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Abstract
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes
where the commonly used local (frequentist) analysis based on the Cramér–Rao bound (CRB) is
not well defined. In particular, it applies when no initial information about the parameter value is
available, e.g., when few measurements are performed. Here, we consider three paradigmatic
estimation schemes in continuous-variable (CV) quantum metrology (estimation of
displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective.
For each of these scenarios, we investigate the precision achievable with single-mode Gaussian
states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation
strategies that combine good performance with the potential for straightforward experimental
realization in terms of Gaussian states and measurements. Our results provide practical solutions
for reaching uncertainties where local estimation techniques apply, thus bridging the gap to
regimes where asymptotically optimal strategies can be employed.

1. Introduction

Quantum sensing devices hold the promise of outperforming their classical counterparts. However, since
classical strategies can achieve arbitrary precision, provided that sufficiently many independent probes are
used, the advantage of quantum sensing devices does not lie in the achievable precision. Instead, quantum
strategies provide a faster increase in precision with n, the number of probes. In an idealised quantum
sensing scenario, the estimation precision can in principle scale at the so-called Heisenberg limit (HL) of
1/n as n →∞. In contrast, classical strategies can at most achieve a precision scaling of 1/

√
n, the so-called

standard quantum limit.
In the context of quantum optics, which we are interested in here, the possibility of preparing states with

uncertain photon number means that the number of probes is uncertain. Therefore, the scaling usually
refers to resources such as the mean photon number or mean energy of the probe systems. Nevertheless,
general quantum strategies can result in a quadratic scaling advantage and thus outperform ‘classical’
strategies using the same resources. However, two important factors have to be considered.

First, preparing optimal or at least close to optimal probes and carrying out the corresponding joint
measurements can be complicated and technologically demanding. Moreover, in the presence of
uncorrelated noise the scaling advantage with increasing n persists only up to a certain point, beyond which
only a (potentially high) constant advantage remains [1–3]. Even if one disregards any additional costs
that might incur from trying to combat noise [4, 5], overheads from complex preparation procedures and
the resulting low probe state fidelities may thus invalidate the expected benefits. Consequently, it is
important to identify estimation strategies that can outperform ‘classical’ approaches while being feasibly
implementable as well as robust against noise. For instance, for estimation problems in continuous-variable
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(CV) systems, Gaussian states and measurements are generally considered to be comparably easily
implementable. They allow achieving the HL for many scenarios within the local, also called ‘frequentist’,
paradigm, including the local estimation of phases, displacements, squeezing and others [6–15].

Second, many of these insights are based on the Cramér–Rao bound (CRB). The CRB applies for
estimation with unbiased estimators. It provides a lower bound for the precision via the inverse Fisher
information (FI). Estimators that are unbiased locally (i.e., for specific parameter values) are readily
available, but profiting from their unbiasedness requires precise prior information on the estimated
parameter. The ‘local’ approach is therefore only well-justified when the number of independent probes is
sufficiently large (hence ‘frequentist’), in such a case, the CRB provides the asymptotically achievable limit
on scaling. However, when the available number of probes is limited (some authors [16–18] refer to
‘limited data’ in this context) then local estimation is not well defined. Resulting pathologies can lead to
scaling seemingly better than the HL [19, 20] and even to an unbounded FI for finite average photon
numbers [21]. The available prior information also has to be carefully considered when calculating the
CRB. For instance, for phase estimation with N00N-states, a growing (average) photon number n implicitly
assumes that the prior interval is narrowing with 2π/n. If this is not accounted for, part of the scaling
advantage comes from the increasing prior information, as pointed out in references [22, 23].

This motivates the study of Bayesian estimation approaches for quantum sensing, which we consider
here. In Bayesian estimation, one’s initial knowledge of the parameter is described by a probability
distribution (the prior) which is updated as more measurement data becomes available. The Bayesian
approach is valid for an arbitrary number of probes and can in this sense be considered to be more rigorous
than local estimation, at the cost of introducing a dependence on the prior. However, the influence of the
prior vanishes for larger number of measurements, since the prior knowledge becomes less and less relevant
with growing amount of measurement data. In practice, one may pursue a hybrid strategy, where initial
Bayesian estimation is employed to sufficiently narrow down the possible range of the parameter before
switching to a local estimation strategy with many repetitions.

Here, we consider Bayesian estimation scenarios for quantum optical fields. While much progress has
been made for CV parameter estimation within the local paradigm, in particular, regarding the calculation
of the quantum Fisher information (QFI) [6–9, 11–15] and the associated optimal strategies achieving the
CRB [24–29], CV parameter estimation in the Bayesian setting is much less explored. There, recent work
has provided insight into Bayesian estimation with discrete [30] and CV systems using some specific probe
states, including coherent states [16–18, 31], N00N states [16, 32], and single-photon states [33].
Determining efficient and practically realizable strategies for Bayesian estimation in quantum optical
systems can thus be considered an important link in the development of quantum sensing technologies,
which this paper aims to establish.

Within the Bayesian paradigm, the additional freedom represented by the choice of the prior exacerbates
the difficulty of determining optimal estimation strategies, making it all the more necessary to identify
practically realizable strategies that can also be easily adapted. Here, in particular, we are interested in
identifying strategies for Bayesian estimation considering Gaussian states and Gaussian measurements.
Gaussian states not only permit an elegant mathematical description in phase space, but are also especially
easy to realise experimentally and are by now broadly used [34, 35]. Gaussian measurements, i.e.,
homodyne or heterodyne detection, have been shown to outperform number detection for few repetitions
[17] and to be more robust against noise [27, 36, 37] than photon number detection or ‘on/off’
detection—which discriminates only between the absence or presence of photons.

To broadly investigate the performance of Gaussian states and measurements in Bayesian metrology, we
consider three paradigmatic problems: the estimation of phase-space displacements, phase estimation, and
the estimation of single-mode squeezing. For each task, we provide practically realisable strategies based on
single-mode Gaussian states combined with homodyne or heterodyne detection that allow efficiently
narrowing the prior to the point where local estimation strategies may take over. To set the stage for this
investigation, we briefly review the method of Bayesian estimation and relevant concepts of Gaussian
quantum optics in section 2. In section 3, we focus on the estimation of displacements for Gaussian priors,
and provide analytical results for the achievable precision using single-mode Gaussian states for both
homodyne and heterodyne detection. In sections 4 and 5, we proceed with similar investigations of Bayesian
estimation of phases and squeezing parameters, where we compare the performance of squeezing and
displacement of the probe system. Finally, we discuss our results and provide an outlook and conclusions in
section 6.
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Figure 1. Bayesian quantum parameter estimation. In Bayesian estimation scenarios, prior information encoded in a probability
distribution p(θ) is updated based on available measurement data such as observing a particular measurement outcome m,
resulting in a posterior conditional probability distribution p(θ|m). In quantum parameter estimation, the measurement
procedure consists of preparing the system in a probe state ρ on which the parameter θ is encoded by a suitable transformation.
The measurement is represented by a positive-operator valued measure (POVM) with elements Em representing the possible
outcomes m.

2. Framework

In this section, we provide a brief overview of the relevant concepts in Bayesian estimation (section 2.1) and
Gaussian quantum optics (section 2.2), before we present our results in the following sections. For a more
extensive overview of classical Bayesian estimation theory we refer to [38–40], while more details on local
and Bayesian estimation in the quantum setting can be found, e.g., in the appendix of [41].

2.1. Bayesian quantum parameter estimation
2.1.1. The Bayesian estimation scenario
The framework of Bayesian parameter estimation revolves around updating initially available information
(or a previously held belief) based on new measurement data via Bayes’ theorem, as we will explain in the
following. The initial knowledge of the estimated parameter θ is encoded in a probability distribution p(θ)
called the prior distribution function or ‘prior’ for short. It captures all our beliefs (system properties,
expertise) and information (prior experimental data) about the system under investigation. When a
measurement is performed on the system, the probability p(m|θ) to observe the measurement outcome m
in a system characterised by the parameter θ is called the likelihood, and can be calculated from the
properties of the model used to describe the system and the measurement. Combined with the prior p(θ),
the likelihood leads one to expect the outcome m with probability

p(m) =

∫
dθ p(m|θ) p(θ), (1)

where the integral is over the support of the prior and it is to be understood as a sum in case of a discrete
parameter. The conditional probability that the estimated parameter equals θ, given that measurement
outcome m was observed, can then be calculated via Bayes’ law, i.e.,

p(θ|m) =
p(m|θ) p(θ)

p(m)
. (2)

The function p(θ|m) is called the posterior distribution of the system parameter, after we have updated our
belief with newly available data. The updating procedure, illustrated in figure 1, can be repeated arbitrary
many times, where the posterior of one step serves as the prior in the next step and the measurement
procedure leading to p(m|θ) can in principle also be adapted from step to step.

After concluding the measurements, the posterior distribution represents a complete description of all
available information about the parameter. Nevertheless, it is often desirable (even if not strictly necessary)
to nominate an estimator θ̂ and a suitable variance to express the result of the estimation procedure. While
the estimator assigns a specific value for θ to any prior or posterior, the variance quantifies the associated
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uncertainty in the estimate. For parameters θ ∈ R, the canonical choice for an estimator is the mean value
of the posterior distribution

θ̂(m) = 〈θ〉 =
∫

dθ p(θ|m) θ. (3)

In this case, a valid figure of merit for the confidence in this estimate is the variance of the posterior

Vpost(m) =

∫
dθ p(θ|m)

[
θ − θ̂(m)

]2
. (4)

A wide posterior with large variance suggests there is still high uncertainty in our belief about the
parameter, whereas a narrow distribution with small variance indicates high confidence in our estimator.
Since the variance of the posterior generally depends on the measurement outcome, a good figure of merit
for the expected confidence in the estimate provided by a particular measurement strategy is the average
variance of the posterior,

V̄post =

∫
dm p(m) Vpost(m), (5)

which we will use here to quantify the precision of the estimation process. However, note that in some cases,
the mean and mean square error variance above need to be replaced by more appropriate quantifiers. For
instance, in the case that the parameter in question is a phase, where θ = −π and θ = π are identified,
θ̂(m) and Vpost(m) can be replaced by suitable alternatives, as we will discuss in in section 4. In any given
setting, the task is then to determine estimation strategies that provide sufficiently high precision.

The precision of the estimation procedure generally depends on the shape of the prior, which can in
principle be an arbitrarily complicated distribution. Uninformative priors generally influence the outcome
less than narrow priors, so one should always be careful which amount of information should be encoded in
the prior. However, the influence of the prior on the final estimate generally reduces with increasing
number of measurements, and can be argued to become irrelevant asymptotically, see, e.g., [38, chapter 13].
Consequently, encoding one’s knowledge only approximately using a family of probability distributions
with only few degrees of freedom can help to facilitate a more straightforward evaluation of the
performance of the chosen strategy, while preserving its qualitative features.

