amplitude〈(
L−1P−1,−1 +2J0

−1P−1,−1−(∆+1)P−2,−1− L̄−1P−2,0
)
G+

∆(z, z̄)
∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0

(12.17)
In terms of differential operators the vanishing condition (12.17) can be written as,

(
L−1P−1,−1 +2J 0

−1P−1,−1−(∆+1)P−2,−1−L̄−1P−2,0
)〈

G+
∆(z, z̄)

∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0

(12.18)
where

L−1 = ∂

∂z
, L̄−1 = ∂

∂z̄

J 0
−1 = −

∑
i

h̄i + (z̄i − z̄)∂̄i
zi − z

, P−2,−1 = −
∑
i

1
zi − z

εiPi

P−2,0 = −
∑
i

z̄i − z̄
zi − z

εiPi

(12.19)

Here εi = ±1 for an outgoing (incoming) particle and PiG
σj
∆j

(z, z̄) = δijG
σj
∆j+1(zj , z̄j).

For a direct check of the equation (12.18) for 5 graviton MHV amplitude we refer the refer to
appendix (A.6). We have also checked (12.18) numerically for 6 graviton MHV amplitude.

Equation (12.18) is a linear first order partial differential equation. For an (n+2) point
MHV amplitude with n positive and two negative helicity gravitons, there are n such equa-
tions. Now due to conformal invariance the (n+2) point amplitude depends on (n−1) vari-
ables because we can take three points to be fixed at (1, 0,∞). So it appears that one may be
able to solve (12.10) and (12.18) together and get the MHV amplitudes, at least in principle.

We can also see that if we take the three point function 〈− −+〉 then the equa-
tion (12.18) reduces to (9.8) which we obtained earlier by requiring consistency with the
subleading soft theorem. This happens because P−2,0 annihilates the three point function
as shown in (A.100).

Let us now make few comments about the nature of these equations. First of all,
note that both the holomorphic and the antiholomorphic derivatives of G+

∆(z, z̄) appear
in (12.18). This is reflection of the fact that the underlying infinite-dimensional symmetry
algebra is not homomorphically factorizable.

Secondly, the two sets of equations(
L−1P−1,−1 +2J 0

−1P−1,−1−(∆+1)P−2,−1−L̄−1P−2,0
)〈

G+
∆(z, z̄)

∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0

(12.20)
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and [
J 1
−1P−1,−1 − (∆− 1)P−2,0

]〈
G+

∆(z, z̄)
∏
i

Gσi∆i
(zi, z̄i)

〉
MHV

= 0 (12.21)

are not independent. Here we have substituted 2h̄ + 1 = ∆ − 1 for a positive helicity
graviton. The first set (12.20) implies the second set (12.21) due to special conformal
invariance. In order to see this let us note that[
L̄1,L−1P−1,−1 +2J0

−1P−1,−1−(∆+1)P−2,−1− L̄−1P−2,0
]

= 2
(
J1
−1P−1,−1−(∆−1)P−2,0

)
(12.22)

This, together with (12.20) and special conformal invariance, implies (12.21). In any
case we will now see that these two equations can be used to obtain all the informations
about the leading term in the OPE in the holomorphic collinear limit.

13 Differential equations for Fock space MHV amplitudes

As expected, the differential equations we have obtained for the Mellin space amplitudes
can be transformed back to Fock space by making the following replacements,

∆i → −ωi
∂

∂ωi
, Pi → ωi, P−1,−1 → εω (13.1)

So let us transform the equation (12.18) to Fock space. We write the Fock space MHV
amplitude as,

〈a(εω, z, z̄, σ = +2)
∏
i

a(εiωi, zi, z̄i, σi)〉MHV (13.2)

where εk = ±1 for an outgoing (incoming) particle. For an outgoing parti-
cle ak(ωk, zk, z̄k, σk) is an annihilation operator whereas for an incoming particle
ak(−ωk, zk, z̄k, σk) is a creation operator. With this notation we can write the differen-
tial equation (12.18) as,(

L−1P−1,−1 + 2J 0
−1P−1,−1 − (∆ + 1)P−2,−1 − L̄−1P−2,0

)
×
〈
a(εω, z, z̄, σ = +2)

∏
i

a(εiωi, zi, z̄i, σi)
〉
MHV

= 0
(13.3)

where
L−1P−1,−1 = εω

∂

∂z

J 0
−1P−1,−1 = −

∑
i

1
2

(
−ωi ∂

∂ωi
− σi

)
+ (z̄i − z̄)∂̄i

zi − z

ω
(∆ + 1)P−2,−1 = −

(
−ω ∂

∂ω
+ 1

)(∑
i

εiωi
zi − z

)

L̄−1P−2,0 = − ∂

∂z̄

(∑
i

z̄i − z̄
zi − z

εiωi

)
(13.4)

For an (n+ 2) point MHV amplitude with two negative helicity gravitons there are n
such equations corresponding to n positive helicity gravitons. Using the same prescription
we can also transfer the differential equation (12.10) to Fock space.
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14 General comments on the structure of the OPE

Consider two primaries φ1 and φ2. We write the contribution of a single primary φ3 to the
φ1φ2 OPE as,

φ1(z, z̄)φ2(0) =
∑
p,p̄

Cpp̄z
pz̄p̄Opp̄(0) = zh3−h1−h2 z̄h̄3−h̄1−h̄2C123φ3(0) +

∑
p,p̄

′
zpz̄p̄C ′pp̄O

′
pp̄(0)

(14.1)
where the prime over the summation means that the contribution of the primary operator
φ3 has been subtracted. So O′pp̄ is a sum of descendants. For our purpose it is convenient
to normalise the operator O′pp̄ in such a way that the coefficient C ′pp̄ is either 0 or 1.

The descendants are created by the operators Jan<0, Pn≤−2,0, Pn≤−1,−1 and L−1 with
scaling dimensions given by,

Jan : (−n,−a), Pn,0 : (−n− 1/2,−1/2) , Pn,−1 : (−n− 1/2, 1/2) , L−1 : (1, 0) (14.2)

We can see that they all have positive holomorphic scaling dimension and so the sum
over p is bounded from below. The lowest value of p corresponds to the primary operator
and is given by,

pmin = h3 − h1 − h2 (14.3)

where h3 is the scaling dimension of the primary.
Now, a priori, there is no reason for the sum over p̄ to be bounded from below because

the generators J1
n≤0 and Pn≤−2,0 have negative antiholomorphic scaling dimension. So

starting from a primary one can create states with arbitrarily negative antiholomorphic
scaling dimension. This in particular will require poles of arbitrarily high order in z̄. This
is of course not what we find if we start from the MHV amplitude. So we need to prove
a stronger statement that the sum over p̄ is not only bounded from below but p̄min ≥ 0.
We will now provide strong evidence that this in fact is true if we assume that both sides
of the OPE transform in the same way under the local symmetry algebra.

We start with the generator J−1
1 with scaling dimensions (−1, 1), which acts on a

primary as [
J−1

1 , φ(z, z̄)
]

= z∂̄φ(z, z̄)⇒
[
J−1

1 , φ(0)
]

= 0 (14.4)

Note that the second equation in (14.4) follows from the definition of a primary operator.
Now applying J−1

1 to both sides of (14.1) we get,

z∂̄φ1(z, z̄)φ2(0) =
∑
pp̄

p̄Cpp̄z
p+1z̄p̄−1Opp̄(0) =

∑
pp̄

Cpp̄z
pz̄p̄

[
J−1

1 , Opp̄(0)
]

(14.5)

Comparing powers of zpz̄p̄ on both sides we get the following recursion relation,

Cpp̄
[
J−1

1 , Opp̄(0)
]

= (p̄+ 1)Cp−1,p̄+1Op−1,p̄+1(0) (14.6)

In general equation (14.6) is a system of equations because Opp̄ is a sum of descendants.
In this paper we will not try to give a general proof that no poles in z̄ arise, but merely
satisfy ourselves by studying a concrete example.
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So consider φ1 and φ2 to be outgoing gravitons with φ1 being of positive helicity. In
this case we can write,

φ1(z, z̄)φ2(0) = z̄

z
C123P−1,−1φ3(0) + · · ·

+ C0,0P−2,0φ3(0) + · · ·

+ z

z̄
C1,−1O1,−1(0) + · · ·

(14.7)

We want to show that C1,−1 = 0. Now one can easily check that the only candidate
for O1,−1(0) is

O1,−1(0) = J1
−1P−2,0φ3(0) (14.8)

We can now use (14.6) with p = 1 and p̄ = −1 and get,

C1,−1
[
J−1

1 , O1,−1(0)
]

= 0 (14.9)

So C1,−1 = 0 if
[
J−1

1 , O1,−1(0)
]
6= 0. Now using the commutation relations we get,[

J−1
1 , O1,−1(0)

]
= −2(∆3 − 2)P−2,0φ3(0) 6= 0 =⇒ C1,−1 = 0 (14.10)

Therefore the unwanted term in the OPE with a pole in z̄ is ruled out by the local
symmetry algebra. It is very likely that this method of proof can be generalised to arbitrary
order but we leave that to future work. An all order proof will also imply that the sum
over p̄ is bounded from below.

With a more refined understanding of the representation theory of this infinite dimen-
sional symmetry algebra one should be able to derive this result from unitarity, which is
not at all clear at present.

14.1 More examples

In the above example the operator multiplying z/z̄ was a descendant. But now let us con-
sider cases where the operator multiplying z/z̄ is a primary. So consider the following OPEs

G+
∆1

(z)G−∆2
(0) ∼ z

z̄
C1G

+
∆1+∆2

(0) (14.11)

and
G−∆1

(z)G−∆2
(0) ∼ z

z̄
C2G

−
∆1+∆2

(0) (14.12)

According to equation (2.3), in the MHV sector of the Celestial CFT we should have
C1 = C2 = 0. It is simple to see by again applying J−1

1 to both sides of the OPE that
C1 = C2 = 0. For example, applying this to (14.11) we get,

− C1
z2

z̄2G
+
∆1+∆2

= 0 + · · · (14.13)

where we have used (14.4) and the fact that in the OPE (14.11) double or higher order
poles in z̄ do not appear. So we have C1 = 0 and similarly C2 = 0.

