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There are two familiar constructions of a developable
surface from a space curve. The tangent developable
is a ruled surface for which the rulings are tangent
to the curve at each point and relative to this
surface the absolute value of the geodesic curvature
κg of the curve equals the curvature κ . The
alternative construction is the rectifying developable.
The geodesic curvature of the curve relative to any
such surface vanishes. We show that there is a family
of developable surfaces that can be generated from
a curve, one surface for each function k that is
defined on the curve and satisfies |k| ≤ κ , and that the
geodesic curvature of the curve relative to each such
constructed surface satisfies κg = k.

1. Introduction
The two fundamental notions of curvature for a surface
in three space dimensions are the mean and Gaussian
curvatures. Surfaces with vanishing mean curvature,
called minimal surfaces, have been studied in great
detail for both their unique mathematical properties and
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their remarkable prominence in applications. Surfaces with vanishing Gaussian curvature, called
developables, are also of particular interest since they can be smoothly flattened onto a plane
without stretching or contraction. The mathematical literature concerning developables is quite
extensive and has led to a complete characterization. Specifically, any developable surface must
be the union of four fundamental types of developables: planar, tangent developable, generalized
cones, and generalized cylinders. See do Carmo ([1], §4–2) and references cited therein for details.

Since any curved developable surface can be formed from a flat region while preserving the
distance along any curve between any pair of points, the work required to deform thin sheets
of materials as diverse as paper, leather, metal, and glass into developable shapes is much less
than that needed to attain other shapes. Developable surfaces have thus been of longstanding
relevance in many areas, including the design of ship hulls [2] and automobile parts [3,4],
buildings [5,6], especially lightweight structures like facades [7] and pavilions [8], apparel [9] and
footwear [10]. Due to the widespread utility of developable surfaces, methods for generating and
processing them are now standard features of most computer-aided design platforms. In addition
to devising algorithms for modelling the bending of paper and origami [11–13] and the draping
and folding of cloth [14] for animation, computer scientists have discovered a host of novel
applications for developable surfaces, including the segmentation and parametrization of meshes
and the mapping of textures [15]. Very recently, mechanisms that can be placed on developable
surfaces and, thus, allow for compact storage have been designed by Greenwood et al. [16] and
Hyatt et al. [17].

Locally, a smooth developable surface can be represented as the envelope of a smoothly
varying one parameter family of planes or as a ruled surface. See Section 2–4 of Struik [18] for
a comprehensive discussion of these topics. Here we focus on the latter representation, whereby a
smooth developable surface can be parametrized locally by a space curve, called its directrix, and
a family of straight lines, called rulings or generators, emanating from that curve. Given a space
curve, it is always possible to generate a ruled surface by attaching to it a smoothly varying family
of rulings. However, not all ruled surfaces are developable. This leads naturally to the question of
whether a developable surface can always be constructed from a given curve. The answer to this
question is affirmative, as there are two well-known constructions: the tangent developable and
the rectifying developable.

To describe these constructions, consider a smooth curve C with arclength parametrization
d : [a, b] → R

3. The tangent and rectifying developables generated by C are then parametrized by

r(α,β) = d(α) + βd′(α), (α,β) ∈ [a, b] × R, (1.1)

and

r(α,β) = d(α) + β
d′(α) × d′′(α) + τ (α)d′(α)√

κ2(α) + τ 2(α)
, (α,β) ∈ [a, b] × R, (1.2)

where κ = |d′′| and τ = (d′ × d′′) · d′′′/κ2 denote the curvature and torsion of C. Whereas the
rulings of the tangent developable of C are aligned with the tangent of C, the rulings of the
rectifying developable of C are aligned with the Darboux vector of C. Notice that tangent and
rectifying developables may contain singular points and that a rectifying developable exists only
if κ never vanishes.

Recall that the geodesic curvature κg of a curve C on a surface S measures how far C deviates
from being a geodesic of S and that its magnitude |κg| cannot exceed the curvature κ of C. The
two classes of developables mentioned above manifest the extreme limiting cases of the inequality
|κg| ≤ κ . Relative to its tangent developable surface, the geodesic curvature of C satisfies |κg| = κ

on C, with the sign of κg being determined by the choice of the direction of the normal to the
surface. Relative to its rectifying developable surface, the geodesic curvature of C satisfies κg = 0.
In §3, we show that in addition to these two limiting cases, there is a continuous spectrum of
developable surfaces associated with a curve C. Each such surface is generated by a function
k : [a, b] → R satisfying |k| ≤ κ . Moreover, we show that the geodesic curvature κg of C relative to
that surface obeys κg = k on C. To allow for situations in which the curvature κ of C vanishes on a
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finite number of intervals, we stipulate that k complies with a jump-like condition consistent with
changes in orientation, about the tangent to C, of the Frenet frame at junctions between curved
and straight segments of C. This is condition (C2) in theorem 3.1. An additional condition on k,
(C3) in theorem 3.1, is needed to ensure a continuous transition of the rulings at any junction
between segments of C within which |k|< κ and within which |k| = κ . However, we defer further
mention of that condition until §3.