For instance, a class of probability distributions is said to be conjugate to a given likelihood function, if
priors from within this class result in posterior distributions that belong to that class as well. Choosing the
prior to be conjugate to the likelihood in this way makes the updating particularly easy, since this only
requires the parameters to be updated to define the posterior distribution uniquely within the chosen class
of probability functions, instead of requiring an entirely new calculation to determine the posterior.
Gaussian distributions are self-conjugate with respect to the mean, e.g. for Gaussian likelihood functions
encoding the parameter to be estimated in their mean, the class of conjugate priors are Gaussian
distributions as well. The following proposition is a well known result in statistical theory [38–40, 42].

Proposition 1. Let the likelihood be Gaussian distributed, p(m|θ) = Nm

(
m̄(θ), σ̃2

)
∝ Nθ

(
θ̄(m),σ2

)
, where

θ̄(m) is the mean of the distribution in θ, the parameter to be estimated. Then a Gaussian prior is the natural
conjugate, i.e., if the prior is Gaussian distributed with p(θ) = Nθ(μ0,σ2

0), the posterior distribution p(θ|m) is
also Gaussian with mean value μp =

[
σ2μ0 + σ2

0 θ̄(m)
]
/(σ2

0 + σ2) and variance σ2
p = (σ2σ2

0)/(σ2
0 + σ2).

2.1.2. Bayesian estimation using quantum systems
The framework of Bayesian estimation can easily be applied to a quantum setting, as illustrated in figure 1.
In this case the parameter θ one is interested in estimating is encoded by a transformation that can generally
be a completely positive and trace-preserving map. However, in many cases, including those we study here,
the transformation is considered to be a unitary Uθ that acts on an initially prepared probe state,
represented by a density operator ρ. The resulting encoded state is then given by ρ(θ) = UθρU†

θ . The
measurement of the encoded state can then be represented by a positive operator-valued measure (POVM)
with elements Em � 0, whose integral (or sum in case of a discrete set of possible measurement outcomes
m) evaluates to the identity on the Hilbert space of the probe, i.e.,

∫
dm Em = 𝟙. In the quantum case the

likelihood is then given by p(m|θ) = Tr [Emρ(θ)].
In local estimation scenarios with unbiased estimators θ̂, the CRB gives a lower bound for the variance

of the estimator in terms of the inverse FI I
[
p(m|θ)

]
, that is, V(θ̂) � I[p(m|θ)]−1. Here, the FI depends

only on the likelihood function and is given by

I
[
p(m|θ)

]
=

∫
dm p(m|θ)

[
∂

∂θ
log p(m|θ)

]2

. (6)

4
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In the asymptotic limit of infinite sample size, the CRB is always tight, since it is saturated by the maximum
likelihood estimator, which becomes unbiased in this limit, see e.g., [43]. Any local estimation problem can
thus be reduced to determining an estimation strategy with a likelihood p(m|θ) corresponding to as large a
FI as possible. In the quantum setting, this leaves us with the task of determining suitable probe states ρ and
measurements {Em}m. The optimisation of the FI over all POVMs can be carried out analytically, leading to
the QFI I [ρ(θ)], and the corresponding quantum CRB [27, 44], V(θ̂) � 1/I [ρ(θ)]. The QFI can be

expressed in terms of the Uhlmann fidelity F(ρ1, ρ2) =
(

Tr
√√

ρ1ρ2
√
ρ1

)2
as

I [ρ(θ)] = lim
dθ→0

8
1 −

√
F [ρ(θ), ρ(θ+ dθ)]

dθ2
. (7)

For the Bayesian estimation scenario, a similar bound exists. The Van Trees inequality bounds the
average variance from below according to

V̄post �
1

I
[
p(θ)

]
+ Ī

[
p(m|θ)

] , (8)

where I
[
p(θ)

]
=
∫

dθ p(θ)
[

∂
∂θ

log p(θ)
]2

is the FI of the prior and Ī
[
p(m|θ)

]
=
∫

dθ I
[
p(m|θ)

]
p(θ) is the

average FI of the likelihood [45, 46]. This inequality is often referred to as the Bayesian CRB, see, e.g., [47].
In contrast to the CRB in the local scenario, this bound is not tight, which means there might not exist a
strategy achieving the equality.

In a Bayesian quantum estimation problem, the Van Trees inequality can be modified to a Bayesian
version of the quantum CRB by noting that the FI is bounded from above by the QFI,
I [ρ(θ)] � I

[
p(m|θ)

]
. Moreover, if the parameter to be estimated is encoded by a unitary transformation

Uθ, the QFI is independent of θ. Consequently, the average FI can be bounded by the QFI to obtain the
Bayesian quantum CRB

V̄post �
1

I
[
p(θ)

]
+ I [ρ(θ)]

, (9)

which gives a lower bound for the average variance for all possible POVMs [41]. As before with
equation (8), this bound is not tight.

While well-known methods for constructing optimal POVMs for fixed probe states exist for local
estimation, optimization of the probe state and measurements for Bayesian estimation has to be carried out
on a case-by-case basis and is typically challenging. At the same time, states and measurements that are
optimal for a given prior may require complicated preparation procedures while generally no longer being
optimal after even a single update. Consequently, it is of interest to devise measurement strategies for
Bayesian estimation that are easily realizable and provide ‘good’ performance for different priors. Here, we
provide and examine such strategies for a range of estimation problems in quantum optical scenarios.

2.2. Gaussian quantum optics
As we established before, we are interested in the analysis of scenarios where probe states are quantum states
of the electromagnetic field. In particular, our goal is studying the performance of Gaussian states. To set
the stage for this investigation, we will here briefly summarize the relevant concepts of Gaussian quantum
optics. For a more extensive treatment of CV systems and Gaussian quantum optics we refer the reader to
the references [48, 49] and for the particular context of quantum information processing cf references
[50–55]. Multimode optical fields can be represented as collections of bosonic modes. We consider a CV
system that consists of N bosonic modes, i.e., N quantum harmonic oscillators. To each mode, labelled k,
one associates a pair of annihilation and creation operators, âk and â†k, respectively. These mode operators

satisfy the bosonic commutation relations [âk, â†l ] = δkl. The mode operators can be combined into the

quadrature operators q̂k = (âk + â†k)/
√

2 and p̂k = i(â†k − âk)/
√

2. These operators correspond to the
generalized position and momentum observables for the mode k. They have continuous spectra, and
eigenbases {|q〉}q∈R and {|p〉}p∈R, respectively. In the simplectic form [56], the quadrature operators are
collected in one single vector x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T.

The state of such an N-mode system is described by a density operator ρ ∈ D(H⊗N), a positive
(semi-definite) and unit trace operator. Alternatively, the state of the system can be represented by its
Wigner function W(x) [57], i.e., a quasiprobability distribution in the 2N-dimensional phase space with real
coordinates qi, pi ∈ R, collected in a vector x = (q1, p1, . . . , qN , pN )T.
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Figure 2. Contours of the Wigner functions for single-mode Gaussian states. The Wigner functions are given by Gaussian
distributions of the form equation (10), and are characterised by a complex displacement α, a real squeezing strength r and a
squeezing angle ϕ. The illustration compares a displaced vacuum state (r = 0) on the left-hand side and a squeezed displaced
state with r > 0 and ϕ = 0 on the right-hand side. The width of the latter Wigner function is reduced in the q̂-quadrature and
increased in the p̂-quadrature with respect to the coherent state.

2.2.1. Gaussian states
In the cases where the Wigner function of the state is a multivariate Gaussian distribution of the form

W(x) =
exp[−(x − x̄)TΓ−1(x − x̄)]

πN
√

det(Γ)
, (10)

the states are called Gaussian. Gaussian states are fully characterized by its vector of first moments
x̄ = Tr(x̂ρ) and its covariance matrix σ = (σij) = 1

2Γ. The real and symmetric 2N × 2N covariance matrix
collects the second moments σij = 〈{x̂i − 〈x̂i〉, x̂j − 〈x̂j〉}〉/2. Examples for Gaussian states include the
vacuum state, thermal states as used, e.g., to describe black-body radiation, or coherent states modelling the
photon distribution in a laser. The full description via the vector of first moments and the covariance
matrix allows one to completely and compactly capture an important class of familiar states in an
infinite-dimensional Hilbert space via a finite number of degrees of freedom.

In this paper we investigate the performance of single-mode Gaussian states for Bayesian parameter
estimation. More specifically, we consider coherent and displaced-squeezed states. Coherent states are the
right-eigenstates of the annihilation operator âk such that âk|α〉k = α|α〉k and form a basis in the Hilbert
space Hk. They result from applying the displacement operator of the coherent amplitude α ∈ C,

D̂k(α) = exp
(
αâ†k − α∗âk

)
, (11)

to the vacuum |0〉k, such that |α〉k = D̂k(α)|0〉k. Coherent states are states with the same covariance matrix
as the vacuum state. For a single-mode coherent state |α〉k, the first moment is x̄ =

√
2[�(α), I(α)]T and

the second moment is the identity matrix divided by 2, meaning that the variance both in q̂k and p̂k equals
1/2, saturating the uncertainty relation in a balanced way.

Coherent states are not the only states saturating the uncertainty relation. Indeed, squeezed states are a
larger class of states with this property, while allowing for unbalanced variances of the two canonical
quadratures for each mode, cf figure 2. Squeezed states are obtained by the action of the squeezing operator,

Ŝk(ξ) = exp

[
1

2
(ξ∗â2

k − ξâ†2
k )

]
, (12)

on the vacuum |0〉k. The states Ŝk(ξ)|0〉k are characterized by a complex parameter ξ = reiϕ, where r ∈ R is
the so-called squeezing strength, and ϕ ∈ [0, 2π) is the squeezing angle.

Every pure single-mode Gaussian state has minimal uncertainty and can be generated by the combined
action of squeezing and displacement operators on the vacuum state. Such states are therefore entirely
specified by their displacement parameter α ∈ C, their squeezing strength r ∈ R, and their squeezing angle
ϕ ∈ [0, 2π). If squeezing is restricted to a real parameter only, then also a phase rotation

R̂k(θ) = exp
(
−iθâ†kâk

)
, (13)

is needed to describe the most general pure single-mode Gaussian state. The vector of first moments of such
a displaced squeezed state |α, reiϕ〉 = D̂(α)Ŝ(ξ)|0〉 = D̂(α)R̂(ϕ/2)Ŝ(r)|0〉 is given by x̄ =

√
2[�(α), I(α)]T

6
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and its covariance matrix is

σ =
1

2

(
cosh 2r − cos ϕ sinh 2r sin ϕ sinh 2r

sin ϕ sinh 2r cosh 2r + cos ϕ sinh 2r

)
. (14)

A unitary transformation is called Gaussian, if it maps Gaussian states into Gaussian states. This class of
unitary operations is generated by Hamiltonians that are (at most) second order polynomials of the mode
operators. Notice that every single-mode Gaussian unitary operation can be decomposed into displacement,
rotation, and squeezing operations. In addition to having a relatively straightforward theoretical
description, Gaussian states and Gaussian transformations are also especially relevant in practice, since they
are typically easy to produce and manipulate experimentally [34, 35].

