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Abstract

Quenched and Driven Dynamics of One-Dimensional Quantum
Systems

This thesis focuses on quenched and driven dynamics in interacting quantum systems
that cannot be treated with mean-field approximations. The majority of the work is
related to the unitary dynamics induced in one-dimensional systems due to a sudden
change in a physical parameter (a quench). Such systems can be realized in cold
atomic gases where the degree of experimental control also enables sudden changes in
the physical parameters. The dynamics associated with underlying many-body phases
and phase transitions for strongly interacting particles in a one-dimensional optical
lattice and the relation between work statistics and scrambling dynamics for interacting
particles in a harmonic trap are investigated. A more accurate exact diagonalization
method useful for calculating the quench dynamics of small finitely interacting systems
is also presented. Finally an investigation of an optomechanical system with a new
type of nonlinear position-modulated Kerr coupling is presented. This is treated as an
open quantum system which reaches a steady-state due to the interplay of driving and
dissipation.
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CM Center-of-mass
HO Harmonic Oscillator
SP Single Particle
DE Diagonal Ensemble

EDE Extended Diagonal Ensemble
OTOC Out-of-time-ordered correlation function
BEC Bose-Einstein condensate
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Introduction and overview

Quantum mechanics has been an integral part of the physical framework utilized to
describe the world for approximately 100 years [3]. The basic laws that govern quantum
mechanics have therefore been understood for a long-time and the unified expression
of the electromagnetic, weak and strong force for fundamental particles within this
framework have similarly been understood for almost 50 years [3]. In light of this one
might think that quantum mechanics is essentially done and there is nothing interesting
left to be solved. Contrary to this expectation, however, quantum mechanics is a
thriving field with many interesting developments having taken place over the last 25
years. This is largely because modern quantum physics is not just concerned with
the reductionist application of quantum mechanics to smaller and smaller elements,
but rather with the application of quantum mechanics to explain complex physical
phenomena and engineer useful results. This is not to say that modern research does
not yield fundamental insights, however. Indeed recent progress in condensed matter
physics, quantum thermodynamics and quantum information has led to the discovery
of many intriguing properties of quantum mechanics. The application of quantum
physics in many-body systems can lead to insights into emergent behaviours that play
a fundamental role in nature and can yield information about universal structures
that arise from the underlying microscopic physics [4, 5]. The attempt to understand
simple quantum systems for applications in quantum information processing has lead
to new insights into our fundamental understanding of quantum state tomography,
measurement and entanglement [6]. Quantum mechanics in the presence of a lossy
environment is required for quantum engineering and the field of open quantum systems
theory has correspondingly become a topic of intense research interest [7, 8]. This
also relates to the more fundamental problem of quantum decoherence and quantum
thermodynamics. In addition to thermodynamics of open systems, the investigation of
thermodynamics for closed systems governed by unitary time-evolution and hermitian
Hamiltonians has led to considerable progress in understanding the interplay between
quantum mechanics and classical statistical physics [9–12].

The emergence of new experimental fields such as cold atomic gases has furthermore
lead to the growing field of quantum simulation in which fundamental models can
be tested in clean, tunable experimental setups [13]. While experimental progress in
condensed matter physics has lead to the possibility of creating specific material struc-
tures, these fields are still largely an attempt at explaining given natural phenomena.
With the advent of the experimental revolution in cold atomic gases, however, one is
no longer restricted to these very specific physical parameters and theoretical inquiry
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is no longer limited to explaining given phenomena. Indeed, by utilizing cold atomic
gases, specific experimental setups can be designed that allow for a clearer understand-
ing of the physical mechanisms that govern a particular physical phenomenon as it is
possible to isolate systems and change variables independently. Cold gases are there-
fore interesting both as a platform for quantum technology, but also as a platform for
quantum simulation. This allows for insights obtained with cold atoms to feed back
into fundamental fields such as nuclear physics [14] and condensed matter [13, 15, 16].
While these are very diverse fields that happen at different energy scales, the same
theoretical framework can often be applied across these scales and it is the existence
of such universality that allows for the usefulness of quantum simulation.

The main topic of this thesis is the dynamics of interacting quantum systems going from
the few-body to the many-body limit. The models under investigation are partly chosen
because exact solutions can be obtained which gives general insights into the topic of
quantum dynamics in strongly correlated systems. However, they are also chosen
because they can be experimentally realized utilizing cold atomic gases which means
that the results and predictions are of experimental relevance. The thesis consists of
two parts. In the first part relevant concepts, physical background and mathematical
as well as numerical methods required to understand the presented work is explained.
In the second part, my original research is presented split into 4 specific projects. An
overview of each chapter is as follows:

• Part 1

– Chapter 1: This chapter contains a brief introduction to quantum dynamics
and an overview of unitary quantum quench dynamics for closed systems.
This includes a basic mathematical description as well as a variety of ways
to characterize post-quench dynamics and the quench itself, including the
diagonal ensemble and the work probability distribution. I also discuss some
of the ways quantum quenches have been utilized to investigate fundamen-
tal quantum physics in recent years, such as equilibration properties and
dynamical phase transitions.

– Chapter 2: This chapter contains an overview of the field of cold atomic
gases. This includes an introduction to the field, an overview of experi-
mental techniques and the most common mathematical models used to de-
scribe these systems. In addition I discuss experimentally realizable limits
of these models where theoretical solutions can be found. In particular, I
introduce the one-dimensional Hamiltonian describing a gas of N particles
with short-range two-body interactions which will be the basic model under
investigation in this thesis.

– Chapter 3: This chapter discusses analytic and numeric techniques that can
be applied to solve the specific models of interest in this thesis. I discuss the
Bose-Fermi mapping theorem which allows one to map strongly interacting
bosons to non-interacting fermions for any external potential. I then outline
the analytic solution for two particles with finite short-range interaction in a
harmonic trap. Finally I discuss second quantization and the diagonalization
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of many-body systems in Fock-space.

• Part 2

– Chapter 4: This chapter contains a discussion of the Tonks-Girardeau gas in
a lattice exploring the full phase diagram as a function of the lattice depth
and the ratio of number of particles to sites. Additionally the dynamics
induced when the lattice is suddenly set into motion is discussed with par-
ticular attention to how this relates to the underlying many-body phases
and critical points also pointing out some analogies with models for classi-
cal friction. All of the results and their interpretation is to be found in the
paper New Journal of Physics, 20 113011, 2018 [1]. The chapter itself will
contain a brief summary of the results and how they connect to my overall
work.

– Chapter 5: This chapter investigates information scrambling utilizing the
paradigmatic model consisting of two interacting particles in a harmonic
trap and the canonical operators. A general overview of operator scrambling
as defined through the squared commutator and the related out-of-time or-
dered correlation functions will be given. Analytic expressions for these
quantities are derived for the relative-coordinate Hamiltonian and they are
used to investigate the post-quench behaviour. This includes an investiga-
tion of the average scrambling which is shown to be proportional to the
work fluctuations thus connecting the concept of operator scrambling with
the work statistics of the quench. Additionally the dynamics of the quench
are investigated and shown to be qualitatively different for interaction and
trap quenches which can also be explained in terms of the work probability
distribution and the non-equilibrium excitations in the system. This chap-
ter partially corresponds to the arXiv paper arXiv:2009.14478 [17], but also
contains additional material which will be presented in a second upcoming
publication.

– Chapter 6: This chapter outlines an improved exact diagonalization tech-
nique in Fock-space which incorporates the known information about the
two-body interaction through the effective Hamiltonian approach. This re-
quires a description of the effective Hamiltonian approach in general as well
as a discussion of how to transform the two-body interaction integrals from
the lab frame coordinate wavefunctions to the center-of-mass and relative
coordinate frame wavefunctions. I will make a quantitative comparison with
the basic exact diagonalization technique and qualitatively discuss how the
method compares with other proposals for improved exact diagonalization
performance. Finally I will briefly illustrate the method for an application
to quench dynamics related to a future project.

– Chapter 7: This chapter contains a discussion of my work in optomechanics
and unlike the rest of the thesis is an example of open system dynamics.
A method to experimentally engineer a position-modulated non-linear Kerr
coupling is proposed and the resulting Hamiltonian is theoretically inves-
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tigated. All of the results and their interpretation is to be found in the
paper Physical Review A, 96, 043832, 2017 [2] . The chapter itself will con-
tain a brief summary of the results as well as a discussion of work by other
researchers inspired by the paper.



Part I

General background, models and
methods
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Chapter 1

Quantum dynamics

The equilibrium properties of quantum-systems are well-studied and can yield much
insight into diverse topics such as equilibrium thermodynamics, quantum phase dia-
grams and correlation properties [4, 5]. However, despite the many insights obtained
from the equilibrium framework, out-of-equilibrium dynamics are a crucial aspect of
natural processes and can yield further insight into the nature of quantum mechanics.
Overall one can divide the topic of quantum dynamics into two categories. One cate-
gory concerns isolated, closed systems governed by unitary dynamics, the other deals
with open systems coupled to an environment governed by non-unitary dynamics. In
this thesis the main focus is on the former. I will, however, also consider an example
of an open quantum system related to optomechanical setups [18]. While this system
yields interesting experimental insights, the results are semi-classical and pertain to
the steady-state obtained through a balance of driven dynamics and dissipation. For
a detailed description of the methods and results, see chapter 7.

Quantum dynamics for time-dependent Hamiltonians is a complicated topic and in-
teresting for many purposes such as describing fundamental processes and quantum
control [19, 20]. Dynamics driven by time-independent Hamiltonians, however, also of-
fers unique insights into the properties of the driving Hamiltonian and the initial state
|ψI〉. Such systems are often studied theoretically and experimentally utilizing quan-
tum quenches in which the initial state is an eigenstate of some initial Hamiltonian HI

and the dynamics are driven by a final hamiltonian HF where the difference between
HI and HF corresponds to the change of some physical parameter. Quantum quenches
have a wide array of applications for theoretical studies of few- and many-body physics.
Quenches have been used to probe phase transitions [21–26], explore the orthogonality
catastrophe [27–32] and investigate irreversibility, chaos and thermodynamic properties
[12, 33]. While these are diverse areas, the same basic mathematical framework can
be utilized to describe quench dynamics in all cases. Studying the dynamical response
of a system to a sudden quench usually entails calculating the time-evolution of ex-
pectation values of observables such as the momentum distribution. However, one can
also characterize a quench more broadly, for example through operator-independent
(aside from the final Hamiltonian ĤF ) quantities such as the diagonal ensemble (DE)
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8 Quantum dynamics

[10, 34] and the closely related experimentally measurable work probability distribution
[33, 35–39].

1.1 Time-independent Hamiltonians and quantum quenches

Let us now consider the time-evolution of a state, the DE and the work statistics in
some more detail. In the following treatment it is assumed for clarity (and since it
corresponds to the cases of interest for my research) that the initial state is pure, but
note that it is straightforward to generalize to mixed initial states. The dynamics of
the state are then entirely characterized by the eigenbasis of the final Hamiltonian
{|ψFj 〉, EF

j }, where EF
j are the final eigenenergies. Utilizing the overlap coefficients,

obtained by projecting the initial state |ψI〉 onto this basis cj = 〈ψFj |ψI〉, the time-
evolution of the quantum state is given by (utilizing natural units where ~ = 1)

|Ψ(t)〉 =
∑
j

cje
−iEF

j |ψFj 〉. (1.1)

Utilizing this, the time-dependence of the expectation value for an observable Ô can
be written as

〈Ô(t)〉 =
∑
j

|cj|2〈ψFj |Ô|ψFj 〉+
∑
j 6=k

e−i(E
F
k −E

F
j )tc∗jck〈ψFj |Ô|ψFk 〉. (1.2)

If the initial state is an eigenstate of the final Hamiltonian the time-evolution is trivial,
corresponding to a simple phase shift in time which means that the expectation values of
all observables remain unchanged. For an arbitrary initial state, however, interference
of states with differently evolving phases complicates the time evolution and can lead
to complex dynamics. An immediate consequence of Eq.(1.2) is that the infinite-time
average of any observable in a non-degenerate system has zero contributions from the
off-diagonal elements in the second term due to their oscillating nature, leaving only the
diagonal contribution. For systems with degenerate energy levels, however, some off-
diagonal terms will also contribute. The infinite-time average can therefore be written
as

〈 ¯̂
O〉 = lim

T→∞

1

T

∫ T

0

dt〈Ô(t)〉 =
∑
j

|cj|2〈ψFj |Ô|ψFj 〉+
∑
Ej=Ek

c∗jck〈ψFj |Ô|ψFk 〉. (1.3)

which reduces to the first term for non-degenerate systems. This is known as the
Extended Diagonal Ensemble (EDE) expectation value for degenerate systems and Di-
agonal Ensemble (DE) expectation value in non-degenerate systems. I will consider
a non-degenerate system for the remainder of this discussion (and most of the the-
sis).

In a non-degenerate system the long-term average of any observable is described by
the DE probabilities |cn|2. The most fundamental observable of interest for a quench
is the work probability distribution defined as P (W ) = 〈δ(W − (ĤI − ĤF )〉. Note that
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this contains information about the initial physical properties of the system through
ĤI . As the energy is a constant of motion for a time-independent Hamiltonian this
value is time-independent and given by the DE ensemble as

P (W ) =
∑
j

|cj|2δ(W − (EI − EF
j )), (1.4)

under the assumption that |ψI〉 is an eigenstate of ĤI with energy EI . While the DE is
more fundamental, the work probability distribution is a characterisation of the quench
which takes into account the energy spectrum of the final Hamiltonian and the energy of
the initial state and therefore contains further information about the physical process.
Particularly, it allows one to connect quench properties with thermodynamic processes
[33]. Additionally, the characteristic function of the work probability distribution is
given by

χ(t) =

∫
dWeitWP (W )

= 〈ψI |eiĤF te−iĤI t|ψI〉 =
∑
j

|cj|2ei(E
F
j −EI)t. (1.5)

This is a measurable quantity in echo-type experiments [36–38] for cold gases, which
means that the properties of the work probability distribution can be investigated
experimentally in the systems of interest for this thesis. The moments of the work
probability distribution are given by

〈W n〉 =

∫
dWP (W )W n = −∂nt χ(t)|t=0 =

∑
j

|cj|2(EF
j − EI

0)n, (1.6)

and are often used to quantify the amount of non-equilibrium excitations created during
the quench. In particular, the irreversible work given by the difference between the av-
erage work 〈W 〉 and the free energy ∆F , i.e. 〈Wirr〉 = 〈W 〉−∆F = 〈W 〉−(EF

0 −EI
0), is

often used to give an indication of the irreversibility of the quench process [33, 36, 39].
However, since it is an average of the dynamical excitations, it possesses less infor-
mation about the nature of the irreversible dynamics than the full work probability
distribution and its characteristic function. Similarly, the variance of the work proba-
bility distribution is given by ∆W 2 = 〈W 2〉 − 〈W 〉2 which is of interest in the field of
statistical quantum thermodynamics [12, 35, 40] and it has been suggested as a probe
of critical behavior [41, 42].

In order to obtain further information about a system, beyond the DE and work statis-
tics, an investigation of the time-dependence of relevant observables which do not
commute with ĤF is required. For such observables the DE contribution is still very
important as it determines the infinite-time average, but the off-diagonal elements will
determine the actual time-dependence. Depending on the structure of 〈ψj|Ô|ψk〉 de-
phasing might ensure equilibration to the DE value, but in some cases of interest, such
as the paradigmatic harmonic oscillator spectrum, perfect periodic revivals of the state
prevent equilibration. The time-dependent behavior of observables is closely related
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to the question of quantum integrability and chaos [9–12]. For integrable systems the
DE can generally be described in terms of a generalised Gibbs Ensemble taking into
account a number of locally conserved quantities [9, 11]. For chaotic systems, which
are generally expected to obey the Eigenstate Thermalization Hypothesis (ETH), the
diagonal ensemble can be shown to be equivalent to the microcanonical ensemble and
the off-diagonal time-fluctuations can be shown to be small for large times [10, 12].
Such systems are said to thermalize. Another measure of quantum chaos, which has
seen interest in the last 5 years, is operator scrambling [43]. Operator scrambling es-
sentially describes the delocalisation of an operator in Hilbert space over time, after
which it can no longer be reconstructed by local measurements. This measure turns
out to be interesting, not just for chaotic systems, but for interacting quantum systems
in general [44]. After a quench, it seems intuitive that this operator scrambling would
be closely related to the non-equilibrium excitations described by the work probabil-
ity distribution introduced in the previous section. One major topic of this thesis is
connecting these two concepts for interacting particles in a harmonic oscillator which
is presented in chapter 5.

Another avenue of interest is the dynamical study of phase transitions. Quenching
the Hamiltonian parameters across a phase-transition will be reflected in the resulting
dynamics. A major topic of this thesis is an investigation of what happens when one
drives a quantum system possessing a non-trivial phase-diagram which is initially at
rest. Specifically, in chapter 4 I will investigate what happens to strongly interacting
bosons in a one-dimensional ring lattice when it is suddenly set in motion with a
constant speed. By going to the co-moving frame this problem can be recast as a quench
and the framework introduced above can be utilized. Indeed this work is partly inspired
by similar investigations that probe superfluid properties of strongly interacting bosons
by the sudden rotation of a delta-barrier utilizing the quench framework [45–47].



Chapter 2

Cold atomic gases

In this chapter I will give a brief outline of the field of cold atomic gases - what
is experimentally achievable by today and how this can be utilized to engineer the
Hamiltonians relevant for my theoretical studies.

2.1 Introduction
Over the last 20 years the field of cold atomic physics has become increasingly im-
portant - both with respect to fundamental physics and quantum engineering. This
is in large part due to experimental progress that has made the cooling of neutral
atoms to sub-µK temperatures and the precise control of such low-energy quantum
systems possible. Chief amongst these are Doppler cooling [48], evaporative cooling
[49], magneto-optical trapping [50] and purely optical traps [51]. Additionally the
exploitation of Feshbach-resonances allows one to tune the s-wave two-body scatter-
ing length [52], which completely determines the interaction for low-energy processes.
This makes these systems ideal for testing fundamental theories in very clean envi-
ronments and it is possible to experimentally design systems corresponding to many
different Hamiltonians. This allows one to test not just low-energy atomic physics, but
also to investigate similarities to quantum phenomena in condensed matter systems
[13, 15, 16], nuclear physics [14] and high-energy physics [53]. Since the first exper-
imental realizations of a Bose-Einstein condensate (BEC) in 1995 [54, 55], a state of
matter first proposed in 1925 by Bose and Einstein [56], experimental and theoretical
progress in the field has exploded. This has lead to the development of a very diverse
research area in which many ideas and theories originally proposed long ago, some-
times in other contexts, can finally be experimentally realized. One such example is
the Tonks-Girardeau gas, an exactly solvable one-dimensional many-body model con-
sisting of "fermionized" bosons, first proposed in 1960 [57] by Girardeau, which was
observed experimentally for the first time in 2004/2005 [58, 59]. Cold atomic systems
don’t just allow for the experimental observation of old models, however, the high flex-
ibility means that parameter regimes that were of little relevance in traditional fields,
such as condensed matter and nuclear physics, can be realized as well, necessitating
new developments on the theoretical side.

11
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It turns out that cold atomic gases are also an ideal environment to study few-body
physics. One example of that is the first experimental observation of the otherwise il-
lusive three-body Efimov states first predicted in the context of nuclear physics in 1970
[60] by Vitaly Efimov, utilizing three-body recombination measurements of cold atomic
gases [61, 62]. This is an example of how the field of cold atoms has lead to theoreti-
cal developments, as the three-body recombination became a relevant mechanism for
observing the Efimov states, leading to new studies [63]. More recently experimental
progress in the realm of few-body physics has made it possible to deterministically cre-
ate small one-dimensional systems consisting of 2 to 5 particles [64], allowing for direct
comparisons between experiment and analytically or numerically exact few-body pre-
dictions. Before discussing the specific focus of my research, which is one-dimensional
models spanning both few- and many-body physics, I will introduce some of the rele-
vant experimental techniques and fundamental theoretical assumptions for cold atomic
gases. This is necessary, as it is these experimental techniques and theoretical simplifi-
cations that make cold atomic gases such a versatile tool and therefore suitable systems
for investigating fundamental aspects of one-dimensional physics.

