
ORIGINAL RESEARCH
published: 23 January 2017

doi: 10.3389/fnbot.2017.00001

Edited by:
Mehdi Khamassi,

Pierre-and-Marie-Curie
University, France

Reviewed by:
Gerhard Neumann,

Technische Universität
Darmstadt, Germany

Inaki Rano,
Ulster University, UK

*Correspondence:
Jiexin Wang

wang-j@sys.i.kyoto-u.ac.jp

Received: 29 July 2016
Accepted: 03 January 2017
Published: 23 January 2017

Citation:
Wang J, Uchibe E and Doya K (2017)

Adaptive Baseline Enhances
EM-Based Policy Search: Validation in

a View-Based Positioning Task of a
Smartphone Balancer.

Front. Neurorobot. 11:1.
doi: 10.3389/fnbot.2017.00001

Adaptive Baseline Enhances
EM-Based Policy Search: Validation
in a View-Based Positioning Task of a
Smartphone Balancer
Jiexin Wang1,2*, Eiji Uchibe2,3 and Kenji Doya2

1 Integrated System Biology Laboratory, Department of System Science, Graduate School of Informatics, Kyoto University,
Kyoto, Japan, 2 Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son,
Okinawa, Japan, 3 Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories, Soraku-gun, Kyoto,
Japan

EM-based policy search methods estimate a lower bound of the expected return from
the histories of episodes and iteratively update the policy parameters using the maximum
of a lower bound of expected return, which makes gradient calculation and learning rate
tuning unnecessary. Previous algorithms like Policy learning by Weighting Exploration with
the Returns, Fitness Expectation Maximization, and EM-based Policy Hyperparameter
Exploration implemented the mechanisms to discard useless low-return episodes either
implicitly or using a fixed baseline determined by the experimenter. In this paper, we
propose an adaptive baseline method to discard worse samples from the reward history
and examine different baselines, including the mean, and multiples of SDs from the
mean. The simulation results of benchmark tasks of pendulum swing up and cart-pole
balancing, and standing up and balancing of a two-wheeled smartphone robot showed
improved performances. We further implemented the adaptive baseline with mean in
our two-wheeled smartphone robot hardware to test its performance in the standing up
and balancing task, and a view-based approaching task. Our results showed that with
adaptive baseline, the method outperformed the previous algorithms and achieved faster,
and more precise behaviors at a higher successful rate.

Keywords: smartphone robot, reinforcement learning, EM-based policy search, non-linear motor control, vision-
based control

INTRODUCTION

Policy search methods (Deisenroth et al., 2013) are often favored over value function-based
reinforcement learning for complex robotic problems because of their amenability with high-
dimensional continuous states and actions. Classical policy search methods are called pol-
icy gradient methods such as REINFORCE (Williams, 1992), which compute the gradient
of the objective function with respect to policy parameters and update the parameters by
stochastic gradient ascent. However, REINFORCE samples a random action from the stochas-
tic policy at each time step. As a result, the gradient estimate has large variance even if
the optimal baseline is subtracted (Zhao et al., 2012). To reduce the gradient’s variance,
the Policy Gradients with Parameter-based Exploration (PGPE) (Sehnke et al., 2010) uses a
deterministic policy and optimizes the parameters of a prior distribution of the determin-
istic policy parameters. Natural Evolution Strategy (NES) (Wierstra et al., 2014) uses the

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 11

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
https://doi.org/10.3389/fnbot.2017.00001
https://creativecommons.org/licenses/by/4.0/
mailto:wang-j@sys.i.kyoto-u.ac.jp
https://doi.org/10.3389/fnbot.2017.00001
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2017.00001&domain=pdf&date_stamp=2017-01-23
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00001/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00001/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00001/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00001/abstract
http://loop.frontiersin.org/people/365575
http://loop.frontiersin.org/people/75175
http://loop.frontiersin.org/people/359
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

natural gradient to update a parameterized search distribution
in the direction of higher expected fitness, which can be applied
under the PGPE framework. Note that all of these methods need
to tune the learning rate.