So we can see that any term with a pole in z̄ cannot appear in the OPE if it is to
be invariant under the SL(2,C) current algebra. This is what we expect if we extract the
OPE from the MHV amplitudes. This is consistent with the fact that the MHV sector
of the Celestial CFT can be abstractly defined by declaring SL(2,C) current algebra and
supertranslations as the underlying symmetry.
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15 Leading OPE coefficients from differential equations

15.1 Two outgoing (incoming) gravitons

In this section we want to determine the leading OPE coefficients starting from the dif-
ferential equations for the MHV amplitudes. We start with two outgoing gravitons one
of which is positive helicity, denoted by G+

∆(z, z̄), and the other one is Gσ1
∆1

(z1, z̄1). The
general OPE can be written as,

G+
∆(z, z̄)Gσ1

∆1
(z1, z̄1) = Cpq(∆,∆1, σ1)(z − z1)p(z̄ − z̄1)qGσ2

∆2
(z1, z̄1)

+
∑
m,n

a(m,n)∑
i=1

(z − z1)m(z̄ − z̄1)nCimnOimn(z1, z̄1)
(15.1)

where Cs are the OPE coefficients. The index i distinguishes between different descendants
of Gσ2

∆2
and a(m,n) is the number of descendants which is a function of m and n. Here we

have kept only the contribution of the primary Gσ2
∆2

to the OPE.
According to the discussion in the last section p should be the smallest power of

(z− z1) occurring in the OPE (15.1) because the generators, which create descendants, all
have positive holomorphic scaling dimension. Now there are an infinite number of terms
in (15.1) with coefficients of the form (z− z1)p(z̄− z̄1)r but, since Gσ1

∆1
(z1, z̄1) is a primary

operator, r starts from q. In other words, q is the smallest power of (z̄− z̄1) occurring in the
sum (z− z1)p

∑
r

∑a(p,r)
i=1 (z̄− z̄1)rCiprOpr(z1, z̄1). Note that q is not necessarily the smallest

power of (z̄ − z̄1) occurring in the OPE (15.1). Let us now write down the differential
equations explicitly.

We have two differential equations(
L−1P−1,−1 + 2J 0

−1P−1,−1 − (∆ + 1)P−2,−1 − L̄−1P−2,0
)

×
〈
G+

∆(z, z̄)Gσ1
∆1

(z1, z̄1)
∏
i 6=1

Gσi∆i
(zi, z̄i)

〉
MHV

= 0
(15.2)

and (
J 1
−1P−1,−1 − (∆− 1)P−2,0

)〈
G+

∆(z, z̄)Gσ1
∆1

(z1, z̄1)
∏
i 6=1

Gσi∆i
(zi, z̄i)

〉
MHV

= 0 (15.3)

where the differential operators are given by,

J 0
−1 = − h̄1 + (z̄1 − z̄)∂̄1

z1 − z
−
∑
i 6=1

h̄i + (z̄i − z̄)∂̄i
zi − z

(15.4)

P−2,−1 = − 1
z1 − z

ε1P1 −
∑
i 6=1

1
zi − z

εiPi (15.5)

P−2,0 = − z̄1 − z̄
z1 − z

ε1P1 −
∑
i 6=1

z̄i − z̄
zi − z

εiPi (15.6)

J 1
−1 = −2h̄1(z̄1 − z̄) + (z̄1 − z̄)2∂̄1

z1 − z
−
∑
i 6=1

2h̄i(z̄i − z̄) + (z̄i − z̄)2∂̄i
zi − z

(15.7)

L−1 = ∂

∂z
, L̄−1 = ∂

∂z̄
(15.8)
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Here ε = ±1 for an outgoing (incoming) particle and PjGσk∆k
(z, z̄) = δjkG

σk
∆k+1(z, z̄).

Let us start with the second differential equation (15.3). We can write this equation as,

J 1
−1

〈
G+

∆+1(z, z̄)Gσ1
∆1

(z1, z̄1)
∏
i 6=1

Gσi∆i
(zi, z̄i)

〉
MHV

= (∆− 1)P−2,0

〈
G+

∆(z, z̄)Gσ1
∆1

(z1, z̄1)
∏
i 6=1

Gσi∆i
(zi, z̄i)

〉
MHV

(15.9)

where we have used the fact that G+
∆(z, z̄) is outgoing and so P−1,−1G

+
∆(z, z̄) = G+

∆+1(z, z̄).
Now we take the holomorphic OPE limit z → z1 and in this limit we can keep only the

singular terms in the differential operators (15.6) and (15.7). We also have to substitute
the OPE (15.1) inside the correlator. We can keep only the leading term of the OPE. Now
by matching the coefficients of (z − z1)p−1(z̄ − z̄1)q+1 on both sides of (15.9), we get the
following recursion relation,

(∆− 1)Cpq(∆,∆1 + 1, σ1) = (∆1 − σ1 + q)Cpq(∆ + 1,∆1, σ1) (15.10)

We can follow identical procedure for the other equation (15.2) and obtain the equation,

(∆− q)Cpq(∆,∆1 + 1, σ1) = (∆1 − σ1 + 2q + p)Cpq(∆ + 1,∆1, σ1) (15.11)

The equations (15.10) and (15.11) have non-trivial solutions iff,

∆− 1
∆− q = ∆1 − σ1 + q

∆1 − σ1 + 2q + p
(15.12)

Now note that the null-states exist for arbitrary values of dimension ∆ and we can
vary ∆ and ∆1 independently. So the only nontrivial solution of (15.12) can be,

q = 1, p = −q = −1 (15.13)

Therefore, the leading term in the OPE must have the structure,

G+
∆(z, z̄)Gσ1

∆1
(z1, z̄1) ∼ C−1,1(∆,∆1, σ1) z̄ − z̄1

z − z1
Gσ2

∆2
(z1, z̄1) (15.14)

This also immediately tells us that,

∆2 = ∆ + ∆1, σ2 = σ1 (15.15)

So finally we have,

G+
∆(z, z̄)Gσ1

∆1
(z1, z̄1) ∼ C−1,1(∆,∆1, σ1) z̄ − z̄1

z − z1
Gσ1

∆+∆1
(z1, z̄1) (15.16)

which is the expected answer [3]. This in particular means that the bulk theory which is
dual to the MHV sector of the Celestial CFT must be a two derivative theory of gravity [3].
This is a consistency check. Let us now find out the OPE coefficient.
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From (15.10) or (15.11) we get,

(∆− 1)C−1,1(∆,∆1 + 1, σ1) = (∆1 − σ1 + 1)C−1,1(∆ + 1,∆1, σ1) (15.17)

We also have the following recursion from global time translation invariance,

C−1,1(∆,∆1, σ1) = C−1,1(∆ + 1,∆1, σ1) + C−1,1(∆,∆1 + 1, σ1) (15.18)

Combining (15.17) and (15.18) we get

C−1,1(∆ + 1,∆1, σ1) = ∆− 1
∆ + ∆1 − σ1

C−1,1(∆,∆1, σ1) (15.19)

and
C−1,1(∆,∆1 + 1, σ1) = ∆1 − σ1 + 1

∆ + ∆1 − σ1
C−1,1(∆,∆1, σ1) (15.20)

The solution to the recursion relations (15.19) and (15.20) are given by [3],

C−1,1(∆,∆1, σ1) = αB(∆− 1,∆1 − σ1 + 1) (15.21)

where B(x, y) is the Euler Beta function and α is a constant. Now matching with the
leading conformal soft limit ∆→ 1 we get α = −1. So the leading term of the OPE comes
out to be,

G+
∆(z, z̄)Gσ1

∆1
(z1, z̄1) ∼ −B(∆− 1,∆1 − σ1 + 1) z̄ − z̄1

z − z1
Gσ1

∆+∆1
(z1, z̄1) (15.22)

This is precisely the answer obtained in [3]. Now we can start with two incoming
gravitons. The differential equations (15.2) and (15.3) do not change because they are
determined by symmetry algebra. The only thing that changes is that now we have

P−1,−1G
+
∆(z, z̄) = −G+

∆+1(z, z̄) (15.23)

instead of P−1,−1G
+
∆(z, z̄) = G+

∆+1(z, z̄). This, together with the fact that Gσ1
∆1

(z1, z̄1) is
also incoming, lead to identical recursion relations. So for two incoming gravitons also we
get the same leading OPE (15.22).

15.2 Outgoing-incoming OPE

In this section, to distinguish between incoming and outgoing graviton primaries, we denote
them by Gσ,ε∆ (z, z̄) where ε = ±1 for an outgoing (incoming) particle.