2.2 Optical trapping and lattices

In order to do any experiments with cold atomic systems the gases need to be confined
in a trap. Additionally the specific shape of the trap determines many properties of
the system. Some of the most relevant traps are harmonic potentials, double-wells
and periodic lattices, all of which can be engineered by optical trapping [65–67]. The
mechanism that underlies optical trapping is relatively straight forward. When an
electric field, in this case in the form of an external laser, is applied to a neutral atom,
an electric dipole moment is created. The interaction with the electric field in the
dipole approximation can be written as [68]

U(x, t) = −µE(x, t), (2.1)

where µ is the magnetic dipole operator for the atom and E(x, t) is the electric field
of the laser. For an off-resonant laser beam a shift in energy is created, a phenomenon
commonly referred to as the AC Stark shift. In this case the dipole-interaction creates
a conservative potential described by

V (x) = −1

2
α(ω)|E(x, t)|2, (2.2)

where α(ω) is the second-order contribution to the dipole moment at the laser frequency
ω and E(x, t) is the time-averaged electric field. In this way the atom can be trapped
and due to the versatility of laser beams, many different trap geometries can be created.
The optical lattice is of particular interest and can be achieved by using two counter-
propagating laser beams. The electric field components are described by E(x, t) =
e±ikxx and the interference pattern then gives a lattice potential described by

V (x) = Vx cos2(kxx). (2.3)
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So far a one-dimensional spatial system has been assumed in order to ease the discus-
sion. It is easy to generalize for three dimensions, whereby six counter-propagating
laser beams are required to make a lattice. In two or three dimensions more compli-
cated lattice structures are also possible, by changing the geometry of the lasers and
their relative phases [67, 69]. In this research project, however, I am interested in
one-dimensional systems, and since the physical world is three-dimensional by default,
for this type of theory to be experimentally relevant the ability to effectively confine a
gas to lower dimensions is required. Fortunately it is experimentally possible to freeze
out spatial degrees of freedom using optical trapping. A simple example is to use a
three-dimensional harmonic oscillator potential

V (x, y, z) =
m

2
(ω2

xx
2 + ω⊥[y2 + z2]), (2.4)

where m is the mass of the particles and ωx, ωy, ωz describe the trapping frequencies
in the x, y, z directions. Increasing the confinement ω⊥ � ωx in the spatial directions
y and z such that the energy associated with excitations in the x direction are smaller
than the excitation energy required to excite from the ground state to the excited
state in the transverse directions allows one to treat the system as effectively one-
dimensional along the x-axis. One final advantage of optical trapping as opposed to
magnetic trapping is that it allows for independent external magnetic fields which allow
for tuning the two-body scattering properties of alkali atoms.

2.3 Two-body physics, scattering lengths and Fesh-
bach resonances

In order to mathematically describe a cold atomic gas a good description of two-body
interactions is needed, as these are the dominant interactions in dilute gases. Two-
body scattering amounts to shooting one particle into another target particle. This
means that all the properties are determined by a potential which depends only on
the relative coordinate, r, between the particles. This process can result in different
outcomes, depending on the relative kinetic energy and the specific properties of the
two-body potential. There is a continuum of scattering states, as well as the possibility
of bound states. Neutral atoms interact via the van der Waals interaction, which
is short-ranged. For low-energy scattering of bosons or distinguishable particles the
process is dominated by s-wave scattering. In this limit the specific shape of the short-
range potential is unimportant and the process exhibits a universal, model-independent
character (intuitively the wavelength of the particles is too large to discern the details
of the short-range potential). Therefore the simplest possible model is chosen for
mathematical convenience. This is the zero-range model described by the Dirac-delta-
function and all the scattering properties are now contained in one single parameter, the
interaction strength g or equivalently the s-wave scattering length a. Mathematically
the potential is described by the regularized delta-function in 3D as [70]

V (r) = g3Dδreg(r) = g3Dδ(r)
d

dr
(r, ), (2.5)
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and the bare delta-function potential in 1D, i.e.

V (r) = g1Dδ(x), (2.6)

with interaction strengths given by the parameters g3D and g1D. The relation between
the strength, g3D, and the scattering length a of the three-dimensional scattering pro-
cess is given by

g3D =
2π~2a
µ

. (2.7)

Here µ = m1m2/(m1 + m2) is the reduced mass of the two particles. In a quasi
one-dimensional system a confinement potential similar to that described in the last
section (2.2) must be involved. If the confining potential is given as a two-dimensional
harmonic trap in the transverse directions, with no trapping potential along the 1D
axis of interest, the interaction g1D can be found in terms of a as [71]

g1D =
2~2a
µa2⊥

(
1− C a

a⊥

)−1
. (2.8)

Here a⊥ is the size of the single-atom ground state wavefunction in the transverse
directions and C = 1.4603 is a constant. Note that this allows for a way to manipulate
the 1D interaction strength, by changing transverse confinement properties, which is
referred to as confinement-induced resonance.

This description of low-energy short-range scattering is equally valid for nuclei interact-
ing via the strong interaction or cold atoms interacting via the van der Waals interaction
due to its universal character. One crucial difference between nuclear and cold atomic
systems, however, is that while the scattering length of a nuclear two-body interaction
is a constant property of the system, the scattering length of neutral alkali atoms is
experimentally tunable using the Feshbach resonance technique [52]. This technique
utilizes the Zeeman-splitting to change the s-wave scattering length as a function of
an applied external magnetic field B. While the underlying mechanism can be quite
complicated, almost all experimental data can be fitted to the empirical relation [52]

a(B) = abg

(
1− ∆

B −B0

)
, (2.9)

where abg is the background scattering length, B0 is the resonant magnetic field and ∆ is
the width of the resonance. This means that the strength of the two-body interaction is
a tunable parameter for neutral atoms, allowing for experimental investigations of few-
and many-body properties as a function of the scattering length. Successful examples
of this are the observations of Efimov states [61, 62] and the BEC-BCS crossover as a
function of the scattering length [72, 73].
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2.4 Models that can be investigated in cold atomic
gases

Utilizing the zero-range interaction, the generic Hamiltonian for a N-particle cold
atomic gas is given by

H(r1, ...rN) =
N∑
i=1

[
− ~2

2mi

∂2

∂r2i
+ Vext(ri, t)

]
+

N∑
i<j

gijδreg(|ri − rj|). (2.10)

The first term corresponds to the kinetic energy of each particle with mass mi, the
second term can be any arbitrary position and time-dependent external potential, while
the last term corresponds to the zero-range two-body interactions with an arbitrary
strength gij for each two-body interaction. In general this remains a very difficult
many-body problem, despite the simplification provided by the zero-range interaction.
One particular advantage of cold atomic gases, however, is that they allow for the
experimental realization of a variety of exactly solvable limits of Eq.(2.10) due to the
degree of control obtainable through the ability to manipulate the external potential
and the contact interactions. These solvable limits are often of experimental interest
and contain interesting physics.

One example of this is the limit of weak two-body interactions for which quantum
correlations become negligible. In this regime mean-field theory, which describes the
many-body system in terms of an effective one-body theory, is very successful. For
bosonic systems mean-field theory leads to the Gross-Pitaevskii equation (also known
as the non-linear Schrödinger equation) which describes the macroscopically occupied
classical field of a BEC with two-body zero-range interactions [74]. This equation has
been extensively studied and many interesting phenomena emerge from its structure,
a few examples being dark solitons [75] and quantum vortices [76], both phenomena
that have been experimentally observed (see [77] and [78, 79] respectively). In order to
understand the quantum nature of microscopic physics, however, models in which such
correlations cannot be neglected must be investigated. The majority of these systems
are not computationally tractable, but limiting ourselves to those that can be solved
exactly - either analytically or numerically - should still yield insight into the nature
of quantum correlations and dynamics. Particularly, the quench dynamics introduced
in chapter 1 require knowledge of the full set of eigenstates and eigenvalues for the
final Hamiltonian in order to be calculated and the investigation of unitary quantum
quench dynamics in closed systems is therefore, in principle, dependent on obtaining
the exact spectrum. In practice, not all states have a significant contribution to the
dynamics for all initial states and exact solutions may therefore only be required for a
limited number of eigenstates.

One physical limit of Eq.(2.10) which maintains strong interactions, but simplifies the
problem is the limit in which the movement and location of particles are restricted
by a tight external potential. Experimentally this can be engineered by imposing a
lattice structure through the external potential. For a tight-binding lattice an effec-
tive discretization of space can be obtained and correspondingly the system can be
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described in a finite-dimensional Hilbert-space as opposed to the continuum problem
which is characterized by an infinite-dimensional Hilbert space. The resulting model
is generally known as the Hubbard model and depending on the particles it can be
either fermioninc or bosonic in character [15, 80]. Hubbard models are characterized
by tunneling rates between the different sites corresponding to the kinetic energy term
and two-body interaction terms. For short-range interactions, such terms can often be
approximated as only having an effect for two particles at the same site. The mini-
mal 2-site Bose-Hubbard model can be solved exactly utilizing the Bethe ansatz [81],
while larger systems can be solved numerically utilizing exact diagonalization [82]. By
engineering various lattice topologies and interactions a wide variety of interesting con-
densed matter phenomena can be investigated experimentally such as Mott-insulators
and superfluidity [83, 84], frustrated magnetism [85] and topological phases [86]. These
types of models, and the closely related spin chain models, are also widely used theoreti-
cally in statistical physics, non-equilibrium dynamics and quantum chaos [11, 12] which
has made experimental investigations of these phenomena accessible as well [87, 88].
Common to all these areas is that the existence of exact solutions has helped pave the
way for new and exciting insights.

A different way to simplify the problem, but one which can be used in conjunction with
the discretization, is to consider lower spatial dimensionality. As discussed, it is possible
to engineer this in cold gases and in particular effectively one-dimensional systems can
be obtained. This offers a considerable simplification of the problem, but also allows
for the investigation of physical features unique to 1D systems. Indeed, it is a well-
established fact that physical systems behave differently depending on the dimensional
degrees of freedom. This includes thermalization and critical behaviors such as phase
transitions [89], where even for the simple classical Ising model a non-trivial phase-
transition is only present in dimensions higher than one [4]. Lower dimensionality can
also have a dramatic effect on the equilibration behaviour, which has been studied for
cold quantum gases in recent years [9, 10, 90–92]. Staying in one dimension, a simple
way to intuitively understand how dimensionality can affect the dynamics is to consider
hard-core particles, where it is clear that unlike in higher dimensional-systems these
cannot physically pass each other. The central model which will be under consideration
for the majority of this thesis is a one-dimensional quantum gas consisting of N particles
with two-body short-range interactions described by the zero-range formalism. The
most general Hamiltonian for such a system is given by

H(x1, ...xN) =
N∑
i=1

[
− ~2

2mi

∂2

∂x2i
+ Vext(xi, t)

]
+

N∑
i<j

gijδ(|xi − xj|). (2.11)

For indistinguishable bosons the overall wavefunction has to be symmetric with respect
to particle exchange, while it must be anti-symmetric for indistinguishable fermions.
Although this model is deceptively simple, it can yield a surprising amount of physical
insight and is quite complex for arbitrary interaction strengths, meaning that it is only
exactly solvable for relatively small N. In this regime interesting few-body properties
can be exactly explored, which might yield insight into problems of a many-body char-
acter. For a one-component gas in an arbitrary external potential it is possible to
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exactly solve this problem for any N in the case of vanishing interaction strength as
this simply corresponds to a free Fermi or Bose-gas, while the Bose-Fermi mapping
theorem allows one to solve the bosonic many-body system at infinitely repulsive in-
teraction strength [57]. Another solvable limit is the famous Lieb-Liniger model, which
corresponds to Vext(x) = 0 with periodic boundary conditions, but arbitrary interaction
strength g, which can be solved using the Bethe ansatz approach [93].
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Chapter 3

Models and methods

In this chapter I will outline solution methods of the one-dimensional models studied in
this thesis all corresponding to special cases of Eq.(2.11). I will attempt to go from the
general to the specific, outlining the areas of broad applicability for each method, before
describing specifics relevant to the physics I will investigate in the following chapters.
The majority of this chapter outlines basic theoretical and numerical frameworks, while
additional (original) analytical and numerical considerations required for my specific
projects will be contained in their respective chapters.

The structure of this chapter is as follows. In section 3.1 I introduce the exactly solvable
N-body Tonks-Girardeau gas which emerges in the limit of infinitely strong repulsive
zero-range interactions [57]. In section 3.2 I look at a different limit in which analytic
solutions are available, namely at the simplest non-trivial finitely-interacting system,
that of two particles in a harmonic trap [94]. Finally in section 3.3 and 3.4 I consider
the more general case of 3-5 finitely interacting (two-component) systems and how such
systems can be treated numerically utilizing exact diagonalization approaches. In order
to do this I first introduce some background material on second quantization.

3.1 The Bose-Fermi mapping theorem (Tonks-Girardeau
gas)

For identical bosons in the regime of infinitely strong zero-range interactions, g →∞,
solving the many-body Schrödinger equation

H(x1, ..., xN , t)Ψ(x1, ..., xN , t) = EΨ(x1, ..., xN , t) (3.1)

withH given by Eq.(2.11) reduces to solving for the non-interacting Hamiltonian

H(x1, ..., xN , t) =
N∑
i=1

[
− ~2

2m

∂2

∂x2i
+ Vext(xi, t)

]
, (3.2)

19
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with the additional boundary condition

Ψ(x1, ...xN , t) = 0 if |xi − xj| = 0. (3.3)

This boundary condition is equivalent to the Pauli exclusion principle in position space,
which also forces the wavefunction to be zero when two particles are at the same
position. The problem can therefore be mapped onto non-interacting spinless fermions
[57] for which the many-body wavefunction can be written as a sum of single-particle
product states utilizing the Slater determinant

ΨF (x1, ..., xN , t) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ0(x1) ψ1(x1) · · · ψN−1(x1)
ψ0(x2) ψ1(x2) · · · ψN−1(x2)

...
... . . . ...

ψ0(xN) ψ1(xN) · · · ψN−1(xN)

∣∣∣∣∣∣∣∣∣ (3.4)

Here ψn(x) are the single-particle eigenstates corresponding to Eq.(3.2) with N =
1. The Slater determinant is anti-symmetric with respect to particle exchange by
construction, while the bosonic wavefunction has to be symmetric. It is possible to
obtain a symmetric bosonic wavefunction obeying the same eigenvalue equation by
multiplying the Slater determinant with the anti-symmetric unit function. The anti-
symmetric unit function is defined by

A(x1, ..., xN) = Π1≤i<j≤Nsgn(xi − xj) (3.5)

and the bosonic wavefunction is then written as

ΨB(x1, ..., xN , t) = A(x1, ..., xN)ΨF (x1, ..., xN , t). (3.6)

One case of particular interest for my work is a Tonks-Girardeau gas confined to a
ring geometry of circumference L, corresponding to the ring lattice model I investigate
in chapter 4. To model this, one imposes periodic boundary conditions ΨB(..., xk +
L, ..., t) = Ψ(..., xk, ..., t) for all k.

With these constraints on the many-body wavefunction one can evaluate the effect
of the anti-symmetric unit function and show that the periodic boundary condition
is obtained when the fermionic many-body wavefunction obeys ΨF (..., xk + L, ...) =
(−1)N−1ΨF (..., xk, ...). Imposing periodic boundary conditions for the bosonic TG gas
therefore imposes periodic boundary conditions (PBC) for odd N and anti-periodic
boundary conditions (A-PBC) for even N for the fermionic many-body wavefunction.
Due to the orthogonality of the single particle eigenbasis {ψn(x, t)} the two sums
resulting from the Slater determinant are equal if and only if each term in the sum is

ψn(L, t) = (−1)N−1ψn(0, t). (3.7)

Therefore the single-particle eigenstates of the Hamiltonian have periodic boundary
conditions for odd N and anti-periodic boundary conditions for even N.

This limit of infinitely strong interactions is known as the Tonks-Girardeau limit. The
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system is often referred to as the TG gas in the continuum [95] and hard-core bosons
[16] in discrete systems. It is one of the few examples of an exactly solvable, strongly-
interacting N-body system. However, implicit in the solution method is that in many
ways the system behaves like a non-interacting N-body Fermi gas. This generally
holds true for density-density correlations, many-body overlaps and diagonal one-body
operators in position space such as the single particle density which are all equivalent
for the two systems. As such, the interesting physics due to the interplay between the
bosonic symmetry and the strongly repulsive interactions are to be found elsewhere.
Particularly, the reduced single particle density matrix, for which the off-diagonal terms
contain information about the spatial self-correlations and therefore the coherence of
the gas, will be very different for the two systems.

3.1.1 Reduced Single Particle Density Matrix and momentum
distribution

The reduced single-particle density matrix (RSPDM) is defined by

ρ1(x, y) = N

∫
Ψ(x, x2, ...xN)Ψ(y, x2, ...xN)dx2...dxN . (3.8)

As mentioned above it measures the spatial self-correlation, giving the probability to
find a particle at position y just after finding it at position x. Diagonalising the RSPDM
leads to a set of eigenstates φi(x), known as the natural orbitals, with the corresponding
eigenvalues λi giving the respective occupation numbers

ρ1(x, y) =
∑
i

λiφ
∗
i (x)φi(y), (3.9)

where
∑
λi = N . For a non-interacting Fermi gas the reduced single particle density

matrix is very simple. The natural orbitals are equal to the single-particle wavefunc-
tions ψn(x) with occupations λ1 = ... = λN = 1 and λj>N = 0. This corresponds to
a gas with no coherence. On the other hand, it is expected that the bosonic system
has some degree of coherence. For a non-interacting Bose gas at zero temperature
λ0 = N with all bosons occupying the ground-state. The presence of interactions will
lower this coherence, but it seems unlikely that the system will become completely
incoherent like the free Fermi gas. Indeed, inserting the TG many-body wavefunction
into Eq.(3.8) the anti-symmetric unit function does not cancel out which means that
the RSPDM sees the effect of the symmetrization requirement. Evaluating the full
multi-dimensional integral is time-consuming, but fortunately an efficient algorithm to
evaluate the RSPDM for the TG wavefunction in terms of one-dimensional integrals
exists [96].

Further intuition about the difference between free fermions and the TG-gas can be ob-
tained from the fact that the RSPDM is closely related to the single particle momentum
distribution. This also connects the coherence properties of the gas to an experimen-
tal observable as the momentum distribution can be measured through time-of-flight
experiments [16, 97]. The momentum distribution is given as the Fourier transform of
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ρ1(x, y)

n(k) =

∫
dx dyρ1(x, y)e−ik(x−y). (3.10)

This can be recast in terms of the Fourier transform of the eigenstates of the RSPDM,
φ̃i(k), using the same occupation numbers

n(k) =
∑
i

λiφ̃i
∗
(k)φ̃i(k). (3.11)

For non-interacting bosons in free space this will generally be described by a delta-peak
at n(k = 0) as the particles are entirely delocalised in space, while they are entirely
localised in momentum space. Or, to put it differently, the bosons macroscopically
occupy the k = 0 eigenstate. For non-interacting Fermions in free space, however,
the Pauli-exclusion principle ensures that each momentum state beneath the Fermi
momentum is equally occupied and the system is delocalised in momentum space. The
TG gas, on the other hand will have a peak at k = 0, but the presence of interactions
broadens the peak so that unlike the perfectly coherent non-interacting bosons, it is
not completely localised. In summary the density distribution the TG-gas behaves
exactly like free fermions, but the momentum distribution does not. This is because
the constraints on the wavefunction in position space correspond to imposing the Pauli
exclusion principle in position space, but unlike fermions the Pauli-exclusion principle
is not imposed in momentum space.

3.2 Two interacting particles in a harmonic trap

The simplest possible non-trivial example of the one-dimensional model presented in
chapter 2.4 is that of two interacting particles. This problem is numerically tractable
for an arbitrary external potential and obtaining exact solutions is straightforward us-
ing simple finite-difference diagonalisation for an effectively two-dimensional system,
corresponding to the two particle coordinates. Further insight, however, can be ob-
tained through analytic solutions. One example of a trap for which an analytic solution
is obtainable is the harmonic trap. The relevant Hamiltonian, scaled in terms of the
natural oscillator length, is given by

Ĥ =
2∑

n=1

[
− 1

2m

∂2

∂x2n
+

1

2
γ2x2n

]
+ Vint(x2 − x1), (3.12)

where γ is a non-dimensional scaling parameter that determines the width of the
trap. This system is separable into a center-of-mass and relative coordinate Hamil-
tonian

ĤCM = −1

2

∂2

∂X2
+

1

2
γ2X2 (3.13)

ĤREL = −1

2

∂2

∂x2
+

1

2
γ2x2 + Vint(

√
2x), (3.14)
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where X = x1+x2√
2

and x = x2−x1√
2

are the respective center of mass and relative position
coordinates. The full wavefunction is a product of the center-of-mass wavefunction
and the relative coordinate wavefunction ψ(x1, x2) = ψCM(X)ψREL(x). Note that this
solution can neatly be divided into the fermionic and bosonic symmetry sectors, as the
latter forces the relative wavefunction to have even parity, while the former forces it to
have odd parity. This is a massive simplification of the problem as it has been reduced
to two independent single-particle problems. The center-of-mass Hamiltonian corre-
sponds to the well-known non-interacting harmonic oscillator for which the analytic
solution can be found in any quantum mechanics textbook. The solutions to the non-
interacting harmonic oscillator (HO) scaled with γ are denoted by the eigenenergies
and eigenfunctions {En, |ψn〉} in this chapter. The relative Hamiltonian can be diag-
onalized using finite-difference diagonalization for any arbitrary interaction potential,
but in the specific case of the zero-range interaction introduced in chapter 2.3 an ana-
lytic form of the eigenfunctions and eigenenergies can be obtained [94]. In this case the
strength of the two-body interaction given by 2.6 is determined by g. The eigenfunc-
tions and eigenenergies for a given g is therefore labelled by {Eg

j , |ψgj 〉}. Only the even
parity eigenfunctions ψg2j(x) and eigenenergies Eg

2j are affected by the delta-function
interactions. Indistinguishable fermions for which the relative part of the wavefunc-
tion is odd are therefore unaffected by the delta-function interaction which is a generic
feature of the zero-range interaction as the Pauli-exclusion principle ensures that the
wavefunction goes to zero whenever two particles are at the same position meaning
that they can’t see the potential.