2.2.2. Gaussian measurements
Any measurement can be described by a positive-operator valued measure (POVM). In CV quantum
information, it is common to use continuous POVMs, that is, POVMs that are continuous sets of operators
and a continuous range of measurement outcomes. A measurement is called Gaussian if it gives a Gaussian
distribution of outcomes whenever it is applied to a Gaussian state. Gaussian measurements that are
frequently considered in the context of CV quantum information are homodyne [58, 59] and heterodyne
detection [60]. Homodyne detection corresponds to the measurement of a mode quadrature, for example q̂.
In this case, the POVM consists of projectors onto the quadrature basis, {|q〉〈q|}q∈R. For heterodyne
detection the POVM elements are projectors onto coherent states { 1

π
|β〉〈β|}β∈C. Moreover, we note that it

has recently been shown that every bosonic Gaussian observable can be considered as a combination of
(noiseless and noisy) homodyne and heterodyne detection [61].

3. Displacement estimation

We now consider Bayesian estimation of displacements using Gaussian states and Gaussian measurements.
That is, we assume a displacement operator D̂(α) as in equation (11) acts on our system, initially prepared
in a Gaussian probe state. We then want to estimate the unknown displacement parameter α = αR + iαI,
with αR,αI ∈ R. To this end, we focus on estimation strategies based on heterodyne and homodyne
detection. These measurements are covariant under the action of displacement in the sense that the
probability distribution obtained by displacing the probe state gives the same probability distribution
translated by the displacement parameter in the parameter space [62]. Without loss of generality, we can
therefore assume that the initial probe state has not been displaced from the origin, i.e., that our probe state
is a squeezed vacuum state |ξ〉 = Ŝ(ξ)|0〉 with Ŝ(ξ) defined in equation (12). We further assume that our
prior knowledge of the displacement is encoded in a Gaussian distribution of width σ0 that is centered
around α0, i.e.,

p(α) =
1

2πσ2
0

exp

(
−|α− α0|2

2σ2
0

)
. (15)

Our goal is then to examine the performance of the estimation strategies based on heterodyne and
homodyne detection, including the respective asymptotic behaviour, both in the limit of high photon
numbers and of repeated measurements, and compare the respective results.

3.1. Heterodyne measurement
Let us first consider heterodyne detection, where the measurement is described by the POVM { 1

π |β〉〈β|}β∈C.
The probability to obtain the measurement outcome β, given a displacement of α, is

p(β |α) =
1

π
Tr
[
|β〉〈β|D̂(α)|ξ〉〈ξ|D̂†(α)

]
=

1

π
F
(
|β − α〉, |ξ〉

)
. (16)

Here, F (ρ1, ρ2) is the Uhlmann fidelity of the states ρ1 and ρ2 (defined in section 2.1.2), which reduces to
F
(
|ψ〉 , |φ〉

)
= | 〈ψ |φ〉 |2 for pure states. For two Gaussian states, the fidelity can be written in terms of the

respective first moments x̄1 and x̄2, and second moments Γ1 and Γ2 (cf [7]) as

F(ρ1, ρ2) =
2 exp[−(x̄1 − x̄2)T(Γ1 + Γ2)−1(x̄1 − x̄2)]√

|Γ1 + Γ2|+ (1 − |Γ1|)(1 − |Γ2|) −
√

(1 − |Γ1|)(1 − |Γ2|)
. (17)

For simplicity we now assume that our probe state is squeezed only along one fixed direction, i.e.,
ϕ = 0. This simplifies the following calculation considerably. In particular, this allows us to write the
fidelity, the likelihood, and posterior distribution as products of the corresponding distributions for the real
and imaginary part of the displacements, respectively. In contrast, for the general case of probe states

7
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squeezed along arbitrary directions, the resulting formulas are unwieldy and complicated, but qualitatively
yield the same behaviour as for ϕ = 0. We therefore refrain from presenting these calculations here.

In our case, we have ρ1 = |β − α〉〈β − α| and ρ2 = |ξ〉〈ξ|, for which the first moments are

x̄β−α =
√

2

(
�[β − α]
I[β − α]

)
=

√
2

(
βR − αR

βI − αI

)
and x̄ξ =

(
0
0

)
,

while the second moments are represented by

Γβ−α = 𝟙2 and Γξ =

(
e−2r 0

0 e2r

)
,

respectively. Accordingly, p(β|α) from equation (16) becomes

p(β |α) =
exp

[
− er(βR−αR)2+e−r(βI−αI)

2

cosh r

]
π cosh r

= p(βR|αR) p(βI|αI), (18)

where the distributions p(βi|αi) for i = R, I are given by

p(βi|αi) =

√
2 exp

[
− 2(βi−αi)

2

1+e∓2r

]
√
π(1 + e∓2r)

. (19)

Here and in the following equations, the upper and lower signs in ± and ∓ correspond to the subscripts
i = R and i = I, respectively, i.e., for i = R, the respective upper signs apply, while the lower signs apply for
i = I. With this expression for the likelihood and with the prior from equation (15), one can use Bayes’ law
[equation (2)] to calculate the posterior distribution, the estimators and the (average) variance. This allows
one to evaluate the average variance for different estimation scenarios. We rely on such an approach in the
next sections. However, in the special case where both prior and likelihood are Gaussian, these two
quantities are conjugate to each other. Following proposition 1, the posterior is therefore also Gaussian, and
we can write down the mean and variance of the posterior directly by inspecting the likelihood and the
prior. That is, by noting that σ2 = (1 + e∓2r)/4, μ0 = α0,i, and θ̄(m) = βi, proposition 1 provides the mean
and variance of the distributions p(αi|β i). Again using subscripts i = R, I to denote real and imaginary
parts, respectively, the means are

α̂i(βi) =
4βiσ

2
0 + α0,i(1 + e∓2r)

4σ2
0 + 1 + e∓2r

, (20)

which we choose as estimators for the real and imaginary part of the parameter α, and the variances are

Var[p(αi|βi)] =

[
1

σ2
0

+ 2(1 ± tanh r)

]−1

. (21)

We then define the total variance of the posterior p(α|β) for the complex parameter α as

Var[p(α|β)] =

∫
dα p(α|β) |α− α̂(β)|2. (22)

Because the real and imaginary parts become independent, we can further write the total variance as the
sum of the variances of the two independent estimation parameters, i.e.,

Var[p(α|β)] = Var[p(αR|βR)] + Var[p(αI|βI)]. (23)

After inserting equation (21) twice, the latter expression is independent of β and therefore it already
represents the average total variance V̄post we are interested in determining.

Moreover, it depends only on the variance σ2
0 of the prior and the squeezing strength r of the probe

state. For a fixed prior, the average posterior variance of both coordinates from equation (23) is minimized
for r = 0, that is, when there is no squeezing of the probe state. We thus have

V̄post(r) � V̄post(r = 0) =
2σ2

0

1 + 2σ2
0

. (24)

However, squeezing can help to reduce the variance in one coordinate, but this reduction comes at the cost
of increasing the variance of the other coordinate with respect to the case where r = 0. Irrespective of the
squeezing strength, we observe that the variances for both phase space coordinates decrease with respect to
the prior, but only slightly. When one is interested in reducing the variance in only one of the coordinates,
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say αR, one may note that the variance decreases monotonically for increasing r. Nevertheless, even as
r →∞ the variance of the posterior is still bounded from below by (σ−2

0 + 4)−1. This residual variance
originates in the intrinsic uncertainty of the coherent-state basis associated with the POVM representing
heterodyne detection. That is, no matter which measurement outcome is obtained, the precision with which
the parameter is identified is limited by the width of the variance of the coherent state corresponding to this
outcome.

Although coherent states already minimize the product of uncertainties, one can overcome this
limitation by considering measurement bases that consist of states with a lower variance in the desired
parameter (e.g., in αR) than that of a coherent state, at the expense of a larger variance in the respective
other quadrature. For instance, one may choose a basis of squeezed coherent states to reduce the
uncertainty of the measurement basis in one coordinate. In this regard, a homodyne measurement in the
quadrature q̂, which we will consider next, can be thought of as a limiting case of a measurement in a basis
of infinitely squeezed coherent states.

3.2. Homodyne measurement
For homodyne detection with respect to the quadrature q̂, the POVM is {|q〉〈q|}q∈R. As before, we begin by
considering a squeezed vacuum state |ξ〉 as probe state to estimate the unknown displacement α. The prior
distribution of α is again assumed to be Gaussian with mean α0 and variance σ2

0 . The probability to obtain
outcome q after a displacement α is given by

p(q|α) = |〈q|D̂(α)|ξ〉|2 =
exp

[
−

2
(
αR− q√

2

)2

cosh 2r−cos ϕ sinh 2r

]
√
π(cosh 2r − cos ϕ sinh 2r)

. (25)

Note that, here, the likelihood does not depend on the imaginary part αI of the displacement. This is
expected, since homodyne detection in one quadrature is completely ‘blind’ to the orthogonal quadrature.
Therefore, the mean and variance for the imaginary part of the displacement parameter remain unchanged
with respect to the prior, and we can focus entirely on the real part.

Since, once again the likelihood is a Gaussian distribution in the measurement outcomes (here, in q),
and thus proportional to a Gaussian distribution NαR (〈αR〉,σ2) in the estimated parameter with mean
〈αR〉 = q/

√
2 and variance σ2 = (cosh 2r − cosϕ sinh 2r)/4, we can infer from proposition 1 that the

posterior is a Gaussian distribution with mean

α̂R =
2
√

2σ2
0q + α0,R(cosh 2r − cos ϕ sinh 2r)

4σ2
0 + cosh 2r − cos ϕ sinh 2r

, (26)

and variance

Var[p(αR|q)] =
σ2

0(cosh 2r − cos ϕ sinh 2r)

4σ2
0 + cosh 2r − cos ϕ sinh 2r

. (27)

The variance of the posterior distribution depends on the squeezing strength r and the squeezing angle
ϕ. Both parameter hence provide room for optimization of the estimation procedure. However, while
increasing r can be demanding experimentally and also comes at an increased energy cost for preparing the
probe state, the relative angle ϕ between the directions of measurement and squeezing can be varied freely
without any particular practical or energetic restriction. The variance is minimised for ϕ = 2nπ and
without loss of generality we choose ϕ = 0. For this choice, the average variance of the posterior for the
chosen quadrature q̂ is

V̄ q̂
post = Var[p(αR|q)],

ϕ=0
= ,

(
1

σ2
0

+ 4 e2r

)−1

, (28)

whereas the average total variance (again, for ϕ = 0) is V̄post = V̄ q̂
post + σ2

0 . Figure 3 shows a sample of
different posterior distributions obtained by measurements with probe states with different squeezing. We
observe that, whereas the marginal probability in p̂ remains unchanged as the initial squeezing increases, the
marginal probability in q̂ becomes narrower. We further note that for r = 0 we recover the results obtained
by Personick [63].