Another trend is EM-based policy search methods based on
closed-form maximization of the lower bound of the objective
function with respect to the parameters of exponential fam-
ily distributions. Those methods are realized as simple reward-
weighted updating rule and do not require gradient computation
and learning rate parameter tuning. Such methods include EM-
inspired reward-weighted regression (RWR) (Peters and Schaal,
2007), EM Policy learning by Weighting Exploration with the
Returns (PoWER) (Kober and Peters, 2011), Fitness Expectation
Maximization (FEM) (Wierstra et al., 2008), and EM-based Policy
Hyperparameter Exploration (EPHE) (Wang et al., 2016). RWR
first introduced the framework of EM-based reinforcement learn-
ing and reduced the problem of learning with immediate rewards
to a RWR problem with an adaptive reward transformation for
faster convergence (Peters and Schaal, 2007). However, RWR
considered a stochastic policy using additive Gaussian noise to
the action, which could have problems of the perturbations being
averaged out and the risk of damage to a hardware system with
high frequency noise. PoWER considered state-dependent explo-
ration to address these problems and adjusted the exploration to
stepwise, episode-wise, and even through a slowly varying form
(Kober and Peters, 2011). FEM inherited the same EM-based pol-
icy search framework and considered a rank-based return trans-
formation function. It also considered an online mechanism to
update policy sample by sample than batch by batch. A forgetting
factor was introduced to modulate the speed at which the search
policy adapts to the current sample (Wierstra et al., 2008). EPHE
assumed a prior distribution over the policy parameters inspired
by PGPE and updated the hyperparameters by return weighted
averaging. REPS (Peters et al., 2010) has the similar idea of EM-
based methods for bounding two distributions. The difference is
that it bounds the information loss measured by relative entropy
between the observed data distribution and the data distribution
generated by the new policy to update the policy parameters.

Other state-of-the-art policy search methods include Cross
Entropy Methods (CEM) (Mannor et al., 2003), Covariance
Matrix Adaptation-Evolutionary Strategy (CMAES) (Hansen and
Ostermeier, 2001), Policy Improvement with Path Integral (PI2)
(Theodorou et al., 2010), and PI2-CMAES (Stulp and Sigaud,
2012). CEM and CMAES explore in the policy parameter space
directly, and they both update mean and covariance matrix of a
multivariate Gaussian search distribution in a weighting scheme.
CEM updates the diagonal covariance, while CMAES updates
the full covariance matrix through incremental adaption along
evolutionary paths. PI2 is a probability weighting method derived
from first principles of optimal control, perturbs the parameter
and collects rewards at every time step during exploratory policy
execution, and updates the policy parameter weighted by the
probability of the rewards. PI2-CMAES improved PI2 by updating
the full covariance matrix.

Note that EPHE is equivalent to episodic PoWER and PI2 (Stulp
and Sigaud, 2012; Abdolmaleki et al., 2015).

Concerning the weighting scheme for each rollout, RWR,
PoWER, FEM, and EPHE required the returns to be non-negative

and summedup to constants to implicitly resemble a proper distri-
bution. PoWER implicitly realized the discarding rule, and FEM
and EPHE discarded samples below a fixed baseline determined
by users, which is similar toCEM.CMAES reweighted the samples
similarly by truncating the sample size and a transformation to
a convex shape. REPS reweighted the samples in an exponential
transformation of the corresponding return.

In this work, we propose an adaptive baseline to discard worse
samples below the average of the reward history and further exam-
ine the learning performances of different baselines including
the mean and 1 and 2 SDs from the mean. We implemented
this adaptive baseline with EPHE. We evaluated several baseline
functions in three simulation benchmarks. The result showed
that the adaptive baseline methods improved the performance
over previous policy search methods, including PGPE, NES, and
FEM, and outperformed the CMAESweighting scheme and REPS
weighting scheme.

We further tested the adaptive baseline with the mean in
two hardware experiments using our smartphone robot platform
(Yoshida et al., 2012; Wang et al., 2013, 2014), an affordable high-
performance desktop robotic platform for multi-agent research,
educational, and hobby use. The actual hardware experiments
required a smartphone balancer learning to stand up and balance
and learning to approach a visual target while balancing. Previous
PoWER was implemented in a real robot arm for playing a ball-
in-a-cup task using imitation learning for parameter initialization
(Kober and Peters, 2011). In our smartphone robot experiment of
learning to stand up and balance and learning to approach a visual
target, the hyperparameters were learned from scratch, and the
robustness against the variability of initial states was required. Our
results showed that the adaptive baseline method with the mean
successfully achieved the two behaviors in hardware experiments.
The analyses of the number of discarded samples and the distri-
bution of returns showed that the choice of the baseline by the
mean caused a steady decrease of the number of discarded samples
with learning and a capability to select positive outliers in the early
learning stage.

The details of EPHE and its improvement with adaptive base-
lines are described in Section “Method.” Simulation experiments
and results are shown in Section “Simulation Experiments.” Hard-
ware experiments and results are reported in Section “Hard-
ware Experiments.” Conclusion and future works are in Section
“Discussion.”