In §2, we review facts about curves in R
3 and curves on surfaces embedded in R

3, including the
definitions of the Frenet and Darboux frames and the relationship between them. We also derive
restrictions on the directions of the rulings associated with a curve on a developable surface. The
purpose of deriving these restrictions is to motivative the assumptions underlying the main result
established in §3, which states that given a curve C and a function k satisfying certain conditions
which we delineate, it is possible to construct a developable surface S such that the geodesic
curvature of C relative to S is k.

2. Curves on developables
Let C be a C3 curve in R

3 with arclength parametrization d : [a, b] → R
3. At points where d′′ �= 0,

the normal p and binormal b of the Frenet frame {t, p, b} for C are given by

t = d′, p = d′′

|d′′| and b = d′ × d′′

|d′′| . (2.1)

The structure equations for the frame {t, p, b} are

t′ = κp, p′ = −κt + τb, b′ = −τp, (2.2)

where

κ = |d′′| and τ = (d′ × d′′) · d′′′

κ2 (2.3)

denote the curvature and torsion of C, respectively.
We assume that C is such that d′′ = 0 on only a finite number of disjoint subintervals [α−

i ,α+
i ],

i = 1, . . . , n, of (a, b) and that the limits

p±
i = lim

ε↓0
p(α±

i ± ε) and b±
i = lim

ε↓0
b(α±

i ± ε) (2.4)

exist. We allow, in particular, for the possibility that α−
i = α+

i , in which case the interval [α−
i ,α+

i ]
collapses to a single point.

Let

K=
n⋃

i=1

[α−
i ,α+

i ] = {α ∈ [a, b] | κ(α) = 0} (2.5)

denote the union of the intervals upon which d′′ = 0. Then, the Frenet frame of C is not defined on
K and the Frenet frames {ti, p−

i , b−
i } and {ti, p+

i , b+
i } at the two endpoints of each interval [α−

i ,α+
i ],

i = 1, . . . , n, may differ. However, since {ti, p−
i , b−

i } and {ti, p+
i , b+

i } are both positively oriented for
each i = 1, . . . , n, it is possible to rotate one of these frames around the axis determined by ti to
obtain the other. Thus, there is an angle ψi such that, for each i = 1, . . . , n,

p+
i = cosψi p−

i + sinψi b−
i ,

b+
i = − sinψi p−

i + cosψi b−
i .

}
(2.6)

In (2.6), positive values of ψi correspond to counterclockwise rotations about ti.
Suppose there is a C2 surface S that contains C and that {t, m, n} is a Darboux frame of C relative

to S, with n normal to S and m = n × t tangent to S and orthogonal to C. The structure equations
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for the frame {t, m, n} are

t′ = κgm + κnn, m′ = −κgt + τgn, n′ = −κnt − τgm, (2.7)

where κg, κn and τg, respectively, denote the geodesic curvature, normal curvature, and geodesic
torsion of C relative to S. It follows from (2.3)1 and (2.7)1 that

κ2 = κ2
g + κ2

n . (2.8)

Since the Frenet and Darboux frames of C are both positively oriented and share the same
tangent direction t, it is possible to rotate the Frenet frame about the axis determined by t through
a function φ : [a, b] → [0, 2π ) to obtain the Darboux frame, so that

m = cosφ p + sinφ b,

n = − sinφ p + cosφ b.