There are multiple ways one can proceed to derive analytic expressions for the eigenen-
ergies and eigenfunctions. I will proceed along a particular path which gives a useful
representation of the eigenfunctions for the purposes of evaluating canonical operator
matrix-elements. Let us first expand the eigenfunctions of ĤREL in terms of the basis
of the non-interacting HO eigenfunctions ψg2j(x) =

∑
n c

2j
2nψ2n(x). As the interacting

wavefunction has even parity it has zero overlap with odd parity HO eigenfunctions
and the sum is therefore only given for even values 2n. Inserting this expression in the
eigenvalue equation for the interacting system, leads to∑

n

c2j2nψ2n(x)

[
−1

2

∂2

∂x2
+

1

2
γ2x2

]
+

g√
2
δ(x)ψg2j(x) = Eg

2j

∑
n

c2j2nψ2n(x). (3.15)

Next the inner product of this expression with 〈ψ2k| is taken, which in the position-
basis is given by an integral. This results in c2j2kE2k + g√

2
ψ∗2k(0)ψg2j(0) = c2j2kE

g
2j and the

expansion can therefore be rewritten as

ψg2j(x) =
g√
2
ψg2j(0)

∑
n

−ψ∗2n(0)

E2n − Eg
2j

ψ2n(x). (3.16)

Evaluating this at x = 0 the energy quantization is obtained as

−
√

2

g
=
∑
n

|ψ2n(0)|2
E2n − Eg

2j

. (3.17)
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From the well-known analytic expressions of the harmonic oscillator eigenfunctions
this infinite sum can be re-written in terms of Γ functions leading to the following
transcendental equation

Γ(−Eg
2j

2
+ 3

4
)

Γ(−Eg
2j

2
+ 1

4
)

= −g
2
. (3.18)

The energy of the 2j’th state can also be expressed as

Eg
2j = (2j + ∆j)γ, (3.19)

where j = 0, 1, 2... and ∆j can be found from Eq.(3.18) and always gives a value
∆j ∈ [0, 1]. For large j, ∆j ∝ j−1/2 (see [94]). Further manipulating the sums leads
to the following expression of the 2j′th (even parity) eigenfunction of the interacting
system ([98])

ψg2j(x) = Ωg
2j

∑
n

ψ∗2n(0)

E2n − Eg
2j

ψ2n(x), (3.20)

where the normalization factor is given by

Ωg
2j =

√
4Γ(3

4
− Eg

2j)

Γ(−εj)[Γ̃(3
4
− Eg

2j)− Γ̃(1
4
− Eg

2j)]
. (3.21)

Here Γ and Γ̃ are the gamma and di-gamma functions respectively. It is also possible
to represent the interacting wavefunctions more succinctly using the parabolic cylinder
functions [94], but this representation is not relevant in this thesis. In chapter 5 I will
utilize the above representation of the wavefunction to derive analytic expressions for
4-point time-dependent correlation functions involving canonical operators.

3.3 Two-component many-body systems and second
quantization

Moving from the two-body problem, the natural progression is to solve Eq.(2.11) with
finite interactions for 3,4 or 5 particles.

Let us consider two special versions of Eq.(2.11), corresponding to identical particles
and to a system with two species of distinguishable particles. These two cases are
described by the following Hamiltonians respectively

Ĥ1C(x1, ..., xN , t) =
N∑
n=1

[
− ~2

2m

∂2

∂x2n
+ Vext(xn, t)

]
+

N∑
i<j

gδ(|xi − xj|), (3.22)

and
Ĥ2C = ĤA + ĤB + Ĥint, (3.23)
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where

ĤA =

NA∑
n=1

[
− ~2

2mA

∂2

∂x2n
+ Vext(xn, t)

]
+ gA

NA∑
i<j

δ(|xi − xj|), (3.24)

ĤB =

NB∑
n=1

[
− ~2

2mB

∂2

∂x2n
+ Vext(xn, t)

]
+ gB

NB∑
i<j

δ(|xi − xj|), (3.25)

Ĥint = gAB

NA∑
i

NB∑
j

δ(|xi − xj|). (3.26)

The first case is essentially a special, simpler case of the second. There are many differ-
ent ways of approaching such few-body problems. One approach that has seen success
for three-dimensional three-body [99] and four-body systems [100] is the use of Jacobi-
coordinates and the related hyper-spherical coordinates. These coordinates are also
useful for the simpler case of one-dimensional problems [101]. The Jacobi-coordinates
often allow for the center-of-mass coordinate to be decoupled from the system leading
to a simpler treatment. Utilizing hyper-spherical coordinates the problem can be ap-
proximately separated into a hyper-radial and hyper-spherical part and approximate
analytic results can be found based on geometrical considerations [102, 103] or utiliz-
ing variational approaches [104]. The separation of hyper-radial and hyper-spherical
variables allows for a Born-Oppenheimer like approximation known as the adiabatic hy-
perspherical approximation [105] which can also be useful in one dimension [101]. In the
same spirit an impurity in a gas (i.e. NA � NB) can be treated by separating the impu-
rity coordinate from the other particle coordinates and applying a Born-Oppenheimer
like approximation to the set of coordinates [102, 106]. A variety of schemes based on
variational approaches, utilizing interpolations of known analytic limits have also been
proposed [104, 107–109]. Some of these methods can even be extended to medium-sized
or bigger systems, although whether or not the approximation breaks down depends to
some extent on which parameter regime of the Hamiltonian is considered. For medium-
sized systems other techniques exist as well. One proven technique is diffusion Monte
Carlo simulations [110, 111]. The density matrix renormalization (DMRG) [112] ex-
pressed in terms of matrix product states is another technique which is very powerful
for strongly correlated one-dimensional spin-systems on a lattice [113] and extensions
to continuous space models have been developed [114].

While these and other methods can be powerful ways of solving the problem, they
generally only gives access to the ground-state or a few excited states. In order to
investigate the quench dynamics and correlations of interest in this thesis, however,
a large number of eigenstates are required. A simple way to approach the few-body
problem which gives access to the higher-lying states in the spectrum is simple brute-
force diagonalization [115, 116], although it is limited to a small number of particles.
One way to diagonalize the many-body problem is writing the wavefunction in terms
of the second-quantized field operators and diagonalizing in Fock-space [115] which is
the technique I will describe in this section and which has been successfully utilized
for a variety of investigations in the recent past [115, 117–121]. An alternative way to
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investigate dynamics, but one which is limited to strong interactions, is by mapping
few-body systems to interacting spin models which can be done can be done to linear
order in the inverse interaction strength [122–127].

In chapter 6 I will introduce an effective Hamiltonian approach which incorporates
information about the two-body interactions into the many-body Hamiltonian allowing
for more accurate exact diagonalization for larger particle numbers, but in this section
an overview of the basic approach to exact diagonalization for the above Hamiltonians
in Fock space is given. This method relies on the second quantized picture of the many-
body system, which I will give a quick overview of first (more detailed discussions can
of course be found in a number of standard textbooks, see for example chapter 2 in
[5]).

3.3.1 Second quantization

The basic ingredients of second quantization are the creation and annihilation operators
and the many-body Fock basis. The Fock basis is spanned by all possible state kets
described by

|n1, n2, ..., nk, ...nM〉 = |1〉n1|2〉n2 ...|k〉nk ...|M〉nM (3.27)

corresponding to the many-body state with nk particles in the states |k〉. In order to
keep vector representations of a consistent dimension one explicitly denotes nk = 0 if
there are zero particles in a state ket of interest. For fermions these numbers can’t
exceed 1 due to the anti-symmetrization condition, which provides a simple way to
keep track of whether we are working with bosons or fermions. This Fock basis is
only useful if relevant operators can be expressed in a form that can be simply applied
to the Fock basis states. This can be achieved through the creation and annihilation
operators defined by

â†k|n1, n2, ..., nk, ...nM〉 =
√
nk + 1|n1, n2, ..., nk + 1, ...nM〉 (3.28)

and
âk|n1, n2, ..., nk, ...nM〉 =

√
nk|n1, n2, ..., nk − 1, ...nM〉. (3.29)

It is immediately clear why they are named like this as the creation operator â†k creates
a particle in the state |k〉, while the annihilation operator âk annihilates a particle in
the state |k〉. The Fock states are therefore not eigenstates of these operators. On
the other hand, the Fock states are eigenstates of the number operator, defined by
n̂k = â†kâk, wich has an eigenvalue corresponding to the number of particles in the
state |k〉

n̂k|n1, n2, ..., nk, ...nM〉 = nk|n1, n2, ..., nk, ...nM〉. (3.30)

For the number-operator to be well-defined when applied to all states (including the
vacuum) the creation and annihilation operators must obey the following commutation
and anti-commutation relations for bosons and fermions respectively

[âi, â
†
j] = δij , {âi, â†j} = δij (3.31)
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By applying creation operators successively to the vacuum state |Ω〉 one gets the state

|n1, ...nk, ...nM〉 = (â†1)
n1 ...(â†n)nk ....(â†M)nM |Ω〉 (3.32)

So exchanging two particles corresponds to changing the order of two creation operators
â†i and â†j. For bosons these two operators must therefore commute, while they have
to anti-commute for fermions and by taking the Hermitian adjoint the same holds true
for the annihilation operators

[âi, âj] = 0 , [â†i , â
†
j] = 0 (3.33)

{âi, âj} = 0 , {â†i , â†j} = 0. (3.34)

One of the major advantages of the second quantization approach is that by employing
the correct commutation relations, the symmetrization requirement is automatically
fulfilled. Note that I have already implicitly assumed a basis in the definition of these
operators, namely the Fock basis consisting of all possible numbers of particles in all
possible single-particle states (in real problems the Fock basis will be restricted to the
relevant particle numbers and states). These operators are therefore implicitly given
with respect to the states they create and destroy particles in. It is generally useful
to be able to express states and the matrix elements of operators with respect to a
different basis set. To do this in the second-quantized formalism one needs to find
the transformation between creation/annihilation operators for different sets of states.
Consider two single-particle basis sets {|αn〉}, {|βn〉} with creation operators â†αn

, â†βn
that creates particles in the states |αn〉, |βn〉 respectively. The transformation between
them can be obtained by inserting a complete set of states as

â†αn
|Ω〉 =

∑
m

|βm〉〈βm|αn〉 =
∑
m

â†βm|Ω〉〈βm|αn〉, (3.35)

which implies that
â†αn

=
∑
m

〈βm|αn〉â†βm , (3.36)

and by taking the adjoint one finds

âαn =
∑
m

〈αn|βm〉, âβm (3.37)

where the inner products 〈αm|βn〉 describe the transformation operators elements. Note
that creation and annihilation operators transform like state-kets and not like typical
operators in first-quantized QM. Considering creation and annihilation operators in
the position basis leads to the important notion of field operators. In this basis the
operators are commonly written as functions of the continuous position coordinate

ψ̂(x) = ψ̂x , ψ̂†(x) = ψ̂†x (3.38)

where
ψ̂†(x)|Ω〉 = |x〉. (3.39)
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Now consider the transformation of this operator to some discrete single-particle basis
states {|αn〉} with single-particle creation/annihilation operators â†αn

, âαn that corre-
spond to creating or destroying particles in these states. Using Eqs.(3.36,3.37) one
finds that

ψ̂†(x) =
∑
n

〈αn|x〉â†αn
=
∑
n

ψ∗αn
(x)â†αn

(3.40)

ψ̂(x) =
∑
n

〈x|αn〉âαn =
∑
n

ψαn(x)âαn (3.41)

which enables a connection between the creation and annihilation operators and the
wavefunctions of first quantization. Indeed the creation and annihilation field operators
as a function of position can be written as an expansion in a discrete set of basis states
{|αn〉} with respect to the position basis, where the expansion coefficients correspond
to the field operators for creating and annihilating particles in the corresponding basis
states. In other words, it is an expansion in terms of states described by single-particle
wavefunctions that can easily be obtained using the methods of ordinary single-particle
QM, while the action of the single-particle field operators â†αn

, âαn on the Fock-basis is
straight-forward. As in the first quantized formalism one is often interested in trans-
forming between the position basis |x〉 and the momentum basis |p〉 and this can be
achieved by simply replacing the sums with integrals in Eqs.(3.36,3.37):

ψ̂(p) =

∫
dx〈p|x〉ψ̂(x) , ψ̂†(p) =

∫
dx〈x|p〉ψ̂†(x). (3.42)

One advantage of the second-quantized language is the simple form few-body operators
take when expressed in terms of anihilation and creation operators. A sum of one-body
operators can be expressed in second quantized form as

K̂ =
∑
m

kmâ
†
mâm =

∑
m

〈km|k̂|km〉â†mâm (3.43)

when the underlying single-particle basis set is the eigenstates of k̂. No references to
particle identification numbers are required in this expression, which is a major advan-
tage of second quantization. It aligns with the intuition that a one-body operator is
expressed by counting the number of particles in each eigenstate of that operator and
multiplying by their respective eigenvalues. The lack of reference to particle identifica-
tion numbers means that there is also no reference to the total number of particles in the
operator, so evaluating for a specific number of particles N (corresponding to a given
physical system) is done by restricting the Fock-space to the subspace corresponding
to particle number N . Therefore describing a physical system in second quantization
requires a specification of both the operators and the Fock-space on which they work.
An operator often has to be represented with respect to a different basis than its single-
particle diagonal states and transformations between different underlying basis states
is therefore important. The operators are transformed using Eqs.(3.36,3.37) and the
usual transformation rule for connecting the matrix-elements between single-particle
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basis sets

K̂ =
∑
m

〈km|k̂|km〉â†mâm =
∑
mµν

〈αµ|km〉〈km|k̂|km〉〈km|βν〉â†µâν =
∑
µν

〈αµ|k̂|βν〉â†µâν .

(3.44)

Similarly a sum of two-body operators can be expressed as

V̂ =
1

2

∑
mn

vmnâ
†
mâ
†
nâmân =

1

2

∑
mn

〈vmvn|v̂|vmvn〉â†mâ†nâmân, (3.45)

where vmn are the matrix-elements with respect to an underlying basis that is diagonal
with respect to the two-body state |vnvm〉. One can now transform to an arbitrary
basis in exactly the same way as for the one-body operator

V̂ =
1

2

∑
mn

∑
µµ′νν′

〈vµvµ′|vnvm〉〈vmvn|v̂|vmvn〉〈vnvm|vνvν′〉â†µâ†µ′ âν âν′ (3.46)

=
1

2

∑
µµ′νν′

〈vµvµ′ |v̂|vνvν′〉â†µâ†µ′ âν âν′ . (3.47)

3.3.2 Second quantized Hamiltonians

All necessary ingredients for expressing the Hamiltonian operators of Eqs.(3.22,3.23)
in their second quantized form have now been introduced. Using Eq.(3.44) the kinetic
energy K̂ =

∑
i ki and the potential energy operators Ûext =

∑
i V̂ext,i can be writ-

ten with respect to the position basis (remembering that sums are now replaced by
integrals) as

K̂ + Ûext =

∫
dx1dx2ψ̂(x)†[〈x1|k̂|x2〉+ 〈x1|V̂ext|x2〉]ψ̂(x) (3.48)

=

∫
dx1dx2ψ̂(x1)

†
[
− ~2

2m

∂2

∂x21
δ(x1 − x2) + Vext(x1)δ(x1 − x2)

]
ψ̂(x2) (3.49)

=

∫
dxψ̂(x)†

[
− ~2

2m

∂2

∂x2
+ Vext(x)

]
ψ̂(x) (3.50)

where I have inserted the position-basis matrix elements of the single-particle Hamil-
tonian. The most general case of the interaction between two different components
A and B is considered next, as the interaction between the same components can be
obtained from this result by assuming that the two components are the same. For
the two-component case the field operators of the two components are denoted by the
subscripts A and B, i.e. ψ̂A(x), ψ̂B(x). Writing down the two-body operator corre-
sponding to 〈x1x2|v̂int|x3x4〉 = V (x1 − x2)δ(x2 − x3)δ(x1 − x4) (a more general case of
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the zero-range delta-function of interest) in the position basis results in

V̂int =
1

2

∫
dx1dx2 dx3dx4ψ̂

†
A(x1)ψ̂

†
B(x2)V (x1 − x2)δ(x2 − x3)δ(x1 − x4)ψ̂A(x3)ψ̂B(x4)

(3.51)

=
1

2

∫
dx1dx2ψ̂

†
A(x1)ψ̂B(x2)

†V (x1 − x2)ψ̂A(x2)ψ̂B(x1). (3.52)

The full second quantized Hamiltonian corresponding to the one-component system
Eq.(3.22) is therefore given by

Ĥ1C =

∫
dxψ̂†(x)

(
− ~2

2m

∂2

∂x2
+ Vext(x, t)

)
ψ̂(x) +

1

2
g

∫
dxψ̂†(x)ψ̂(x)ψ̂†(x)ψ̂(x)

(3.53)

while the second quantized Hamiltonian corresponding to the two-component system
Eq.(3.23) is given by

Ĥ2C = ĤA + ĤB + Ĥint, (3.54)

with

ĤA =

∫
dxψ̂†A(x)

(
− ~2

2mA

∂2

∂x2
+ Vext(x, t)

)
ψ̂A(x) +

1

2
gA

∫
dxψ̂†A(x)ψ̂A(x)ψ̂†A(x)ψ̂A(x)

(3.55)

ĤB =

∫
dxψ̂†B(x)

(
− ~2

2mB

∂2

∂x2
+ Vext(x, t)

)
ψ̂B(x) +

1

2
gB

∫
dxψ̂†B(x)ψ̂B(x)ψ̂†B(x)ψ̂B(x)

(3.56)

Ĥint =
1

2
gAB

∫
dxψ̂†A(x)ψ̂B(x)†ψ̂A(x)ψ̂B(x) (3.57)

3.4 Exact Diagonalization

In this section I will describe the theoretical background of the Exact Diagonaliza-
tion (ED) scheme, as well as how to obtain the expectation values of relevant observ-
ables.

3.4.1 Mode Expansion and resulting Hamiltonians

The general idea utilized by the ED scheme is that the generic field operator Ψ̂(x, t)
can be expressed exactly as a linear combination of basis states as in Eq.(3.41) using
any complete basis for the corresponding Hilbert space. This allows for the problem
to be expressed in terms of first-quantized eigenfunctions for the Hilbert space and
annihilation and creation operators for the resulting Fock space. A natural choice of
basis are the energy eigenfunctions ψn(x) of the non-interacting single-particle (SP)
Hamiltonian, corresponding to the many-body Hamiltonian of interest. In this case
the eventual second-quantized Hamiltonian takes on a particularly simple form. The
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expansion for the one-component case is given by

Ψ̂(x, t) =
M∑
n=1

ânψn(x), (3.58)

where the expansion coefficients â†n, ân now correspond to the creation and annihilation
operators for particles in the eigenstate ψn(x) and M is the number of energy modes
(energy eigenstates) in the expansion. The expansion is only exact when the number of
modes is infinite, but for the ground and lower-lying states of a given system the sum
generally converges for a finite number of modes. A low temperature quantum gas will
generally be filled up from the lowest energy levels and so we can improve the accuracy
of the results simply by including more modes in the order determined by their energies
(note that filling from the lowest Fock-state energies rather than the lowest SP mode
energies is actually more logical [128], see chapter 6 for a brief discussion). The numer-
ical feasibility of ED relies on the fact that a limited number of modes can describe the
gas accurately. A numerical investigation of convergence as the number of modes is
increased is therefore necessary to justify the use of the method for any particular prob-
lem. The two-component system is very similar to the one-component system, one just
expands the many-body field operators for both components in the basis corresponding
to their respective non-interacting single-particle Hamiltonians HA,B

sp

Ψ̂A(x, t) =

MA∑
n=1

ânψ
A
n (x), (3.59)

Ψ̂B(x, t) =

MB∑
n=1

b̂nψ
B
n (x). (3.60)

Here â†n, ân and b̂†n, b̂n are the creation and annihilation operators for particles A and B
in the energy state ψA,Bn whileMA andMB are the number of energy modes in the sum.
By inserting Eq.(3.58) into Eq.(3.53), one gets the following form of the Hamiltonian
for the one-component case

H1C =
∑
k,l

â†kâlHkl +
1

2

∑
klmn

â†kâ
†
l âmânVklmn, (3.61)

where

Hkl =

∫
dxφ∗k(x)Hspφl(x), (3.62)

Vklmn = g

∫
dxφ∗k(x)φ∗l (x)φm(x)φn(x). (3.63)
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The two-component Hamiltonian is obtained in exactly the same way, by inserting the
two expansions into Eq.(3.54).