Let us consider G+
∆(z, z̄) to be outgoing and Gσ1

∆1
(z1, z̄1) to be incoming. In this case

two different primaries can appear on the r.h.s. of the OPE [3],

G+,ε
∆ (z, z̄)Gσ1,−ε

∆1
(z1, z̄1) ∼ Cεpq(∆,∆1, σ1)(z − z1)p(z̄ − z̄1)qGσ2,ε

∆2
(z1, z̄1) (15.24)

and

G+,ε
∆ (z, z̄)Gσ1,−ε

∆1
(z1, z̄1) ∼ C−εpq (∆,∆1, σ1)(z − z1)p(z̄ − z̄1)qGσ2,−ε

∆2
(z1, z̄1) (15.25)
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where ε = 1 because we are taking G+
∆(z, z̄) to be outgoing. Proceeding in the same way

as in the case of two outgoing gravitons we get the following recursion relations from the
differential equations (15.2) and (15.3),

(∆1 − σ1 + p+ 2q)C±εpq (∆ + 1,∆1, σ1) + (∆− q)C±εpq (∆,∆1 + 1, σ1) = 0 (15.26)
(∆1 − σ1 + q)C±εpq (∆ + 1,∆1, σ1) + (∆− 1)C±εpq (∆,∆1 + 1, σ1) = 0 (15.27)

Now (15.26) and (15.27) together imply that,

q = 1, p = −1 =⇒ σ2 = σ1, ∆2 = ∆ + ∆1 (15.28)

So we can write a single recursion relation as follows,

(∆1 − σ1 + 1)C±εpq (∆ + 1,∆1, σ1) + (∆− 1)C±εpq (∆,∆1 + 1, σ1) = 0 (15.29)

Now the recursion relation following from global time translation invariance is given by,

C±εpq (∆ + 1,∆1, σ1)− C±εpq (∆,∆1 + 1, σ1) = ±C±εpq (∆,∆1, σ1) (15.30)

Then (15.29) and (15.30) can be combined to give,

C±ε−1,1(∆ + 1,∆1, σ1) = ± ∆− 1
∆ + ∆1 − σ1

C±ε−1,1(∆,∆1, σ1) (15.31)

and
C±ε−1,1(∆,∆1 + 1, σ1) = ∓ ∆1 − σ1 + 1

∆ + ∆1 − σ1
C±ε−1,1(∆,∆1, σ1) (15.32)

For concreteness let us start with σ1 = 2. In this case the relations (15.31) and (15.32)
give,

(∆ + ∆1 − 2)Cε−1,1(∆ + 1,∆1, σ1 = 2) = (∆− 1)Cε−1,1(∆,∆1, σ1 = 2) (15.33)
(∆ + ∆1 − 2)Cε−1,1(∆,∆1 + 1, σ1 = 2) = −(∆1 − 1)Cε−1,1(∆,∆1, σ1 = 2) (15.34)

and

(∆ + ∆1 − 2)C−ε−1,1(∆ + 1,∆1, σ1 = 2) = −(∆− 1)C−ε−1,1(∆,∆1, σ1 = 2) (15.35)

(∆ + ∆1 − 2)C−ε−1,1(∆,∆1 + 1, σ1 = 2) = (∆1 − 1)C−ε−1,1(∆,∆1, σ1 = 2) (15.36)

The solutions of these recursion relations are given by,

Cε−1,1(∆,∆1, σ1 = 2) = αB(∆1 − 1, 3−∆−∆1) (15.37)
C−ε−1,1(∆,∆1, σ1 = 2) = βB(∆− 1, 3−∆−∆1) (15.38)

where α and β are constants to be determined. So we can write,

G+,ε
∆ (z, z̄)G+,−ε

∆1
(z1, z̄1) ∼ αB(∆1 − 1, 3−∆−∆1) z̄ − z̄1

z − z1
G+,ε

∆+∆1
(z1, z̄1) (15.39)
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and

G+,ε
∆ (z, z̄)G+,−ε

∆1
(z1, z̄1) ∼ βB(∆− 1, 3−∆−∆1) z̄ − z̄1

z − z1
G+,−ε

∆+∆1
(z1, z̄1) (15.40)

where ε = 1. The constants α and β can be obtained by taking the leading conformal soft
limit. To determine α we can make G+,−ε

∆1
(z1, z̄1) conformally soft by taking ∆1 → 1. This

gives α = 1. Similarly to determine β we can make G+,ε
∆ (z, z̄) conformally soft by taking

∆→ 1 and this gives β = 1. So the final answer becomes,

G+,ε
∆ (z, z̄)G+,−ε

∆1
(z1, z̄1) ∼ B(∆1 − 1, 3−∆−∆1) z̄ − z̄1

z − z1
G+,ε

∆+∆1
(z1, z̄1) (15.41)

and

G+,ε
∆ (z, z̄)G+,−ε

∆1
(z1, z̄1) ∼ B(∆− 1, 3−∆−∆1) z̄ − z̄1

z − z1
G+,−ε

∆+∆1
(z1, z̄1) (15.42)

These answers also match with those obtained in [3].
In a similar way we can find out the OPE coefficients C±εpq (∆,∆1, σ1 = −2) starting

from the recursion relations (15.31) and (15.32).

16 Subleading OPE coefficients from symmetry

Having determined the leading celestial OPE coefficients, we now turn to the subleading
OPE coefficients. These can be obtained by solving recursion relations that follow from
demanding the invariance of the OPE under the extended symmetry algebra. We will
illustrate this here by considering the O(z0z̄0) and O(z̄) terms in the OPE for outgoing
gravitons. The OPE coefficients at other subleading orders as well as the case of incoming-
outgoing gravitons can be worked out in the same fashion.

16.1 Recursion relation for O(z0z̄0) term

We have seen that in both the (++) and (+−) OPEs the leading term is

G+
∆1

(z, z̄)G±∆2
(0, 0) ∼ z̄

z
C±P−1,−1G

±
∆3

(0, 0), ∆3 = ∆1 + ∆2 − 1 (16.1)

where C± are given by (15.22)

C+ = −B(∆1 − 1,∆2 − 1), C− = −B(∆1 − 1,∆2 + 3) (16.2)

Now at O(z0z̄0) there are only two possible descendants

P−2,0G
±
∆3

(0), J1
−1P−1,−1G

±
∆3

(0) (16.3)

Due to the null state decoupling relation (12.9) these two states are not independent
and we can keep only P−2,0G

±
∆3

(0). This allows us to write the OPE as,

G+
∆1

(z, z̄)G±∆2
(0, 0) = z̄

z
C±P−1,−1G

±
∆3

(0, 0) + C ′±P−2,0G
±
∆3

(0, 0) + · · · (16.4)
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To determine C ′± we apply the generator J−1
1 to both sides of (16.4). We have to use

the relations, [
J−1

1 , φh,h̄(z, z̄)
]

= z∂̄φh,h̄(z, z̄) =⇒
[
J−1

1 , φh,h̄(0)
]

= 0 (16.5)

and [
J−1

1 , P−2,0
]

= −P−1,−1 (16.6)

where φh,h̄(z, z̄) is a primary. Note that the second condition in (16.5) is essentially the
definition of a primary operator as stated earlier. Now using these relations and equating
the coefficient of the O(z0z̄0) term on both sides we get,

C ′± = −C± (16.7)

This precisely matches with the coefficient of the P−2,0G
±
∆3

(0) term obtained from the
MHV amplitudes. See for example (11.1). Therefore (16.4) becomes

G+
∆1

(z, z̄)G±∆2
(0, 0) = z̄

z
C±P−1,−1G

±
∆3

(0, 0)−C±P−2,0G
±
∆3

(0, 0) + · · · , ∆3 = ∆1 + ∆2− 1
(16.8)

where C± are given by (16.2).

16.2 Recursion relations for O(z̄) terms in (+,+) OPE

Let us consider two outgoing graviton primary operators G+
∆1

(z, z̄) and G+
∆2

(0, 0). At O(z̄)
the operators that can appear in their celestial OPE are

J0
−1P−1,−1G

+
∆, P−2,−1G

+
∆, L−1P−1,−1G

+
∆, L̄−1P−2,0G

+
∆, L̄−1J

1
−1P−1,−1G

+
∆ (16.9)

where ∆ = ∆1+∆2−1 = 1+iλ1+iλ2. But using the decoupling relations (12.9) and (12.18)
we can eliminate the descendants L−1P−1,−1G

+
∆ and L̄−1J

1
−1P−1,−1G

+
∆ from the above list.

Then the general form of the OPE at O(z̄) can be written as

G+
∆1

(z1, z̄1)G+
∆2

(0, 0)

⊃ z̄ B(iλ1, iλ2)
[
α1J

0
−1P−1,−1 + α2 P−2,−1 + α3 L̄−1P−2,0

]
G+

∆(0, 0)
(16.10)

Using the result from the previous section that the leading OPE coefficient is given by
the Euler Beta function, we have chosen to include in (16.10) an overall factor of B(iλ1, iλ2).

Now let us impose that both sides of (16.10) transform in the same way under the action
of the extended symmetry algebra generators. In particular let us first take the commutator
of both sides w.r.t. J0

1 . Using the following commutation relation for primary operators

[J0
1 , G

σ
∆(z, z̄)] = z(z̄∂z̄ + h̄)Gσ∆(z, z̄), σ = ±2 (16.11)

we get
[J0

1 , G
+
∆1

(z1, z̄1)G+
∆2

(0, 0)] = z(z̄∂z̄ + h̄1)G+
∆1

(z, z̄)G+
∆2

(0, 0) (16.12)

Now to match with the order on the r.h.s. of (16.10) we insert the leading OPE in the
above. This gives,

[J0
1 , G

+
∆1

(z1, z̄1)G+
∆2

(0, 0)] ⊃ −z̄ B(iλ1, iλ2)
(
h̄1 + 1

)
P−1,−1G

+
∆(0, 0) (16.13)
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Then using the commutation relations for the generators of the extended symmetry
algebra given in section 8, we get from the r.h.s. of (16.10)

[J0
1 , G

+
∆1

(z1, z̄1)Gσ∆2(z2, z̄2)]

⊃ z̄ B(iλ1, iλ2)
(
α2
2 − α3

)
P−1,−1G

σ
∆(0, 0)

(16.14)

In obtaining the above we have also used the fact that P−1,0G
σ
∆(0, 0) = P0,−1G

σ
∆(0, 0) =

0. Then comparing (16.13) and (16.14) we get the following equation

α2 − 2α3 = −(2h̄1 + 2) (16.15)

Next let us consider the commutator of both sides of the OPE (16.10) with L̄1. This
will generate the operator J1

−1P−1,−1G
+
∆(0, 0) on the r.h.s. We can use the decoupling

relation to write it then in terms of P−2,0G
+
∆(0, 0). Then following the same procedure as

before we find
(2h̄+ 1)α1 + α2 + (2h̄− 1)α3 = 2h̄1 (16.16)

Similarly demanding that both sides of the OPE transform in the same fashion under
the action of L1 we get

(2h̄+ 1)α1 + 4α2 = −2(2h1 − 1) (16.17)

Simultaneously solving the above set of equations (16.15), (16.16), (16.17), we get

α1 = 2iλ1
iλ1 + iλ2

, α2 = −(1 + iλ1), α3 = 0 (16.18)

These coefficients match precisely with the ones obtained from the OPE decomposition
of the 6-point Mellin amplitude in section 10.3.