}
(2.9)

From (2.2)1, (2.7)1 and (2.9), κg and κn are related to κ and φ by

κg = κ cosφ and κn = −κ sinφ. (2.10)

Moreover, from the consequence τg = m′ · n of (2.7)2 and (2.9), τg is related to τ and φ by

τg = −(κ cosφ t + (τ + φ′)(sinφ p − cosφ b)) · (− sinφ p + cosφ b) = τ + φ′. (2.11)

Since C is C3 and S is C2, the Darboux frame {t, m, n} of C relative to S is C1. Bearing in
mind that the Frenet frames at the endpoints of an interval where d′′ = 0 may differ and that
the Darboux frame is continuous, it is not surprising that the angle φ that relates the Frenet and
Darboux frames may also jump across these intervals. In fact, any such jump is related to ψi. To
verify this assertion, we first define the jump

[[φ]]i = lim
ε↓0

(φ(α+
i + ε) − φ(α−

i − ε)) (2.12)

of φ across the interval [α−
i ,α+

i ]. Considering (2.9) evaluated at α = α+
i + ε and at α = α−

i − ε and
using the continuity of m, the jump relations (2.6), and the sum formulae for sine and cosine, we
next find that

sin
(

lim
ε↓0

φ(α−
i − ε)

)
= sin

(
lim
ε↓0

φ(α+
i + ε) + ψi

)
,

cos
(

lim
ε↓0

φ(α−
i − ε)

)
= cos

(
lim
ε↓0

φ(α+
i + ε) + ψi

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

Since limε↓0 φ(α−
i − ε) and limε↓0(φ(α+

i + ε) + ψi) have the same sine and cosine, we see that they
differ at most by a multiple of 2π , with the consequence that

ψi + [[φ]]i ≡ 0 mod 2π . (2.14)

We now assume that S is developable. A basic property of such surfaces, a proof of which is
provided in Section 2–4 of Struik [18], is that they are locally ruled. We therefore seek to represent a
subset of the surface S in a neighbourhood of C as a ruled surface with directrix C. To carry out this
construction, we use a result that Hartman & Nirenberg [19] first established for C2 surfaces and
which was later shown by Pogorelov [20] to hold for surfaces with less regularity. The developable
surface S can be partitioned into two subsets with specific geometric structure:

— A subset wherein the mean curvature does not vanish and, hence, S is curved. This part
of S consists of connected components covered by straight line segments that do not
intersect and are asymptotic curves.

— A subset wherein the mean curvature vanishes, and, hence, since the Gaussian curvature
also vanishes, where S is flat. Any connected component of this subset of S is bounded
by straight-line segments.
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Let Sc denote the curved subset of S and assume without loss of generality that Sc �= ∅. From
the stated result, there is a distinguished line segment, called a ruling, through every point on
Sc. Since rulings cannot intersect, there exists a unit-vector valued function ĝ defined on Sc with
the property that ĝ(z) is parallel to the ruling passing through z ∈ Sc. Invoking a result due to
Hartman & Wintner [21], we infer that ĝ is C1 on Sc. Moreover, recognizing that the boundary of
Sc consists of straight line segments, we see that ĝ can be continuously extended to the closure S̄c

of Sc relative to S.
Let A⊆ [a, b] denote the subset of parameter values α ∈ [a, b] such that |κg(α)|< κ(α). Since

d(α) ∈ S̄c for all α ∈ Ā, we can define a function g : A→ R
3 such that

g(α) =
{

ĝ(d(α)), (d′(α) × ĝ(d(α))) · n(α) ≥ 0,

−ĝ(d(α)), (d′(α) × ĝ(d(α))) · n(α)< 0,
(2.15)

for any α ∈A, where ĝ is the function mentioned in the previous paragraph. The motivation
underlying the introduction of g will be explained in due course. To proceed, we first extend
g from A to the entire interval [a, b] in such a way that:

— g is C1 on [a, b] \ Ā,
— (d′ × g) · n ≥ 0, g · n = 0, and |g| = 1,
— g is continuous except possibly at points where it is parallel to d′.

We emphasize that g can be extended as described because [a, b] \ Ā consists of a collection of
intervals that are open relative to [a, b]. Also, we observe that a feature of (2.15) is that g need not
be continuous if it is parallel to d′.