3.3. Comparison of measurement strategies
Let us now interpret and compare the results for Gaussian displacement estimation with heterodyne and
homodyne measurements. For homodyne detection, squeezing in the probe state results in an average
posterior variance in q̂, given by equation (28), that rapidly decreases to 0 as the squeezing strength r
increases. While the posterior variance in q̂ can thus be arbitrarily close to zero in the homodyne detection
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Figure 3. Displacement estimation using heterodyne and homodyne detection. The images show the same Gaussian prior
(green) with initial standard deviation σ0 = 0.5, and posterior distributions obtained for heterodyne (blue) and homodyne
detection (orange) for different squeezing of the probe state, ranging from r = 0 in (a), r = 1 in (b), to r = 2 in (c). The
posterior distributions of the displacement parameter α given measurement outcome q are Gaussian as well.

scenario, this comes at the cost of not reducing the variance in p̂ at all. We thus have limr→∞ V̄homodyne
post = σ2

0 .

Comparing this with the result for heterodyne detection in equation (24), we see that V̄homodyne
post �

V̄heterodyne
post (r = 0) for priors with variance σ2

0 � 1/2, independently of the squeezing strength used with the
homodyne detection. However, for more narrow priors, homodyne detection supplemented by squeezed
probe states can outperform heterodyne detection in terms of the total variance only if the squeezing is
strong enough, i.e., when r > − 1

2 ln(1 − 2σ2
0).

However, when we focus on the estimation of only one of the quadratures, here quadrature q̂, then
homodyne detection outperforms heterodyne detection for all prior widths and for all squeezing strengths,
even if different squeezing strengths are compared for the two detection methods. That is, the limit of
r →∞ for heterodyne detection in equation (21) coincides with the homodyne detection case where r = 0
in equation (28), and we thus find

V̄ q̂,homodyne
post � σ2

0

1 + 4σ2
0

� V̄ q̂,heterodyne
post . (29)

We can also compare these results to more general measurement strategies. For a Gaussian prior (in a
single parameter), the FI of the prior (see section 2.1.2) evaluates to I[p(αR)] = 1/σ2

0. At the same time, the
QFI for a single-mode Gaussian state is bounded by I(ρ) � 4 e2r (cf equation (15) and subsequent text in
reference [7]). With this, the Van Trees inequality in the form of equation (9) reads

V̄ q̂
post �

(
1

σ2
0

+ 4 e2r

)−1

. (30)

This shows that the combination of single-mode squeezing and homodyne detection is the optimal strategy
for Bayesian estimation of one coordinate of displacement (or displacement radius with known phase) with
a single-mode Gaussian probe state.

Finally, let us consider repeated measurements, which can easily be accommodated within the
framework of conjugate priors. In particular, we know that the posterior is of the same form as the prior,
i.e., both are normal distributions. Since the posterior distribution is used as the prior for the next
measurement round, we obtain a recursive formula for the average variance, given by

σ2
m+1 =

σ2
m Var[p(q|α)]

σ2
m + Var[p(q|α)]

, (31)

where σm is the variance of round m. Since Var[p(q|α)] = e−2r/4 depends only on the squeezing of the
probe state, this term is constant for the same probe state. Solving the recursive equation gives

σ2
m =

(
1

σ2
0

+ 4m e2r

)−1

. (32)

Moreover, we note that repeated measurements include the possibility of a sequential measurement strategy
that provides information about both components of the displacement. For instance, the squeezing in the
probe states and the direction of the homodyne measurement can be tailored towards estimating the real
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part in one half of the estimation rounds, while the remaining rounds are used to estimate the imaginary
part. We conclude this section by noting that already a quite simple setup, consisting of (limited) squeezing
in the probe states combined with homodyne detection, can provide accurate information for Bayesian
estimation of displacements.

4. Phase estimation

We now come to the paradigmatic case of phase estimation, which we want to examine within the
framework of Bayesian estimation using Gaussian states and measurements. Historically, phase estimation
has been closely associated with interferometry [64], but nowadays, phase estimation is usually considered
in a broader context. In particular, Bayesian phase estimation has been studied for a variety of applications,
see, e.g., [65–67]. While there are some studies identifying optimal estimation strategies using Gaussian
states and measurements [15, 68, 69], these operate within the local estimation paradigm and hence fall
outside of the Bayesian phase estimation framework we consider here. We therefore focus on a special case
of Bayesian phase estimation, where there is no prior information on the phase and local estimation hence
cannot be employed in a meaningful way. For such cases, we wish to identify simple strategies based on
Gaussian states and measurements that can efficiently narrow the prior down to the point where local
estimation can take over.

Specifically, we consider a phase estimation scenario where a phase rotation operator as in equation (13)
is applied to a single-mode Gaussian probe state. We consider the phase θ ∈ [−π,π) to be entirely
unknown initially, such that the prior is a uniform distribution on the chosen interval, i.e., p(θ) = 1/2π.

In the following sections, we then study the performance of heterodyne and homodyne detection in this
estimation scenario, and we adapt the specific probe states to the respective measurements. In particular, we
note that, although the optimal probe state (at fixed average energy) for local phase estimation is a
single-mode squeezed state, this is not necessarily the case for Bayesian estimation.

4.1. Heterodyne measurement
For Gaussian phase estimation with heterodyne measurements, we consider probe states that are squeezed
with strength r = |ξ| before being displaced, i.e., probe states of the form D̂(α)Ŝ(reiϕ) |0〉, where r � 0 and
ϕ ∈ [0, 2π). Whereas the most general Gaussian single-mode probe states are determined by arbitrary
complex values α and ξ, i.e., displacement and squeezing with arbitrary strength along arbitrary directions,
the rotational symmetry of the phase estimation problem with heterodyne measurements allows one to fix
one of these directions. Without loss of generality, we therefore choose α = |α| to be real and positive.
More specifically, we assume that the displacement is strictly non-zero, α > 0, since the vacuum state is
rotationally invariant, and not even a squeezed vacuum state can be used to distinguish between rotations
around θ and θ + π.

For the squeezing direction, it is then quite intuitive to see that squeezing along the quadrature p̂
(ϕ = π, ξ = −r < 0) is optimal for single-mode phase estimation when α > 0 and when heterodyne
measurements are used. That is, when the variance of the Gaussian state is initially reduced along the
quadrature p̂, the Wigner function becomes concentrated along the q̂-quadrature, decreasing the variance in
the phase of the initial state, and hence also decreasing the variance in the phase of the encoded state ρ(θ).
When applying the heterodyne measurement, the probability for obtaining an outcome β whose phase
matches the unknown phase θ is thus increased. Conversely, probe states that are squeezed along the same
direction as the initial displacement have an increased phase variance and are therefore less useful for phase
estimation. In the remainder of this section, we therefore focus on probe states of the form D̂(α)Ŝ(−r) |0〉.

However, since the calculations and results for arbitrary values of r are still quite unwieldy, we first
consider the simple case where the probe state is not squeezed at all but just a coherent state |α〉
(section 4.1.1). Then we present the results for squeezing along the optimal direction, ξ = −r < 0, with
respect to the displacement α > 0 (section 4.1.2).

4.1.1. Coherent states & heterodyne detection
Here, the probe state is |α〉 with α > 0. The action of the phase rotation operator R̂(θ) [equation (13)]
results in the encoded state R̂(θ) |α〉 = |e−iθα〉. The likelihood to obtain outcome β ∈ C, given that the
phase has the value θ, is given by

p(β |θ) =
1

π
| 〈β |e−iθα〉 |2 =

1

π
e−|eiθβ−α|2 . (33)

Writing β = |β|e−iφβ and |eiθβ − α|2 = α2 + |β|2 − 2α|β| cos(θ − φβ), we can express the (unconditional)
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probability to obtain outcome β as

p(β) =

π∫
−π

dθ p(θ) p(β |θ) =
e−(α2+|β|2)

π
I0(2α|β|), (34)

where I0(x) is the modified Bessel function of the first kind. Using Bayes’ law, the posterior is given by

p(θ|β) =
p(θ) p(β |θ)

p(β)
=

e2α|β| cos(θ−φβ)

2π I0(2α|β|) . (35)

Since we are considering a parameter with a range whose endpoints ±π are identified, it is useful to
consider estimators and variances that are invariant under shifts by 2π. For the estimator we therefore
choose θ̂(β) = arg〈eiθ〉p(θ |β). As we discuss in more detail in appendix A.1, the estimator evaluates to

θ̂(β) = arg

⎡
⎣ π∫
−π

dθ p(θ|β)eiθ

⎤
⎦ = φβ , (36)

and hence corresponds to the phase φβ of the measurement outcome β.
To evaluate the performance of this estimation strategy, we calculate the average variance of the

posterior as done in the above sections. However, instead of an expression such as in equation (4), we now

use a covariant variance that is invariant under shifts by 2π, by taking the average of sin2
[
θ − θ̂(β)

]
rather

than of
(
θ − θ̂(β)

)2
. 3 Specifically, we calculate

Vpost(β) =

π∫
−π

dθ p(θ|β) sin2
[
θ − θ̂(β)

]
= 0F1(2;α2|β|2)

2 I0(2α|β|) Γ(2)
, (37)

where 0F1(a; z) is the confluent hypergeometric function and Γ(z) is the Euler gamma function. Despite the
complicated form of the posterior and the variance, the average variance then simply becomes

V̄post =

∫
d2β p(β) Vpost(β) =

1 − e−|α|2

2 |α|2 , (38)

as we discuss in more detail in appendix A.1. In terms of the average photon number n = |α|2, which is
proportional to the average energy of the probe state, the average variance of the posterior hence scales as
1/n as n →∞, as can be expected for ‘classical’ probe states such as the coherent states considered here.

4.1.2. Displaced squeezed states & heterodyne detection

Let us now consider probe states that are squeezed with strength r before being displaced, i.e., probe states
of the form D̂(α)Ŝ(−r) |0〉, where we assume α, r ∈ R with α > 0 and r > 0 as mentioned. For the
heterodyne measurement, the likelihood to obtain outcome β given the phase θ is given by

p(β |θ) =
1

π
| 〈β| R̂(θ)D̂(α)Ŝ(−r) |0〉 |2 = 1

π
F
(
|eiθ β〉 , |α,−r〉

)
. (39)

For the fidelity of the two Gaussian states, we can again refer to equation (17), where ρ1 = |eiθβ〉〈eiθβ| and
ρ2 = |α,−r〉〈α,−r|, for which the first moments are

x̄1 = x̄eiθβ =
√

2

(
�(eiθβ)
I(eiθβ)

)
and x̄2 = x̄α,−r =

√
2

(
�(α)
I(α)

)
.

