
PHYSICAL REVIEW B 103, 134419 (2021)

Signatures of finite-temperature mirror symmetry breaking in the S = 1
2 Shastry-Sutherland model
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We investigate the finite-temperature properties of the S = 1
2 Shastry-Sutherland Heisenberg model using

a quantum typicality method. In the intermediate plaquette state region, we naturally expect to realize the
finite-temperature phase transition associated with breaking the mirror symmetry of this model. We reveal some
signatures of the spontaneous phase transition within a two-point correlation level at moderate temperatures since
the constructed typical state can sense the existence of the degenerated excited states depending on the initial
random state. We also confirm that the local mirror order parameter shows the intriguing recovering phenomenon
of the mirror symmetry in very low temperatures, which could be understood from the nature of the ground and
excited states of the finite-size systems. We expect that this recovering feature will disappear; instead, a saturated
behavior appears in the local mirror order parameter in the thermodynamic limit. We discuss the relationship to
the recent experimental results on SrCu2(BO3)2 under high pressures.
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I. INTRODUCTION

Quantum frustrated magnetism is well known as a source
of the rich phenomena; however, it is still challenging to
investigate its finite-temperature properties, significantly in
more than one-dimensional systems. One of the reasons for
the difficulty, the quantum Monte Carlo method, a powerful
and nonbiased method, is generally not applicable to the quan-
tum frustrated magnetism because of a negative sign problem.
Although we can use another nonbiased method, the exact
diagonalization (ED) method, this method is entirely limited
to small-sized clusters. In this ED method, we need to use the
canonical ensemble average,

〈Â〉ens
β,N =

∑

ν

e−βEν

Z (β )
〈ν|Â|ν〉, (1)

to get the expectation value of a physical quantity Â at a tem-
perature T = 1/β. Here, Eν and |ν〉 are the energy eigenvalues
and the corresponding eigenvectors of the target Hamiltonian.
The exponential increase of the memory cost for calculating
Eq. (1) prevents us from treating large enough system size
even if we use a modern supercomputer. For example, the
number of spins we can treat is limited to about 24 in the case
of an S = 1

2 quantum spin system.
For overcoming such a situation, alternative numerical

methods without ensemble average [1–6] have also been de-
veloped and used historically to investigate the thermal nature
of the quantum frustrated spin systems, such as triangular
[6–9], kagome [5–8,10–17], and pyrochlore [18–20] magnets.
In particular, the method using a typical pure state has gotten
attention recently because it has been proven in different and
independent literatures that a single pure state can represent
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the thermal equilibrium in the thermodynamic limit [2,4–6].
This typicality method can dramatically reduce the computa-
tional cost; more concretely, we can handle the twice large
system compared to the ED method because the memory cost
is reduced from O(2N × 2N ) to O(2N ) when our target system
is constructed by interacting N S = 1

2 spins.
However, whether this method can capture finite-

temperature phase transitions is still a challenging problem
because of the huge finite size effect near the critical point,
although it can handle twice as large sizes. We may not be able
to see a signature of the finite-temperature phase transition, for
example, as the peak of the specific heat. It is interesting and
useful to know whether we can detect some other types of the
sign of the phase transition from the typicality method.

In this paper, we will address this question with a concrete
example, the S = 1

2 Shastry-Sutherland model [21], and will
show a practical way via the combined typicality and the exact
diagonalization methods to see a clear signature of the finite-
temperature phase transition between paramagnetic state and
mirror symmetry broken state within a two-point correlation
level.

We will investigate the low-temperature properties of the
S = 1

2 Shastry-Sutherland Heisenberg antiferromagnet [21]
via the typicality method, especially focusing on the interme-
diate plaquette singlet region. This famous model is known
as a two-dimensional orthogonal dimer model and was orig-
inally proposed by Shastry and Sutherland in 1981 [21]. The
Hamiltonian is defined as follows,

H = JD

∑

〈i, j〉
Si · S j + J

∑

〈〈i, j〉〉
Si · S j . (2)

The schematic view of the model and the ground state phase
diagram are shown in Fig. 1. Here, JD and J are intra- and
interdimer exchange couplings. The ground state of this model
has been investigated well [21–30]; the dimer-singlet state for
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FIG. 1. (a) The ground state phase diagram. (b) Finite-size clus-
ters we treat in this study. J and JD are inter- and intradimer
interactions. The site labels i, iL , and iR are used in the local mirror
order parameter of Eq. (5) to detect the empty plaquette state.