Consider, next, the parametrization r : [a, b] × (−β̄, β̄) → R
3 defined such that

r(α,β) = d(α) + βg(α), (α,β) ∈ [a, b] × (−β̄, β̄). (2.16)

Since g is parallel to the rulings on S, the range of r is a subset of S for any sufficiently small choice
of β̄. Moreover, since g is tangent to S and is of unit length, there exists a function θ : [a, b] → [0,π ]
such that

g = cos θ t + sin θ m. (2.17)

By the construction of g, we see that θ is continuous except possibly if sin θ = 0, in which case it
may jump by π . Differentiating g as defined by (2.17) and using the structure equations (2.7) for
the Darboux frame, we find that

g′ = −(θ ′ + κg)(sin θ t − cos θ m) + (κn cos θ + τg sin θ )n. (2.18)

Recalling that a surface with parametrization r has a singular point at (α,β) if rα × rβ evaluated
at (α,β) vanishes, we see with reference to (2.16) and (2.18) that (α,β) is a singular point if

sin θ (α) − β(θ ′(α) + k(α)) = 0. (2.19)

At any point where (2.19) does not hold, there exists a neighbourhood within which r is locally
invertible and, hence, provides a chart of S. We thus conclude from (2.16) to (2.18) that, at any non-
singular point of the surface S with parametrization r defined in (2.16), the Gaussian curvature K
can be expressed as

K = − (κn cos θ + τg sin θ )2

(sin θ − β(θ ′ + κg))2 + β2(κn cos θ + τg sin θ )2 . (2.20)

However, since K = 0 on S, we see from (2.20) that κn, τg, and θ must obey the condition

κn cos θ + τg sin θ = 0. (2.21)

If |κg|< κ , we may use (2.10)2 and (2.11) in (2.21) to find that

κ cosφ cos θ + (τ + φ′) sin θ = 0. (2.22)
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Bearing in mind that sinφ = 0 away from A, we thus see from (2.22) that the angle θ introduced
in (2.17) is given on A by

cot θ = τ + φ′

κ sinφ
. (2.23)

However, because | cot θ | is continuous on [a, b], we also see that the limit

lim
α→α◦
α∈A

∣∣∣ τ (α) + φ′(α)
κ(α) sinφ(α)

∣∣∣, α◦ ∈ Ā, (2.24)

must always exist but may be infinite.
Since sinφ = 0 and φ is C1 on [a, b] \ (Ā ∪ K), we infer that φ′ = 0 on [a, b] \ (Ā ∪ K) and, thus,

from (2.10)2, (2.11), and (2.21), that τ and θ must satisfy

τ sin θ = 0, on [a, b] \ (Ā ∪ K). (2.25)

The condition (2.25) is consistent with the observation that if |κg| = κ , then the corresponding
surface S is the union of two types of regions:

— planar regions generated by the curve C if τ = 0, or
— tangent developable regions where sin θ = 0.

It is possible for part of the surface S to be planar and a tangent developable simultaneously. The
conjunction ‘or’ used above is therefore not to be taken in the exclusive sense.

The parameter set T defined by

T = {α ∈ [a, b] \ (Ā ∪ K) | τ (α) �= 0} (2.26)

consists of all choices of α ∈ [a, b] \ (Ā ∪ K) at which S is a tangent developable. To ensure a
continuous transition of θ from T to A, θ must be such that sin θ = 0 on ∂Ā ∩ ∂T . Using (2.24), we
may formulate this condition as

α◦ ∈ ∂Ā ∩ ∂T implies that lim
α→α◦
α∈A

∣∣∣ τ (α) + φ′(α)
κ(α) sinφ(α)

∣∣∣= ∞. (2.27)

The calculations in this section demonstrate that a space curve cannot lie on a developable
surface unless its curvature κ and geodesic curvature κg relative to that surface satisfy certain
conditions. First, it follows from (2.8) that κg must satisfy |κg| ≤ κ . Second, if (2.10)1 is interpreted
as a relation that determines φ as a function of κ and κg, then κ and κg must satisfy the jump-like
condition (2.14). Finally, the limit in (2.24) must exist and is infinite if α◦ ∈ ∂Ā ∩ ∂T . These three
conditions on κ and κg must hold if the surface containing the curve is developable. It is these
conditions that motivate the assumptions appearing in theorem 3.1 in the next section.

An alternative to starting with a developable surface S and constructing a ruled
parametrization of the form (2.16) for S in a neighbourhood of C involves starting with a ruled
surface S of vanishing Gaussian curvature K. This option has the advantage of rendering the
discussion in the paragraphs between (2.14) and (2.16) unnecessary, as it makes it possible to begin
directly with the parametrization (2.16). It also resembles more closely the construction described
in §3. However, starting with a ruled surface has the potential disadvantage of conveying the false
impression that all developable surfaces are globally, as opposed to locally, ruled.