The second moments of these states are represented by

Γ1 = Γeiθβ = 𝟙2 and Γ2 = Γα,−r =

(
e2r 0
0 e−2r

)
,

3 We note here that the chosen variance is invariant also under shift of the estimator by integer multiples of π, not just shift by even
multiples of π. In principle, one could also use quantifiers for the width of the distribution that depend only on |〈eiθ〉p(θ|β)|, such as the
Holevo phase variance [70], which are completely independent of the value of the estimator. The choice we make here is motivated by
the better comparison with the homodyne detection scenario in section 4.2, where the phase can only be resolved within an interval of
length π.
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respectively. Since detΓ1 = detΓ2 = 1 and det(Γ1 + Γ2) = 4 cosh2(r), we then have

p(β |θ) =
exp

[
− e−r�2(eiθβ−α)+erI2(eiθβ−α)

cosh r

]
π cosh r

. (40)

As we explain in more detail in appendix A.1.2, the (unconditional) probability to obtain outcome β can
then be written as an infinite sum of Bessel functions of the first kind by using the Jacobi–Anger expansion,
which results in

p(β) =
e−α2(1−tanh r)−|β|2

π cosh r

∞∑
m1,m2
=−∞

e−im1π I−2m1−m2(−2α|β|)Im1 (−|β|2 tanh r) Im2 (2α|β| tanh r). (41)

Using Bayes’ law, the posterior can then be obtained directly as p(θ|β) = p(β |θ)/
[
2π p(β)

]
with the

likelihood from equation (40) and p(β) as in equation (41). Similarly, we can use the Jacobi–Anger
expansion to evaluate

〈
eiθ
〉
=
∫ π

−π
dθ p(θ|β)eiθ . As shown explicitly in appendix A.1.2, one finds

I
(〈

ei(θ−φβ)
〉)

= 0, and the estimator is hence given by

θ̂(β) = φβ or φβ + π, (42)

i.e., the estimate either corresponds to the phase φβ of the measurement outcome β, or is shifted by π.
To see if squeezing improves the estimation, we calculate the variance of the posterior,

Vpost(β) =
∫ π

−πdθ p(θ|β) sin2[θ − θ̂(β)], and its average, and compare the latter with the corresponding
value obtained for coherent probe states. Specifically, we obtain the expression (see appendix A.1.2 for more
details)

V̄post =
e−α2(1−tanh r)

cosh r

∞∑
n2,n3
=−∞

∞∫
0

d|β| |β| e−|β|2 In2 (−|β|2 tanh r)In3 (2α|β| tanh r)
1

2
(−1)n2

×
[
2I−2n2−n3(−2α |β|) − I2−2n2−n3(−2α |β|) − I−2−2n2−n3(−2α |β|)

]
. (43)

Unfortunately, the analytical solution of the integral and double-sum in equation (43) is unknown. We have
therefore numerically evaluated the average variance V̄post for different values of α and r. As illustrated by
the sample plots in figure 4(a), for any fixed displacement, squeezing improves the estimation precision as
measured by the average variance beyond the value achievable by displacements alone, where the latter is
represented by equation (38). This is in agreement with the intuition provided by the Wigner function of
the probe states: Squeezing along the p̂-quadrature (ξ = −r < 0) of a coherent state displaced along the q̂
axis (α > 0) leads to a concentration of the Wigner function around the q̂-axis, that is rotated around the
origin by the phase rotation, visually resembling a clock dial. Increased squeezing narrows the width of this
‘dial’, making it more likely to obtain measurement outcomes β whose phase matches the phase to be
estimated.

However, when considering constraints on the average energy of the probe state, here represented by the
average photon number n = |α|2 + sinh2 r, squeezing is only beneficial in certain regimes. For relatively
strong squeezing such as r = 1 or r = 1.25, the average variance is larger for squeezed-displaced states than
for purely displaced states with the same average photon number, as illustrated in figure 4(b). This can be
understood from the fact that the average photon number required for a squeezing of r = 1.25 is sufficient
for a coherent state that is displaced more than 2 standard deviations from the origin and hence already
provides a clear phase reference. For smaller squeezing, such as for r = 0.75, there is a regime of small
photon numbers where the combination of squeezing and displacement can outperform pure displacement.
This can also be readily understood, while such a squeezed vacuum state already has a standard deviation
Δp̂(|ξ〉) = e−r/

√
2 less than half of that of a coherent state, a coherent state with the same average energy is

displaced by only
√

2α =
√

2 sinh2 r ≈ 1.64Δq̂(|α〉). However, for larger n (already around n ≈ 1.41) pure
displacements become better, see figure 4(b). Finally, we see that for even smaller values of r, such as for
r = 0.5, there is only a specific range of values for n where purely coherent probes are more efficient, while
low squeezing (r = 0.25) added to the displacement outperforms pure displacement for the entire range of
n that we have explored numerically. At the same time, in terms of the difference between the average
variances achieved, e.g., for r = 0 and r = 0.25, the advantage obtained from using a slightly squeezed state
seems to be at least an order of magnitude smaller than the average variances achieved (in the explored
parameter range).
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Figure 4. Bayesian phase estimation with single-mode Gaussian probes and heterodyne measurements. (a) The average variance
V̄post from equation (43) is shown for different values of α � 0 and r � 0 as a function of α2. The line on the top represents the
average variance for purely displaced probe states (r = 0) from equation (38). The lines below indicate results of numerically
evaluating equation (43) for different values of α for fixed values of r from r = 0.25 to r = 1.25 (top to bottom, starting at the
second line from the top). (b) The average variance V̄post is shown as a function of the average photon number
n = |α|2 + sinh2 r. The lines do not start at n = 0 because the nonzero values of r give rise to non-zero average energies even for
α = 0. The inset shows how the lines for r = 0, r = 0.25, and r = 0.5 continue as n increases.

4.2. Homodyne measurement
Here, we consider Bayesian phase estimation with single-mode Gaussian probe states combined with
homodyne measurements in the quadrature q̂. Since this kind of measurement provides no information on
the complementary quadrature p̂, it cannot distinguish between phases of θ and −θ. Thus, we restrict the
range of θ to [0,π], and the prior distribution is given by p(θ) = 1/π.

4.2.1. Coherent states & homodyne detection
As before in section 4.1, we start with the case where the probe state is a coherent state, D̂(α) |0〉 = |α〉 for
α > 0. The likelihood to obtain outcome q ∈ R can be written as

p(q|θ) = |〈q|e−iθ α〉|2 =

∞∫
−∞

dp W(q, p), (44)

where W(q, p) is the Wigner function of the rotated coherent state |e−iθα〉. The latter can be obtained from
equation (10) by noting that Γe−iθα = 𝟙2 and x̄e−iθα =

√
2α(cos θ,− sin θ)T. With this, one finds that

p(q|θ) =
1√
π

e−(q−
√

2α cos θ)2

. (45)

Further noting that the range of θ is [0, π], the (unconditional) probability to obtain q can be expressed as

p(q) =

∫ π

0
dθ p(θ) p(q|θ) =

1√
π

e−q2−α2
∞∑

m=−∞
I2m(2

√
2qα)Im(−α2), (46)
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Figure 5. Bayesian phase estimation with single-mode Gaussian probes. (a) The average variance V̄post is shown as a function of
|α|2, i.e., the energy invested in displacing the probe state. Each curve corresponds to varying values of α � 0, but fixed squeezing
strength r from r = 0 (blue), over r = 0.5 (green), to r = 1 (purple), and fixed squeezing angle ϕ, from ϕ = 0 (solid), over
ϕ = π/2 (dashed), to ϕ = π (dotted). Curves for ϕ = 3π/2 are identical to those for ϕ = π/2. (b) The average variance V̄post is
shown as a function of the average photon number n = α2 + sinh2 r of the probe state. The colour-coding is the same as in (a),
but the lines do not start at n = 0 because the nonzero values of r give rise to non-zero average energies even for α = 0. In
addition, (b) shows V̄post for a coherent probe state (r = 0) and heterodyne detection from equation (38) as a blue dashed-dotted
curve.

as we show in detail in appendix A.1.3. Using Bayes’ law, the posterior p(θ|q) = p(q|θ)/
[
π p(q)

]
is then just

obtained by inserting p(q|θ) and p(q) from equations (44) and (46), respectively. In appendix A.1.3 we also
explicitly calculate the circular moment, which we find to be given by

〈eiθ〉= 1

M

∞∑
n=−∞

I2n+1(2
√

2qα)In(−α2)

+i
2

Mπ

∞∑
m,n=−∞

Im(−α2)I2n(2
√

2qα)(1 − 4m2 − 4n2)

(2n − 2m − 1)(2n − 2m + 1)(2n + 2m + 1)(2n + 2m − 1)
,

(47)

where

M :=
∞∑

m=−∞
I2m(2

√
2qα) Im(−α2). (48)

As we see, already the expression for the estimator θ̂(q) = arctan
[
I(〈eiθ〉)/�(〈eiθ〉)

]
for a coherent probe

state is sufficiently more complicated than its counterpart in the case of heterodyne measurements [cf
equation (36)]. We therefore resort to a numerical evaluation of the variance Vpost(q) =

∫ π

0 dθ p(θ|q)

sin2
[
θ − θ̂(q)

]
and the average variance V̄post =

∫∞
−∞dq p(q) Vpost(q) already for the case of coherent probe

states. The results for V̄post as a function of n = α2 are shown in figure 5, together with the corresponding
average variance for squeezed probe states, which we will briefly discuss next.

4.2.2. Displaced squeezed states & homodyne detection
In the present section, we consider a squeezed and displaced probe state, D̂(α)Ŝ(reiϕ) |0〉 for α � 0 and
ϕ ∈ [0, 2π). While the optimal squeezing angle for heterodyne measurements is ϕ = π, the optimal ϕ for
homodyne measurements depends on the phase θ.
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Since the homodyne measurement informs us of the value of the quadrature q̂, the squeezing direction
of the probe state is optimal, when the rotated probe state R̂(θ)D̂(α)Ŝ(reiϕ) |0〉 = R̂(θ)D̂(α)R̂(ϕ/2)Ŝ(r) |0〉 is
squeezed along the q̂-quadrature such that its Wigner function is elongated along the p̂-quadrature. Thus,
for any fixed θ, the optimal squeezing angle satisfies θ + ϕ

2 = mπ for m ∈ Z, i.e. ϕ = 2(mπ − θ). However,
since we consider a flat prior and there is hence no initial information on θ available, we leave the squeezing
angle as a variable for the following calculations.