J/JD < 0.68 and the Néel state for J/JD > 0.76, the interme-
diate plaquette singlet state appears 0.68 < J/JD < 0.76.

Fortunately this model has a realization material,
SrCu2(BO3)2 [31,32]. It was reported that this material lies
in the dimer product state, and the recent remarkable progress
in experiments is that high pressure makes this material into
the plaquette singlet state with increasing of the interaction
ratio J/JD [33–43]. It is well known that the Mermin-Wagner
theorem does not prohibit the finite-temperature phase transi-
tion associated with breaking the discrete mirror symmetry in
the plaquette singlet region. Indeed, two independent groups
reported quite recently the presence of a small peak of the
specific heat at a low temperature, ∼2 K, under high pressure
around 22 kbar, which may be considered as the finite-
temperature phase transition from the paramagnetic state to
the intermediate plaquette singlet state [42,43]. They also
conducted the full exact diagonalization calculation based on
small size clusters up to 20 spins and a sophisticated iPEPS
calculation to investigate the thermal properties of this ma-
terial; however, detecting the phase transition at very low

temperatures seems to be hard for both methods. Another
theoretical study is strongly recommended.

This paper is organized as follows: Section II is for the
details of our numerical methods. In Sec. III, we show the
temperature dependencies of the specific heat, the real-space
two-point correlation functions, and the local mirror order
parameter computed by the typicality method. We also show
the low energy spectrum obtained by the thick-restarted Lanc-
zos method for understanding the finite-temperature property.
Sections IV and V are devoted to discussion and summary.

II. THE NUMERICAL METHODS

We use the Sugiura and Shimizu method to construct a set
of typical pure states for investigating the thermal properties
of the S = 1

2 Shastry-Sutherland model, Eq. (2). We briefly
describe the detailed procedure in this method. According
to Ref. [5], a set of typical pure states, |β, N〉, for the in-
versed temperature β = 1/T and the system size N can be
constructed operating our target Hamiltonian on a set of initial
random vectors,

|β, N〉 = e−βH/2|ψ0〉, (3)

where the initial random vectors are given by |ψ0〉 =∑2N

i=1 ci|i〉. Here, {ci} are random complex numbers satisfying

the normalization condition
∑2N

i=1 |ci|2 = 1 and {|i〉} are an
arbitrary orthonormal basis set of the Hilbert space of H.
We use a binary bits representation for the orthonormal basis
set such as |i〉 = |σ1σ2...σN 〉 with σ j =↑ or ↓. Note that we
use the U(1) symmetry of the Hamiltonian for reducing the
memory cost of our computation, and Eq. (3) can be divided
by the quantum conserved number, Stot

z .
Sugiura and Shimizu call a |β, N〉 as a canonical thermal

pure quantum (TPQ) state which represents an equilibrium
state. The ensemble average of a physical quantity Â, Eq. (1),
could be replaced by the following equation,

〈Â〉TPQ
β,N = 〈β, N |Â|β, N〉

〈β, N |β, N〉 , (4)

where the overline denotes the average over the initial random
vectors. We should note that we can get the correct value
from one TPQ state, that means, 〈Â〉TPQ

β,N = 〈Â〉ens
β,N , only when

we treat large enough system size. For small system sizes,
we need to average many realizations of the random initial
vectors. It was shown in many pioneering and independent

researches [1–5] that the deviation (〈Â〉TPQ
β,N − 〈Â〉ens

β,N )2 decays

as ∼1/
√

ID where the I means the number of realizations of
the initial random vectors, and the D represents the dimension
of the entire Hilbert space of the model. For reducing the de-
viation from the exact value, in our computation, the average
over initial random vectors is taken over 800 (N = 16), 100
(N = 20), and 20 (N = 32) realizations, and we evaluate the
error of each physical quantity by the standard error.

We also use the thick-restart Lanczos algorithm [44,45] for
obtaining the ground and excited states of our target Hamilto-
nian. Despite the conventional Lanczos algorithm, this variant
Lanczos algorithm enables us to avoid losing orthogonality,
which results in spurious eigenvalues and eigenvectors.
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FIG. 2. The N = 32 temperature dependence of the specific heat
per dimer in J/JD = 0.5, 0.66, 0.69, and 0.74 for (a) T/JD � 1 and
(b) T/JD � 0.2.