3. Construction of a family of developable surfaces
The main idea underpinning the theorem that we state and prove below is that, given a curve
C and a function k satisfying certain conditions, it is possible to generate a ruled surface S with
vanishing Gaussian curvature K such that C lies on S and has geodesic curvature κg equal to k.
We emphasize that a ruled surface S generated in this manner need not be smooth.
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Theorem 3.1. Let d : [a, b] → R
3 be an arclength parametrization of a C4 space curve C with curvature

κ that vanishes on at most a finite number of intervals [α−
i ,α+

i ], i = 1, . . . , n. Consider a C2 function
k : [a, b] \ K→ R, where K is defined in (2.5), and let A be the subset of [a, b] defined by

A= {α ∈ [a, b] \ K | |k(α)|< κ(α)}. (3.1)

Assume that:

(C1) |k| ≤ κ ;
(C2) the function φ : [a, b] \ K→ [0,π ] defined by

φ = arccos
k
κ

(3.2)

satisfies

ψi + [[φ]]i ≡ 0 mod 2π , i = 1, . . . , n, (3.3)

where ψi is defined so that (2.6) holds;
(C3) the not necessarily finite limit

lim
α→α◦
α∈A

∣∣∣ τ (α) + φ′(α)
κ(α) sinφ(α)

∣∣∣, α◦ ∈ ∂A, (3.4)

exists and is infinite if α◦ ∈ ∂Ā ∩ ∂T , with T as in (2.26).

Then there exists a ruled surface S, containing C, with continuously varying rulings such that the geodesic
curvature κg of C relative to S is given by k and the Gaussian curvature of S vanishes at all non-singular
points of S.

Before proving theorem 3.1, we provide interpretations of conditions (C2) and (C3). Condition
(C2) ensures that the Darboux frame constructed from the space curve C has a continuous
extension across the intervals where κ = 0. If κ never vanishes, then (C2) is unnecessary to obtain
the result. Condition (C3) is related to the direction of the rulings. Unique rulings are generated
from C if |k|< κ . As |k| → κ , condition (C3) guarantees that the rulings approach a particular
direction. If |k| is never equal to κ , then (C3) is unnecessary since in this case ∂A is empty.

Proof. We begin by using φ to define m and n on [a, b] \ K by

m = cosφ p + sinφ b,

n = − sinφ p + cosφ b.

}
(3.5)

We then see from (2.2) that

m′ = −k t + (τ + φ′) n. (3.6)

Since (3.3) holds, we recognize that on each interval [α−
i ,α+

i ], i = 1, . . . , n, upon which κ = 0 the
jumps[[m]]i and [[n]]i of m and n vanish:

[[m]]i = 0 and [[n]]i = 0, i = 1, . . . , n. (3.7)

We may therefore extend m and n so that they are constant on the intervals [α−
i ,α+

i ], i = 1, . . . , n,
with the consequence that they become continuous on the entire interval [a, b].

Next, we define θ implicitly on A through the relation

cot θ = τ + φ′

κ sinφ
. (3.8)

It then follows from the assumed regularity of C and k and the implicit function theorem that θ
is C1 on A. By (C3), we may use (3.8) to define θ for α ∈ ∂A, where we choose θ = 0 if the limit in
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(C3) is infinite. Using this definition, θ may jump by π if θ = 0, but otherwise is continuous on Ā.
We now seek to define θ on the remainder [a, b] \ Ā of [a, b] such that

τ sin θ = 0, on [a, b] \ (Ā ∩ K). (3.9)

Since [a, b] \ Ā is open relative to [a, b], it can be expressed as the union of a countable collection of
intervals that are open relative to [a, b]. Let (α−,α+) be one such interval. Notice that θ is already
defined at the endpoints α± of that interval. Situations in which the interval under consideration is
of the semi-open form [a,α+) or (α−, b] will not be discussed in detail here. However, the strategy
described below is easily adapted to treat those situations. Recalling the definition of T in (2.26),
the closure of the convex hull of T ∩ [α−,α+] is an interval, which we denote by [ατ−,ατ+]. We
set θ = 0 on (ατ−,ατ+). If α− = ατ− and α+ = ατ+, then by (C3) θ is continuous on [α−,α+] and C1 on
(α−,α+). However, if α− <ατ−, then it is always possible to define θ on the interval (α+,ατ+) so as to
ensure that it is C1 on (α−,α+). A similar argument holds if ατ+ <α+. Moreover, this construction
can be performed on each interval that comprises [a, b] \ Ā. To summarize, θ is now defined on
the entire interval [a, b], is C1 away from ∂A, is continuous except possibly if θ = 0, where only a
jump of π may occur, and (3.9) holds.