For the homodyne measurement, the likelihood to obtain outcome q given the phase θ can again be
obtained by integrating the Wigner function from equation (10) over the p̂-quadrature as in equation (44).
To this end, we note that the vector of first moments is again x̄ =

√
2α(cos θ,− sin θ)T, while the

covariance matrix is given by equation (14) but with ϕ→ ϕ+ 2θ. Accordingly, we find the likelihood

p(q|θ) = |〈q|R̂(θ)D̂(α)Ŝ(reiϕ)|0〉|2 =
exp

[
− (x−

√
2α cos θ)2

Γqq(r,ϕ+2θ)

]
√
πΓqq(r,ϕ+ 2θ)

, (49)

where Γqq(r,ϕ) = cosh(2r) − cos(ϕ) sinh(2r). The (unconditional) probability p(q) to obtain q is
p(q) =

∫ π

0 dθ p(θ) p(q|θ). However, as anticipated from the already complicated form of p(q) for purely
displaced probe states, the integration of p(q) from equation (49) turns out to be a formidable obstacle and
we have not found a closed analytical expression for it. From this point onward, we hence proceed by
numerically evaluating p(q), the posterior p(θ|q), the estimator, the variance, and the average variance for
different displacement strengths (r) and angles (ϕ) as well as for different displacements α. In particular, we
plot the resulting average variance V̄post as a function of |α|2 and as a function of the average photon
number n = |α|2 + sinh2 r in figures 5(a) and (b), respectively.

We first observe that the average variance for the vacuum state (α = 0 = r) is 1/2, the same value as for
the flat prior. Indeed, any non-zero squeezing appears to improve upon this probe state. However, for
increasing displacements, squeezing seems to have a detrimental effect compared to purely displaced states
with the same α as seen in figure 5(a), where the average variance of purely displaced states is the smallest
except in a regime of small α. When comparing probe states at fixed average energy, it becomes even more
clear that squeezing of the probe states in combination with homodyne detection results in strictly worse
performance relative to purely displaced probe states. Moreover, a comparison with the combination of
coherent probe states and heterodyne detection suggests that coherent probe states and homodyne detection
outperform any strategy for Bayesian phase estimation (with flat priors) using Gaussian states and
heterodyne detection. However, we note that homodyne detection does not allow us to distinguish between
phases shifted by π. If one wishes to explore the full range from [−π,π), heterodyne detection should be
chosen instead.

5. Squeezing estimation

In this section we present a Bayesian estimation strategy for estimating the squeezing strength r of a
squeezing operation Ŝ(ξ), where ξ = reiϕ, as defined in equation (12). The squeezing angle ϕ is assumed to
be known. We make this simplifying assumption here, since the investigation of the Bayesian estimation of
the single parameter r alone is already computationally demanding, which would only be exacerbated by
considering a two-parameter estimation problem.

Optimal covariant measurement strategies for variants of this estimation problem have been presented
in [71, 72]. However, the corresponding optimal POVMs may be sufficiently more difficult to realize
practically than the Gaussian measurements we consider here. Moreover, we will focus on investigating the
performance of different probe states using solely homodyne detection. This is motivated by the findings of
the previous sections, namely, that Gaussian strategies for Bayesian single-parameter estimation based on
homodyne detection typically outperform those based on heterodyne detection. As we have previously
mentioned, this may be a consequence of the intrinsic uncertainties of the coherent states corresponding to
the outcomes of the heterodyne measurement. This intuition is also backed up by similar observations
made in [6, 72], as well as tentative numerical comparisons we have made. The aim of this section is hence
to identify practically realizable strategies for estimating the squeezing strength based on single-mode
Gaussian states and homodyne detection. Nevertheless, we should mention here that heterodyne detection
should not be disregarded entirely, since there may be scenarios, such as the simultaneous estimation of
squeezing strength and angle, where such a strategy could prove to be advantageous.

In the remainder of this section, we consider a general pure Gaussian probe state D̂(α)Ŝ(χ) |0〉, where we
write the complex variables α = αR + iαI for αR,αI ∈ R and χ = seiψ, with vector of first moments x̄ and
covariance matrix σ. The squeezing transformation that is to be estimated can be represented by a
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symplectic matrix M,

M =

(
cosh r − cos ϕ sinh r sin ϕ sinh r

sin ϕ sinh r cosh r + cos ϕ sinh r

)
, (50)

such that the moments of the Wigner function change according to x̄ �→ Mx̄ and σ �→ MσMT under this
transformation. Since we assume the direction of the unknown squeezing to be known, we may choose our
reference frame accordingly and set ϕ = 0 and r ∈ R without loss of generality.

Although homodyne detection is not a covariant measurement (cf definition in section 3), it is still a
Gaussian measurement (cf definition in section 2.2.2). Consequently, the likelihood p(q|r) is a Gaussian
distribution given by

p(q|r) = |〈q|Ŝ(r)|α, χ〉|2 =
exp( −e2r (

√
2αRe−r−q)2

cosh 2s−cos ψ sinh 2s )

e−r
√
π(cosh 2s − cos ψ sinh 2s)

. (51)

The parameter we wish to estimate is not the mean of the likelihood, but is encoded in both the variance
and the mean of p(q|r). This makes an analytical treatment of this problem extremely difficult, especially
since the function exp(exp(r)) is known to have a nonelementary antiderivative.

5.1. Vacuum probe state
In the present scenario, the only case where the likelihood of equation (51) permits an analytical treatment
is the vacuum probe state, i.e., when α = 0 and χ = 0, where the likelihood becomes

p(q|δ) =
exp

(
− q2

2δ2

)
δ
√

2π
, (52)

with δ := e−r/
√

2. This allows us to use the theory of conjugate priors (see section 2.1.1). For normal
distributions with unknown standard deviation δ, the conjugate priors are gamma distributions. However,
since this special case does not provide a promising strategy for the problem at hand, we omit the
calculation here and refer the interested reader to appendix A.2.

Instead of analysing this scenario further, we argue that the vacuum state and even the whole class of
squeezed vacuum states perform rather poorly as probes. For probes of this kind the vector of first moments
remains unchanged by the transformation and so the parameter has to be estimated solely by the change of
the covariance matrix. The most likely measurement outcomes close to the origin are therefore generally
very inconclusive. This reasoning is backed up by tentative numerical explorations, suggesting poor
performance for any squeezed vacuum states. Since this strategy does not appear to perform reasonably
well, we explore the class of coherent probe states instead in the next section, before considering more
general single-mode probe states in section 5.3.

5.2. Coherent probe states
For coherent probe states, the parameter r is encoded both in the mean and the variance of the likelihood,
see equation (51). This makes the estimation more efficient, as probes encoded with different values of the
parameter become more distinguishable.

Under the influence of a squeezing transformation with unknown strength the mean of our probe state
moves along hyperbolic trajectories in phase space, as illustrated in figure 6. To simplify our analysis, we
pick a trajectory corresponding to a straight line for our estimation. All states with purely real or imaginary
displacement lie on such a trajectory (e.g., the states whose Wigner functions are shown in blue and green
in figure 6) and without loss of generality we assume a positive (real) displacement in q̂ together with a
homodyne detection in q̂. Now the distinguishability of the states with respect to a measurement in q̂ is
maximal, since the measurement direction is always parallel to the change of the probes mean, ensuring a
globally stable measurement procedure. This would not hold for the other hyperbolic trajectories, where the
optimal direction of the homodyning (tangential to the curve) would depend on the location on the curve,
i.e., the unknown squeezing strength.

With these justified simplifications, our scenario now only has one degree of freedom in the probe
preparation, i.e., the displacing amplitude, and none in the measurement basis.

In figure 7 we show numerical results, indicating already a remarkably good performance of this
estimation strategy.

5.3. Displaced-squeezed probe states
To improve our method further, we reduce the uncertainty in the q̂-quadrature direction in a similar
fashion as in section 3 for displacement estimation, i.e., we reduce the uncertainty of the probe in the

17



Quantum Sci. Technol. 6 (2021) 025018 S Morelli et al

Figure 6. Coherent probe states for squeezing estimation. The figure shows cross sections of the Wigner functions of coherent
probe states with displacements α = 5 (blue), α = 5 eiπ/4 (orange) and α = 5 eiπ/2 (green) after the encoding (squeezing) with
strength r = (−1,−0.7,−0.4,−0.1, 0.1, 0.4, 0.7, 1) has been applied. The axes show the phase space coordinates q and p. While
the shape of the Wigner function can be seen to change with varying squeezing strengths, the mean values 〈q̂〉 and 〈p̂〉 can be
seen to move along hyperbolic trajectories (grey lines).

Figure 7. Ratio between posterior and prior variance for squeezing-strength estimation with coherent probe. The plot shows the
quotient of the average variance of the posterior and the variance of the prior plotted against the displacement of the probe state.
Different lines show different prior variances. The rate at which we acquire knowledge about the squeezing parameter r decreases
for increasing knowledge of that parameter. The prior is a normal distribution with mean r0 = 1 and variance σ2

0 .

direction we are interested in by squeezing it beforehand. Figure 8(a) illustrates this in phase space.
Figure 8(b) shows how the performance of the estimation is improved by increasing the initial squeezing of
the probe and compares the results to the Van Trees bound of equation (9). There, the prior is taken to be a
normal distribution with variance σ2

0 = 1, such that I
[
p(r)

]
= 1, and the QFI is optimized over all

single-mode Gaussian states with fixed average photon number n, which yields I [ρ(θ)] = 2(2n + 1)2, see
[6, equations (16) and (18)]. This inequality gives a lower bound on the average posterior variance, but it is
unclear if there exists strategies that can saturate it. In figure 8(c), the use of squeezing and displacement in
the preparation of the probe are directly compared, and the optimal combinations of these two operations
for mean photon number are identified.

Although homodyne detection is not the optimal (maximising the FI) POVM for squeezing estimation
in the local/frequentist regime, our analysis provides efficient estimation strategies using only elementary
quantum optics methods. In particular, these strategies rely only on single-mode Gaussian states and
homodyne detection, allowing a comparably straightforward experimental implementation.
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Figure 8. Initial squeezing and displacement improve the estimation of the squeezing strength r. (a) Shows this behaviour in
phase space: two differently squeezed probe states (left side) are transformed with an unknown squeezing transformation. For
slightly different squeezing strengths (r = −0.9,−1.0,−1.1) the unsqueezed probe state (s = 0, blue) overlaps for the different
cases, thus making it hard to estimate the parameter exactly. The initially squeezed probe state (s = 1, orange) is still clearly
distinguishable after the different transformations. (b) Shows the average variance of the posterior V̄ post as a function of the
average photon number n for the two states from (a) and for two more probes with s = 0.5 (green) and s = 1.5 (red). The
dashed, black line shows V̄ post achieved with the optimal single-mode Gaussian states at fixed n. The solid, black line shows the
lower bound given by the Van Trees inequality (see section 5.3). (c) Shows V̄ post for different values of the squeezing s and
displacement α of the probe state. The black curves represent lines of constant photon number [n = |α|2 + sinh2(s)], whereas
the dashed, black line minimises the average variance for fixed n. The four curves from (b) are shown in the same color-coding.
The prior used in both (b) and (c) is a normal distribution with mean r0 = −0.5 and variance σ2

0 = 1.