HA =
∑
k,l

â†kâlH
A
kl +

1

2

∑
klmn

â†kâ
†
l âmânV

A
klmn, (3.64)

HB =
∑
k,l

b̂†kb̂lH
B
kl +

1

2

∑
klmn

b̂†kb̂
†
l b̂mb̂nV

B
klmn, (3.65)

Hint =
∑
klmn

â†kb̂
†
l b̂mânV

AB
klmn, (3.66)

where

HA,B
kl =

∫
dxφ∗A,Bk (x)Hspφl(x), (3.67)

V A,B
klmn = gA,B

∫
dxφ∗A,Bk (x)φ∗A,Bl (x)φA,Bm (x)φA,Bn (x), (3.68)

V AB
klmn = gAB

∫
dxφ∗Ak (x)φ∗Bl (x)φAm(x)φBn (x). (3.69)

For the one-component case the Fock space consists of all possible states with the num-
ber of modes M and total number of particles N . The Hilbert space has a dimension
of

D1C =
(N +M − 1)!

N !(M − 1)!
. (3.70)

The Fock-space of the two-component case is given as the Kronecker product of two
sub-spaces corresponding to the one-component Fock-space with all possible statesMA

(MB) and a total number of particles NA (NB). The total dimension is then given by

D2C =
(NA +MA − 1)!

NA!(MA − 1)!

(NB +MB − 1)!

NB!(MB − 1)!
. (3.71)

A more detailed discussion of the Fock-bases is contained in the next section when I
consider how to numerically represent them. To implement the numerical diagonal-
ization one finds the matrix representation of the Hamiltonians with respect to their
respective Fock-basis, i.e.

Hµν
1C = 〈Fµ|H1C |Fν〉 (3.72)

and diagonalizes the resulting matrix. This leads to obtaining eigenstates |ψn〉 of the
Hamiltonian with respect to the Fock basis

|ψn〉 =
D∑
µ

〈Fµ|ψn〉|Fµ〉 =
D∑
µ

cnµ|Fµ〉. (3.73)

3.4.2 Building the Fock-space Hamiltonian

In this section I will briefly outline how to implement the ED algorithm in practice. In
order to implement the ED scheme, a numerical representation of the relevant Fock-
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basis corresponding to N particles and M modes is needed. These can be represented
by vectors with each entry corresponding to a specific mode and the value of each
entry corresponding to the number of particles in that mode. So for example for
N = M = 3 one possible vector is (2, 1, 0). The general Fock-vector for an arbitrary
state is then given by Fµ = (nµ1 , ..., n

µ
M) with the number of particles

∑
k n

µ
k = N .

Generating these vectors efficiently is a standard problem and algorithms can be found
in the literature [82]. Essentially one can define a total ordering of these states which
allows for generating all the basis vectors using a simple algorithm. Additionally a
unique number Tµ can be calculated based on each Fock-vector utilizing the formula
Tµ =

∑M
k=1

√
100 · k + 3nµk . This is important for the efficient evaluation of matrix

elements, both for the Hamiltonian and other operators. The naive way to build the
Hamiltonian is by explicitly calculating all the matrix elements using two For-loops
over the dimension of the Hilbert space. The vast majority of the matrix-elements are
zero, however, and this method is going to be very inefficient as the dimensionality
of the Hilbert space grows. A smarter way of calculating the matrix elements is to
consider the action of the Hamiltonian operator on each Fock-state and exploit the
orthogonality of the Fock states. Due to the orthogonality the inner product between
the resulting state after the Hamiltonian has been applied and an arbitrary Fock-state
will only give non-zero results when they coincide. Each Fock-state can be given a
unique tag as described above which allows for an efficient search algorithm to locate
the relevant Fock-states that the Hamiltonian connects a given Fock-state to. This
means that the matrix elements of the Hamltonian can be found by doing a single
For-loop over the dimension of the Hilbert-space. Consider the Hamiltonian given by
Eq.(3.61). This Hamiltonian has the one-body term given by∑

k,l

â†kâlHkl|n1, ..., nM〉. (3.74)

In general this will only give a non-zero value whenever nl 6= 0. Numerically one can
therefore simply check the indices l for which nl 6= 0 and the sum is than evaluated
numerically by looping over those indices and a loop over the full set of k (this runs to
M). In this case one obtains∑

k,l|nl 6=0

√
nk + 1

√
nlHkl|n1, ...nl − 1, ..., nk + 1, ...nM〉. (3.75)

It is important to remember that k and l can coincide in this sum. The square roots
can be obtained by simply taking the square roots of the k’th or l’th values of the basis
vector, but if k and l coincide one has to use the updated basis vector when extracting
the k’th value. It therefore makes sense to define a temporary basis vector that can be
manipulated as this allows general code, which is particularly useful when considering
the two-body interaction terms. The tag of the new basis-vector after the application
of each term is easily calculated and the values can be paired with the corresponding
matrix elements Hµν . Using the eigenbasis of the single-particle part simplifies the
problem considerably, as these diagonalize the single-particle Hamiltonian and Hkl 6= 0
only when k = l. A single loop over the number of modes M is therefore sufficient.
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For the interaction-part (two-body term) things are slightly more complicated, but one
proceeds along the same lines∑
klmn

â†kâ
†
l âmânVklmn|n1, ..., nM〉 =∑

klmn

√
nk + 1

√
nl + 1

√
nm
√
nnVklmn|n1, ..., nn − 1, ..., nm − 1, ..., nl + 1, ..., nl + 1, ..., nM〉.

(3.76)

Whenever m 6= n this gives non-zero value only if nn, nm 6= 0. For m = n on the
other hand non-zero values are only obtained when nm > 1. In practice I find all
the operator combinations fulfilling these conditions and then generate a list of indices
that contain all possible unique combinations of the other operators, while keeping the
relevant operators constant. A For-loop over this list evaluating the matrix elements
using a temporary basis as described above is then implemented. Duplicate elements
(k and l, as well as m and n are interchangeable) are accounted for in this loop.

Building the two-component matrix is essentially the same. A Fock-basis is defined for
each component and the full basis is then given by their Kronecker product. Unique
numbers can still be calculated for each basis vector in the final basis. The Hamiltonian
matrix elements can then be evaluated similarly to the one-component case, keeping
track of which operators affect which component.

3.4.3 Some important observables within the ED approach

I have now shown how to obtain eigenstates of the second-quantized Hamiltonian in
Fock-space. For quenches time-evolution can be straightforwardly implemented by
diagonalizing the initial and final Hamiltonian in the same Fock-space and utilizing
the formalism laid out in chapter 1. In this section I will take a closer look at the
general structure of the eigenstates and how to obtain the expectation values of relevant
observables utilizing these states. A generic quantum state can be expressed in terms
of the eigenstates of the final Hamiltonian which can in turn be expressed in the Fock
basis. An arbitrary state |ψ〉 is therefore given (utilizing Eq.(3.73)) by

|ψ〉 =
D∑
n

〈ψ|ψN〉|ψn〉 =
D∑
n

D∑
µ

bnc
n
µ|Fµ〉 (3.77)

In a quench the coefficients bn would be time-dependent, but in order to ease the
notation we just consider a generic, time-independent state. The time-evolution at
any time t can be found using the exact same formulas. A fundamental quantity of
importance are many-body correlations and the simplest such correlation is the one-
body density matrix. I already discussed this quantity for the TG gas. In the language
of second quantization the definition of the one-body density matrix is ρ̂1(x, y) =
ψ̂†(x)ψ̂(y) that is it is the field-field correlation at points x, y. The expectation value
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of the one-body density matrix with respect to a given quantum state is given by

〈ψ|ρ̂1(x, y)|ψ〉 =
∑
nm

b∗nbm〈ψn|ρ̂1(x, y)|ψm〉 (3.78)

=
D∑
n,m

b∗nbm

D∑
µ,ν

M∑
k,l

φ∗k(x)φl(y)(cnµ)∗cmν 〈Fµ|â†kâl|Fν〉. (3.79)

This means that one needs to consider the Fock-space matrix elements 〈Fµ|â†nâm|Fν〉
of which a large number is zero. In fact, rather than using this sum directly it is more
efficient to apply the density-matrix operator to the ket first and utilizing the same
tricks as when building the Hamiltonian one only needs to evaluate its overlap for
non-zero elements in the sum. Similarly one can define the two-body density-density
correlations at points x,y as ρ̂2(x, y) = ψ̂†(x)ψ̂†(y)ψ̂(x)ψ̂(y), for which the expectation
value is given by

〈ψ|ρ̂2(x, y)|ψ〉 =
∑
nm

b∗nbm〈ψn|ρ̂2(x, y)|ψm〉 (3.80)

=
∑
nm

b∗nbm

D∑
µ,ν

M∑
k′,l′,k,l

φ∗k′(x)φ∗l′(y)φk(x)φl(x)(cnµ)∗cmν 〈Fµ|â†k′ â†l′ âkâl|Fν〉.

(3.81)

The evaluation of these quantities can take a lot of computational time and as they
must be computed separately at every specific instant in time. It is one of the main
bottlenecks time-wise in the evaluation of quench dynamics. The single particle density
and the momentum distribution can be calculated much faster as the former simply
corresponds to Eq.(3.79) with x = y, while the latter has the exact same structure,
but with the momentum-space wavefunctions. The expectation value of any quantity
which can be described in terms of the creation and annihilation operators are found
the same way in the one- and two-component systems, one just needs to keep track
of which operators corresponds to which type of particles. An alternative way to deal
with the two-component system is by considering the reduced density matrices ρA
and ρB rather than the full states |ψ〉. In this case one has to compute the matrix
representation for operators of interest within the reduced fock space corresponding
to A or B after which the trace of a simple matrix multiplication gives the desired
expectation value. This is not a particular simplification, however, as the computation
of the relevant matrix operator requires one to evaluate the same matrix elements
considered above, such as 〈Fµ|â†nâ†mâkâl|Fν〉. In the case of the two-component system
there are some additional quantities that are of interest, however. The reduced density
matrices of the subsystems are themselves interesting and contain information about
the mixedness of the subsystems for example.
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In this second part of the thesis, I will present the results of various projects I have
conducted throughout my PhD. First I will discuss strongly-interacting bosons in a
lattice in chapter 4. This is solved using the Bose-Fermi mapping theorem introduced
in chapter 3. In chapter 5 I will discuss information scrambling after a quench, utilizing
the analytic solutions for two interacting particles in a trap introduced in chapter
3. In chapter 6 I will introduce an improved version of the ED scheme discussed in
chapter 3, utilizing the effective Hamiltonian approach along with some early results
of a project utilizing this method. Finally, chapter 7. contains an exposition of my
work on nonlinear optomechanics and is an example of dynamics in an open quantum
system.
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Chapter 4

"Static and dynamic phases of a
Tonks-Girardeau gas in an optical
lattice" (originally published as [1])

4.1 Introduction

This project investigates the phases of strongly-interacting bosons in a continuum
lattice and the non-equilibrium dynamics induced by a sudden rotation of the lattice.
Within the framework of this thesis this represents an investigation of quench dynamics
in a many-body system for which exact solutions exist and therefore complements the
few-boy studies in the rest of the thesis. Particularly it showcases how quench dynamics
can be used to probe many-body phases and how such many-body phases can result in
interesting quench dynamics which can help further our understanding of the physics
involved.

The motivation for studying this particular model is two-fold. It displays interesting
many-body phases with a quantum phase transition [129] and it can be solved exactly
utilizing the Bose-Fermi mapping theorem. Some investigations related to this model
include [25, 130–133]. In the limit of strong interactions (the TG-gas) two distinct
phases are known to exist which appear as a function of the ratio of number of bosons
N to lattice sites M , F = N

M
.

For incommensurate fillings (F 6= N , with N a positive integer) in shallow lattices the
system has superfluid-like characteristics with long-range coherence and good conduc-
tivity due to the delocalisation of the wavefunction over many lattice sites. However
for commensurate filling (F = N ), the bosons become localised at individual lattice
sites and the total system becomes pinned to the lattice. This pinned phase has no
coherence, behaves as an insulator and is the hard-core continuum analogue of the
Mott-insulator phase in the Bose-Hubbard model (BHM). In the continuum TG model
the pinning happens at infinitesimally small lattice depths for F = 1. It was first
theoretically proposed by Büchler et al. [129] and has been experimentally observed in
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cold atom experiments [134, 135].

4.2 Publication

Mathias Mikkelsen, Thomás Fogarty and Thomas Busch, Static and dynamic phases of
a Tonks–Girardeau gas in an optical lattice, New Journal of Physics, 20 113011, 2018
[1].

4.3 Conclusion

In [1] I investigated the full phase-diagram as a function of the lattice depth and the fill-
ing ratio. Some attempts at investigating what happens for intermediate lattice depths
had been undertaken previously, particularly it was suggested that intermediate lat-
tice depths could be utilized to study the mechanism of defect-induced superfluidity
[133]. In my work I did a systematic description in terms of the coherence and mo-
mentum distribution of the gas which helped elucidate the phase diagram. There are
no phase-transitions outside the commensurate-incommensurate transition in shallow
lattices, but as the lattice depth is increased a continuous crossover between the su-
perfluid and a supersolid-like phase is observed for incommensurate particle numbers.
Similarly, if the lattice depth is kept at a constant intermediate lattice depth, a contin-
uous crossover from this supersolid-like phase for incommensurate particles numbers to
the pinned phase for commensurate particle numbers is observed as a function of the
filling ratio. The phases are well-characterized by their momentum distributions and
auto-correlation functions. These quantities reveal the interplay between the external
lattice breaking continuous spatial symmetry, imposing discrete spatial symmetry and
the long-range order still present for incommensurate particle numbers.

The dynamics of Tonks-Girardeau gases, such as equilibration properties have seen ex-
tensive interest as well [25, 96, 131, 136–138] as the dynamical problem can be solved
utilizing the Bose-Fermi mapping theorem as well. In the second part of our inves-
tigation I probed the phase-diagram by a sudden rotation. An optical lattice that is
suddenly set in motion can be re-cast as a quench in terms of the solutions in the
co-moving frame, similar to the solution for a delta-barrier suddenly set in motion,
outlined in [45–47]. The dynamical properties of the coherence and momentum distri-
bution contain information about the many-body phases, while the average momentum
succinctly captures the amount of transport in the system. In the superfluid phase the
particles don’t react to the lattice moving through them, as they simply tunnel through
the barriers. In the pinned phase, however, the transport becomes maximal (equal to
the movement speed of the lattice) as the particles are pinned to the lattice sites and
moved along with it. For deeper lattices maximal transport is also obtained in the
incommensurate phase despite the existence of superfluid defects. However, an inves-
tigation of the momentum distribution reveals the microscopic origin of this transport
to be different to that of the insulating phase.

The most interesting dynamical behaviour happens as the lattice is driven in the critical
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region of the commensurate-incommensurate transition. Here the critical fluctuations
manifest dynamically in the gas oscillating between a pinned and superfluid phase and
hence between all particles moving together and standing still. This is very similar to
the stick-slip behaviour observed in the classical Frenkel-Kontorova model of friction
when driven close to commensurability [139].

Since the publication of this paper, some related works have come out. My co-authors
Thomás Fogarty and Thomas Busch recently investigated a quantum heat engine uti-
lizing cycles between the superfluid and pinned phase [140]. The existence of an energy
gap between the phases and many-body cooperative effects leads to improved perfor-
mance compared to a similar single-particle cycle. The characterization of many-body
phases was an integral part of our project and quite recently a new simple algorithm for
calculating the spectral function of a TG gas was developed and used to investigate the
phases of a TG-gas in a lattice [141] as well. We are also considering some extensions
of the ideas presented in the paper, for example a dynamic study of a disordered lattice
which can be realized in the arbitrary Kronig-Penney model [142].



44 T-G gas in optical lattice



Chapter 5

Connecting information scrambling
and work statistics for a harmonic
trap

The response of quantum systems to sudden quenches in the Hamiltonian has been
a topic of intense research interest in recent years as explained in chapter 1. In that
chapter I introduced the diagonal ensemble (DE) [10, 34] and the closely related work
probability distribution [33, 35–39] as a way to characterize the properties of a quench.
These quantities essentially characterize the delocalisation of the initial state in the
Hilbert space defined by the eigenstates of the final Hamiltonian and a natural extension
of this characterization is to further investigate Hilbert-space delocalisation dynamics.
This is often referred to as scrambling in the literature [43, 44] - the idea being that over
time the initial state can no longer be reconstructed from local measurements.

One particular measure of scrambling - the squared commutator [43] and the closely
related out-of-time-order correlation functions (OTOCs) have recently become the fo-
cus of intense research as a measure of information scrambling in quantum systems
after it was proposed that they could be utilized as measures of quantum chaos [143–
145]. Since this initial proposal, the squared commutator has also been shown to be a
powerful tool for studying information scrambling in non-chaotic systems, for example
near quantum critical points [146–148], in the presence of many-body entanglement
and coherence [149, 150], and in quantum thermodynamics [151, 152].

In this chapter I will show that the squared commutator is a useful measure for char-
acterizing different types of quantum quenches utilizing the paradigmatic cold atomic
model of two interacting particles in a 1D harmonic trap. The focus of research into
OTOCs so far has been limited to single-particle continuum models that are known
to be chaotic in the semi-classical limit such as the quantum kicked rotor [144] and
many-body lattice models in which interactions are expected to introduce information
scrambling [43, 149] so this work is also a first step in considering such quantities in
interacting continuum models. Finding a connection between information scrambling
and other measures of irreversibility is important for connecting the abstract notion
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of Hilbert space scrambling with physical measureables. While progress towards such
an understanding has recently been made in chaotic systems [151, 153–155], the main
result of this chapter is to connect the scrambling and work statistics for quenches
in a non-chaotic system. Specifically I will connect the squared commutator with the
diagonal ensemble and the work statistics describing the quench. At the same time
I will elucidate the additional insights gained from the scrambling as opposed to the
work statistics alone. Additionally measuring the OTOCs in a continuum system is
exceedingly difficult as it requires a reversal of the time-evolution and connecting with
the experimentally accessible work probability distribution is therefore important for
practical reasons as well.

5.1 Basic definitions and characterizing the quantum
quench

The most important and basic characterization of the quench is determined by the
overlap of the initial state |ψI〉 with the eigenstates of the final Hamiltonian |ψFn 〉,
cn = 〈ψFn |ψI〉. It is these overlap coefficients (in conjunction with the final Hamiltonian)
that determine dynamical behavior as well as static quantities. Derived quantities such
as the work probability distribution and its characteristic function were defined and
discussed in chapter 1. As a reminder, these are defined in terms of the diagonal
ensemble (DE) probabilities |cn|2 as

P (W ) =
∑
n

|cn|2δ(W − (EF
n − EI)), (5.1)

and

χ(t) =

∫
dWeitWP (W ) = 〈ψI |eiĤF te−iĤI t|ψI〉 =

∑
n

|cn|2ei(E
F
n−EI)t, (5.2)

where W is the work, EI the energy of the initial state and EF
n the energy of the

n’th state of the final Hamiltonian. As explained in chapter 1, the moments of this
distribution can be used to characterize the irreversibility of the quench. However, in
order to fully understand quench dynamics, one generally looks at some time-dependent
dynamical quantities to understand the physical significance of the distribution. One
measure of dynamical irreversibility is the survival probability L(t) = |χ(t)|2, which
measures how much the quenched quantum state differs from the initial state over
time. However, two quantum states being orthogonal doesn’t necessarily tell us that
they are significantly different since observables for the two states can be comparable.
In addition, for finite systems the survival probability will simply oscillate around an
average value and its long term behavior generally fails to characterize the irreversible
dynamics in a meaningful way. The average value of the survival probability can be
calculated as [156]

L̄ = 〈L(t)〉 =
∑
n

|cn|4, (5.3)
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which is also known as the inverse participation ratio. This quantity will be smaller if
more states participate in the dynamics and it is therefore of interest for characteriz-
ing the delocalization in Hilbert space, but it contains no information about how the
dynamics actually evolve in time. Additionally, both it and the survival probability
can be almost identical for very different work probability distributions as the inverse
participation ratio simply measures how far the system is from being described by one
quantum state.