III. RESULTS

The TPQ calculation results of the specific heat in several
J/JD values are shown in Fig. 2 in the temperature regions,
(a) T/JD � 1.0 and (b) T/JD � 0.2, respectively. We here fo-
cus on our maximum finite-size cluster, N = 32. We confirm
that our computations in J/JD = 0.50 and 0.66 are consistent
with the previous QMC and TPQ works in Refs. [46,47].
Let us focus on the data in J/JD = 0.69 here, exhibiting two
peak structures at T/JD ∼ 0.05 and T/JD ∼ 0.007. The finite-
temperature iPEPS calculation in this parameter was done
quite recently [43] and exhibited the peak structure only at
T/JD ∼ 0.05. We also find an additional small peak at very
low temperatures, T/JD ∼ 0.007 in the N = 32 cluster. We
note that this low-temperature small peak appears only in
the intermediate plaquette singlet phase and near the phase
boundary between the dimer singlet and plaquette singlet
phases, J/JD < 0.74, therefore, this small peak corresponds
to the Schottky anomaly which was not confirmed in small
size ED calculations in Ref. [42].

To investigate thermal development in correlations, we
calculate the temperature dependence of the real-space
nearest-neighbor two-point correlation function. We show the
J/JD = 0.5 results for the dimer-singlet phase in Figs. 3(b)
and 3(d), and the J/JD = 0.69 results for the singlet-plaquette
phase near the phase boundary in Figs. 3(f)–3(h). Note that

we show the real-space correlations obtained from an ini-
tial random vector without taking the average over it. In the
dimer-singlet phase, we just could see the enhancement of
the intradimer AF correlation with decreasing the temperature
from Figs. 3(d) to 3(b), and this behavior does not change
qualitatively in the results obtained from different initial ran-
dom vectors. In the intermediate plaquette phase, on the other
hand, we can see a clear signature of a mirror symmetry break-
ing pattern at moderate temperatures, 0.007 � T/JD � 0.05,
as shown in Fig. 3(g). There are two choices for the empty pla-
quette pattern, and we confirm which pattern appears depends
on the initial random vectors [see also Fig. 3(i)]. One could
also see a more intriguing feature, the recovering of the mirror
symmetry, at lower temperatures T/JD � 0.007 as shown in
Fig. 3(f). We here also comment that the multiple peak struc-
tures in the specific heat in each parameter are associated with
the change in the observed correlation patterns.

We investigate more details focusing on the J/JD = 0.69
case. We will see the size dependencies of the specific heat
and of the following local mirror order parameter,

1

Nm

Nm∑

i=1

〈|Si · SiL − Si · SiR |〉TPQ
β,N , (5)

where the i means the lower site on the vertical JD bond, Nm

is the number of site i, which is taken as Nm = N/4, and iL
and iR are the left- and right-hand side sites connected to the
ith site [for example, see also the N = 32 cluster in Fig. 1(b)].
In Fig. 4, finite-size effects appear in the specific heat and the
local mirror parameter at a lower temperature than T/JD =
0.3. However, the higher temperature peak in the specific heat
tends to shift to a lower temperature with the size and almost
seems to be converged. Besides, we confirm the consistency
with the iPEPS calculation in this peak temperature; therefore,
we may expect that the N = 32 cluster is not so far from the
thermodynamic limit, at least at T/JD � 0.05.

We could find a bit complicated finite-size dependence of
the local mirror operator in Fig. 4(b). Although the mirror
symmetry recovering features are obtained in the N = 16 and
32 clusters as we confirmed in Figs. 3(f)–3(h), the 20-site
cluster does not show it, and the value of Eq. (5) saturates to
a nonzero constant value in T → 0. This complicated finite-
size dependence could be understood from the ground state
property of each cluster. For example, in the N = 32 cluster,
Ref. [26] reported that the ground state is constructed by an
s-wave type wave function exhibiting a plaquette type dimer-
dimer correlation pattern. Note that this type of correlation
pattern can not be observed within the two-point correlation
function level because the current cluster has mirror symmetry
and the ground state is not degenerated. Indeed, we confirmed
this fact by calculating the nearest neighbor two-point correla-
tion in the ground state of N = 32, which is shown in the inset
of Fig. 4(b). We can see clearly that Eq. (5) should be zero
in this ground state. The same situation also happens in the
N = 16 case. In contrast, the N = 20 cluster also has a unique
ground state but does not have the mirror symmetry in itself,
which means there is only one empty plaquette pattern in this
cluster, which is detectable in two-point correlation function
level as shown in the inset of Fig. 4(b).
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(d) T/JD = 1.0(c) T/JD = 0.4(b) T/JD = 0.15