16.3 Recursion relations for O(z̄) terms in (+,−) OPE

Now let us deal with the mixed helicity OPE. In this case the general form of the OPE
between graviton primaries G+

∆1
(z, z̄) and G−∆2

(0, 0) can be written as

G+
∆1

(z1, z̄1)G−∆2
(0, 0) (16.19)

⊃ z̄ B(iλ1, iλ2 + 4)
[
β1J

0
−1P−1,−1 + β2 P−2,−1 + β3 L−1P−1,−1 + β4 L̄−1P−2,0

]
G−∆(0, 0)

Here also we have used the decoupling relation (12.9) to eliminate the operator
L̄−1J

1
−1P−1,−1G

−
∆ which would otherwise be allowed simply on grounds of dimensional

analysis. But unlike the previous case the null state relation (12.18) does not exist for a
graviton primary with spin σ = −2. Thus we have to keep all 4 operators in the above OPE.

Now we can obtain recursion relations for the OPE coefficients in (16.19) by following
exactly the same procedure as in the case of the (+,+) OPE. The commutator with J0

1 in
this case leads to

β2 + (4 + iλ1 + iλ2)β3 − 2β4 = −(1 + iλ1) (16.20)

Then invariance of the OPE under the action of L̄1 requires

(4 + iλ1 + iλ2)β1 + β2 + (2 + iλ1 + iλ2)β4 = iλ1 − 1 (16.21)
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Under the action of L1 both sides of the OPE (16.19) transform identically iff

(4 + iλ1 + iλ2)β1 + 4β2 + (iλ1 + iλ2)β3 = −2(2 + iλ1) (16.22)

Now to be able to determine all the 4 coefficients in (16.19) we need another equation.
For this let us take the commutator of (16.19) with P0,−1. In this case both sides of the
OPE transform in the same manner provided the following equation holds

− β1 + 2β3 = − 2iλ1
iλ1 + iλ2 + 4 (16.23)

Solving the above set of equations (16.20), (16.21) and (16.22) we get

β1 = 2 iλ1
4 + iλ1 + iλ2

, β2 = −(1 + iλ1), β3 = 0, β4 = 0 (16.24)

We have checked that these coefficients also precisely match with the corresponding
results from the Mellin amplitude. This calculation can be done in exactly the same fashion
as performed for the (+,+) OPE in section 10.5.
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A Details of some calculations

A.1 Brief review of celestial or Mellin amplitudes for massless particles

The Celestial or Mellin amplitude for massless particles in four dimensions is defined as
the Mellin transformation of the S-matrix element, given by [26, 27]

Mn
(
{zi, z̄i, hi, h̄i}

)
=

n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i Sn

(
{ωi, zi, z̄i, σi}

)
(A.1)

where σi denotes the helicity of the i-th particle and the on-shell momenta are parametrized
as,

pi = ωi(1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), p2
i = 0 (A.2)

The scaling dimensions (hi, h̄i) are defined as,

hi = ∆i + σi
2 , h̄i = ∆i − σi

2 (A.3)
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The Lorentz group SL(2,C) acts on the celestial sphere as the group of global conformal
transformations and the Mellin amplitudeMn transforms as,

Mn
(
{zi, z̄i, hi, h̄i}

)
=

n∏
i=1

1
(czi + d)2hi

1
(c̄z̄i + d̄)2h̄i

Mn

(
azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄
, hi, h̄i

)
(A.4)

This is the familiar transformation law for the correlation function of primary operators
of weight (hi, h̄i) in a 2-D CFT under the global conformal group SL(2,C).

In Einstein gravity, the Mellin amplitude as defined in (A.1) usually diverges. This
divergence can be regulated by defining a modified Mellin amplitude as [30, 32],

Mn
(
{ui, zi, z̄i, hi, h̄i}

)
=

n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i e−i

∑n

i=1 εiωiuiSn
(
{ωi, zi, z̄i, σi}

)
(A.5)

where u can be thought of as a time coordinate and εi = ±1 for an outgoing (incoming)
particle. Under (Lorentz) conformal tranansformation the modified Mellin amplitude Mn

transforms as,

Mn
(
{ui,zi, z̄i,hi, h̄i}

)
=

n∏
i=1

1
(czi+d)2hi

1
(c̄z̄i+ d̄)2h̄i

Mn

(
ui

|czi+d|2
,
azi+b

czi+d
,
āz̄i+ b̄

c̄z̄i+ d̄
,hi, h̄i

)
(A.6)

Under global space-time translation, u → u + A + Bz + B̄z̄ + Czz̄, the modified
amplitude is invariant, i.e,

Mn
(
{ui +A+Bzi + B̄z̄i + Cziz̄i, zi, z̄i, hi, h̄i}

)
=Mn

(
{ui, zi, z̄i, hi, h̄i}

)
(A.7)

Now in order to make manifest the conformal nature of the dual theory living on the
celestial sphere it is useful to write the (modified) Mellin amplitude as a correlation function
of conformal primary operators. So let us define a generic conformal primary operator as,

φε
h,h̄

(z, z̄) =
∫ ∞

0
dω ω∆−1a(εω, z, z̄, σ) (A.8)

where ε = ±1 for an annihilation (creation) operator of a massless particle of helicity σ.
Under (Lorentz) conformal transformation the conformal primary transforms like a primary
operator of scaling dimension (h, h̄)

φ′ε
h,h̄

(z, z̄) = 1
(cz + d)2h

1
(c̄z̄ + d̄)2h̄

φε
h,h̄

(
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
(A.9)

Similarly in the presence of the time coordinate u we have,

φε
h,h̄

(u, z, z̄) =
∫ ∞

0
dω ω∆−1e−iεωua(εω, z, z̄, σ) (A.10)

Under (Lorentz) conformal transformations

φ′ε
h,h̄

(u, z, z̄) = 1
(cz + d)2h

1
(c̄z̄ + d̄)2h̄

φε
h,h̄

(
u

|cz + d|2
,
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
(A.11)
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In terms of (A.8), the Mellin amplitude can be written as the correlation function of
conformal primary operators

Mn =
〈 n∏
i=1

φεi
hi,h̄i

(zi, z̄i)
〉

(A.12)

Similarly using (A.10), the modified Mellin amplitude can be written as,

Mn =
〈 n∏
i=1

φεi
hi,h̄i

(ui, zi, z̄i)
〉

(A.13)

A.1.1 Comments on notation in the paper

Note that conformal primaries carry an extra index ε which distinguishes between an
incoming and an outgoing particle. In the paper, for notational simplicity, we omit this
additional index unless this plays an important role. So in most places we simply write the
(modified) Mellin amplitude as,

Mn =
〈 n∏
i=1

φhi,h̄i(zi, z̄i)
〉

(A.14)

or
Mn =

〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(A.15)

Similarly in many places in the paper we denote a graviton primary of weight ∆ = h+h̄
by Gσ∆ where σ = ±2 is the helicity (= h − h̄). Since we are considering pure gravity, we
can further simplify the notation to G±∆ by omitting the 2.

A.2 Subleading conformal soft limit

Let us consider a correlation function of the form

〈
G+

∆(u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(A.16)

where G+
∆ is a positive helicity graviton primary with weight ∆ and φhi,h̄i is a generic

conformal primary with weight (hi, h̄i). Now let us consider the subleading conformal soft
limit given by,

lim
∆→0

∆
〈
G+

∆(u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
〈
S̃+

1 (u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(A.17)

where S̃+
1 (u, z, z̄) is the subleading conformally soft graviton operator which, in the pres-

ence of the time coordinate u, is different from the subleading energetically soft graviton
operator S+

1 (z, z̄), defined as [11, 25],

S+
1 (z, z̄) = lim

ω→0

(
1 + ω

d

dω

)
G+(ω, z, z̄) (A.18)
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Here G+(ω, z, z̄) is the (creation) annihilation operator for a positive helicity graviton.
Now we want to compute the r.h.s. of (A.17) and along the way we will also obtain an
expression for S̃+

1 (u, z, z̄) in terms of leading and subleading energetically soft gravitons.
In order to do this, we start from the definition of the modified Mellin amplitude in

terms of the S-matrix element [30, 32],

〈
G+

∆(u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
∫ ∞

0
dωω∆−1e−iωu

∫ ∞
0

n∏
i=1

dωiω
∆i−1
i e−εiωiuiSn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi})

(A.19)

Here ε = ±1 for an outgoing (incoming) particle and we have assumed that the graviton
G+

∆ is outgoing. Now to take the subleading conformal soft limit given in (A.17) we use
the following identity [49],

α∆−2Θ(α) ∼ δ(α)
∆− 1 −

δ′(α)
∆ + 1

2
δ′′(α)
∆ + 1 + . . . (A.20)

where ∼ means that only pole terms in ∆ are shown on the r.h.s. of (A.20). Now,

lim
∆→0

∆
∫ ∞

0
dωω∆−1e−iωuSn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi})

= lim
∆→0

∆
∫ ∞
−∞

dω Θ(ω)ω∆−2e−iωuωSn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi})

= −
∫ ∞
−∞

dω δ′(ω)e−iωuωSn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi})

(A.21)

Because of the delta function the integrand in (A.21) is supported near ω = 0 and so
we can do a soft expansion of the S-matrix element in ω,

Sn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi}) =
(
s0
ω

+ s1 + ωs2 + . . .