With this definition of θ , we next construct g through the relation

g = cos θ t + sin θ m. (3.10)

Using (2.2), (3.6) and (3.10), we find that

g′ = −(θ ′ + k)(sin θ t − cos θ m) + ((τ + φ′) sin θ − κ sinφ cos θ )n (3.11)

on A. However, since θ satisfies (3.8) on A, we see that (3.11) reduces to

g′ = −(θ ′ + k)(sin θ t − cos θ m). (3.12)

Moreover, on [a, b] \ (Ā ∪ K), where |k| = κ , we see that sinφ = 0 and φ′ = 0, whereby (3.11)
reduces to

g′ = −(θ ′ + k)(sin θ t − cos θ m) + τ sin θ n. (3.13)

However, we see from (3.9) that (3.13) reduces further to coincide with (3.12). Finally, since t and
m are constant on any open interval where κ = 0, we see that on such intervals

g′ = −θ ′(sin θ t − cos θ m). (3.14)

We hence find that whenever g′ exists it satisfies

g′ · n = 0. (3.15)

Next, we define r : [a, b] × R → R
3 by

r(α,β) = d(α) + βg(α), (α,β) ∈ [a, b] × R. (3.16)

Due to the assumed regularity of d and k and the regularity of θ as constructed above, r as defined
in (3.16) is C1 on ([a, b] \ ∂A) × R. Moreover, the rulings of the surface S parametrized by r vary
continuously with θ in the sense that the projector g ⊗ g in the direction of g is continuous because
θ can only jump by π if sin θ = 0. This property ensures that the surface parametrized by r exhibits
no jumps.

Notice from (3.12) and (3.16) that

rα × rβ = (t + βg′) × g = (sin θ − β(θ ′ + k))n (3.17)

and, hence, that the surface S parametrized by r is singular if

sin θ − β(θ ′ + k) = 0 (3.18)
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or if the necessary derivatives do not exist. Moreover, we see from (3.17) that, at non-singular
points, the normal to S is given by

rα × rβ
|rα × rβ | = n (3.19)

and, hence, is independent of β. The Gaussian curvature K of S can therefore be calculated as in
(2.20). With reference to (3.15), we find that K vanishes at all non-singular points of S.

Finally, we use (2.7)2 and (3.6) to find that

κg = −m′ · t = k, (3.20)

and, hence, that the geodesic curvature κg of the curve C relative to the surface S parametrized by
r is given by the function k. �

The main steps in the construction of a developable surface S laid out in theorem 3.1 can be
synopsized as follows:

(i) Use (3.2) to define the function φ : [a, b] → [0,π ].
(ii) Use (3.5) to define the Darboux frame {t, m, n} from the Frenet frame {t, p, b} associated

with d. Notice, here, that (C2) ensures that {t, m, n} is continuous.
(iii) If |k|< κ , use (3.8) to define the function θ : [a, b] → [0,π ]. Otherwise, if there are

parameter values α for which |k(α)| = κ(α), define θ on the proper subset A of [a, b] upon
which |κg|< κ and extend it to [a, b] so that τ (α) sin θ (α) = 0 at each α ∈ [a, b] \ A for which
|k(α)| = κ(α). Notice that, for the second of these alternatives, (C3) ensures that the method
of extension results in sin θ being continuous on [a, b].

(iv) Use (3.10) to define the orientation g of the rulings.
(v) Use (3.16) to define the parametrization r of the developable surface S.

If |k| is never equal to κ and κ never vanishes, then conditions (C2) and (C3) are vacuously
satisfied and the construction of a corresponding developable surface S greatly simplifies. In
particular, (3.2) and (3.8) can be used to express g directly in terms of k, the curvature κ and
torsion τ of the curve C, and its Frenet frame:

g =
(
τ + (kκ ′ − k′κ)/κ

√
κ2 − k2

)
t +

(
k
√
κ2 − k2/κ

)
p + ((κ2 − k2)/κ)b√(

τ + (kκ ′ − k′κ)/κ
√
κ2 − k2

)2 + κ2 − k2

. (3.21)

Notice that theorem 3.1 is predicated on the assumption that the curvature of the curve C only
vanishes on subintervals of [a, b] and, hence, does not apply if C is a straight-line segment.
However, given such a curve, the only possible choice of k consistent with (C1) is the zero function
and any plane containing C is a developable surface relative to which the geodesic curvature of C
vanishes.