6. Discussion & conclusion

In this paper, we have aimed to provide a comprehensive investigation of Bayesian parameter estimation
with single-mode Gaussian states and suitable Gaussian measurements. Notably, the Bayesian approach
allows us to study regimes of uncertainty for the estimated parameter (e.g., flat priors, single
measurements), where local estimation is not justified. Our focus has not been on finding optimal states
and measurements maximising the QFI. Instead, we have focused on discovering what can be achieved with
practically easily realizable techniques: single-mode Gaussian states combined with heterodyne and
homodyne detection. Besides the relevance for experimental implementations, this investigation of
single-mode Gaussian states within the theory of Bayesian estimation also creates an important reference
point for future explorations of more complicated probe states and measurements. Within this setting, we
have investigated three paradigmatic cases of CV quantum metrology: the estimation of displacements,

19



Quantum Sci. Technol. 6 (2021) 025018 S Morelli et al

phase rotations, and single-mode squeezing strengths. For the Bayesian estimation of displacements, we
provide a fully analytic treatment for Gaussian priors, and for arbitrary single-mode states combined with
heterodyne or homodyne detection. For the estimation of a single phase-space coordinate we prove the
optimality of the presented strategy. This optimal strategy entails investing all available energy into
squeezing the probe state in the direction of the displacement and a homodyne measurement in the same
direction.

For Bayesian phase estimation, many standard techniques from Bayesian parameter estimation have to
be adapted to circular statistics. This makes it challenging to explore this scenario analytically, and we
therefore focus on the case of flat priors (i.e., no initial information about the phase) as a polar opposite to
the well-studied problem of local phase estimation. We provide closed expressions for the average variance
achieved for coherent probe states and heterodyne detection. For all other scenarios we rely on numerical
calculations, which show that homodyne detection generally outperforms heterodyne detection when
restricting the phase to the interval [0, π]. In this case, it is best to invest all available energy into displacing
the probe.

Finally we consider the estimation of an unknown squeezing strength. Almost all calculations here have
to be done numerically. For this we make a series of well justified assumptions and restrict the large
parameter space to a small subset, i.e., the displacement and squeezing of the probe state. Our analysis
suggests that the best strategy in this case is to split the energy of the probe state amongst squeezing and
displacement, and to perform homodyne measurements.

We envisage the results presented here as a first step in the exploration of Gaussian probe states and
measurements in the framework of Bayesian parameter estimation. A number of interesting questions
regarding optimality, as well as adaptive multi-round schemes come to mind. This could include the
adaptive estimation of both coordinates of the complex displacement parameter with homodyne detection
alternating in the measurement quadrature as well as adaptive schemes for phase estimation with more
general prior functions. Also an extension to multi-mode Gaussian states [11] and the estimation of
multiple parameters [73] seem fruitful directions for further investigations. Although these problems are
thus left open for future research, the present work represents an important connection to the respective
local estimation problems in that it provides practical strategies for drastically reducing the uncertainty
about the estimated parameter. Once this has been achieved, one may employ suitable (e.g., asymptotically
optimal) local estimation strategies.
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Appendix A

A.1. Phase estimation with heterodyne measurement
In this section, we provide additional details on the calculations for phase estimation using heterodyne
detection discussed in section 4.1 of the main text.

A.1.1. Coherent probe states & heterodyne measurements

We begin with the estimator for coherent probe states |α〉 with α ∈ R and α > 0. In this case, the posterior
given outcome β, is given by

p(θ|β) =
p(θ) p(β |θ)

p(β)
=

e2α|β| cos(θ−φβ)

2π I0(2α|β|) . (A.1)

For evaluating the estimator θ̂(β) = arg〈eiθ〉p(θ |β), we then note that

π∫
−π

dθ e2α|β| cos(θ−φβ) sin(θ − φβ) = 0, (A.2)
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which implies that

π∫
−π

dθ p(θ|β) sin(θ − φβ) =

π∫
−π

dθ p(θ|β)
[
sin θ cos φβ − cos θ sin φβ

]
= 0. (A.3)

Consequently, we have

tan φβ =
sin φβ

cos φβ
=

∫
dθ p(θ|β) sin θ∫
dθ p(θ|β) cos θ

=
I
(
〈eiθ〉

)
�
(
〈eiθ〉

) , (A.4)

such that our estimator is simply the phase of the outcome β, i.e.,

θ̂(β) = arg〈eiθ〉p(θ |β) = φβ. (A.5)

For the average variance of the posterior, we have to evaluate an integral over all values of β ∈ C, which
can easily be done in polar coordinates, i.e., β = |β| e−iφβ such that

∫
d2β =

∫∞
0 d|β| |β|

∫ π

−π dφβ . With
this, we can insert from equations (34) and (37), and calculate

V̄post =

∫
d2β p(β) Vpost(β),

=
e−α2

2π Γ(2)

∞∫
0

d|β|
π∫
−π

dφβ |β| e−|β|2
0 F1(2;α2|β|2)

=
e−α2

Γ(2)

∞∫
0

d|β| |β| e−|β|2
0 F1(2;α2|β|2) =

1 − e−|α|2

2 |α|2 , (A.6)

which yields the result as stated in equation (38).

A.1.2. Displaced squeezed probe states & heterodyne measurements

In this section, we provide additional details on the calculations in section 4.1.2 of the main text. There, we
consider Bayesian phase estimation using displaced squeezed states D̂(α)Ŝ(ξ), where α > 0 and ξ = r eiϕ

with r � 0 and ϕ = π, combined with heterodyne detection represented by a POVM
{

1
π |β〉〈β|

}
β∈C with

elements that are proportional to projectors on coherent states |β〉 = D̂(β) |0〉. In this scenario, the
likelihood for obtaining measurement outcome β = |β|e−iφβ given that the estimated phase has the value θ,
given by equation (39) in the main text, can be rewritten as

p(β |θ) =
e−α2(1−tanh r)−|β|2

π cosh r
exp

[
2α|β| cos(θ − φβ)

]
exp

[
|β|2 tanh r cos[2(θ − φβ)]

]
× exp

[
−2α|β| tanh r cos(θ − φβ)

]
. (A.7)

We can then use the Jacobi–Anger expansion in terms of the modified Bessel functions of the first kind, i.e.,

ex cos θ =
∞∑

n=−∞
In(x)einθ, (A.8)

and write the unconditional probability p(β) as

p(β) =
1

2π

π∫
−π

dθ p(β |θ) =

∞∑
n,m1,m2
=−∞

π∫
−π

dθ ei(n+2m1+m2)(θ−φβ) e−α2(1−tanh r)−|β|2

2π2 cosh r
ei(n+m1+m2)π In(−2α|β|)

× Im1 (−|β|2 tanh r) Im2 (2α|β| tanh r). (A.9)

We then make use of the identity

π∫
−π

dθ ei(n+2m1+m2)(θ−φβ ) =

⎧⎨
⎩2π if n = −2m1 − m2

0 otherwise
, (A.10)
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such that we obtain

p(β) =
e−α2(1−tanh r)−|β|2

π cosh r

∞∑
m1,m2
=−∞

e−im1π I−2m1−m2 (−2α|β|)Im1 (−|β|2 tanh r) Im2 (2α|β| tanh r). (A.11)

By setting e−im1π = (−1)m1 , we thus obtain the expression for the unconditional probability p(β) from
equation (41) of the main text. Using Bayes’ law, the posterior is obtained as p(θ|β) = p(β |θ)/

[
2π p(β)

]
.

To evaluate the estimator θ̂(β) = arg〈eiθ〉p(θ |β), we proceed in a similar way as above. We first calculate

〈eiθ〉 =
π∫
−π

dθ p(θ|β) eiθ =
1

2πK

∞∑
n1,n2,n3=−∞

ei(n1+n2+n3)π

× In1 (−2α |β|) In2 (−|β|2 tanh r) In3 (2α|β| tanh r)

π∫
−π

dθ eiθei(n1+2n2+n3)(θ−φβ), (A.12)

where

K :=
∞∑

m1,m2=−∞
(−1)m1I−2m1−m2(−2α |β|)Im1 (−|β|2 tanh r)Im2 (2α|β| tanh r). (A.13)

Here, we can make use of a similar identity as in equation (A.10), i.e.,

π∫
−π

dθ eiθei(n1+2n2+n3)(θ−φβ ) =

⎧⎨
⎩2π eiφβ if n1 = −2n2 − n3 − 1

0 otherwise,
(A.14)

such that we obtain

〈eiθ〉 = eiφβ

K

∞∑
n2,n3=−∞

(−1)−n2−1I−2n2−n3−1(−2α |β|)In2 (−|β|2 tanh r)In3 (2α|β| tanh r). (A.15)

Here, K � 0, since K = K(β) is proportional to the probability distribution p(β) and the proportionality
factor is non-negative. The remaining sum on the right-hand side of equation (A.15) is strictly real-valued,
which can be seen by noting that In(x) is real when both the order n and argument x are real. However, the
sum over modified Bessel functions may take positive and negative values.

If the sum is positive, the estimator corresponds to the phase of the outcome, θ̂(β) = arg〈eiθ〉p(θ |β) = φβ ,

whereas the estimate is shifted by π [i.e., θ̂(β) = φβ + π] if the sum is negative. As seen below (particularly,
equation (A.17)), the distinction between these two cases does not affect the variance of the posterior,

because the deviation function sin2
[
θ − θ̂(β)

]
is invariant under shift by π. For the variance of the

posterior, we take the average of sin2
[
θ − θ̂(β)

]
, and find

Vpost(β) =

π∫
−π

dθ p(θ|β) sin2(θ − θ̂(β))

=
1

2πK

∞∑
n1,n2,n3
=−∞

In1 (−2α |β|)In2 (−|β|2 tanh r)In3 (2α|β| tanh r)ei(n1+n2+n3)π

×
π∫
−π

dθ ei(n1+2n2+n3)(θ−φβ) sin2[θ − θ̂(β)]. (A.16)

We can again make use of an identify similar to equation (A.10), i.e.,

π∫
−π

dθ ei(n1+2n2+n3)(θ−φβ) sin2[θ − θ̂(β)] =

⎧⎪⎪⎨
⎪⎪⎩
π if n1 = −2n2 − n3

−π

2
if n1 = −2n2 − n3 ± 2

0 otherwise

, (A.17)

such that we obtain
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Vpost(β) =
1

2K

∞∑
n1,n2,n3=−∞

(−1)n1+n2+n3 In1 (−2α |β|)In2 (−|β|2 tanh r)In3 (2α|β| tanh r)

×
(
δn1,−2n2−n3+2

−1

2
+ δn1,−2n2−n3 + δn1,−2n2−n3−2

−1

2

)
. (A.18)

To obtain the average variance of the posterior, we switch to polar coordinates, β = |β| e−iφβ , such that

V̄post =

∫
d2β p(β) Vpost(β) =

∞∫
0

d|β|
π∫
−π

dφβ
e−α2(1−tanh r)

2π cosh r

∞∑
n2,n3
=−∞

|β| e−|β|2 In2 (−|β|2 tanh r)In3 (2α|β| tanh r)

× 1

2
(−1)n2

[
2I−2n2−n3 (−2α |β|) − I2−2n2−n3(−2α |β|) − I−2−2n2−n3 (−2α |β|)

]

=
e−α2(1−tanh r)

cosh r

∞∑
n2,n3
=−∞

∞∫
0

d|β| |β| e−|β|2 In2 (−|β|2 tanh r)In3 (2α|β| tanh r)
1

2
(−1)n2

×
[
2I−2n2−n3 (−2α |β|) − I2−2n2−n3 (−2α |β|) − I−2−2n2−n3 (−2α |β|)

]
, (A.19)

which coincides with the expression in equation (43). We have not found an analytical expression for the
above integral so far, but we have evaluated the integral numerically.