In order to overcome the drawbacks of these traditional measures I therefore propose
to investigate an operator-related quantity to understand the irreversibility and delo-
calisation dynamics of the quench process, namely the expectation value of the squared
commutator of two operators Â and B̂

CAB(t) = 〈[Â(t), B̂]2〉. (5.4)

As mentioned in the beginning of this chapter, this quantity has been suggested as a
good measure of information scrambling in quantum systems. It probes the delocal-
isation of the Heisenberg operator Â(t) utilizing the operator B̂. The larger CAB(t),
the more the information about the initial value of Â is spread in Hilbert-space and
therefore the less accessible it is by local measurements. This process is commonly re-
ferred to as operator scrambling, and we expect that a more irreversible quench should
introduce more operator scrambling. The squared commutator can be re-written in
terms of time-dependent correlation functions as

CAB(t) = DAB(t) + IAB(t)− 2Re[FAB(t)] (5.5)

with

DAB(t) = 〈B̂†Â†(t)Â(t)B̂〉 (5.6)

IAB(t) = 〈Â†(t)B̂†B̂Â(t)〉 (5.7)

FAB(t) = 〈Â†(t)B̂†Â(t)B̂〉. (5.8)

Most work so far has focused on the 4-point out-of-time-ordered correlation function
(4-OTOC) FAB(t) as DAB(t) is time-ordered and IAB(t) = 〈Â†B̂†(−t)B̂(−t)Â〉 is anti-
time-ordered for an eigenstate of the Hamiltonian. However, as was pointed out in
[153] for initial non-eigenstates, a prominent physical example of which is quenched
systems, IAB(t) is also an out-of-time-ordered correlation function, namely a 3-point
out-of-time-ordered correlation function (3-OTOC). It was also shown that under cer-
tain circumstances IAB(t) is the most important contribution to the squared commu-
tator. This is of interest as IAB(t) can readily be interpreted as a time-reversal test,
i.e. it corresponds to taking the expectation value of B̂†B̂ with the quantum-state
eiĤtÂe−iĤt|ψ〉 which measures how much the time-reversal symmetry is broken by the
application of the operator Â. FAB(t) also involves a time-reversal, but it is more
complicated and does not have the same physical interpretation in terms of a simple
time-reversal protocol. For a generic initial state |ψI〉 the expectation values can be
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explicitly written in terms of the overlap coefficients cn = 〈ψFn |ψI〉 as

DAB(t) =
∑
j,k,n,m

c∗jcke
−i(Emn)tB†jn〈Â†Â〉nmBmk, (5.9)

IAB(t) =
∑
j,k,n,m

c∗jcke
−i(Ekj+Enm)tA†jn〈B̂†B̂〉nmAmk, (5.10)

FAB(t) =
∑
j,k,n,m

c∗jbke
−i(Ekj+Enm)tA†jnB

†
nmAmk, (5.11)

where bj = 〈ψj|B̂|ψI〉, Amk = 〈ψm|Â|ψk〉, 〈Â†Â〉nm = 〈ψn|Â†Â|ψm〉, and the other
operator matrix elements are defined similarly. The energy differences are given by
Emn = Em − En.

5.2 Model,coordinate frames and relevant OTOCs

To explore the scrambling dynamics and work statistics of an experimentally realizable
system I consider a system of N interacting bosons confined to a one-dimensional
harmonic trap with frequency ω

Ĥ =
N∑
j=1

[
−1

2

∂2

∂x2j
+

1

2
γ2x2j

]
+
∑
k>j

g δ(xk − xj) . (5.12)

Here the Hamiltonian is rescaled in natural harmonic units with the length scale given
by aω =

√
~
mω

and the energy scale by ~ω. The strength of the short range interactions

are parameterized by g which here has units of
√

~2ω
m

and the trap width can be changed
using the nondimensional parameter γ.

This problem is separable into a center-of-mass-coordinate
∑

n xn/N and a set of rel-
ative Jacobi-coordinates [157]. This basic property of the harmonic oscillator means
that the squared commutator associated with the center-of-mass (CM) position and mo-
mentum operators are unaffected by the interaction, as the center-of-mass coordinate
Hamiltonian commutes with the Jacobi coordinate Hamiltonians. The time-evolution
is therefore entirely independent and the center-of-mass correlation functions reduce
to the single-particle correlation functions multiplied by a factor N2. The squared
commutator for the stationary states of a single particle in a harmonic trap was cal-
culated in [158] and I also consider it in some more detail (including for quenches) in
section 5.5 and 5.6.1. Therefore, in order to see the effect of interactions, operators
that involve the Jacobi coordinates are required. While finding solutions to this model
becomes computationally intractable for large systems, few-body systems are readily
solvable while retaining the physics stemming from the finite contact interactions [157].
In fact, for the minimal interacting system of N = 2 particles exact solutions can be
found [94] as outlined in chapter 3.2. I therefore focus on the two particle problem
due to its ubiquity in few-body physics and for the insights it offers into the quench
dynamics of larger systems. This system can be separated in terms of the CM coordi-



5.2 Model,coordinate frames and relevant OTOCs 49

nate X = x1+x2√
2

and the relative coordinate x = x2−x1√
2

with corresponding momentum
operators P = p1+p2√

2
and p = p2−p1√

2
. As per the above argument one needs to focus on

the relative coordinate Hamiltonian to see the effect of the interaction.

In some cases one may only have access to the laboratory frame coordinates, and
as this is a two-body system focusing exclusively on the relative coordinate could
fail to capture the full problem. Let me therefore consider the relation between the
correlation functions for the laboratory frame coordinate operators Ai = xi, pi , Bi =
xi, pi with i, j = 1, 2 and the relative/CM coordinate operators AR = x, p BR = x, p
and ACM = X,P , BCM = X,P . To outline how the general results are obtained, I
consider the form of one specific correlation function, namely Ix1,x1(t) for an initial state
with an even parity relative coordinate state and odd or even parity CM coordinate
state (I use an even initial CM state in the example, but the derivation is the same
for an odd one), corresponding to an eigenstate of the interacting bosonic system.
This state can be described in terms of the eigenstates of the final Hamiltonian as
|ψCM
I 〉|ψREL

I 〉 =
∑

j,n d2nc2j|ψ2n〉|ψg2j〉 where the overlap coefficients cj = 〈ψgj |ψREL〉 and
dn = 〈ψn|ψCM

I 〉 are zero for odd parity eigenstates. Here |ψn〉 are the eigenstates of a
non-interacting harmonic oscillator, while |ψgj 〉 are the eigenstates given by Eq.(3.20)
in chapter 3.2. Ix1,x1(t) is then given by

Ix1,x1(t) =
∑

j1,n1,j2,n2

1

4
c2j1d2n1c2j2d2n2〈ψg2j1|〈ψ2n1|[x̂(t)+X̂(t)][x̂+X̂]2[x̂(t)+X̂(t)]|ψ2n2〉|ψg2j2〉

(5.13)
Initially this looks quite complicated as one has to evaluate 16 terms. However, it can
be simplified considerably by noticing that any term which involves an odd number
of either relative or CM coordinate operators will be zero (due to the structure of the
canonical operators, see also Eq.(5.20) in section 5.3). For example, for the relative
coordinate, this combination will result in an odd parity state, which will have zero
overlap with all the even parity states contained in the sum. Utilizing this knowledge
the correlation functions can be calculated as (where K = I,D)

KAjBk
(t) =

1

4
(KARBR(t) +KACMBCM (t) + JBCM (0)JBR(t) + JAR(0)JACM (t) (5.14)

± 2[G2
ARBR(t)G1

ACMBCM (t) +G1
ARBR(t)G2

ACMBCM (t)]), (5.15)

FAjBk
(t) =

1

4
(FARBR(t) + FACMBCM (t) + JBCM (0)JBR(t) + JAR(0)JACM (t) (5.16)

± 2[G1
ARBR(t)G2

ACMBCM (t) +G2
ARBR(t)G1

ACMBCM (t) + 2G1
ARBR(t)G1

ACMBCM (t)]),
(5.17)

where the second term is added for j = k and subtracted for j 6= k. The functions in
the above equations are given by

G1
AB = 〈A(t)B〉 , G2

AB = 〈AB(t)〉 , JA(t) = 〈A2(t)〉 (5.18)

where the expectation values are with respect to the relative wavefunction |ψREL
I 〉 =∑

j c2j|ψg2j+1〉 for relative coordinate operators and the CM wavefunction |ψCM
I 〉 =
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∑
n d2n+1|ψ2n+1〉 for CM coordinate operators. The full squared commutator of the

laboratory-frame coordinates is then given by

CAj ,Bj
=

1

4
[CARBR(t) + CACMBCM (t)±G1

ARBR(t)G1
ACMBCM (t)]. (5.19)

The squared commutator of these operators are therefore given as the squared com-
mutator of the relative coordinate plus the center-of-mass coordinate plus the product
of two two-point correlation functions in the relative and CM coordinate respectively.
As already argued, the CM coordinate does not see the interaction and the important
contribution which determines the behaviour of the laboratory frame squared commu-
tator is therefore the relative frame squared commutator, which will be the main focus
of this chapter.

5.3 Analytic formulas for the correlation functions in
the relative frame

The solution of the relative-coordinate frame Hamiltonian was introduced in chapter
3.2. Using the representation of the wavefunction given by Eq.(3.20) and their associ-
ated energies Eg

2j it is possible to calculate the constituent correlation functions that
make up the squared commutator for position and momentum explicitly as it is known
how these operators act on the harmonic-oscillator-states, i.e.

Ô|ψn〉 =
βO√

2
[
√
n+ 1|ψn+1〉+ β̃O

√
n|ψn−1〉] (5.20)

which reduces to the position operator for βO = 1, β̃O = 1 or the momentum operator
for βO = i, β̃O = −1, using units scaled in terms of he oscillator length scale aω. Note
that ω here refers to the trap frequency of the final Hamiltonian. One can now calculate
the correlation functions by sequentially applying operators according to Eq.(5.6-5.8)
and expressing the new state in terms of eigenstates of the final Hamiltonian in order
to perform the time-evolution. Alternatively one can calculate the relevant matrix-
elements in Eq.(5.9)-Eq.(5.11) and evaluate the sums. For any even parity initial state
the correlation functions in an interacting system for momentum and position operators
can be expressed as the sums

DAB(t) =
∑
j,k

c2jc2kK
BA
jk + cos(2t)

∑
j,k

c2jc2kJ
BA
jk (5.21)
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IAB(t) =
∑
j

|c2j|2[KAB
jj + JABjj cos(2t)]

+
∑
j 6=k

c2jc2k

(
KAB
jk cos[(Eg

2j − Eg
2k)t]

+ JABjk cos[(Eg
2j − Eg

2k + 2)t]

)
(5.22)

FAB(t) =
∑

j,k,n,m,l

c2jc2ke
−i(Eg

2n−E
g
2k+2l−2m)tαBm,nα

A
m,kα

A
l,nα

B
l,j (5.23)

where

KAB
jk =

∞∑
m=0

|βA|2|βB|2β̃B
2

αAm,jα
A
m,k(4m+ 3) (5.24)

JABjk =
∞∑
n=1

|βA|2|βB|2
√

2n+ 1
√

2nαAn,kα
A
n−1,j. (5.25)

The coefficients c2j and αOm,j are given by

c2j = 〈ψg2j|ΨI〉 , (5.26)

αOm,j = 〈ψ2m+1|Ô|ψg2j〉/βO

=
√

2m+ 1ψ2m(0)
Ωg

2j√
2

(
1

E2m − Eg
2j

− β̃O
E2m+2 − Eg

2j

)
, (5.27)

where the energies E2m are for the non-interacting harmonic oscillator and Eg
2j are the

energies for finite interactions g, while Ωg
2j is the normalization factor for the wave-

function defined in Eq.(3.21) in chapter 3.2. The structure of the position/momentum
operator means only odd parity non-interacting states remain when applied to the sum
of even parity non-interacting states given by Eq.(3.20), which is why these coefficients
are only non-zero for |ψ2m+1〉. These equations can give us an understanding of the
behavior of the OTOCs. IAB(t) and DAB(t) are reducible to a relatively simple sum
over 3 indices, while FAB(t) requires the evaluation of a sum over 5 indices. It is
therefore harder to gain analytic insight into the dynamics of FAB(t), but it can still
be calculated numerically.

In addition to these dynamical formulas, a simple expression for the infinite-time av-
erage of the squared commutator can be obtained. While it is easy to obtain this from
the dynamical expressions above, it is illustrative to consider the generic infinite-time
average as this allows us to identify which properties of the harmonic oscillator are im-
portant for obtaining the final result. For simplicity I consider a non-degenerate system
[condition (i)], of which the harmonic oscillator is an example. From Eqs. (5.9-5.11)
one can see that contributions to the long-time average of the squared commutator are
only obtained when the complex exponential equals 1, which means that DAB(t) has
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contributions whenever Em = En. Similarly, the contributions to IAB and FAB can be
split into 3 cases: the energy-differences can be pairwise zero in the case where Ek = Ej
and Em = En or the sum can be zero when Ek = Em and En = Ej. Finally, it is also
possible that Ek −Ej +En −Em = 0 for j 6= k 6= n 6= m. The resulting time-averages
can then be written as

D̄AB =
∑
j,k,n

c∗jckB
†
jn〈Â†Â〉nnBnk, (5.28)

ĪAB =
∑
j,n

|cj|2A†jn〈B̂†B̂〉nnAnj

+
∑
j 6=k

c∗jckA
†
jj〈B̂†B̂〉jkAkk

+
∑

j 6=k 6=n 6=m

c∗jckA
†
jn〈B̂†B̂〉nmAmk, (5.29)

F̄AB =
∑
j,n

c∗jbjA
†
jnB

†
nnAnj

+
∑
j 6=k

c∗jbkA
†
jjB

†
jkAkk

+
∑

j 6=k 6=n 6=m

c∗jbkA
†
jnB

†
nmAmk. (5.30)

The energies of the interacting states can be expressed as Eg
2j = (2j + ∆j)ω, see

Eq.(3.19) in chapter 3.2. Crucially, for any finite value of g one finds ∆j 6= ∆k for
j 6= k, which means that any finite interaction breaks the harmonicity of the energy
spectrum for the even parity eigenstates. For even parity initial states, corresponding to
those affected by the delta-function interaction, the only contributions to the dynamics
come from the even parity eigenstates, while the odd parity eigenstates are completely
decoupled. For the relevant eigenstates in the time-averages this means that Ek−Ej +
En − Em 6= 0 for j 6= k 6= n 6= m [condition (ii)], which simplifies the calculation
considerably. The canonical operators with respect to these eigenfunctions obey Bkk =
Akk = 0 [condition (iii)], as each eigenfunction is given as a sum of even parity non-
interacting eigenfunctions via Eq. (3.20) which individually fulfill condition (iii). The
time-averages for the interacting relative-coordinate Hamiltonian in the harmonic trap
(and for any other system which fulfills conditions (i)-(iii)) therefore reduce to F̄AB = 0
and C̄AB = D̄AB + ĪAB, with

D̄AB =
∑
j,k

c2jc2kK
BA
jk , ĪAB =

∑
j

|c2j|2KAB
jj , (5.31)

where KAB
jk =

∑
nA
†
jn〈B̂†B̂〉nnAnk in general and given by Eq.(5.24) for the harmonic

oscillator. Any final Hamiltonian that is spatially symmetric with respect to the rel-
evant canonical operators will obey these conditions, one example being the Jacobi
coordinates for N interacting particles in a harmonic trap [103, 109, 157, 159–161],
which allows us to extend some of our conclusions to larger systems.
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The time-averaged scrambling has recently attracted attention, having been connected
to the Loschmidt echo of time-reversal protocols [155] and the description of quantum
phases [146, 148]. It describes the average scrambling in the system with a single
number, although it lacks information about the dynamical process of the scrambling.
Note that the infinite-time average for the laboratory frame coordinates as defined in
Eq.(5.19) are simply given by the sum of the infinite time-average calculated above and
the infinite-time average of the CM frame coordinates, i.e.

C̄Ai,Bj
=

1

4
[C̄ARBR + C̄ACMBCM ], (5.32)

as Ḡ1
ab(t) =

∑
n,k annbnk = 0 by condition(iii).

The problem can also be solved numerically by obtaining the eigenspectrum of the final
Hamiltonian using a finite-difference method. Specifically I utilize the DVR method
[162] which gives accurate results for a delta-function potential allowing me to com-
pare with the analytic results and to find the overlap coefficients for a trap quench
in a system containing the delta-function interaction where no easily implementable
analytic formula exists. The recipe for finding the correlation functions numerically is
straightforward and exactly the same as in the analytic case, that is one applies the
operators and time-evolution in the correct sequence to the initial state, performing the
time-evolutions by expressing the relevant states in terms of the eigenstates of the final
Hamiltonian. The results in the following sections for [x̂(t), x̂]2 for the delta-function
interaction are based on evaluating the analytic sums, but I have checked that the two
methods give the same results.

5.4 General remarks about the analytic solutions

One thing which is immediately obvious from the structure of the infinite-time average
is that it is closely related to the diagonal ensemble which determines the amount
of non-equilibrium excitations and the infinite-time average of observables such as the
momentum and density distribution. ĪAB is given as the diagonal ensemble expectation
value of an emergent operator and is therefore directly related to the DE probabilities
with no dependence on the phase of the overlap coefficients. D̄AB is given as a sum
over all the off-diagonal values of a similar emergent operator, which means that the
phase of the overlap coefficients matter and negative and positive contributions can
interfere destructively.

For the dynamics it is clear that the time-ordered correlation function DAB(t) displays
trivial harmonic oscillations with frequency 2ω. If the initial state is an eigenstate
of ĤF , i.e. c2j = 1, c2k 6=2j = 0 the off-diagonal terms in IAB(t) disappear and it
displays trivial harmonic oscillations with frequency 2ω as well. This is because IAB(t)
is anti-time-ordered for an eigenstate. In general, however, IAB(t) and FAB(t), both of
which are out-of-time ordered for a non-eigenstate will have a more complicated time-
dependence, although the latter will average to zero as shown above. These dynamics
are investigated in more detail numerically in the upcoming sections.
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So far the actual choice of canonical operators has not been important for the discussion.
However, in order to move forward, one needs to analyse the matrix-elements of the
emergent operators JAB, KAB which depend on the choice of A,B. The coefficients for
x̂ are given by

αxm,j =
√

2m+ 1ψ2m(0)Ωg
2j

2

(E2m − Eg
2j)(E2m+2 − Eg

2j)
. (5.33)

This means that the terms in the sum in Eq.(5.24) and Eq.(5.25) scale as∝ m−2ψ2
2m(0) =

m−5/2 (see appendix A.1 for the scaling of ψ2m(0)) in sums involving these coefficients
and therefore converge. For the coefficients p̂, however, such a reduction of the coef-
ficients is not possible and the terms in the sum scale like ∝ ψ2

2m(0) = m−1/2 which
means that the sums diverge. The squared commutator involving the momentum op-
erators is therefore problematic, essentially because we attempt to twice-differentiate
a function which is not twice-differentiable due to the non-analytic cusp in the single
particle solutions for the zero-range delta-function pseudo-potential. Using a Gaussian
interaction, this divergence disappears, but the results now depend on the finite range
of the Gaussian. Similar results can be obtained by cutting off the divergent sum at
some m which means that a system-dependent regularization parameter is required
to calculate the squared commutator involving momentum operators. The focus of
this chapter is therefore on Â = x̂, B̂ = x̂, where the analytic expressions of Jxx, Kxx

for the delta-function interaction are convergent. In appendix A.2 an investigation of
momentum operators is contained, while a further analysis of the x, x matrix elements
can be found in appendix A.1. Here I will present a short summation of those results
and their consequences for the infinite-time average as well as the dynamics. Both Jxx
given by Eq.(5.25) and Kxx given by Eq.(5.24) can effectively be described by a tri-
diagonal matrix Kxx

j,j+1 = Kxx
j,j−1 = −Jxxj,j = Jxxj,j+2 = −ξ1j2 and Kxx

j,j = −Jxxj,j+1 = ξ2j
2,

while all other matrix elements are of insignificant size in comparison. Here ξ1 and ξ2
are constants determined by the interaction strength g and obtained by calculating the
matrix elements and fitting to the quadratic functions.

Combined with the fact that (Eg
2j)

2 ∝ (2j)2, this form of the matrix elements leads to an
interesting realization which is a major result of this investigation. The second moment
of the work probability distribution is given as 〈W 2〉 ∝∑j |c2j|2(2j)2 while Īxx, which
only has the diagonal contribution, is given by Īxx ∝

∑
j |c2j|2(2j)2. These two values

are therefore proportional to each other. In fact it is found that this proportionality
holds for the variance of the work probability distribution ∆W 2 =

∑
j |c2j|2(Eg

2j)
2 −(∑

j |c2j|2Eg
2j

)2
as well, as 〈W 2〉 ∝ 〈W 〉. Dxx on the other hand can effectively be

described as a sum over the tri-diagonal matrix Kxx. This means that the off-diagonal
negative contributions Kxx

j,j+1 = Kxx
j,j−1 = −ξ1j2 are either subtracted or added to

the diagonal positive contribution Kxx
j,j = ξ2j

2 depending on the signs of the overlap
coefficients. In the next sections I will consider different quenches which will lead to
different overlap coefficients and therefore to different behaviours of D̄xx. When the off-
diagonals are consistently subtracted it suppresses this contribution, while adding them
leads to an overall value which is also proportional to the work fluctuations. The infinite
time-average of the squared commutator C̄xx is therefore proportional to the variance
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of the work probability distribution as well. Investigating ĈAB for other combinations
of canonical operators reveals similar results (see appendix A.2). The main takeaway
is that while ĪAB is always proportional to ∆W 2, the time-ordered contribution D̄AB

can have constructive interference for one set of A,B making it proportional to ∆W 2,
but destructive interference for a different set A,B making it effectively zero for the
same quench.