)
Sn ({ωi, zi, z̄i, σi}) (A.22)

where s0 and s1 are the leading and subleading soft factors, respectively. Now substituting
this (A.21) and doing integration by parts we get,

lim
∆→0

∆
∫ ∞

0
dωω∆−1e−iωuSn+1 (ω, z, z̄, σ = +2; {ωi, zi, z̄i, σi})

= −ius0Sn ({ωi, zi, z̄i, σi}) + s1Sn ({ωi, zi, z̄i, σi})
(A.23)

Therefore we can write (A.17) as,

〈
S̃+

1 (u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= lim
∆→0

∆
〈
G+

∆(u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= −iu
∫ ∞

0

n∏
i=1

dωiω
∆i−1
i e−εiωiuis0Sn ({ωi, zi, z̄i, σi})

+
∫ ∞

0

n∏
i=1

dωiω
∆i−1
i e−εiωiuis1Sn ({ωi, zi, z̄i, σi})

= −iu
〈
S+

0 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

+
〈
S+

1 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(A.24)
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where S+
0 (z, z̄) and S+

1 (z, z̄) are the leading and subleading (energentically) soft graviton
operators. From (A.24) we can write,

lim
∆→0

∆G+
∆(u, z, z̄) = S̃+

1 (u, z, z̄) = −iuS+
0 (z, z̄) + S+

1 (z, z̄) (A.25)

We can see that in the presence of the time coordinate u, the subleading conformally
soft graviton operator S̃+

1 (u, z, z̄) does not coincide with the energetically soft graviton
operator S+

1 (z, z̄). The additional piece proportional to the leading soft operator S+
0 (z, z̄)

can be projected out, say by setting u = 0, but this turns out to be inconvenient because
this breaks manifest time translation invariance. So in the presence of the time coordinate
it is natural to work with the conformally soft subleading operator S̃+

1 (u, z, z̄).
Now one can check that [5, 31, 54],

〈
S+

0 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

= −
(

n∑
k=1

z̄ − z̄k
z − zk

i
∂

∂uk

)〈 n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

(A.26)

and

〈
S+

1 (z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
n∑
k=1

(z̄ − z̄k)2

z − zk

[
2h̄′k
z̄ − z̄k

− ∂̄k

]
〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉 (A.27)

where
2h̄′k = ∆k − σk + uk

∂

∂uk
(A.28)

Combining these results we can write (A.24) as,

〈
S̃+

1 (u, z, z̄)
n∏
i=1

φhi,h̄i(ui, zi, z̄i)
〉

=
n∑
k=1

(z̄ − z̄k)2

z − zk

[
2h̄k
z̄ − z̄k

− ∂̄k

]
〈
n∏
i=1

φhi,h̄i(ui, zi, z̄i)〉

(A.29)
where

h̄k = ∆k − σk
2 + 1

2 (uk − u) ∂

∂uk
(A.30)

This is precisely the result quoted in (4.12).

A.3 Delta function representation for n = 6 particles

In this appendix we derive the representation of the delta function, used in section 10.5,
which imposes overall energy-momentum conservation for n = 6 massless particles. Sup-
pose we want to take the celestial OPE between the primary operators corresponding to
gravitons labelled by (5, 6) in the S-matrix. Then it is convenient to parametrise their
energies ω5, ω6 as

ω5 = ωP t, ω6 = ωP (1− ε5ε6 t) (A.31)

where ε5, ε6 = ±1 for outgoing (incoming) particles. Now for n = 6 particles, the constraints
of energy-momentum conservation in 4-dimensions yield 4 equations for the 6 energy vari-
ables. Thus we can solve for 4 of the energy variables ωi, i ∈ (1, 2, 3, 4) in terms of ω5, ω6
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or equivalently ωp and t after using (A.31). A convenient way of doing this is to use the
spinor helicity variables in terms of which overall energy-momentum conservation implies

6∑
i=1
〈qi〉[ik] = 0 (A.32)

where q, k denote reference spinors. The spinor helicity brackets can be written as

〈ij〉 = −2εiεj
√
ωiωj zij , [ij] = 2√ωiωj z̄ij (A.33)

where we have used the following parametrisation of null momenta

pµ = εωqµ(z, z̄), qµ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) (A.34)

Now let us choose q = 3, k = 4 in (A.32) . Then we get

ε1ω1z13z̄14 + ε2ω2z23z̄24 = −ε6ωP [z36z̄46 − ε5ε6t (z36z̄56 + z56z̄46 − z56z̄56)] (A.35)

Similarly for q = 4, k = 3 we get from (A.32)

ε1ω1z14z̄13 + ε2ω2z24z̄23 = −ε6ωP [z46z̄36 − ε5ε6t (z56z̄36 + z46z̄56 − z56z̄56)] (A.36)

Now we can simultaneously solve the above equations (A.35) and (A.36) and obtain
ω1, ω2 in terms of ωP , t and the zij , z̄ij ’s. Implementing this procedure for other choices of
the reference spinors, we can easily solve for ω3 and ω4 as well. Finally we get

ω∗i = εiε6ωP [σi,1 + ε5ε6 t (z56σi,2 + z̄56σi,3 + z56z̄56σi,4)] , i ∈ 1, 2, 3, 4. (A.37)

where

σ1,1 = z36z̄36
z13z̄13

(r23,46 − r̄23,46)
(r12,34 − r̄12,34) (A.38)

σ2,1 = −z14z̄14z36z̄36
z13z̄13z24z̄24

(r13,46 − r̄13,46)
(r12,34 − r̄12,34) (A.39)

σ3,1 = z14z̄14z26z̄26
z13z̄13z24z̄24

(r12,46 − r̄12,46)
(r12,34 − r̄12,34) (A.40)

σ4,1 = −z26z̄26
z24z̄24

(r12,36 − r̄12,36)
(r12,34 − r̄12,34) (A.41)

and
σi,2 = ∂σi,1

∂z6
, σi,3 = ∂σi,1

∂z̄6
, σi,4 = ∂2σi,1

∂z6∂z̄6
, ∀i = 1, 2, 3, 4 (A.42)

In the above expressions, rij,kl, r̄ij,kl denote holomorphic and antiholomorphic cross
ratios and are given by

rij,kl = zijzkl
zikzjl

, r̄ij,kl = z̄ij z̄kl
z̄ikz̄jl

(A.43)

Using the above results, the delta function for n = 6 particles can now be expressed as

δ(4)
( 6∑
i=1

εiωiq
µ
i

)
= i

4
1

(r12,34 − r̄12,34)z13z̄13z24z̄24

4∏
i=1

δ(ωi − ω∗i ) (A.44)
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where ω∗i are defined in (A.37). The prefactor in (A.44) is simply the Jacobian for the
change of variables that we have performed here. Now it is easy to verify that (A.44) is
equivalent to the representation of the delta function given in [45] on the locus of energy-
momentum conservation. However, the form that we have presented here is better suited
for our purposes of performing the OPE decomposition of the Mellin amplitude in the (5, 6)
channel. Representations which are convenient for doing the OPE in other channels can
be easily worked out from (A.44) by appropriate change of labels.

Let us also note the following identities which are useful for simplifying intermediate
stages in computations that lead to some of the results obtained in section 10.5.

4∑
i=1

σi,1 + 1 = 0 (A.45)

4∑
i=1

zi6 σi,1 = 0 (A.46)

4∑
i=1

z̄i6 σi,1 = 0 (A.47)

4∑
i=1

zi6z̄i6 σi,1 = 0 (A.48)

Before ending this section let us also note that the limit t → 0 in (A.37) and (A.44),
yields a representation of the delta function that imposes energy-momentum conservation
for n = 5 particles. Changing labels as ε6 → ε5, ωP → ω5, z6 → z5, z̄6 → z̄5 we then have

δ(4)
( 5∑
i=1

εiωiq
µ
i

)
= i

4
1

(r12,34 − r̄12,34)z13z̄13z24z̄24

4∏
i=1

δ(ωi − ω∗i ) (A.49)

where
ω∗i = εiε5ω5σi,1, i ∈ 1, 2, 3, 4. (A.50)

Here the σi,1 are identical to (A.38)–(A.41), upto the change of labels z6 → z5, z̄6 → z̄5.

A.4 Delta function representation for n(≥ 5) particles

In this section we note down the representation of the delta function that imposes overall
energy-momentum conservation for n ≥ 5 massless particles which was obtained in [45].
This will turn out to be useful for the analysis in subsection A.7.