METHOD

Here, we consider a standard discrete-timeMarkov Decision Pro-
cess setup. At each time step t, the agent takes action ut based
on current state xt according to policy π (ut|xt,θ) parameterized
by vector θ. The dynamic environment makes a transition to
next state xt + 1 according to p(xt + 1|xt, ut) and gives scalar reward
rt. The history trajectory is denoted by a state-action-reward
sequence as h= [x1, u1, r1,…, xT, uT , rT , xT+1]. The goal is to find
parameter θ that maximizes an objective function defined as the
agent’s expected sum of reward:

J(θ) =
∫
H

p(h|θ)R(h)dh,

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 12

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

where R(h) is the return defined as the cumulative reward of
sequence h and p(h/θ) is the probability of observing h. Under
the Markovian environmental assumption, the probability of
sequence p(h/θ) for the stochastic policy is given by:

p(h|θ) = p(x1)
T∏

t=1
p(xt+1|xt, ut)π(ut|xt, θ) (1)

where p(x1) is the initial state distribution. A standard stochastic
policy searchmethod like REINFORCEmaximizes J(θ) by updat-
ing parameter θ based on the gradient of J(θ) with respect to θ.
However, it is usually problematic to select an action from the
stochastic policy at each time step in the robot control from the
viewpoint of stability.

If the policy is deterministic, denoted by ut = π(xt, θ), Eq. 1 is
modified as

p(h|θ) = p(x1)
T∏

t=1
p(xt+1|xt, π(xt, θ)),

and derivative ▽θp(h|θ) for deterministic policies is given by
Deisenroth et al. (2013),

∇θp(xt+1|xt, π(xt, θ)) =
∂p(xt+1|xt, ut)

∂ut
∂ut
∂θ

∣∣∣∣
ut=π(xt,θ)

,

which requires the state transition probability to compute the
derivative with respect to u. This suggests that the state transition
probability should be given or estimated to compute the policy
gradient, although a recent study (Silver et al., 2014) showed that
the gradient for deterministic policies can be estimated by the help
of the state-action value function.

Policy Gradients with Parameter-Based
Exploration (PGPE)
To optimize the deterministic policies, PGPE (Sehnke et al., 2010)
considers their distribution with policy parameters θ sampled
from a prior distribution defined by hyperparameter vector ρ. The
PGPE’s goal is to maximize the objective function given by

J(ρ) =
∫
Θ

∫
Η

p(h|θ)p(θ|ρ)R(h)dhdθ.

PGPE optimizes hyperparameter vector ρ by the stochastic
gradient ascent, ρ← ρ + α▽ρJ(ρ), where α is a learning rate and
the gradient is given by

∇ρJ(ρ) =
∫
Θ

∫
Η

p(h|θ)(R(h)− b)∇ρp(θ|ρ)dhdθ,

where b is a reward baseline to decrease the variance of the
gradient estimator. The baseline is set as the average reward of the
current rollout for simplicity, although it is not optimal (Hachiya
et al., 2011). After the optimization of hyperparameter ρ, we can
obtain the deterministic policy ut = π(xt, θ) with θ computed by
the expectation of the prior distribution. Note that PGPE does
not need to know the state transition probability to compute the
gradient.

EM-Based Policy Hyperparameter
Exploration
Based on the PGPE setting, EPHE (Wang et al., 2016) adopts
the idea from EM-based Policy Search (Peters and Schaal, 2007)
of maximizing a lower bound of the objective function by a
new parameter distribution given by hyperparameter vector ρ′.
Using Jensen’s inequality under the assumption thatR(h) is strictly
positive, the log ratio of the two objective functions is lower
bounded by

log J(ρ′)
J(ρ)

= log
∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)
J(ρ)

p(θ|ρ′)
p(θ|ρ)

dhdθ

≥
∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)
J(ρ)

logp(θ|ρ′)
p(θ|ρ)

dhdθ.

Note that R(h)p(h|θ)p(θ|ρ)/J(ρ) can be interpreted as a prob-
ability density function p(z|ρ) where z= (h, θ), and we denote
f (z,ρ), p(θ|ρ′)/p(θ|ρ) where the Jensen’s inequality follows

log
∫

f(z, ρ)p(z|ρ)dz ≥
∫

p(z|ρ)log f(z, ρ)dz.