5.5 Analytic results for a generic quench in the non-
interacting system

For the special case of non-interacting particles for which the relative part of the wave-
function is given by the non-interacting harmonic oscillator the squared commutator
has been calculated for eigenstates in earlier works, such as [158], but in this section
an arbitrary initial state is considered. For the non-interacting harmonic oscillator the
full Heisenberg equations of motion for position and momentum operators are known
and given by (still in units of the oscillator length aω)

x̂(t) = x̂(0) cos(t) + p̂(0) sin(t) (5.34)
p̂(t) = p̂(0) cos(t)− x̂(0) sin(t). (5.35)

These can be utilized to calculate the time-dependent correlation functions by simple
multiplication and taking the expectation-value of the time-independent correlation
functions with respect to the initial state. As an example the position-position corre-
lation functions are given by

Dxx(t) = 〈ψI |x̂4(0)|ψI〉 cos2(t)

+ 〈ψI |x̂2(0)p̂(0)x̂(0)|ψI〉 cos(t) sin(t)

+ 〈ψI |x̂(0)p̂(0)x̂2(0) |ψI〉 cos(t) sin(t)

+ 〈ψI |x̂(0)p̂2(0)x̂(0)|ψI〉 sin2(t) (5.36)

Ixx(t) = 〈ψI |x̂4(0)|ψI〉 cos2(t)

+ 〈ψI |x̂3(0)p̂(0)|ψI〉 cos(t) sin(t)

+ 〈ψI |p̂(0)x̂3(0)|ψI〉 cos(t) sin(t)

+ 〈ψI |p̂(0)x̂2(0)p̂(0)|ψI〉 sin2(t) (5.37)

Fxx(t) = 〈ψI |x̂4(0)|ψI〉 cos2(t)

+ 〈ψI |x̂2(0)p̂(0)x̂(0)|ψI〉 cos(t) sin(t)

+ 〈ψI |p̂(0)x̂3(0)|ψI〉 cos(t) sin(t)

+ 〈ψI |p̂(0)x̂(0)p̂(0)x̂(0)|ψI〉 sin2(t). (5.38)

No choice of initial state will introduce a more complicated time-dependence than ω
and 2ω oscillations. This result is unsurprising since the Heisenberg equations for
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position and momentum are given for any initial state with the only time-dependence
being the sines and cosines. Different initial states can, however, introduce different
amplitudes and in principle constructive or destructive interference between the terms
in the correlation functions.

5.6 Trap quench and harmonic limits

For the initial exploration of nonequilibrium scrambling in this system I will consider a
sudden change of the trapping frequency ωI → ωF while keeping the interaction fixed.
The ground-state of the initial Hamiltonian will be considered as the initial state.
This allows me to clearly identify the effects of finite interactions on the information
scrambling and work statistics after the quench by comparing with the same quench in
the harmonic limits. By scaling all relevant quantities in units of the final Hamiltonian
the results only depend on the frequency ratio γ = ωI/ωF , which also quantifies the
strength of the quench. Therefore Eq. (3.14) describes the Hamiltonian of the initial
state, while setting γ = 1 describes the quenched Hamiltonian.

5.6.1 Analytic results in the harmonic limit

In the TG-limit g = ∞ the even parity states becomes two-fold degenerate with the
non-interacting odd parity states, that is ∆j = 1 for all j and Eg

2j = 2j + 1 [94], and
the corresponding eigenfunctitons can be obtained as ψg2j(x) = |ψ2j+1(x)|. Therefore,
both the TG-limit g =∞ and the non-interacting limit g = 0 (∆j = 0 for all j) have a
harmonic spectrum and solutions can be obtained by considering Eqs.(5.36-5.38) with
the relevant initial state. For g = 0, |ψI〉 = |ψI0〉, while for g = ∞, |ψI〉 = ||ψI1〉|.
General expressions in terms of Â, B̂ can be found. IAB(t) = DAB(t) and expressions
for the g = 0 quench are given by

IAA(t) =
3

4
[GA cos2(t) + sin2(t)],

Re [FAA(t)] =
3

4
[GA cos2(t) + sin2(t)]− 1

2
sin2(ωF t),

IAB(t) =
3

4
[cos2(t) +GA sin2(t)],

Re [FAB(t)] =
3

4
[cos2(t) +GA sin2(t)]− 1

2
cos2(t),

with the squared commutators given by

[Â(t), Â]2 = sin2(t),

[Â(t), B̂]2 = cos2(t).
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Here Gx = 1
γ2

and Gp = γ2, leading to an operator-dependent difference between
squeezing and opening the trap. For the g =∞ quench the formulas are given by

IAA(t) =
1

4
[15GA cos2(t) + 7 sin2(t)],

Re [FAA(t)] =
1

4
[15GA cos2(t) + 7 sin2(t)]− 1

2
sin2(ωF t),

IAB(t) =
1

4
[15 cos2(t) + 7GA sin2(t)],

Re [FAB(t)] =
1

4
[15 cos2(t) + 7GA sin2(t)]− 1

2
cos2(t),

with the squared commutators given by

[Â(t), Â]2 = sin2(t),

[Â(t), B̂]2 = cos2(t).

These all display simple harmonic oscillations reflecting the harmonic spectrum, which
leads to perfect periodic revivals. The amplitude of these oscillations (and therefore the
infinite-time average) depends on the quench strength γ for the individual correlation
functions, but the amplitude of the full squared commutator is completely independent
of γ with C̄AB = 1

2
. This implies that no significant scrambling takes place independent

of the amount of non-equilbirium excitations generated by the quench. Indeed, the work
fluctuations, which were already argued to be proportional to the infinite-time average
of the squared commutator in the interacting case, can be calculated analytically for
these limiting cases (utilizing the analytic expressions for the overlap coefficients cj =

〈ψj|ψI〉 [163]) as ∆W 2 = λ(g)
(
γ − 1

γ

)2
, with λ(0) = 1

8
and λ(∞) = 3

8
. This is clearly

proportional to the strength of the quench squared which is in stark contrast to the
average scrambling and something is therefore fundamentally different when compared
to the interacting system which will be investigated in detail in the next section.

Finally, it should be noted that the squared commutator for the center-of-mass part of
the two-body problem after a trap quench corresponds to the g = 0 results.

5.6.2 Scrambling properties for the interacting system

In this section I will consider the scrambling properties as a function of the finite
interaction g and the quench strength γ. In Fig. 5.1 an example of the dynamics for
opening and squeezing the trap is shown. For these finite interactions the harmonicity
of the energy spectrum is broken and therefore the correlation functions can possess
complex dynamics. Indeed, Ixx(t) and Fxx(t) possess irregular oscillations as they are
not time-ordered. It is clear that the time average of Fxx(t) quickly vanishes, with
the long time behaviour of the squared commutator determined solely by Dxx(t) and
Ixx(t). Additionally the time-ordered Dxx(t) displays the same qualitative behaviour
as the correlation functions did in the harmonic limits, that is the amplitude depends
on whether the trap is opened or closed in exactly the same ways as in the harmonic
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Figure 5.1: Dxx(t) (a), Ixx(t) (b), Fxx(t) (c) and Cxx(t) (d) as a function of time for g = 10.
The blue lines correspond to a quench with γ = 1

4 , while the red lines correspond to a quench
with γ = 4.

limit. Moving forward it will be clear that this is a general trend, Dxx(t) and the work
statistics tend to have a smooth crossover between the interacting and harmonic limits,
while the OTOCs do not.

In Figs. 5.2(a) and (b) the infinite time-averages of the correlation functions (full lines)
and the variance of the work probability distribution (yellow dotted line) as a function
of the interaction strength for γ = 4 and γ = 1

4
are shown. ∆W 2 has a similar functional

form to Īxx and in Fig. 5.2(c) it is shown that these two quantities are linearly related
through Īxx = bI(g)∆W 2, allowing us to extract the fitting parameter for each value
of the interaction g (see panel (d)). Note that this is simply a confirmation of the
general relationship uncovered in section 5.4. The values for Īxx(t) are almost identical
for opening or squeezing the trap, making its behavior fully equivalent to ∆W 2 which
measures the amount of non-equilibrium excitations. The 3-OTOC, which corresponds
to a time-reversal test, is therefore a good quantifier of irreversibility.

In contrast to ĪAB one can show that D̄AB is operator dependent, which leads to
a markedly different behaviour of the time-ordered contribution D̄xx for squeezing
or opening of the trap. In particular one can see that D̄xx remains small whenever
γ > 1 and therefore does not contribute much to C̄xx, whereas for γ < 1 we find
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Figure 5.2: (a-b) The full lines show D̄xx (red), Īxx (blue), F̄xx (green), C̄xx (black) as
a function of g for (a) γ = 1

4 and (b) γ = 4. The circles show the time-averages of the
same quantities in an interval t ∈ [0, 200π]. The variance of the work probability distribution
function ∆W 2 is given by the dotted yellow line. The triangles correspond to the g = 0 and
g = ∞ values of C̄xx (black) and Īxx = D̄xx (red). Insets: zoom of correlation functions in
main panel at weak interactions. (c) Īxx as a function of ∆W 2 at fixed interaction g = 10,
with each data point representing a quench of the trap frequency for γ > 1 (red squares)
and γ < 1 (blue triangles). The blue and red markers are essentially on top of each other.
Similarly, yellow circles correspond to D̄xx for γ < 1 while green circles are γ > 1. (d) bI for
γ > 1 (red) and γ < 1 (blue) as a function of g. All fits are accurate with R2 > 0.99. (e)
Ixx(t) as a function of time for g = 1000 (blue) and g =∞ (orange) with γ = 4.

that D̄xx = bD∆W 2 (see Fig. 5.2(c)). The full squared commutator C̄xx = D̄xx + Īxx
is therefore also proportional to ∆W 2 for both squeezing and opening of the trap,
showing that the scrambling in this system is closely related to the irreversible non-
equilibrium excitations created by the quench. Mathematically the difference between
opening and closing the trap is related to the signs of the overlap coefficients as ex-
plained in section 5.4. Indeed, for opening the trap we find that the coefficients are all
positive (numerically and for the analytic [163] non-interacting case) which means that
the off-digaonal negative values are subtracted from the diagonal giving the overall
small value observed, while for squeezing the trap they alternate between positive and
negative values. This adds an overall contribution that also scales as approximately j2,
explaining why these values are also proportional to ∆W 2 with a larger proportionality
constant than for Īxx.

The proportionalities uncovered above mean that information about the scrambling in
the system is therefore also contained in ∆W 2 for the interacting system. For finite
values of g one can show that ∆W 2 is related to γ in the same functional form as in
the harmonic limits by fitting the parameter λ(g) numerically and obtaining excellent
accuracy. The work fluctuations and the scrambling therefore grow with the strength

of the quench with the functional dependence
(
γ − 1

γ

)2
.

These results also hold if one investigates the full two-body problem, not just for the
relative coordinate part. The work fluctuations of the CM coordinate Hamiltonian

are given by ∆W 2
CM = 1

8

(
γ − 1

γ

)2
based on the solutions outlined in section 5.6.1

and the work fluctuations of the full system are therefore given by ∆W 2 + ∆W 2
CM =
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[1 + 1
λ
]∆W 2 ∝ C̄xx. Utilizing the same solutions in section 5.6.1 and Eq.(5.32), the

lab frame-coordinate operators for a trap quench is given by C̄xj ,xj = 1
4
C̄xx + 1

8
and is

therefore proportional to the work fluctuations as well.

Note that these results are in stark contrast to the harmonic limits where scrambling
is independent of ∆W 2. This difference in the infinite-time averages can be partly
understood by noting that for g = 0 and g = ∞ the system violates condition (ii)
and the expressions for F̄AB, ĪAB and therefore C̄AB (see Eq. 5.31) are no longer valid.
In fact, ĪAB and F̄AB have off-diagonal contributions and the long-time average of the
squared commutator ends up being given by C̄AB = 1

2
as reported in section 5.6.1.

The squared commutator for the non-interacting system reflects the simple breathing
dynamics induced by the quench, which due to the equidistance of the energy spectrum
results in perfect periodic revivals of the initial state and therefore no scrambling of
the state on average. Scrambling in these limits is therefore not solely a reflection of
the non-equilibrium excitations and we need to bridge the gap between them and finite
g.

In Fig. 5.2(a) and (b) the values in the harmonic limits are represented by the tri-
angles. Each correlation function (except F̄xx which vanishes) grows with increasing
interactions. When approaching the TG limit (g → ∞) the known limiting values
for infinite interactions, C̄xx = 1/2 (black triangles in the figures), are not reached.
In fact, only the time ordered function D̄xx reaches the asymptotic values, while the
out-of-time ordered functions Īxx(t) and F̄xx(t) do not. A similar observation can be
made for g → 0.

The difference between the asymptotic value of the OTOCs and their value in the har-
monic limit shows that the scrambling (through the OTOCs) is very sensitive to small
deviations from harmonicity on infinitely long timescales. In Fig. 5.2(a) and (b) I also
plot the time-average taken in a range t ∈ [0, 200π] for comparison. For intermediate
values of g ∈ [0.1, 70] these are indistinguishable from the infinite-time average, but as
the extremal interaction limits are approached this finite-time average goes towards the
harmonic cases. This reflects the fact that on short timescales the correlation functions
are initially similar to the g = {0,∞} cases, but on long time-scales the behaviour be-
comes qualitatively different owing to the infinitesimal anharmonicity of the spectrum
(see Fig. 5.2(e)). This can be explained explicitly for Ixx(t) in terms of Eq.(5.22).
Most terms will oscillate with a frequency closely related to a multiple of the harmonic
frequency, but the terms j, j + 1 can give rise to small frequency oscillations in the
dynamics as they result in the term cos[(2 + Eg

2j − Eg
2j+2)t] = cos[(∆j −∆2j+2)t] with

∆j → 0 for all j as the harmonic limits are approached. The long time-scale required
for observing scrambling is therefore due to the proximity to the harmonic limits and
not due to higher-order excitations becoming important on longer timescales. Inves-
tigating the full work probability distribution confirms this as only the first couple of
states enter into the dynamics (see Fig. 5.5 in section 5.8). The discontinuity between
the average scrambling in the finite strongly interacting system (g →∞) and the infi-
nite limit (g = ∞) is therefore only observable in the long-time limit as the timescale
required to actually observe the average scrambling diverges (similar for the g = 0
case).
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5.7 Interaction quench

The trap quench helps illuminate the scrambling properties of the interacting system
versus the non-interacting system, but despite the finite interaction creating a complex
pattern of phase interference, it is still related to the breathing mode dynamics of
relatively few excited states. Investigating a quench which is expected to introduce
more complicated dynamics and higher-order excitations is therefore of interest. The
natural choice is to quench the interaction strength, which corresponds to a local change
in position-space. We consider a system which is initially in the ground-state ψI0 of a
Hamiltonian with gI . At some finite time t = 0 the interaction strength is suddenly
changed from gI to gF and the system evolves with the new Hamiltonian. Note that the
center-of-mass part is unaffected by this quench and the contribution to the squared
commutator from the CM part is therefore given by the solutions outlined in section
5.6.1 with γ = 1. The overlap coefficients for the relative part of the wavefunction for
an interaction quench are known analytically [98] and in fact display a higher degree
of non-equilibrium excitations, with coefficients that scale as c2j ∝ j−

5
4 (see section

appendix A.1 for the scaling of Ωg
2j),

c2j = 〈ψI0|ψgF2j 〉 =
ΩgF

2j ΩgI
0

gIgF

gI − gF
EgI

0 − EgF
2j

, (5.39)

while for gI = 0 they are given as

c2j = 〈ψI0|ψgF2j 〉 = ΩgF
2j

ψ∗0(0)

E0 − EgF
2j

. (5.40)

Dxx(t) is unaffected by the interaction quench, that is it has exactly the same dy-
namics as if we were time-evolving with the initial Hamiltonian. One can express the
coefficients in the final state αO,Fm,j in terms of the coefficients for the initial state αO,Im,j

since

αO,Im,kβ
I
O = 〈ψ2m+1|Ô|ψgI2k〉 =

∑
j

〈ψ2m+1|Ô|ψgF2j 〉〈ψgF2j |ψgI2k〉

=
∑
j

βFOα
O,F
m,j c2j.

By inserting this into Eq.(5.21) it reduces to Dxx(t) with respect to the initial state.
Additionally, the time-average will always be small as all the overlap coefficients have
the same sign per the argument in section 5.4. Finally for the special case of gF = 0
the overlap coefficients are given by

c2j = 〈ψI0|ψgF2j 〉 = ΩgI
0

ψ∗2j(0)

E2j − EgI
0

(5.41)

and the 4-point correlation functions are given by Eq.(5.36-5.38).

In Fig. 5.3 the correlation functions for two interaction quenches, going from interacting
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Figure 5.3: Dxx(t) (red line), Ixx(t) (blue line), Fxx(t) (magenta line), Cxx(t) (black line) and
survival probability L(t) (inset) as a function of time for gI = 10, gF = 0 (a) (〈Wirr〉 = 0.53,
L̄ = 0.569) and gI = 0, gF = 10 (〈Wirr〉 = 4.5, L̄ = 0.5417) (b).

to non-interacting, gI = 10 to gF = 0, and from non-interacting to interacting, gI = 0
to gF = 10, in the time-period t ∈ [0, 20π], are shown. The survival probability is
plotted in the insets. As per Eq.(5.36-5.38) the only periodicity for quenching off the
interactions (gF = 0) is 2ω. The only effect of choosing different initial values of gI
is a slight change in the amplitude of the correlation functions. For the opposite case
of quenching to strong interactions, Ixx(t) exhibits clear growth. On this time-scale
it seems as though this growth is actually concurrent with a fall-off in the survival
probability, but in order to see whether these are related the long-term behavior of
both quantities must be investigated. Indeed, the fidelity is not expected to showcase
any long-term decay as this quench has a finite average value of the survival probability
of L̄ = 0.5417.

In Fig. 5.4(a) a log-log plot of Ixx(t) for a range of interaction quenches with gF 6= 0 on a
much longer time-scale t ∈ [0, 104π] is shown, which shows that Ixx(t) continues to grow
at larger time-scales. In comparison, the survival probability L(t) has no long-term
decay and oscillates around an average value equal to the inverse participation ratio (see
inset). Here, I focus solely on Ixx(t) as Cxx(t) ≈ Ixx(t), since Dxx(t) and Fxx(t) become
negligible at long times. Therefore, the information scrambling is essentially all due to
Ixx(t) which measures the irreversibility of the time-evolution after the application of
the position operator. There are two clearly distinct regimes of Ixx(t) visible in panel
(a): (i) For quenches with a high degree of non-equilibrium excitations, one can see an
initial growth that is highly dependent on the specific interaction quench, being faster
for those that do more irreversible work, followed by a slow growth which seems almost
independent of the quench.(ii) For quenches with very few non-equilibrium excitations
there is essentially no growth in this initial regime, but at some later time, Ixx(t)
shows slow growth with a rate similar to the asymptotic growth seen for the stronger
quenches. The time-scale at which this happens depends on the quench (particularly
the amount of non-equilibrium excitations as measured through the irreversible work),
and for a small quench gi = 9 to gF = 10 there is essentially no growth on the time-scale
considered.

A much clearer understanding of these behaviors are obtained by comparing with the
work probability distributions in Fig. 5.4(c). While all the work probability distribu-
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tions have a tail that decays as j−5/2, their amplitudes are distinct, and consequently
the distribution of the first 10 states are very different. This is why a different growth
rate is obtained for intermediate time-scales, while a similar growth-rate (but not ab-
solute value) is obtained for the different quenches on long time-scales. The more
higher-lying state dynamics are initially suppressed, the less growth is seen on relevant
time-scales (for gi = 9, gF = 10, c0 ≈ 1 which is why no long-term growth is observed
on the time-scale considered). Additionally one observes that the work probability
distributions are not symmetric for gI = 2 to gF = 10 and gI = 10 to gF = 2, although
their inverse participation ratio is essentially the same. This is reflected in both the
irreversible work and Ixx(t). As Ixx(t) measures the delocalisation of the position oper-
ator dynamically this suggests that the moments of the work probability distribution
might be a better measure of delocalisation than the inverse participation ratio, which
only measures the delocalisation by how different the initial state is from a single eigen-
state of the Hamiltonian. The moments of the work probability distribution and Ixx(t),
however, both depend on the energy spectrum of the final Hamiltonian in addition to
the overlap coefficients.