Let us define the cross-ratio tk as

tk = z12z3k
z13z2k

(A.51)

Then, following [45], the momentum-conserving delta function, for n ≥ 5, can be
written as

δ(4)
(

n∑
i=1

εiωiq
µ(zi, z̄i)

)
= i

4
(1− t4)(1− t̄4)

t4 − t̄4
1

z14z̄14z23z̄23

4∏
i=1

δ(ωi − ω∗i ) = J
4∏
i=1

δ(ωi − ω∗i )

(A.52)
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where

J = i

4
(1− t4)(1− t̄4)

t4 − t̄4
1

z14z̄14z23z̄23
(A.53)

ω∗i =
n∑
j=5

fijωj , i = 1, 2, 3, 4, j = 5, 6, . . . , n (A.54)

and

f1j = t4

∣∣∣∣z24
z12

∣∣∣∣2 (1− t4)(1− t̄4)
t4 − t̄4

ε1εj
tj − t̄j

(1− tj)(1− t̄j)
− ε1εjtj

∣∣∣∣z2j
z12

∣∣∣∣2 (A.55)

f2j = −1− t4
t4

∣∣∣∣z34
z23

∣∣∣∣2 (1− t4)(1− t̄4)
t4 − t̄4

ε1εj
ε1ε2

tj − t̄j
(1− tj)(1− t̄j)

+ ε1εj
ε1ε2

1− tj
tj

∣∣∣∣z3j
z23

∣∣∣∣2 (A.56)

f3j = (1− t4)
∣∣∣∣z24
z23

∣∣∣∣2 (1− t4)(1− t̄4)
t4 − t̄4

ε1εj
ε1ε3

tj − t̄j
(1− tj)(1− t̄j)

− ε1εj
ε1ε3

(1− tj)
∣∣∣∣z2j
z23

∣∣∣∣2 (A.57)

f4j = −(1− t4)(1− t̄4)
t4 − t̄4

ε1εj
ε1ε4

tj − t̄j
(1− tj)(1− t̄j)

∣∣∣∣z1j
z14

∣∣∣∣2 (A.58)

A.5 Descendant correlation functions

Here we note down the action of some of the extended symmetry algebra generators on
the 5-point Mellin amplitude that we have used in section 10.5 of this paper. The 5-point
Mellin amplitude was evaluated in section 10.4 and is given by

M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)G+

∆(6)
〉

= i
4∏
i=1

εi

2∏
j=1

(εjσj,1)3+iλi
4∏

k=3
(εkσk,1)iλk−1

4∏
l=1

Θ (εlσl,1) z8
12

z12z13z14z16z23z24z26z34z36z46

× Γ(3 + iΛ)
(iU1)3+iΛ (A.59)

where Gsi∆i
(i) ≡ Gsi∆i

(ui, zi, z̄i), si = ±2; i ∈ (1, 2, 3, 4), ∆ = 1 + iλ5 + iλ6 and Λ =
∑6
i=1 λi.

The σi,1’s are defined in equations (A.38) to (A.41). We have also taken here G+
∆(6) to

correspond to an outgoing graviton.

A.5.1 P−n,−1M5

First let us consider the following correlation function involving the insertion of the de-
scendant P−n,−1G

+
∆−1(6) with n ≥ 2

P−n,−1M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(P−n,−1G

+
∆−1)(6)

〉
= −

4∑
k=1

1
zn−1
k6

i
∂

∂uk
M5

(A.60)

Using the expression of the 5-point function in (A.59), the above correlator becomes

P−n,−1M5 = −
4∑

k=1

σk,1

zn−1
k6
P−1,−1M5 (A.61)
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A.5.2 P−n,0M5

Now let us consider the 5-point correlation function with the insertion of P−n,0G+
∆−1(6) for

n ≥ 2. This is given by

P−n,0M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(P−2,0G

+
∆−1)(6)

〉
= −

4∑
k=1

z̄k6

zn−1
k6

i
∂

∂uk
M5 = −

4∑
k=1

z̄k6

zn−1
k6

σk,1 P−1,−1M5
(A.62)

A.5.3 L−1P−1,−1M5

The action of L−1P−1,−1 on the 5-point Mellin amplitude is given by the following corre-
lation function

L−1P−1,−1M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L−1P−1,−1G

+
∆−1)(6)

〉
= ∂z6 (i∂u6M5)

(A.63)

Then using the explicit form ofM5 and also (A.42) we get

L−1P−1,−1M5

=
[
(3+iλ1)σ1,2

σ1,1
+(3+iλ2)σ2,2

σ2,1
+(iλ3−1)σ3,2

σ3,1
+(iλ4−1)σ4,2

σ4,1
− (4+iΛ)

U1
U2

]
P−1,−1M5

+
4∑
i=1

1
zi6
P−1,−1M5 (A.64)

We refer the reader to (10.17) for the definition of U1 and U2. Now it is important to
note that in deriving the above result we have not applied the z6-derivative to the theta
function in (A.59). This is because doing so yields contact terms and here will be only
considering correlation functions where all operator insertions shall be kept at separated
points. Also note that the term inside the square brackets in the above has been denoted
by I1,0 in section 10.5. We will also use this convenient notation in relevant expressions
throughout the rest of this section of the appendix.

A.5.4 L−1P−2,−1M5

Here the correlation function of interest is given by

L−1P−2,−1M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L−1P−2,−1G

+
∆−1)(6)

〉
(A.65)

Using (A.61) for n = 2 and the Ward identity for global z-translations in the above
we obtain the following result

L−1P−2,−1M5 = P−3,−1M5 −
4∑
i=1

σi,2
zi6
P−1,−1M5 +

4∑
i=1

1
zi6
P−2,−1M5 + I1,0P−2,−1M5

(A.66)
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A.5.5 L−1P−2,0M5

Now let us evaluate the action of L−1P−2,0 on the 5-point Mellin amplitude. This is given
by the following correlation function

L−1P−2,0M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L−1P−2,0G

+
∆−1)(6)

〉
(A.67)

Applying (A.62) for n = 2 in the above we get

L−1P−2,0M5 = I1,0P−2,0M5+P−3,0M5−
4∑
i=1

z̄i6
zi6

σi,2 P−1,−1M5+
4∑
i=1

1
zi6
P−2,0M5 (A.68)

Then let us take note of the following identity
4∑
i=1

z̄i6
zi6

σi,2 +
4∑
i=1

1
zi6

( 4∑
j=1

z̄j6
zj6

σj,1

)
=

4∑
i=1

z̄i6
z2
i6
σi,1 (A.69)

This identity can be easily proved using the set of relations given in (A.45) to (A.48).
Using this we can write (A.68) as

L−1P−2,0M5 = I1,0P−2,0M5 + 2P−3,0M5 (A.70)

A.5.6 L̄−1P−1,−1M5

Next we want to consider the following descendant correlation function

L̄−1P−1,−1M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L̄−1P−1,−1G

+
∆−1)(6)

〉
= ∂z̄6 (i∂u6M5)

(A.71)

Again using the expression ofM5 given in (A.59) it can be easily shown that

L̄−1P−1,−1M5 (A.72)

=
[
(3+ iλ1)σ1,3

σ1,1
+(3+ iλ2)σ2,3

σ2,1
+(iλ3−1)σ3,3

σ3,1
+(iλ4−1)σ4,3

σ4,1
− (4+ iΛ)

U1
U3

]
P−1,−1M5

Note that the term inside the square brackets above has been assigned the notation
I0,1 in section 10.5. We will employ this notation here as well in some of the expressions
to be considered next.

A.5.7 L̄−1P−2,0M5

The action L̄−1P−2,0 on the 5-point Mellin amplitude is given by the correlator

L̄−1P−2,0A5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L̄−1P−2,0G

+
∆−1)(6)

〉
(A.73)

Using (A.62) in the above we get

L̄−1P−2,0M5 = ∂z̄6

( 4∑
i=1

z̄i6
zi6

σi,1 P−1,−1M5

)
(A.74)

= −P−2,−1M5 −
4∑
i=1

z̄i6
zi6

σi,3 P−1,−1M5 −
4∑
i=1

z̄i6
zi6

σi,1 L̄−1P−1,−1M5

= −2P−2,−1M5 +
4∑
i=1

1
zi6
P−1,−1M5 −

4∑
i=1

z̄i6
zi6

σi,1 L̄−1P−1,−1M5
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where in obtaining the last line above we used the identity

4∑
i=1

z̄i6
zi6

σi,3 +
4∑
i=1

1
zi6

= −
4∑
i=1

σi,1
zi6

(A.75)

This identity can also be easily checked using (A.45) to (A.48).

A.5.8 L̄−1P−3,0M5

In order to evaluate the action of L̄−1P−3,0 onM5 we consider the correlation function

L̄−1P−3,0M5 =
〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(L̄−1P−3,0G

+
∆−1)(6)

〉
(A.76)

Applying (A.62) we find the above to be given by

L̄−1P−3,0M5 = −P−3,−1M5 −
4∑
i=1

z̄i6
z2
i6
σi,3 P−1,−1M5 + I0,1P−3,0M5 (A.77)

A.5.9 J 0
−1P−1,−1M5

Finally let us compute the action of J 0
−1P−1,−1 onM5. This is given by

J 0
−1P−1,−1M5 =

〈
G−∆1

(1)G−∆2
(2)G+

∆3
(3)G+

∆4
(4)(J0

−1P−2,0G
+
∆−1)(6)

〉
= −

4∑
k=1

2h̄k + uk6∂uk + 2 z̄k6∂z̄k
2zk6

P−1,−1M5
(A.78)

Evaluating the action of the differential operators in the above we get

J 0
−1P−1,−1M5

= −1
2

[(3 + iλ1
z16

+ 3 + iλ2
z26

+ iλ3 − 1
z36

+ iλ4 − 1
z46

)
− (4 + iΛ)

U1

4∑
i=1

σi,1ui6
zi6

]
P−1,−1A5

−
4∑
i=1

z̄i6
zi6

σi,1 L̄−1P−1,−1M5 (A.79)

We can express the above result in an equivalent form using (A.74) as follows

J 0
−1P−1,−1M5

= −1
2

[(3 + iλ1
z16

+ 3 + iλ2
z26

+ iλ3 − 1
z36

+ iλ4 − 1
z46

)
− (4 + iΛ)

U1

4∑
i=1

σi,1ui6
zi6

]
P−1,−1A5

−
4∑
i=1

1
zi6
P−1,−1A5 + L̄−1P−2,0A5 + 2P−2,−1A5 (A.80)

This representation of J 0
−1P−1,−1M5 will be useful in the next section where we ex-

plicitly verify the decoupling relation (12.18) for the 5-point Mellin amplitude.
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A.6 Direct check of decoupling relation (12.18) for 5-point MHV amplitude