4. Examples
For illustrative purposes, we consider a helical curve H of radius ρ and pitch 2πμ, with arclength
parametrization

d(α) =
(
ρ cos

α√
ρ2 + μ2

, ρ sin
α√

ρ2 + μ2
,

μα√
ρ2 + μ2

)
, α ∈ [0, l] (4.1)

relative to the canonical Cartesian basis. For the length l of H, we choose l = 4π
√
ρ2 + μ2, so that

H has only two turns. The tangent developable and rectifying developable surfaces associated
with H are shown in figure 1. To generate the tangent developable, we set k = κ = ρ/(ρ2 + μ2).
According to (3.1), A is empty for this choice of k. Since, from the construction outlined above,
θ must be chosen such that τ sin θ = 0 away from A, and since τ never vanishes for a helix, it is
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(a) (b)

Figure 1. A depiction of the (a) tangent developable and (b) rectifying developable associated with the helix parametrized by
(4.1) with the choiceρ/μ= 3. For the tangent developableβ ranges over [−2ρ , 2ρ], while for the rectifying developable it
ranges over [−ρ/2, ρ/2].

permissible to set θ = 0. Moreover, since φ = 0 if k = κ as a consequence of (3.2), we find from (3.5)
and (3.10) that g = t and, hence, that the parametrization of the surface generated from the choice
of k under consideration is (1.1), the parametrization of the tangent developable. From figure 1a, it
is evident that the tangent developable consists of two sheets that meet and are tangent along the
generating curve. Struik [18] shows that this is a property common to all tangent developables.
The tangency of the two sheets ensures that the geodesic curvature of the generating curve is the
same relative to each sheet and, thus, is well defined. If, instead, k = 0, then A is the entire interval
[0, l], so we may use (3.21) with k = 0 to find that

g = cos θ t + sin θ b = τ t + κb√
κ2 + τ 2

, (4.2)

whereby the surface generated from the choice k = 0 coincides with the rectifying developable
parametrized by (1.2).

Any function k : [0, l] → R that satisfies the conditions (C1)–(C3) of our theorem 3.1 can be used
to generate a developable surface. Two non-trivial choices are

k(α) = ρ

ρ2 + μ2 sin
(

6α − 3l
2l

)
,

k(α) = 20ρα(α − l/2)(α − l)
l3(ρ2 + μ2)

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

α ∈ [0, l]. (4.3)

Since κ = ρ/(ρ2 + μ2), it is readily seen that the k defined in (4.3)1 satisfies |k|< κ . It can be shown
that the minimum and maximum values of the k defined in (4.3)2 are

± 5ρ

3
√

3(ρ2 + μ2)
� ± 0.96ρ

ρ2 + μ2 (4.4)

and, hence, that this choice of k also satisfies |k|< κ . Thus, (C1) holds for both choices in (4.3).
Moreover, since κ never vanishes, (C2) holds. Finally, because |k| is never equal to κ , (C3) is
vacuously satisfied. The developable surfaces associated with these choices of k are shown in
figure 2.
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(a) (b)

Figure 2. Depiction of the developable surfaces associated with the helix parametrized by (4.1) and the functions k
defined in (a) (4.3)1 and (b) (4.3)2 both with the choice ρ/μ= 3. The surfaces were generated with β ranging over
[−ρ/2, ρ/2].

To illustrate the importance of (C2), we consider a curve L parametrized by

δ(t) =

⎧⎪⎪⎨
⎪⎪⎩
(

t,
t5

2
, 0
)

, t ∈ [−1, 0],

(
t, 0,

t5

2

)
, t ∈ (0, 1].

(4.5)

Notice that δ is C4 but does not provide an arclength parametrization of L. We denote the length
of L by l and its arclength parametrization by d : [−l/2, l/2] → R

3. Notice that L is planar over
the interval [−l/2, 0) and, thus, that τ = 0 on [−l/2, 0). Similarly, L is planar over (0, l/2] and τ = 0
on (0, l/2] as well. With reference to (2.6), we see that the Frenet frame of L jumps at α= 0 by a
rotation of ψ = π/2.

According to (C2) in theorem 3.1, we may generate a developable surface from d by selecting
k such that φ, as defined in (3.2), has a jump discontinuity at α = 0. The choice

k(α) =

⎧⎪⎪⎨
⎪⎪⎩

−κ(α)
2

, α ∈
[

− l
2

, 0
)

,
√

3κ(α)
2

, α ∈
(

0,
l
2

]
.