All of the observed behavior can be understood analytically by considering the scaling
of c2j, the matrix elements analysed in section 5.4 (for detials see appendix A.1) and a
further investigation of Eq.(5.22). In the limit of large j one can combine the Kj,k and
Jj,j+1 terms as Kj,j + Jj,j+1 = ξ2j

2c22j[2 sin2( j
−3/2

2
t)] + ξ2j

2c2j∆cj, since c2j and c2j+2

have the same sign for the interaction quench. Here ∆cj = c2j − c2j+2. Utilizing the
scaling of the overlap coefficients (c2j ∝ j−5/4) one obtains that Kj,j + Jj,j+1 scales as
j−1/4[2 sin2( j

−3/2

2
t)] + j−3/2. For a constant value of j there will be a time t for which

the sine term becomes important and the value of the term will increase. For constant
t the small angle approximation of the sine function results in an overall scaling j−13/4

2
t2

at large values of j, which means that the sum is convergent at any finite time. Ixx(t)
will therefore be finite at any time t, but grow as t increases due to the participation
of increasingly excited states. In fact, due to the peculiarity of the delta-function
interaction quench which has a very long tail for the diagonal ensemble probabilities,
this growth continues forever. Evaluating the infinite-time average Eq.(5.31), the terms
in the sum scale as j−1/2 which means that it diverges. This holds true for the second
moment of the work probability distribution as well and the work fluctuations also
diverge. This is why I have so far discussed the work probability distribution in terms
of its first moment, more specifically the irreversible work, rather than the fluctuations
which have already been shown to be proportional to the average scrambling.

This divergence is obviously not a physical effect, but related to the same pathology
of the delta-function which requires regularisation for the calculation of squared com-
mutators involving the momentum operator. Indeed, by introducing an effective range
regularisation the divergence disappears. In this work this is simply done by replacing
the delta-function interaction with a Gaussian interaction given by

V (x2 − x1) = κ
1

σ
√

2π
e−(x2−x1)

2/σ2

, (5.42)

where σ determines the width of the Gaussian, while κ determines its height.
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In Fig. 5.4(b) Ixx(t) is shown for interactions described by a finite-range Gaussian
potential with σ = 0.07 and σ = 0.04. The κ is chosen such that the energy levels
are close to the g = 10 delta-function interaction (with which I compare) and are
given as κ = 10 and κ = 11 respectively. For the Gaussian interaction the growth
of Ixx(t) saturates. The saturation time-scale is related to the finite range of the
interaction, as the saturation happens at a later time for a narrower Gaussian. Looking
at the work probability distributions in Fig. 5.4(d) the Gaussian interaction is hard
to distinguish from the delta-function interaction at low energies, but the high energy
tails of the Gaussian interaction decay faster than the j−5/2-behaviour of the delta-
function interaction. The narrower the Gaussian the larger the energy at which this
discrepancy occurs. This explains the saturation observed in Ixx(t). The variance of the
work probability distribution is therefore not uniquely determined by the delta-function
as its terms, similarly to the time-average of Ixx(t), scale as j−1/2, but requires a finite-
range regularization parameter which determines the saturation time and value. For
cold atoms the relevant the short-range interaction is the van der Wahls interaction from
which a non-universal regularisation parameter can be determined for a given atom.
As discussed in section 5.4 a similar regularization is required for squared commutators
involving the momentum-operators and these values (regardless of the quench type)
are therefore non-universal and determined by the same short-range parameter. Once
such a parameter has been chosen, everything about the system is fixed (see appendix
A.2 for more details on the other correlation functions). The simplest way to regularize
is to impose an energy cutoff at some jcut, but relating a possible cut-off value to the
non-universal physical features of a given system is beyond the scope of this chapter.

5.8 Comparison of the quenches and concluding re-
marks

In summary, I have shown that for harmonically trapped interacting atoms, which are
a fundamental building block in many cold atom experiments, the time-average of the
irreversibility measure IAB(t) and the full operator scrambling CAB(t) for canonical
operators are proportional to the work fluctuations. It was also shown that finite inter-
actions that break the harmonicity of the spectrum are required for scrambling to occur,
as the harmonic spectrum display trivial breathing dynamics for any initial state. The
times-scales required to observe scrambling diverge as these non-scrambling harmonic
limits are approached (g → 0, g → ∞), highlighting the importance of intermediate
interactions to be able to achieve meaningful scrambling time-scales. Additionally the
dynamics of the operator scrambling has been connected to the diagonal ensemble
probabilities - the distribution of which determines whether operators delocalise to
more and more highly excited states as the post-quench time increases.

This allows one to explain the different scrambling behaviour of the trap and interac-
tion quenches in terms of the work probability distribution. The dynamical behaviour
of the squared commutator and particularly the 3-OTOC Ixx(t) clearly shows qualita-
tively different behavior for the two. For an interaction quench, the work probability
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Figure 5.4: Ixx(t) as a function of time and P (W ) for the same quenches are depicted
respectively in (a) and (c) with black corresponding to gI = 0, gF = 10, 〈Wirr〉 = 4.74, L̄ =
0.5417, red corresponding to gI = 0, gI = 2, 〈Wirr〉 = 0.54, L̄ = 0.8228, blue corresponding to
gI = 2, gI = 10, 〈Wirr〉 = 0.75, L̄ = 0.8917, green corresponding to gI = 10, gI = 2, 〈Wirr〉 =
0.22, L̄ = 0.8926 and magenta corresponding to gI = 9, gF = 10, 〈Wirr〉 = 0.0011, L̄ = 0.9998.
(b) and (d) also depict Ixx(t) as a function of time and P (W ), but for different Guassian
interaction quenches from non-interacting to σ = 0.07, κ = 10, 〈Wirr〉 = 3.08, L̄ = 0.5287
(blue line) and σ = 0.04, κ = 11, 〈Wirr〉 = 3.49, L̄ = 0.5389 (red line). The black line shows
the gI = 0, gF = 10 delta-function interaction quench for reference as these all have similar
energy eigenvalues.
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Figure 5.5: The work probability distribution for g = 10, γ = 4 (red line), g = 10, γ = 1
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(blue line) and gI = 0, gF = 10 (black line).

distribution involves more highly excited states of the final Hamiltonian, due to the
slow decay of the DE probabilities as |c2j|2 ∝ j−5/2 (see Fig. 5.5), and the squared
commutator will eventually have contributions from all excited states on long enough
time-scales. These long time-scales are required because the energies of the high-lying
states become closer and closer to the non-interacting harmonic energies, which leads
to a larger time-scale required in order to see them in the dynamics. In physical sys-
tems a finite range parameter sets an upper limit to the number of excited states that
can participate in the dynamics and therefore determines a saturation time-scale. For
a trap quench on the other hand, only the first few states contribute to the dynam-
ics, as seen from the corresponding work probability distribution in Fig. 5.5, which
means that highly excited states do not contribute on any time-scale. The scrambling
properties can therefore be determined by looking at relatively short time-scales for
intermediate interaction strengths. That the trap and interaction quench is fundamen-
tally different is obvious by comparing the full work probability distributions which
are qualitatively very different (see Fig. 5.5), but the investigation in this chapter has
shown that the important difference between them in terms of the post-quench scram-
bling is their different variances, which is generally larger for the interaction quench,
which will therefore display more scrambling.

Post-quench operator scrambling in Hilbert space is therefore intimately linked to the
work probability distribution, which is an experimentally accessible thermodynamic
measure [36–38] of the non-equilibrium excitations induced by the quench. While our
results are of relevance for modern few-body cold atom experiments [65], these insights
should also hold in larger systems where the structure of the relative Jacobi-coordinates
ensure that the relevant asymptotic criteria are still obeyed.



Chapter 6

Fock-space diagonalization using
effective one- and two-body
Hamiltonians

In this chapter I will apply the effective Hamiltonian approach to the Fock space ex-
act diagonalization method explained in chapter 3.4. The main idea of the effective
Hamiltonian approach is to incorporate information obtained from exact solutions of
the external and interaction potentials in position space into the many-body Hamilto-
nian through the matrix elements Hkl and Vklmn (see Eq.(3.62 ,3.63) in chapter 3.4).
If the mode expansion is done in terms of single-particle eigenstates for the external
potential information about the former is already incorporated. However, in some cases
of interest such as for a change in the external potential during a quench one has to
choose a single-particle basis corresponding to the final Hamiltonian, which worsens
the convergence properties of the initial state. Additionally, the presence of two-body
interactions cause slow convergence with respect to basis size, even using the respec-
tive single-particle basis [164]. This is partly because the delta-function interactions of
interest creates cusps in the many-body wavefunctions that are difficult to accurately
represent using a smooth basis. In the case of contact interactions in a harmonic trap
the exact analytic solutions are known as described in chapter 3.2 and it is possible
to incorporate the knowledge of the exact two-body solution and the exact one-body
solution in a different basis by utilizing the effective Hamiltonian approach. This ap-
proach allows us access to exact solutions in a restricted part of the solution space,
employing a finite basis set.

The content of this chapter is a synthesis of various known methods for which the basic
idea goes back to the 50’ies, suggested in the context of nuclear physics [165–167]. I
will utilize the simple formula for the effective Hamiltonian first presented in [168],
which was first used in the context of cold atomic gases in [169] and extended to two-
component systems (with zero intra-particle interactions) in [116] (in both cases for a
harmonic oscillator potential). Note that in these previous works the exact diagonaliza-
tion was generally done in configuration space, while I will do the exact diagionalization

67
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in Fock-space. I will present a general overview and application to two-component sys-
tems with arbitrary interaction strengths and external potentials.

Other methods for improving convergence properties exist, including renormalisation of
the interaction constant utilizing the TG-energies [170], a different unitary transforma-
tion approach to build an effective Hamiltonian (not based on the interaction potential
solution) [171] and variationally optimizing the basis in order to obtain more accurate
results for a target state [172]. An improvement method, which can be used in con-
junction with other methods is to choose the reduced Fock-basis in ordered by lowest
non-intracting many-body energies rather than simply the lowest M single particle en-
ergy modes [128]. This last approach dramatically reduces the Hilbert space required to
accurately represent intermediate excited states, as the usual selection takes very high
energy non-interacting states into account while ignoring lower energy non-interacting
states that matter more at the relevant energies. In fact, I have implemented this basis
choice in conjunction with the effective Hamiltonian approach, leading to even better
convergence, however, to keep the focus on the effective Hamiltonian I will compare
the bare and effective Hamiltonians using the conventional choice of Fock-basis in this
chapter.

6.1 Effective Hamiltonians in a model-space

The effective Hamiltonian approach, which has its roots in nuclear physics, is a general
procedure which is useful for diagonalizing complicated Hamiltonians that do not nec-
essarily have nice convergence properties for simple basis sets. Consider the solution
of the eigenvalue equation

Ĥ|ψ〉 = E|ψ〉. (6.1)

The Hilbert space can be split into two subspaces, a (small) model-space P and the
complement Q corresponding to the remaining Hilbert-space. The projection opera-
tors P̂ , Q̂ project onto these subspaces respectively. Deriving an effective Hamiltonian
which acts within the restricted model-space and yields the same eigenvalues as the
original Hamiltonian is the goal. This can be done by finding a way to transform the
Hamiltonian Ĥ with a unitary transformation such that the solutions to the P and
Q spaces decouple and the solutions in P -space are the same as those in the origi-
nal system. Consider the Hamiltonian after a unitary transformation Ĥ ′ = Û †ĤÛ
(note that this doesn’t change the eigenvalues). Utilizing the projection operators the
Hamiltonian equation of this system can be written as(

P̂ Ĥ ′P̂ P̂ Ĥ ′Q̂

Q̂Ĥ ′P̂ Q̂Ĥ ′Q̂

)(
P̂ |ψ′〉
Q̂|ψ′〉

)
= E

(
P̂ |ψ′〉
Q̂|ψ′〉

)
(6.2)

It is clear that the P and Q-space equations decouple when Q̂Ĥ ′P̂ = P̂ Ĥ ′Q̂ = 0 in
which case the P-space operator P̂ Ĥ ′P̂ is an effective Hamiltonian, i.e.

Ĥeff (P̂ Û |ψ〉) = P̂ Û †ĤÛ P̂ (P̂ Û |ψ〉) = E(P̂ Û |ψ〉) (6.3)
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that has the same eigenvalues as the original equation in the P-space. The general idea
is to determine the unitary transformation that fulfills the decoupling condition. In
the case where one can actually solve the full problem for some Hamiltonian Ĥ2 the
effective Hamiltonian in the model space which fulfills the decoupling condition can
explicitly be written in a simple form [168]:

Ĥeff =
Û †2,P√
Û †2,P Û2,P

E2,P
Û2,P√
Û †2,P Û2,P

(6.4)

where U2 is the unitary transformation that diagonalizes H2 and E2 are the correspond-
ing eigenvalues

E2 = Û †2Ĥ2Û2. (6.5)

The P -subscripts then signify the projection of these onto the P-model space.

This holds true for any generic Hamiltonian. Now I want to apply this approach not
to a full Hamiltonian, but to the one-body and two-body interaction terms in a many-
body model. This is achieved by replacing these terms with an equivalent effective
Hamiltonian when evaluating the matrix elements. For the interaction potential the
full solution can also be found in terms of a one-body problem in the relative coordi-
nate, but the interaction integrals are given in terms of the laboratory frame coordinate
eigenfunctions. A transformation between these two frames in terms of the eigenfunc-
tions is therefore required. As with the effective interaction, this is an old problem
which has been addressed in nuclear physics [173, 174].

6.2 The Talmi Transformation (interaction integrals)

The most general interaction integral is given by

V AB
klmn =

∫
dx1dx2φ

∗A
k (x1)φ

∗B
l (x2)V (x2 − x1)φAm(x1)φ

B
n (x2). (6.6)

As the two-body interaction only depends on the relative coordinate, it is possible to
simplify this integral by transforming to the CM and relative coordinate frame. To do
this one needs to expand the coordinate frame eigenfunctions in terms of the relative
and center-of-mass eigenfunctions. The coordinate transformation between the lab
frame coordinates and relative/center of mass coordinates are defined as

x =
1

µx
(x2 − x1) , X =

1

µx
(x2 + x1) (6.7)

where the constants µr, µR can be chosen in whichever way is most convenient for
solving the problem at hand. Labeling the eigenstates of the laboratory frame as
φn1(x1), φn2(x2) and the eigenstates of the relative/center of mass frame as φn(x), φN(X)
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this expansion can be formally written as

φAn1
(x1)φ

B
n2

(x2) =
∑
n,N

Mn,N
n1,n2

, φn(x)φN(X) (6.8)

where Mn,N
n1,n2

are the expansion coefficients. The integral can then be transformed to
these new coordinates as(this is known as the Talmi transformation [173, 175])

Vklmn = det(J)
∑
j,j′,N

(
M j,N

k,l

)
M j′,N

m,n vjj′ (6.9)

where J is the Jacobian of the coordinate transformation between the lab an CM/relative
frame and

vjj′ =

∫
dxdx′φ∗j(x)V (xµx, x

′µx)φj′(x
′). (6.10)

or
vjj′ =

∫
dxφ∗j(x)V (xµx)φj′(x). (6.11)

for a local potential 〈xx′|V̂ |xx′〉 = V (x)δ(x−x′). Here I have utilized that the center-of-
mass coordinate integral decouples from the rest and therefore only terms with N = N ′

have non-zero values in the sum reducing the task to the evaluation of a single integral.
This becomes even simpler for the zero-range interaction which is the main topic of
interest in this thesis. Here one can evaluate

vnn′ =

∫
dxφ∗n(x)g/µxδ(x)φn′(x) = g/µxφ

∗
n(0)φn′(0) (6.12)

which means that analytic formulas for the interaction integrals can be found in cases
where analytic formulas for the coefficients (and single-particle eigenstates) exist. At
first glance, however, this does not seem like much of an improvement, as one now needs
to evaluate an infinite sum for each state one wishes to express in the relative/center-
of-mass eigenbasis. However, there are some single-particle bases for which this sum
is finite and for which simple expressions of the coefficients can be obtained, namely
free space (plane-waves) and harmonic oscillator eigenfunctions. The finite sum is
a consequence of the separability of the Hamiltonians describing these two-particle
systems, which means that only states with the same energy as the lab-frame eigenstate
enters the sum. For the harmonic oscillator the coefficients are called the Talmi-Brody-
Moshinsky coefficients and I will utilize the HO basis as the computational basis for
ED in the rest of this chapter. Simple analytic expressions of these coefficients exist
for identical particles [175, 176], mass-imbalanced particles [177] and even particles in
different external trapping frequencies [178]. Note that Eq.(6.12), while simple, does
not incorporate any information about the two-body solution which was the motivation
for applying this transformation. So let us now consider, how to use the effective
Hamiltonian in conjunction with this interaction integral.
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6.3 Application of Effective Hamiltonians for ED

I will be utilizing the harmonic oscillator eigenstates and consider the model-space
consisting of all oscillator states φn with a quantum number smaller than nmax. The
effective Hamiltonian for a system with eigenfunctions ψn can then be obtained from
Eq.(6.4) in terms of the matrix representation of U2,P which is given as

U2,P =


〈φ1|ψ1〉 φ1|ψ2〉 · · · 〈φ1|ψnmax〉
〈φ2|ψ1〉 φ2|ψ2〉 · · · 〈φ2|ψnmax〉

...
... . . . ...

〈φnmax|ψ1〉 〈φnmax|ψ2〉 · · · 〈φnmax|ψnmax〉

 . (6.13)

If ψn are the eigenfunctions of the interacting relatice coodinate part, an effective
interaction can then be obtained simply by subtracting the HO single-particle energy
H0, i.e. V̂eff = hatHeff − P̂ Ĥ0P̂ . So far I have constructed an effective two-body
interaction in a model-space consisting of a restricted basis of HO eigenfunctions, which
essentially means that one can get exact two-body results utilizing this model-space
as our basis. The next step is to relate this to the many-body diagonalization. A
formal relation can be obtained by considering the cluster expansion of the many-body
Hamiltonian and demanding that the correlation operator be chosen such that the
effective two-body interaction in the expansion corresponds to the hermitian effective
interaction derived above [167]. I will not do this explicitly, instead I will simply replace
the bare two-body interaction with the effective two-body interaction in the many-body
Hamiltonian. In practice this means that

Vklmn = det(J)
∑
j,j′,N

(
M j,N

k,l

)
M j′,N

m,n 〈j|V̂eff |j′〉. (6.14)

Note that the sum is finite and completely determined for any interaction integral Vklmn
once nmax has been chosen. For any value of 〈j|U2,P |j′〉 the only non-zero contribution
to a given Vklmn is determined by N = (k + l + n + m− j − j′)/2. Since the effective
interaction gives exact two-body results in the model-space, it is expected that the
convergence properties of the many-body Hamiltonian using the same basis-states will
be significantly improved with respect to the bare interaction and this is borne out in
the numerics.

A similar mapping is possible for the one-body integral, but this one is much simpler
as no coordinate transformation is required. Indeed in this case the matrix elements
are simply given by

Hkl = 〈k|Heff |l〉. (6.15)

One thing to note is that it is not possible to choose nmax independently of the number
of modesM used for the exact diagonalization for the one-body potential, with nmax =
M always being true. Using this method it should also be possible to get accurate
results for species-dependent external potentials as the effective one-body Hamiltonians
can be calculated separately for the two species.
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6.4 Advantages (and disadvantages) of the effective
Hamiltonian approach

There exists a variety of methods for improving exact diagonalization results. For ex-
ample in [170] it was shown that a dramatic improvement in convergence properties
could be achieved by rescaling the interaction strength. In [172] an auxiliary param-
eter which can be used to optimize the basis was introduced which likewise led to
dramatic improvement. The latter method, however, targets a specific state, nomi-
nally the ground-state, while the former improves convergence of low-lying states as
well, but less so the higher one goes in the spectrum. This makes such methods less
useful for investigating the properties of the spectrum, as higher-lying states are not
necessarily more accurate than for the bare interaction approach. The effective inter-
action approach on the other hand, improves the results of excited states in addition
to the ground-state as can be seen in Fig. 6.1 and is therefore more suitable for quench
dynamics which requires access to a large part of the final Hamiltonian spectrum. In
the following sections I will show that the effective interaction approach leads to more
accurate results for a smaller number of modes M in general, which enables the study
of larger and more strongly interacting systems, since the size of the Fock-space Hamil-
tonian sets a hard limit beyond which full diagonalization is not feasible. The method
is therefore more about accuracy and pushing the limits than time-efficiency. Indeed,
building the Fock space Hamiltonian for the effective interactions is slower than for
the bare interaction with the evaluation of interaction integrals taking longer as nmax

is increased. However, this evaluation is only required once and the time required is
insignificant compared with the time required to calculate dynamical quantities. In
so far as the same accuracy can be obtained for a smaller Hilbert-space the method
therefore also leads to faster numerical evaluation of dynamics.