In this section of the appendix, we prove that the 5-point Mellin amplitude in (10.27)
satisfies the following differential equation(

L̄−1P−2,0 + (2 + iλ5 + iλ6)P−2,−1 − L−1P−1,−1 − 2J 0
−1P−1,−1

)
M5 = 0 (A.81)

whereM5 is the Mellin transform of the 5-point MHV amplitude. In order to prove (A.81)
let us first consider the following combination of differential operators acting on M5(

L̄−1P−2,0 + 2P−2,−1 − L−1P−1,−1 − 2J 0
−1P−1,−1

)
M5 (A.82)

Using (A.61), (A.64), (A.72), (A.74), and (A.80) we find that (A.82) evaluates to(
(3+ iλ1)
σ1,1

[
σ1,1
z16

+σ1,3

( 4∑
i=1

z̄i6
zi6

σi,1

)
−σ1,2

]
+ (3+ iλ2)

σ2,1

[
σ2,1
z26

+σ2,3

( 4∑
i=1

z̄i6
zi6

σi,1

)
−σ2,2

]

+ (iλ3−1)
σ3,1

[
σ3,1
z36

+σ3,3

( 4∑
i=1

z̄i6
zi6

σi,1

)
−σ3,2

]
+ (iλ4−1)

σ4,1

[
σ4,1
z46

+σ4,3

( 4∑
i=1

z̄i6
zi6

σi,1

)
−σ4,2

]

− (4+ iΛ)
U1

4∑
i=1

σi,1
z16

+σi,3

 4∑
j=1

z̄j6
zj6

σj,1

−σi,2
ui6

)
P−1,−1M5 (A.83)

Now let us note the following identity

σi,1
zi6

+ σi,3

( 4∑
k=1

z̄k6
zk6

σk,1

)
− σi,2 = −σi,1

 4∑
j=1

σj,1
zj6

 , ∀i = 1, 2, 3, 4 (A.84)

Applying the above identity in (A.83) we end up with(
L̄−1P−2,0 +2P−2,−1−L−1P−1,−1−2J 0

−1P−1,−1
)
M5 (A.85)

=−

(4+ iλ1 + iλ2 + iλ3 + iλ4)
4∑
j=1

σj,1
zj6

+ (4+ iΛ)
U1

(
−

4∑
i=1

σi,1ui6

) 4∑
j=1

σj,1
zj6

P−1,−1M5

Using Λ =
∑6
i=1 λi and the definition of U1 given in (10.17), we then obtain(

L̄−1P−2,0 + 2P−2,−1 − L−1P−1,−1 − 2J 0
−1P−1,−1

)
M5

= (iλ5 + iλ6)
4∑
j=1

σj,1
zj6
P−1,−1M5 = −(iλ5 + iλ6)P−2,−1M5

(A.86)

From the above result it then follows that(
L̄−1P−2,0 + (2 + iλ5 + iλ6)P−2,−1 − L−1P−1,−1 − 2J 0

−1P−1,−1
)
M5 = 0 (A.87)

This is the result that we wanted to prove.
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A.7 Proof of null state decoupling relation (12.10) from Hodges’ formula

We start with the Hodges’ formula [52, 53] for the n - graviton MHV scattering amplitude
given by,

An(1−, 2−, 3+, . . . , n+) = 〈12〉8
det(Φijk

pqr)
〈ij〉〈ik〉〈jk〉〈pq〉〈pr〉〈qr〉

(A.88)

Here Φijk
pqr is a (n − 3) × (n − 3) matrix obtained by deleting the set of rows {i, j, k}

and columns {p, q, r} from a n× n matrix Φ whose elements are defined as follows

Φij =


[ij]
〈ij〉 , i 6= j

−
∑
k 6=i

[ik]〈xk〉〈yk〉
〈ik〉〈xi〉〈yi〉 , i = j

(A.89)

where x, y denote reference spinors.
At first we want to study the leading and subleading conformal soft limits of the MHV

amplitude (A.88) in Mellin space when the outgoing graviton (n− 1)+ becomes soft. After
that we take the OPE limit where the soft graviton (n− 1)+ is brought close to the hard
graviton n+. For simplicity we also assume that the graviton n+ is outgoing.

In order to do this let us make the following choices

{i, j, k} = {1, 2, 3}, {p, q, r} = {n− 2, n− 1, n}, x = n− 1, y = n (A.90)

We also have to express the angle and square brackets in terms of (ω, z, z̄) by using
the formulas,

〈ij〉 = −2εiεj
√
ωiωjzij , [ij] = 2√ωiωj z̄ij (A.91)

where εi = ±1 for an outgoing (incoming) particle. Since the gravitons (n − 1)+ and n+

are assumed to be outgoing, εn−1 = εn = 1.
Now using these various definitions, the Hodges’ formula (A.88) for the MHV amplitude

can be written as,

An(1−, 2−, 3+, . . . , n+)

= 〈12〉8
det

(
Φ123
n−2 n−1 n

)
〈12〉〈13〉〈23〉〈n− 2 n− 1〉〈n− 2 n〉〈n− 1 n〉

= 4ω4
1ω

4
2

ω1ω2ω3ωn−2ωn−1ωn

z8
12

z12z13z23zn−2 n−1zn−2 nzn−1 n
det(Φ123

n−2 n−1 n)

(A.92)

Let us now go to the Mellin space. The Mellin transformation of the scattering ampli-
tude An is given by,

Mn = 〈G−∆1
(1)G−∆2

(2)
n∏
i=3

G+
∆i

(i)〉

=
n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i Anδ(4)

(
n∑
i=1

εiωiq
µ(zi, z̄i)

)

= 4z8
12

z12z13z23zn−2 n−1zn−2 n

n−2∏
i=1

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dωn−1

∫ ∞
0

dωn ω
∆n−1−2
n−1 ω∆n−2

n

× ω4
1ω

4
2

ω1ω2ω3ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

δ(4)
(

n∑
i=1

εiωiq
µ(zi, z̄i)

)
(A.93)
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Now we make a change of variable

ωn−1 = tω, ωn = (1− t)ω, dωn−1dωn = ωdωdt (A.94)

and also note that the delta function can be written as [45],

δ(4)
(

n∑
i=1

εiωiq
µ(zi, z̄i)

)
= J

4∏
i=1

δ(ωi − ω∗i ) (A.95)

where

ω∗i =
n∑
k=5

fikωk, i = 1, 2, 3, 4 (A.96)

and J is a Jacobian factor which depends only on (zi=1,2,3,4, z̄i=1,2,3,4). Neither J nor fik
depend on {ωj=1,...,n}. Please see appendix (A.4) for explicit expressions for fik and J .

Now in terms of ω and t we can write,

ω∗i =
n−2∑
k=5

fikωk + finω + ωt (fi n−1 − fi n) (A.97)

In terms of the new variables and the representation of the delta function the Mellin
amplitudeMn can be written as,

Mn = J 4z8
12

z12z13z23zn−2 n−1zn−2 n

×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

4∏
k=1

Θ(ω∗k)
∫ ∞

0
dω ω∆n−1+∆n−3

∫ 1

−1
dt Θ(t) t∆n−1−2 (1− t)∆n−2

× ω∗1
∆1+2ω∗2

∆2+2ω∗3
∆3−2ω∗4

∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

(A.98)

Here we have used the fact that J does not depend on ωi=1,...,n and have also inserted
the step function Θ(t).

Since each ωi=5,6,··· ,n independently runs from 0 to ∞, (A.96) together with the theta
function constraint

∏4
k=1 Θ(ω∗k), requires (fik > 0)i=1,2,3,4;k=5,··· ,n. We will assume that we

are working in a region of parameter space where this condition is satisfied and will no
longer write them explicitly in the rest of the formulas.

Now we take the conformal soft limit using the formula,

α∆−2Θ(α) ∼ δ(α)
∆− 1 −

δ′(α)
∆ + 1

2
δ′′(α)
∆ + 1 + · · · (A.99)
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A.7.1 Leading conformal soft limit

In the leading conformal soft limit ∆n−1 → 1 we get,

lim
∆n−1→1

(∆n−1 − 1)Mn (A.100)

= J 4z8
12

z12z13z23zn−2 n−1zn−2 n

n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−2
∫ 1

−1
dt δ(t) (1− t)∆n−2

×
(
ω1

∆1+2ω2
∆2+2ω3

∆3−2ω4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

) ∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

= J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−2

×
(
ω1

∆1+2ω2
∆2+2ω3

∆3−2ω4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

) ∣∣∣∣
ωk=ω∗

k
(t=0),k=1,2,3,4

where

ω∗k(t = 0) =
n−2∑
j=5

fkjωj + fknω, k = 1, 2, 3, 4 (A.101)

which is obtained from (A.97).