A.1.3. Coherent probe states & homodyne measurements

Here, we provide additional details on the calculations in section 4.2.1 of the main text. There, we consider
Bayesian phase estimation with coherent probe states D̂(α) |0〉 = |α〉, where α > 0, combined with
homodyne detection represented by a POVM {|q〉〈q|}β∈R. In this scenario, the likelihood for measurement
outcome q given the phase θ is provided by equation (45) in the main text, which can be rewritten as

p(q|θ) =
1

π
√
π

e−q2−α2

π∫
0

dθ e2
√

2qα cos θe−α2 cos(2θ). (A.20)

We express the Jacobi–Anger expansion equation (A.8) in a real representation as

ex cos θ = I0(x) + 2
∞∑

n=1

In(x) cos(nθ), (A.21)

since In(x) = I−n(x). Noticing that the range of θ is [0, π], the (unconditional) probability to obtain
outcome q is given by

p(q) =
1

π

π∫
0

dθ p(q|θ) =
e−q2−α2

π
√
π

π∫
0

dθ

[
I0(2

√
2qα)I0(−α2) + 2 I0(−α2)

∞∑
n=1

In(2
√

2qα) cos(nθ)

+ 2 I0(2
√

2qα)
∞∑

m=1

Im(−α2) cos(2mθ) + 4
∞∑

m,n=1

Im(−α2)In(2
√

2qα) cos(nθ) cos(2mθ)

]
. (A.22)

We then use the identities
∫ π

0 dθ cos(n θ) = 0 ∀ n � 1 and

π∫
0

dθ cos(n θ) cos(2m θ) =

⎧⎨
⎩
π

2
if n = 2m

0 otherwise
. (A.23)

With this, we obtain

p(q) =
1

π

π∫
0

dθ p(q|θ) =
e−q2−α2

√
π

[
I0(2

√
2qα)I0(−α2) + 2

∞∑
m=1

I2m(2
√

2qα)Im(−α2)

]
=

e−q2−α2

√
π

M,

(A.24)
where

M :=
∞∑

m=−∞
I2m(2

√
2qα)Im(−α2). (A.25)

The posterior p(θ|q) is then obtained as p(q|θ)/[πp(q)].
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To determine the estimator θ̂(q) = arg〈eiθ〉p(θ |q), we calculate 〈eiθ〉p(θ|q), i.e.,

〈eiθ〉 =
π∫
0

dθ p(θ|q) eiθ =
1

M

1

π

π∫
0

dθ

[
I0(2

√
2qα)I0(−α2)eiθ + 2I0(−α2)

∞∑
n=1

In(2
√

2qα) cos(nθ)eiθ

+ 2I0(2
√

2qα)
∞∑

m=1

Im(−α2) cos(2mθ)eiθ + 4
∞∑

m,n=1

In(2
√

2qα)Im(−α2) cos(nθ) cos(2mθ)eiθ

]
. (A.26)

We then use the identities
π∫
0

dθ eiθ = 2i,

π∫
0

dθ cos(nθ) eiθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π/2 if n = 1
i(1 + (−1)n)

1 − n2
if n � 2

0 otherwise

, (A.27)

and

π∫
0

dθ cos(nθ) cos(2mθ)eiθ =

⎧⎪⎨
⎪⎩

π

4
if n = 2m ± 1

i(1 + (−1)n)(1 − 4m2 − n2)

(n − 2m − 1)(n − 2m + 1)(n + 2m + 1)(n + 2m − 1)
otherwise

.

(A.28)
With this, we obtain

〈eiθ〉 = 1

πM

⎧⎪⎪⎨
⎪⎪⎩2iI0(2

√
2qα)

[
I0(−α2) +

∞∑
m=1

Im(−α2)
2

1 − 4m2

]

+ 2I0(−α2)

[
π

2
I1(2

√
2qα) +

∞∑
n=2

In(2
√

2qα)
i(1 + (−1)n)

1 − n2

]

+ 4
∞∑

m=1

Im(−α2)

⎡
⎢⎢⎣π4 I2m−1(2

√
2qα) +

π

4
I2m+1(2

√
2qα)

+

∞∑
n=1
n �=2m±1

In(2
√

2qα)
i(1 + (−1)n)(1 − 4m2 − n2)

(n − 2m − 1)(n − 2m + 1)(n + 2m + 1)(n + 2m − 1)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

=
i

πM

{∞∑
n=1

4

1 − 4n2

[
I0(−α2)I2n(2

√
2qα)+In(−α2)I0(2

√
2qα)

]

+ 2I0(2
√

2qα)I0(−α2) + 8
∞∑

m=1

∞∑
n=1

I2n(2
√

2qα)Im(−α2)

×
1∑
6

1 − 4m2 − 4n2

(2n − 2m − 1)(2n − 2m + 1)(2n + 2m + 1)(2n + 2m − 1)

}

+
1

M

{
I0(−α2)I1(2

√
2qα) +

∞∑
n=1

In(−α2)
[

I2n−1(2
√

2qα) + I2n+1(2
√

2qα)
]}

. (A.29)

Finally, we can express the real and imaginary parts of 〈eiθ〉 as

�[〈eiθ〉] =

∞∑
n=−∞

I2n+1(2
√

2qα)In(−α2)

∞∑
m=−∞

I2m(2
√

2qα)Im(−α2)
(A.30)
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and

I[〈eiθ〉] = 2

π

∞∑
m,n=−∞

I2n(2
√

2qα)Im(−α2)

∞∑
k=−∞

I2k(2
√

2qα)Ik(−α2)

1 − 4m2 − 4n2

(2n − 2m − 1)(2n − 2m + 1)(2n + 2m + 1)(2n + 2m − 1)
,

(A.31)
respectively, where we have used the fact that functions Cn,m invariant under the exchanges n →−n and
m →−m satisfy

∞∑
n=1

Cn,m =
1

2

( ∞∑
n=−∞

Cn,m − C0,m

)
(A.32)

and
∞∑

m,n=1

Cn,m =
1

4

( ∞∑
m,n=−∞

Cn,m −
∞∑

m=−∞
C0,m −

∞∑
n=−∞

Cn,0 + C0,0

)
. (A.33)

The estimator can then be calculated from equations (A.30) and (A.31) via

θ̂(q) = arctan

(
I[〈eiθ〉]
�[〈eiθ〉]

)
. (A.34)

A.2. Squeezing estimation using the vacuum state and homodyne detection
In this appendix, we provide additional details on the estimation of the squeezing strength using a vacuum
probe state in combination with homodyne detection. We include this to illustrate that the theory of
conjugate priors can applied also in more general cases, even if the calculations might become more
involving.

The likelihood is given by equation (52),

p(q|δ) =
exp

(
− q2

2δ2

)
δ
√

2π
, (A.35)

where we have defined δ := e−r/
√

2. For normal distributions with unknown standard deviation δ, the
conjugate priors are gamma distributions

p(δ) =
baδa−1e−bδ

Γ(a)
, (A.36)

a, b > 0. The mean and variance of such a distribution is given by E[p(δ)] = a/b and Var[p(δ)] = a/b2,
respectively. If the prior is gamma distributed with parameters a and b, then the posterior after m
measurements is gamma distributed as well with parameters a + m/2 and b +

∑
i

q2
i /2, where qi is the

measurement outcome in each round. The mean and variance of the posterior after m repeated
measurements with outcomes q = (q1, . . . , qm) then becomes

E[p(δ|q)] =
2a + m

2b +
∑

i
q2

i

(A.37)

Var[p(δ|q)] =
2(2a + m)(
2b +

∑
i

q2
i

)2 . (A.38)

From this point on the formulas become really cumbersome. Since homodyning is not a covariant
measurement for the squeezing operator, the variance of our posterior distribution depends on the
outcome. To calculate the average variance

∫
dq p(q) Var[p(δ|q)], one first needs to calculate

p(q) =

∫
dδp(δ)p(q|δ)

=,

∞∫
0

dδ
exp

(
− q2

2δ2

)
δ
√

2π

baδa−1e−bδ

Γ(a)

=
1√

πΓ(a)

[
b√
2
Γ(a − 1)pFq

(
1; 1 − a

2
,

3 − a

2
;−b2q2

8

)
− ba+1|q|a

2
3+a

2

Γ
(
−a

2

)
p
Fq

(
1;

3

2
, 1 +

a

2
;−b2q2

8

)
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+,
πba|q|a−1

21+ a
2 Γ
(

1+a
2

) sec
(πa

2

)
p
Fq

(
1;

1

2
,

1 + a

2
;−b2q2

8

)]
. (A.39)

where pFq(.; .; .) is the generalized hypergeometric function (the subscripts p and q are part of the notation
for this function and have nothing to do with the phase space coordinates). With this now we can calculate
the average variance after one measurement m = 1

V̄post =

∫
dqp(q) Var[p(δ|q)]

=,

√
π(2a + 1)

4
√

b(a − 1) p

Fq

(
1

2
;−1

2
, 1 − a

2
,

3 − a

2
;

b3

4

)
+

2

3
b4(2a + 1)

Γ(1 − a)

Γ(5 − a) p
Fq

(
2;

5

2
,

5 − a

2
, 3 − a

2
;

b3

4

)

− π2(2a + 1)2−ab
3a
2 −2 csc(πa)

Γ
(

a−2
2

)
Γ2
(

a+1
2

)
p

Fq

(
a

2
;

1

2
,

a − 2

2
,

1 + a

2
;

b3

4

)

+

√
π

8
(2a + 1)b

3a−1
2 sec

(πa

2

) Γ
(
− a

2

)
Γ(a − 1) p

Fq

(
1 + a

2
;

3

2
,

a − 1

2
,

2 + a

2
;

b3

4

)
. (A.40)

Although we were able to calculate an analytical solution, the result in itself is not interesting, but the
techniques we have used might be insightful to the reader.
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