6.4.1 Identical particles in a harmonic trap

For two particles, the effective interaction trivially gives the exact results, as it is build
into the model-space, and a minimum of three particles is therefore required to gauge
whether or not the effective interaction actually improves convergence. I focus on three
particles as this allows me to go to a large number of modes M , while still retaining a
relatively small Hilbert space, but similar improvement of convergence is seen for N = 4
and in section 6.4.2 I will investigate the more complicated 2+2 case. In Fig. 6.1 the
different energies of 3 particles with g = 100 is plotted as a function of the number
of modes for the bare interaction and a variety of values for nmax. I have chosen the
strongly interacting value for two reasons. The first is that getting good convergence
for strongly interacting systems is more difficult than for weaker interactions and this
is therefore a good test of how well the method performs when pushed to the limit.
The second is that it enables a comparison with the TG-limit for which the energies are
known. Note that the numerical system is not actually in the TG-limit and the relative
difference between the calculated energy and the TG-energy plotted in Fig. 6.1 is not
the relative error from the exact solution at g = 100. Nevertheless, it is illustrative
and clearly shows that the bare interaction for the ground-state is not converged even
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at M = 40 (D = 11480) and overestimates the energy, which is known to be slightly
smaller than 4.5ω (the TG energy). This is unsurprising as it has been shown that the
error scales with M− 1

2 in this case [164]. The effective interaction gives better results,
including for excited states. In fact the same accuracy for the ground state can be
obtained for D = 220 (M = 10) as for the bare interaction at D = 11480 (M = 40).
For the n = 100 excited state on the other hand, D = 1540 (M = 20) is required to
have roughly the same accuracy as the bare interaction at D = 11480 (M = 40), but
this is still a dramatic reduction in Hilbert space size.

One potential drawback of the method is also clear from the figure. Namely, the
dependence on nmax makes the question of convergence slightly more complicated. It
is clear that for a small model-space nmax = 20 the results converge quickly with M .
However, as can be seen from the results for the ground-state, this value does not
correspond to the converged values for larger nmax. The model with nmax = 20 is
converged, but this does not correspond exactly to the original Hamiltonian. As nmax

increases, however, their values at M = 40 start to converge to the same value. This
means that there is a trade-off between convergence in terms of M and convergence in
terms of nmax, requiring an optimal choice of the latter parameter. For nmax →∞ the
bare interaction model would be recovered.

6.4.2 Two-component systems in harmonic trap

The method also works quite well for two-component systems. In this case, the effective
interaction must be implemented separately for each interaction term. Let us check the
convergence properties of the 2+2 system. For reasons similar to above I consider the
strongly interacting case of gA = gB = gAB = 100. Compared to the 3-particle system,
the amount of modes that can reasonable be dealt with is much smaller. I investigate
with a maximum of MA = MB = 18 corresponding to D = 29241. This in turn limits
the values of nmax,A, nmax,B, nmax,AB for which improved convergence can be achieved.
The results are displayed in Fig. 6.2. It turns out that the convergence properties are
particularly sensitive to nmax,AB and keeping this smaller than the other two generally
leads to better numerical results. Compared with the bare interaction, it is clear that
the results for these (relatively small) model spaces are still much closer to the real
values of the energy as the bare interaction overestimates the energy compared to the
TG-limit. Indeed, the bare interaction performs worse relative to the bare interaction
for the N = 3 case, although it should be noted that the error is not quite as large
for smaller values of gA, gB, gAB. The effective interaction energies are converging to
a similar value as nmax-values are slowly increased. Clearly, the 2+2 case is more
complicated than N = 3, 4 and one needs to be careful about the choice of model-
space, but improved accuracy can be achieved. Let me also note that mass-imbalanced
systems can be solved using the same method, utilizing the Talmi-Brody-Moshinsky
coefficents for mass-imbalanced systems [177] for the required Talmi transformation
and the HO basis sets for the different masses for the two species.
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Figure 6.1: The energies as well as the relative difference with the respective Tonks-energies
for the n = 1, 10, 100 states, as a function of the number of modes M for N = 3 particles
in a harmonic trap with g = 100. The black triangles correspond to the ED scheme with no
effective interaction. The remaining plots correspond to the effective interaction with nmax =
20 (blue triangles), nmax = 30 (red triangles),nmax = 40 (magenta triangles), nmax = 50 (blue
crosses) and nmax = 60 (red crosses).
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Figure 6.2: The energies as well as the relative difference with the respective Tonks-energies
for the n = 1, 100 states, as a function of the number of modes M for NA = 2, NB = 2
particles in a harmonic trap with gA = gB = gAB = 100. The black triangles correspond to
the ED scheme with no effective interaction. The remaining plots correspond to the effective
interaction with nmax,A = nmax,B = 20, nmax,AB = 12 (blue triangles), nmax,A = nmax,B =
20, nmax,AB = 10 (red triangles),nmax,A = nmax,B = 16, nmax,AB = 10(magenta triangles),
nmax,A = nmax,B = 14, nmax,AB = 10(blue crosses) and nmax,A = nmax,B = nmax,AB = 14(red
crosses). The insets show the same, but zoomed in on the relevant range for the effective
interaction values.
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6.4.3 Identical particles in a double-well potential

So far I have investigated the properties in a harmonic oscillator for which the effective
interaction approach is particularly well-suited since it relies on the HO basis which
in this case coincides with the SP basis of the external potential. It is therefore also
relevant to investigate how well the method performs in a different potential compared
with the bare interaction utilizing the SP eigenfunctions of that external potential in
its basis. To do this I incorporate the effective Hamiltonian approach for the external
potential part as described in section 6.3. I consider N = 3 particles in a double well
potential described by Vext(x) = −1

2
x2 + 0.0225x4 in the strongly interacting limit of

g = 100. As can be seen from Fig. 6.3 the effective interaction approach utilizing the
HO basis still converges much faster than the bare interaction utilizing the SP basis
of Vext(x). The results for the bare interaction for the n = 100 state is omitted as the
code runs into numeric problems for higher-lying states for this particular potential.
This shows another advantage of the effective interaction, it is seemingly more stable
towards such problems. One caveat to keep in mind is that for the mapping onto the
model-space to work, a HO basis with eigenfunctions that have a comparable spatial
extent as the eigenfunctions for Vext(x) is required.

6.5 Quench dynamics in two-component systems and
quantum speeds

This project is still in its early stages, but I include a few preliminary results in this
thesis as an example of an application of the improved ED technique. Note that while
the code utilized for these calculations was written by me, the actual calculations were
performed on the OIST cluster in collaboration with Tai Tran, another PhD student
in my unit.

The main aim of this project is to dynamically investigate the consequence of quenching
between the different correlation regimes described in [119]. Towards this end, an
investigation of post-quench dynamical observables such as the densities, momentum-
distribution and reduced density matrices is performed. Further characterization in
terms of derived quantities such as the coherence, the von Neuman entropy and survival
probabilities is also considered. Finally an attempt at establishing a link between the
instantaneous speed of the reduced density matrix time-evolution and the coherence
properties, similar to that proposed in [179], will be made. In this section I will
briefly note a few intriguing properties of one particular quench, namely going from
the phase-separated BEC-TG regime gA = gAB = 20, gB = 0 to the fully fermionized
regime gA = gB = gAB = 20.

In Fig. 6.4 the quantities related to the reduced single particle density matrix of the two
components are shown. There is a clear separation of time-scales visible for the speed
and the von Neuman entropy, both of which change dramatically within the first five
oscillator periods, but are relatively constant afterwards. However, the system has not
equilibrated in any meaningful sense as is clear from the single particle densities which
display large oscillations after this initial time-scale. However, a periodic oscillation is
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Figure 6.3: The energies as well as the relative difference with the respective Tonks-energies
for the n = 1, 10, 100 states, as a function of the number of modes M for N = 3 particles
in a double well trap with g = 100. The black triangles correspond to the ED scheme
with no effective interaction. The remaining plots correspond to the effective interaction
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nmax = 50 (blue crosses) and nmax = 60 (red crosses).



78 ED using effective few-body Hamiltonians

obtained after an initial reorganization in the first five oscillator periods corresponding
to the time-scale at which the speed and von Neuman entropies become constant.
Looking at the natural orbitals it is clear that for the coherence (the first orbital) the
equilibration-like behaviour of the speed and von Neuman entropy is not observed and
that this is therefore an effect that comes from taking into account multiple natural
orbital occupations as is required in both of these measures. A further understanding
of this separation of time-scales and how it can be understood is one of the current
aims of the project.

Additionally, it is observed that the speed with which the two subsystems evolve os-
cillates with respect to each other during the initial five oscillator periods. This is not
observed for the von Neuman entropy and is therefore a consequence of the natural or-
bitals, the time evolution of which is important for the speed. A further understanding
of the physical meaning of this is an interesting topic as well. Finally, quenches between
different regimes are of interest. For the quench showcased here the final Hamiltonian
is symmetric with respect to A and B which is why both the speeds and the entropies
go towards the same value at longer times. This is no longer true for different final
Hamiltonians.
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Chapter 7

"Optomechanics with a
position-modulated Kerr-type
nonlinear coupling" (originally
published as [2])

7.1 Introduction

This project deals with an open quantum system as opposed to the closed unitary
dynamics that has been the focus so far and it is related to the experimental platform
of solid-state nano-nodevices and cavity QED rather than cold atoms. Conceptually,
it therefore complements these other works by extending the concerns with dynamics
to open quantum systems, however a price has to be paid. Namely, the system can
no longer be treated exactly in the quantum regime and the main focus is on the
semi-classical limit. The choice of platform, however, ensures that the semi-classical
limit is experimentally relevant as many optomechanical experiments are performed
in this regime [18]. The details of the investigation are reported in [2]. Here I will
briefly summarise the study and results as well as discuss a few developments since the
publication of the paper.

The motivation for this study is the consideration of nonlinear light-matter interactions.
In general, much interest in optomechanical systems is that they provide a coupling of
a macroscopic mechanical element to the electromagnetic field of a cavity [18]. This
allows for many interesting features, such as red side-band cooling of the mechanical
element [180, 181], lasing [182] and precision sensing [183–186]. The mechanical element
and the cavity interact via radiation pressure, which pushes the mechanical element and
therefore changes the resonance frequency, making it dependent on the displacement of
the center-of-mass motion of the mechanical element q, i.e. ω(q̂). Since the harmonic
oscillator is described by ~ω(q̂)â†â this gives rise to a position-dependent interaction
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which is linear in the optical-field operators.

ω(q̂) ≈ ω(0) +
dω(q̂)

dq̂

∣∣∣∣
q̂=0

q̂ = ω0 − gLq̂ (7.1)

In [2] I suggest and conceptualize a position-coupling that is nonlinear in the field
operators. Such a coupling can be obtained from a χ(3) material described by HKerr =
η~â†â†ââ, i.e. a two-photon process. A position-dependent interaction is obtained if
the nonlinear coefficient depends on q, ie. η(q̂). If this can be engineered the nonlinear
coefficient will be given similarly to the linear coefficient as

η(q̂) ≈ η(0) +
dη(q̂)

dq̂

∣∣∣∣
q̂=0

q̂ = η0 − gNLq̂. (7.2)

In [2] I make some suggestions for how a position-dependence can be experimentally
engineered. The majority of the paper is concerned with a thorough analysis of the
consequences of this interaction, particularly in the resolved red sideband regime where
the mechanical element can be cooled down. This analysis is done utilizing the Quan-
tum Langevin formalism (see for example [187]) for which the Heisenberg equations are
modified to contain photonic losses in the cavity and mechanical dissipation associated
with the finite temperature of the mechanical element. Steady state classical solu-
tions are derived while linearised quantum fluctuations around these are investigated
semi-analytically.

7.2 Publication
Mathias Mikkelsen, Thomás Fogarty, Jason Twamley and Thomas Busch, Optome-
chanics with a position-modulated Kerr-type nonlinear coupling, Physical Review A,
96, 043832, 2017

7.3 Conclusion
The main takeaway of this analysis is that the effective non-linear coupling scales
with the square of the photon number which means that effects associated with the
strong-coupling regime can be seen even for small nonlinearites and at relatively low
laser powers. This means that efficient cooling can be obtained at lower laser powers.
Additionally the interplay between the nonlinear and linear interactions when they
have opposite sign leads to three stable solutions with associated jumps and hysteresis
behaviour.

The main result of this paper is the introduction of the position-modulated nonlinear
Kerr coupling and the investigation into its fundamental behaviour. Since its publi-
cation, some further investigations based on the Hamiltonian I proposed in [2] have
been undertaken by other researchers. In [188] an investigation of the photon blockade
effect utilizing the nonlinear coupling was undertaken. They found that it can greatly
enhance the photon blockade effect. In [189] they studied the blue sideband regime,
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where phonon lasing can be achieved [182], rather than the red side-band regime which
is optimal for cooling and was the main focus of our investigation. Due to the strong
scaling of the nonlinear interaction with the number of photons in the cavity, large
effective interactions required for phonon lasing can be achieved at very low powers.
Finally, a recent proposal for a precision measurement of the gravitational acceleration
g [190] is also based on the effective strong coupling obtained from the nonlinear cou-
pling. They found that improved accuracy for the same measurement time is obtained
in comparison with a scheme based solely on the linear optomechanical coupling as
proposed in [186].

The common theme of these investigations is the utilization of the strong effective
interaction which scales with the square of the photon number to achieve strong cou-
pling. Further investigations utilizing this might be proposed in the future. On the
other hand, a further analysis of the multi-stability obtained when the linear and non-
linear interactions are in competition has yet to be undertaken and might also be an
interesting project.
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Conclusion

Throughout this thesis I have investigated the dynamics of a variety of quantum sys-
tems. A short summary of the conclusions for each project is contained in this chapter,
for more detailed conclusions please see the conclusions at the end chapters 4,5 and
7.

I showed how quenching to a moving lattice allowed for probing the phases of the
many-body T-G gas in the lattice and how the critical region resulted in interesting
dynamical fluctuations of the order parameter. I have also shown how there is an in-
timate connection between the non-equilibrium excitations created by a quench and
the post-quench information scrambling as measured by the squared commutator of
canonical operators for two interacting particles in a harmonic trap. Particularly I
have shown that the time-averaged scrambling is proportional to the work fluctua-
tions. In a continuum system such as the one under investigation it is very difficult
to directly measure the operator scrambling and this connection therefore establishes
a way to experimentally probe the scrambling for the harmonic trap with interacting
particles which is a fundamental and important model in cold atom physics. I have
also developed an improved method for exact diagonalization of few-boy continuum
systems in chapter 6, which generally improves the convergence properties of even
highly excited states and enables the investigation of quench dynamics for N = 4, 5
particles with finite interactions. This is important for further investigations of the
topics considered in chapter 4 and particularly chapter 5 as well as other investigations
of quench dynamics for interacting systems.

In chapter 7 I introduced and showed how to engineer a coupling between a Kerr non-
linear medium and the position of a mechanical element coupled to a cavity. I showed
that this nonlinear Kerr coupling gives a much larger effective light-matter coupling
than the usual linear optomechancial coupling, allowing one to enter the strong coupling
regime at lower laser powers. This was shown by investigating the classical steady-
state solutions and the dynamics associated with the quantum fluctuations. This large
effective coupling is a useful resource for quantum engineering.

Overall I have shown how quenched and driven dynamics can be utilised to probe the
properties of few- and many-body Hamiltonians utilizing three examples. In chapter 4
and 5 the unitary dynamics of few- and many-body cold atomic gases was considered,
while the driven-dissipative mechanics of a light-matter coupled optomechanical system
was considered in chapter 7.
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Appendix A

Appendix

In this appendix I will present some supplemental material relevant for chapter 5 in
the thesis. This includes a slightly more in-depth analysis of the matrix-elements and
a comparison of the position operator results with momentum operator results.

A.1 Analysis of the matrix elements Kjk and Jjk

The important coefficients that determine the behavior of the emergent matrix elements
are given by Eq. (5.27). Let us first consider what happens for large m, j. To do this
the behaviour of the quantities in Eq.(5.27) must first be established. The harmonic
oscillator eigenfunctions evaluated at zero argument ψ2n(0) are given by

ψ2m(0) =

(−1

2

)m(
1

π

)1/4
√

2m!

m!
, (A.1)

which, by utilizing Stirling’s formula, can be evaluated for large m as

ψ2m(0) ≈ (−1)mm−1/4 ∝ m−1/4. (A.2)

The behaviour of the digamma functions for solutions of Eq. (3.18) is complicated, but
numerically it is found that Ωg

2j ∝ j−1/4 for large j. The energy of the 2j-th state can
be expressed as in Eq. (3.19) in the main text. For large j, one has ∆j ∝ j−1/2 (see
[94]).

Let us now consider the dependence of αxm,j on j. Using Eq. (3.19) one can rewrite the
position coefficients as

αxm,j = aω
√

2m+ 1ψ2m(0)Ωg
2j

×
(

1

(2m− 2j + ∆j)
− 1

(2m+ 2− 2j + ∆j)

)
. (A.3)

For m = j and m = j − 1 the fractions scale ∝ j1/2 in the limit of large j, while
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Figure A.1: The main plot shows the absolute values of Kj,j (magenta line), Kj,j+1 (blue
line), Jj,j (red line) and Jj,j+1 (black line) as a function of j, while the insert shows the same
for the true values.

the remaining terms don’t scale with increasing j, which means that they become
insignificant in comparison. As m = j this means that the coefficients themselves scale
as αxj,m ∝ j1/2 in the limit of large j. From Eq. (5.24) it is clear that only terms in
which αm,jαm,k are large can contribute to Kjk. However, these are only large when
j = m, j = m + 1 and k = m, k = m + 1 is simultaneously true which happens
when k = j, k = j − 1, k = j + 1. Similarly from Eq. (5.25) only terms in which
αn,kαn−1,j are large contribute to Jjk. This is only fulfilled when j = n− 1, j = n and
k = n, k = m + 1 is simultaneously true, which is the case for k = j, k = j + 1, k =
j + 2. So for large j these values will be dominant, as the other matrix-elements
are of insignificant size in comparison. From the preceding discussion as well as the
form of Eq. (5.24),(5.25) the relevant terms all scale as j2. These observations are
all confirmed by a full numerical evaluation of Kjk, Jjk with the j2 scaling shown in
Fig. A.1. Additionally, it is found that the following relation between the important
matrix-elements hold Kj,j+1 = Kj,j−1 = −Jj,j = Jj,j+2 = −ξ1j2 and Kj,j = −Jj,j+1 =
ξ2j

2 even at relatively small values of j .

A.2 Correlation functions for other combinations of
canonical operators

In chapter 5 the main focus was on [x̂(t), x̂]2 as no regularisation of the delta-function is
required and it contains the essential physics of the scrambling. In this section the last
claim will be backed up by investigating other combinations of canonical operators. In
order to do this a short-range Gaussian interaction described by Vint(x) = κ 1

σ
√
2π
e−x

2/σ2

is utilized. I consider κ = 10, σ = 0.04 which has an energy spectrum that corresponds
well to g = 10 for the delta-function interaction. The time-dependent correlation
functions are calculated numerically employing the Lagrange-mesh method [162] and
the time-average is calculated in a time-interval t ∈ [1000π, 2000π] which is large
enough to get a representative average (see chapter 5.6.2 for a further discussion of
this). In Fig. A.2(a) ĪAB as a function of Īxx for a series of quenches where γ ∈ [1, 20]
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Figure A.2: (a) Īxp (red) Īpx (blue) and Īpp (black) as a function of Īxx along with fits to
ĪAB = Īxx + constant. The crosses correspond to γ > 1, while the full circles correspond to
γ < 1. (b) same as (a), but for D̄xp (red) D̄px (blue) and D̄pp (black) as a function of D̄xx.
Note that the black and the red are on top of each other in (b), which is why the red circles
cannot be seen.

and γ ∈ [1, 1/20] is shown. ĪAB for any combination of operators only differs from Īxx
by a constant, regardless of γ as can be seen from the graph where fits to Īxx plus
a constant are shown. The behaviour for γ > 1 and γ < 1 is qualitatively similar,
regardless of the combination of operators. In Fig. A.2(b) the same is plotted, but
for D̄AB. Here the behaviour is dramatically different for different operators. D̄px and
D̄xx (both of which probe the time-dependence of x̂(t)) have a linear relationship. For
squeezing the trap this results in linear growth of D̄px with D̄xx (blue full circles in the
plot), while for γ > 1 they are both given by a small constant resulting in all points
being on top of each other centered at (0,0) in the figure (blue crosses). D̄pp and D̄xp

(corresponding to probing the time-dependence of p̂(t)) also have a linear relationship,
as can be seen from the plot, however, these two sets behave very differently from each
other. For squeezing the trap the full black and red circles corresponding to D̄pp and
D̄xp remain small and constant as D̄xx grows with γ. For opening the trap on the other
hand the black and red crosses grow with γ, while D̄xx remains constant. Probing
x̂(t) and p̂(t) therefore results in the opposite behaviour with respect to opening and
squeezing the trap for D̄Ax and D̄Ap which makes the overall scrambling different.
ĪAB however, always gives a similar contribution to the scrambling, regardless of the
combination of canonical operators.
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