(f) T/JD = 0.003 (g) T/JD = 0.03 (h) T/JD = 0.2
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FIG. 3. The temperature dependencies of the specific heat per dimer and the nearest-neighbor two-point correlation function in the N = 32
cluster. The upper (lower) panels show the results in J/JD = 0.50 (0.69) as the typical example in the dimer (empty plaquette) regions.
The orange arrows point to the temperatures we treated for the real-space correlation functions. The color in each nearest-neighbor bond in
(b)–(d) and (f)–(i) represents the intensity plot of the corresponding two-point correlation function Si · S j . The results in (b)–(d) and also in
(f)–(h) are obtained through a random initial vector, respectively. The result in (i) is obtained from a different initial vector from that used in
(f)–(h).

One may have additional questions at the moment: Why
could we see the symmetry broken feature within the two-
point correlation level at moderate temperatures in N = 16
and 32 clusters? What happened in the TPQ state constructed
by Eq. (3)? To answer these questions, we calculate the low-
energy states by mean of the thick-restarted Lanczos method
using U(1) and translational invariances and reveal the ex-
istence of the twofold degenerated excited states exhibiting
mirror symmetry breaking pattern in two-point correlation
function, which belong to the momentum sectors on the
boundary line of the first Brillouin zone [see the red, green,
magenta points in Fig. 5(a)]. For example, we show that the
lowest twofold states on the X point can exhibit clear empty
plaquette type correlations as shown in Figs. 5(b)–5(c).

Let us discuss here the origin of the mirror symmetry
breaking feature at moderate temperatures. According to the
relationship between Eqs. (1) and (4), we can expect that
a normalized constructed typical state by an initial random
vector is written by the eigenvalues and eigenvectors of the
Hamiltonian [48],

|β, N〉√〈β, N |β, N〉 ∼
∑

ν

exp (iφν )
e−β/2Eν

√
Z (β )

|ν〉, (6)

where the φν corresponds to the phase degrees of freedom.
In our typicality method, it is expected that this φν and also
how the degenerated states are constructed are completely
determined by initial random complex numbers {ci} which
are used for the initial random vector, |�0〉 of Eq. (3). This
is the reason why we could see the two patterns of the empty
plaquette in the real-space two-point correlation function with
depending on the initial random vectors as shown in Figs. 3(g)
and 3(i). We also calculate the temperature dependence of
the total energy, and the result shows that when our system
reaches the total energy level lower than ∼ − 11.85 at the

lower temperature than T/JD ∼ 0.1, the local mirror order
parameter starts to be enhanced as shown in Figs. 5(a), 5(d)
and 5(e). These results indicate that the typical state can sense
the existence of the degenerated states and show the mirror
symmetry breaking pattern at moderate temperatures with
fully depending on the initial random vectors. If we could
treat much larger systems by means of the typicality method,
we expect that one quantum typical state will select an empty
plaquette pattern at moderate temperature, which can be con-
sidered as a spontaneous finite-temperature phase transition.

IV. DISCUSSION

Let us discuss the fate of the local mirror order parameter
and the specific heat in the thermodynamic limit in the inter-
mediate plaquette region. According to the paper by Läuchli
et al. [26], the ground state and the first excited state exhibit-
ing the empty plaquette dimer-dimer correlation function is
expected to be degenerated in the thermodynamic limit, and
then can show the plaquette pattern even in the two-point
correlation level. Therefore, the low-temperature recovering
feature of the mirror symmetry is just a finite-size effect and
we can expect that a saturated behavior will appear in the
local mirror order parameter at T → 0 in much larger system
sizes. Our computational results in N = 16 and 32 in Fig. 4(b)
may support our scenario because the peak temperatures of the
local mirror order parameter is shifted to a lower temperature
and seems to exhibit a saturated behavior in the larger system
size. In much larger system sizes, we may expect the existence
of the additional sharp peak of the specific heat which indi-
cates the Ising-type second order phase transition, however,
this is very difficult to detect in our typicality computation
[42,49].