(4.6)

results in a φ with the desired property. It can be shown that this choice of k also satisfies (C1) and
(C3). Notice, in addition, that φ′(α) = 0 if α �= 0. We thus find that the ratio

τ (α) + φ′(α)
κ(α) sinφ(α)

(4.7)

vanishes if α �= 0. Adhering to the construction of the developable surface in theorem 3.1, we
should use (3.8) and set θ (α) = π/2 for all α ∈ [−l/2, l/2]. The parametrization of the surface can
then be defined on invoking (2.9), (2.16), and (2.17). See figure 3 for a plot of this surface.

In each example presented so far, condition (C3) holds vacuously. To demonstrate that
condition (C3) is necessary for the construction of a developable surface from a curve, we consider



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200617

...........................................................

Figure 3. Depiction of the developable surface associated with the curve parametrized by (4.5) and the function k defined in
(4.6). The plot was generated withβ ranging over [−1/8, 1/8].

a semicircle C scaled to be of unit radius. An arclength parametrization of C is given by

d(α) = (cosα, sinα, 0), α ∈
[
−π

2
,
π

2

]
. (4.8)

Introducing a function k through the definition

k(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + α5
(

1 − sin
1
α

)
, α ∈

[
− π

2
, 0
)

,

1, α= 0,

1 − α5
(

1 + sin
1
α

)
, α ∈

(
0,
π

2

]
.

(4.9)

we confirm that it is C2 and satisfies both (C1) and (C2). However, we see that (C3) does not hold.
To verify this finding, begin by observing that k achieves a local maximum k(αn) = 1 at

αn = 1
2πn + 3π/2

, n ∈ N. (4.10)

Since k is C2 and is not constant on (αn+1,αn), we may use the mean-value theorem to show that
there exists βn in this interval such that k′(βn) = 0. We thus infer that φ′(βn) = 0 and, hence, that

τ (βn) + φ′(βn)
κ(βn) sinφ(βn)

= 0, n ∈ N. (4.11)

If, alternatively, we set γn = 1/(2πn + π/4), for n ∈ N, we find that

τ (γn) + φ′(γn)
κ(γn) sinφ(γn)

= − 2
√

2 − 10(2 + √
2)γn

4(2 + √
2)γ 2

n − (3 + 2
√

2)γ 7
n

(4.12)

and, hence, deduce that

lim
n→∞

τ (γn) + φ′(γn)
κ(γn) sinφ(γn)

= −∞. (4.13)

Since βn ∈A and γn ∈A, the limit in (C3) at α = 0 does not exist. Based on the above calculations,
we see that the function θ constructed from the choice of k defined in (4.9) oscillates rapidly
between 0 and π/2 as α approaches 0 and, hence, is not continuous at this point. Thus, this
choice of k cannot be used to generate a developable surface from the semicircular curve C defined
via (4.8).

5. Discussion
The ability to construct a developable surface S from a space curve C with curvature κ and a given
function k satisfying |k| ≤ κ has become important because of recent developments in the study
of unstretchable two-dimensional sheets, which can only sustain isometric deformations. If the
reference configuration D of such a sheet is planar, then after deformation its configuration must
be a developable surface S. Granted that the bending energy density depends quadratically on
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the second fundamental form of S and that the sheet is isotropic, the total dimensionless bending
energy of the sheet in the configuration S must have the form

∫
S

H2 da, (5.1)

where H is the mean curvature of S. In a quest to find the equilibrium configurations of a half-
twist Möbius band made from a rectangular strip, Wunderlich [22,23] showed that S must lie on a
rectifying developable of its midline, which serves as the directrix C, and that (5.1) can be written
as a single integral over C.

To expand this analysis to the problem of isometrically deforming a non-rectangular planar
region D, it is necessary to take a different approach since D need not have a well-defined
midline. Instead, the boundary of D is a natural, intrinsic choice for a referential base curve.
After isometrically deforming D to a curved surface S, the boundary C = ∂S of S need not be
a geodesic of S. It must, however, have geodesic curvature equal to the signed curvature k of
∂D since the underlying deformation is isometric. In a future work, we will demonstrate that the
bending energy (5.1) can be written as a single integral over C. For this new dimensionally reduced
bending energy to be a viable substitute for (5.1), it must be possible to construct a developable
surface from the curve C = ∂S with geodesic curvature k. Theorem 3.1, which is stated and proved
in this paper demonstrates that this is possible.
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