A.7.2 Subleading conformal soft limit

In the subleading conformal soft limit ∆n−1 → 0, we get

lim
∆n−1→0

∆n−1Mn (A.102)

=J 4z8
12

z12z13z23zn−2 n−1zn−2 n

n−2∏
i=5

∫ ∞
0
dωiω

∆i−1
i

∫ ∞
0
dω ω∆n−3

∫ 1

−1
dt
[
−δ′(t)

]
(1−t)∆n−2

×
(
ω1

∆1+2ω2
∆2+2ω3

∆3−2ω4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

)∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

=J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0
dωiω

∆i−1
i

∫ ∞
0
dω ω∆n−3

×
(
d

dt

)
t=0

[
(1−t)∆n−2

(
ω∗1

∆1+2ω∗2
∆2+2ω∗3

∆3−2ω∗4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

)∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

]

Now let us define the function,

F (ω∗1, ω∗2, ω∗3, ω∗4) = ω∗1
∆1+2ω∗2

∆2+2ω∗3
∆3−2ω∗4

∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

(A.103)

F also depends on other variables which do not depend on t implicitly. Also note that
due to our choice of reference spinors, det(Φ123

n−2 n−1 n) does not depend on ωn−1 and ωn.
So all the dependence of F on t is through its dependence on

(
ω∗i=1,2,3,4

)
.
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Now(
d

dt

)
t=0

[
(1− t)∆n−2 F (ω∗1, ω∗2, ω∗3, ω∗4)

]
= − (∆n − 2)F (ω∗1, ω∗2, ω∗3, ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

+
4∑
i=1

∂

∂ω∗i
F (ω∗1, ω∗2, ω∗3, ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

× ω (fi n−1 − fi n)

(A.104)

where we have used (A.97) to write

d

dt
ω∗i = ω (fi n−1 − fi n) , i = 1, 2, 3, 4 (A.105)

A.7.3 OPE limit (n− 1)+ → n+ after taking the leading soft limit

Now we want to take the OPE limit (n−1)+ → n+ of (A.100). This is of course completely
determined by the leading soft theorem and should be given by (6.1). In particular, we
want to focus on the unique O(z0

n−1 nz̄
0
n−1 n) term. This can be extracted by the following

procedure,

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→1

(∆n−1 − 1)Mn

= lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−2

×
(
ω1

∆1+2ω2
∆2+2ω3

∆3−2ω4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

) ∣∣∣∣
ωk=ω∗

k
(t=0),k=1,2,3,4

= P−2,0(n)〈G−∆1
(1)G−∆2

(2)
n−2∏
i=3

G+
∆i

(i)G+
∆n

(n)〉 (A.106)

Here the order of limit should be strictly maintained.

A.7.4 OPE limit (n− 1)+ → n+ after taking the subleading soft limit

In this case also we want to focus on the unique O(z0
n−1 nz̄

0
n−1 n) term which is also

determined by the subleading soft theorem given in (4.2). According to (4.2) we should
have,

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

= lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−3

×
(
d

dt

)
t=0

[
(1− t)∆n−2 ω∗1

∆1+2ω∗2
∆2+2ω∗3

∆3−2ω∗4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

]

= −J 1
−1(n)〈G−∆1

(1)G−∆2
(2)

n−2∏
i=3

G+
∆i

(i)G+
∆n

(n)〉 (A.107)
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Let us now use (A.104) and (A.106) to further simplify the second line of (A.107).
In (A.104) there are two terms. The first one gives,

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

⊃ lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0
dωiω

∆i−1
i

∫ ∞
0
dω ω∆n−3

×
[
−(∆n−2)F (ω∗1,ω∗2,ω∗3,ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

]

=−(∆n−2) lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0
dωiω

∆i−1
i

∫ ∞
0
dω ω∆n−3

×
(
ω1

∆1+2ω2
∆2+2ω3

∆3−2ω4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

)∣∣∣∣
ωk=ω∗

k
(t=0),k=1,2,3,4

(A.108)

where we have used the definition (A.103) of F (ω∗1, ω∗2, ω∗3, ω∗4) in the last line. Now com-
paring (A.108) and (A.106) we can write,

lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−3

× ω
∗
1

∆1+2ω∗2
∆2+2ω∗3

∆3−2ω∗4
∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

∣∣∣∣
ωk=ω∗

k
(t=0),k=1,2,3,4

=P−2,0(n)〈G−∆1
(1)G−∆2

(2)
n−2∏
i=3

G+
∆i

(i)G+
∆n−1(n)〉

(A.109)

Note that the last line of (A.106) and (A.109) differ by ∆n → ∆n − 1. This is due to
the fact that the power of ω in (A.106) and (A.109) are related by ∆n → ∆n−1. So finally
the contribution of the first term in (A.104) to the O(z0

n−1 nz̄
0
n−1 n) term in the subleading

soft limit can be written as,

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

⊃ −(∆n − 2)P−2,0(n)〈G−∆1
(1)G−∆2

(2)
n−2∏
i=3

G+
∆i

(i)G+
∆n−1(n)〉

(A.110)

Now we have to consider the contribution of the second term in (A.104). We will show
that it does not contribute to the O(z0

n−1 nz̄
0
n−1 n) term in the subleading soft limit.

The contribution of the second term is given by,

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

⊃ lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−3

×
[ 4∑
i=1

∂

∂ω∗i
F (ω∗1, ω∗2, ω∗3, ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

× ω (fi n−1 − fi n)
]

(A.111)
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where

F (ω∗1, ω∗2, ω∗3, ω∗4) = ω∗1
∆1+2ω∗2

∆2+2ω∗3
∆3−2ω∗4

∆4−1

ωn−2

det(Φ123
n−2 n−1 n)
zn−1 n

∣∣∣∣
ωk=ω∗

k
,k=1,2,3,4

(A.112)

Let us now enumerate various properties of the integrand in (A.111):

1. (fi n−1 − fi n) is a polynomial in zn−1 n and z̄n−1 n, which goes to zero as zn−1 n and
z̄n−1 n go to zero.

2. det(Φ123
n−2 n−1 n) is non-singular as zn−1 n or z̄n−1 n goes to zero and it does not

depend on ωn−1 and ωn.

3. Let us consider the last two rows of the matrix Φ123
n−2 n−1 n given by(

Φn−1 1 Φn−1 2 · · · Φn−1 n−3
Φn1 Φn2 · · · Φn n−3

)
(A.113)

Now the off-diagonal entries are given by (A.89),

Φij = [ij]
〈ij〉

= −εiεj
z̄ij
zij

(A.114)

So
Φn−1 i = −εi

z̄n−1 i

zn−1 i
, Φni = −εi

z̄ni
zni

, i = 1, 2, · · · , n− 3 (A.115)

where we have used εn−1 = εn = 1. Therefore if zn−1 n = z̄n−1 n = 0 then
the two rows are equal and as a result det(Φ123

n−2 n−1 n) = 0. So we can expand
det(Φ123

n−2 n−1 n) around zn−1 n = z̄n−1 n = 0 and write

det(Φ123
n−2 n−1 n) = Azn−1 n +Bz̄n−1 n + Czn−1 nz̄n−1 n + · · · (A.116)

where the coefficients are functions only of (ωi=1,2,··· ,n−2, zij , zin, z̄ij , z̄in). This tells
us that

det(Φ123
n−2 n−1 n)
zn−1 n

= A+B
z̄n−1 n

zn−1 n
+ Cz̄n−1 n + · · · (A.117)

and
lim

zn−1 n→0
lim

z̄n−1 n→0

det(Φ123
n−2 n−1 n)
zn−1 n

= A <∞ (A.118)

4. We have from (A.97),

ω∗i (t = 0) =
n−2∑
k=5

fikωk + finω, i = 1, 2, 3, 4 (A.119)

By inspection one can see that fik and fin do not depend on zn−1 n and z̄n−1 n for
k = 5, · · · , n− 2 and i = 1, 2, 3, 4.
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We can use these facts to conclude that,
4∑
i=1

∂

∂ω∗i
F (ω∗1, ω∗2, ω∗3, ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

× ω (fi n−1 − fi n) (A.120)

=
(
A′ +B′

z̄n−1 n

zn−1 n
+ C ′z̄n−1 n + · · ·

) (
A′′zn−1 n +B′′z̄n−1 n + C ′′zn−1 nz̄n−1 n + · · ·

)
for some coefficient functions independent of zn−1 n and z̄n−1 n. This leads to

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

⊃ lim
zn−1 n→0

lim
z̄n−1 n→0

J 4z8
12

z12z13z23zn−2 n−1zn−2 n
×
n−2∏
i=5

∫ ∞
0

dωiω
∆i−1
i

∫ ∞
0

dω ω∆n−3

×
[ 4∑
i=1

∂

∂ω∗i
F (ω∗1, ω∗2, ω∗3, ω∗4)

∣∣∣∣
ω∗
k
(t=0),k=1,2,3,4

× ω (fi n−1 − fi n)
]

= 0 (A.121)

So the contribution of the second term in (A.104) to the O(z0
n−1 nz̄

0
n−1 n) term in the

subleading soft limit is 0 and it is solely given by

lim
zn−1 n→0

lim
z̄n−1 n→0

lim
∆n−1→0

∆n−1Mn

= −(∆n − 2)P−2,0(n)〈G−∆1
(1)G−∆2

(2)
n−2∏
i=3

G+
∆i

(i)G+
∆n−1(n)〉

(A.122)

Now comparing (A.107) and (A.122) we get

(∆n − 2)P−2,0(n)〈G−∆1
(1)G−∆2

(2)
n−2∏
i=3

G+
∆i

(i)G+
∆n−1(n)〉

= J 1
−1(n)〈G−∆1

(1)G−∆2
(2)

n−2∏
i=3

G+
∆i

(i)G+
∆n

(n)〉
(A.123)

Shifting the dimension ∆n → ∆n + 1 and taking into account that fact that n+ is
outgoing we can write (A.123) as,

[
J 1
−1(n)P−1,−1(n)− (∆n − 1)P−2,0(n)

]
〈G−∆1

(1)G−∆2
(2)

n−2∏
i=3

G+
∆i

(i)G+
∆n

(n)〉 = 0 (A.124)

This is the null-state decoupling relation (12.10) we wanted to prove.
Before we end the proof we would like to mention that the Mellin transformation of the

graviton scattering amplitude in GR is generically UV divergent. One way of curing this is
by modifying the Mellin transformation by the introduction of e−i

∑
k
εkωkuk which acts as a

damping factor. This is particularly useful because u, thought of as a regulator, preserves
all the symmetries of the problem. Since the null-states are completely determined by
symmetries, as we have shown, (A.124) still holds in the regulated theory as we have
explicitly checked for 5 graviton MHV amplitude in section 10. With some more notation
the above proof can be readily generalized to the regulated theory. In fact, it should not
depend on what regulator one uses, as long as all the symmetries are preserved.
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