We comment about the relationship to the recent exper-
imental results on SrCu2(BO3)2. The NMR and the recent
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FIG. 4. The size and temperature dependencies of (a) the specific
heat and (b) the local mirror order parameter in J/JD = 0.69. The
inset of (b) show the results of the real-space nearest-neighbor corre-
lation function in the ground state of N = 20 (left) and 32 (right) in
J/JD = 0.69.

inelastic neutron scattering (INS) measurements [34,39] re-
ported that this material under high pressure did not give
the empty plaquette state, but the full plaquette state in
which the singlet is formed in each J square plaquette with
JD interaction. The discrepancy from the simple Shastry-
Sutherland model has not been settled and the distortion [50],
Dzyaloshinkii-Moriya [51], and 3D coupling [46] interactions
were proposed as the origin of it. The important thing is that
both empty and full plaquette states are twofold degenerated
ground states (if there is no distortion); therefore, we can
expect that the almost same physics appears at finite temper-
atures as we observed in our study. In connection with this,
we also compute the temperature dependence of another local
mirror order parameter, which can detect the mirror symmetry
breaking feature in the full plaquette manner, and confirm that
this full plaquette correlation is also enhanced at moderate
temperatures although the dominant correlation is an empty
one (see also our Appendix). Whether additional interactions
to our present Hamiltonian can change the dominant cor-
relation at moderate temperatures is an interesting problem
for SrCu2(BO3)2. As we noted above, it is expected that the
finite-size effect is not so strong around T/JD ∼ 0.05 even in
the N = 32 cluster. Computing dynamical physical quantities

FIG. 5. (a) Energy spectrum in N = 32 and J/JD = 0.69 ob-
tained by the thick-restarted Lanczos method. The empty (filled)
symbols show the results of total S = 0 (1). The inset shows the
momentum sector. (b-c) The real-space nearest-neighbor correlation
function obtained in the lowest two states in the X sector. (d), (e)
The temperature dependencies of the total energy, the specific heat
per dimer, and the local mirror order parameter in N = 32 and
J/JD = 0.69 obtained by our typicality method.

using recent new techniques based on the typicality method
[6,13,48,52] around the temperature, having finite values in
the local mirror order parameter, also can give useful infor-
mation for the NMR, INS, and ESR measurements. Finally,
we hope that the relationship between the signature of the
phase transition and the existence of the corresponding de-
generated excited states can open a new door via the typicality
method for understanding the nature of more complex finite-
temperature phase transitions such as a topological phase
transition associated with topological defects.

V. SUMMARY

By the quantum typicality method, we could confirm the
clear signature of the mirror symmetry breaking pattern at
low temperatures in the S = 1

2 Shastry-Sutherland model.
The signature in the two-point correlation level comes from
the existence of the degenerated excited states having empty
plaquette correlations, and the typical state can sense them
depending on the random initial states. The recovering feature
of the mirror symmetry is a finite-size effect, and we could
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expect a saturated behavior in the local mirror order parameter
in the thermodynamic limit.
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APPENDIX

In this Appendix, we treat another type of local mirror
order parameter for the full plaquette state. The local mirror
order parameter for the full plaquette state is defined as

1

Nm

Nm∑

i=1

〈|Si · SiT − Si · SiB |〉TPQ
β,N , (A1)

where the i means the lower site on the vertical JD bond, Nm

is the number of site i, which is taken as Nm = N/4, and iT
and iB are top and bottom right sites connected to the ith
site depicted in the inset of Fig. 6. For example, we show
the results of the temperature dependencies of our two local

FIG. 6. The temperature dependencies of the local mirror order
parameters for empty plaquette and full plaquette in N = 32 and
J/JD = 0.69. The inset graphs show the empty (left) and full (right)
plaquette pictures and the labels in these pictures show the site infor-
mation used for the corresponding local mirror order parameters.

mirror order parameters in J/JD = 0.69 and N = 32. The
result of the empty plaquette in Fig. 6 is the same one as in
Fig. 4(b). We can see the dominant correlation is the empty
one, however, the correlation of the full plaquette pattern is
also slightly enhanced at moderate temperatures. We confirm
that the enhancement of the full plaquette pattern could also
be understood from the existences of the low-energy excited
states exhibiting the full plaquette pattern correlations at the
momentum sectors, (qx, qy)=(±π

2 , 0) and (0, ±π
2 ). We con-

firm that the X point also has some degenerated excited states
exhibiting the full plaquette pattern correlations such as the
second and third lower energy excited states.
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