Since

log J(ρ′)
J(ρ)

= log J(ρ′)− log J(ρ)

≥
∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)
J(ρ)

logp(θ|ρ′)
p(θ|ρ)

dhdθ,

the lower bound is defined by

log JL(ρ′) = log J(ρ)

+
∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)
J(ρ)

logp(θ|ρ′)
p(θ|ρ)

dhdθ. (2)

To maximize the lower bound, the derivative of Eq. 2 with
respect to ρ′ should equal 0

∇ρ′ log JL(ρ′)

=
∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)
J(ρ)

∇ρ′ logp(θ|ρ′)
p(θ|ρ)

dhdθ = 0.

Since J(ρ) is constant, this equation can be simplified as:∫
Θ

∫
Η

R(h)p(h|θ)p(θ|ρ)∇ρ′ logp(θ|ρ′)dhdθ = 0.

When applying the sampling trick, suppose we sample N set of
θ from p(θ|ρ) and generateM set of h from p(h|θn), we have

1
N

N∑
n=1

∫
H

R(h)p(h|θn)∇ρ′ log p(θn|ρ′)dh = 0,

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 13

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

and
1
M

M∑
m=1

1
N

N∑
n=1

R(hnm)∇ρ′ log p(θn|ρ′) = 0.

For simplicity, if we generate N set of θ, and for each set of θ,
we sample only one history trajectory, we have

1
N

N∑
n=1

R(hn)∇ρ′ log p(θn|ρ′) = 0. (3)

If p(θ|ρ′) is represented by an exponential family distribution,
the update rule is given by a closed form. In particular, p(θ|ρ′)
is given by a product of independent Gaussian distributions
N(θi|η′

i , σ′
i
2) for each parameter θi in θ, where the hyperpa-

rameters are given by ρ′ = [η′
1, . . . , η′

L, σ′
1, . . . , σ′

L]
T and L is

the dimensionality of policy parameter θ. The log derivatives of
p(θ|ρ′) with respect to η′

i and σ′
i are, respectively, computed as

∇η′
i
log p(θ|ρ′) =

θi − η′
i

σ′
i
2 , (4)

∇σ′
i
log p(θ|ρ′) =

(θi − η′
i)

2 − σ′
i
2

σ′
i
3 . (5)

Substituting Eqs 4 and 5 into Eq. 3 yields

η′
i =

∑N
n=1 [R(hn)θn

i]∑N
n=1R(hn)

,

σ′
i =

√∑N
n=1

[
R(hn)(θn

i − η′
i)

2]∑N
n=1R(hn)

.

In our previous EPHE implementation (Wang et al., 2016),
we showed a K-elite mechanism (hereafter EPHE-K), in which
we selected the K-best parameters to discard bad samples for
updating the hyperparameters and improved the learning process.
However, this requires a new parameter tuning. We denote the
returns collected at the current iteration step as {R(hn)}Nn=1 and
propose an adaptive baseline using the mean value of the returns:

Rb(hn) = max
(
0,R (hn)−mean

(
{R (hn)}Nn=1

))
, (6)

where mean ({R(hn)}Nn=1) =
N∑

n=1
R(hn)/N. Note that Rb(h)

should be kept non-negative to resemble an (improper) probabil-
ity distribution to weight the parameters. Hereafter, we call the
adaptive baseline by Eq. 6 the EPHE-AB-mean.Figure 1 illustrates
an example of weighting by the EPHE-AB-mean, EPHE-K, and
EPHE with no elitism. Suppose that we have 20 returns following
a Gaussian distribution and sort them in descending order as
{Ri}20i=1. Then, weighting coefficients Ri/

∑20
i=1 R

i are computed
for the EPHE-AB-mean, EPHE-K(=10), and the no-elite meth-
ods. Unlike EPHE-K (=10), the EPHE-AB-mean enhances the
differences of the returns.

In the same way, we consider the adaptive baseline by replac-
ing the mean operator with the m-SD from the mean operator
defined by

FIGURE 1 | Weight comparison of EM-based Policy Hyperparameter
Exploration (EPHE)-AB-mean, EPHE-K, and no elitism methods.

mean−mstd
(
{R (hn)}Nn=1

)
= mean

(
{R (hn)}Nn=1

)
+ m× std

(
{R (hn)}Nn=1

)
.

The EPHE-AB algorithm is summarized as follows:

ALGORITHM | EPHE-AB: EM-based Policy Hyperparameter Exploration with
Adjusted Baseline.

Input:
Initialize policy hyper parameters η and σ

Repeat:
Perform N episodes and sample trajectories:

for each episode n
draw θn

i ∼ N
(

ηi, σ2
i
)
for all i

evaluate R(hn)
calculate
Rb (hn) = max

(
0, R (hn) − mean

(
{R (hn)}N

n=1
))

Update

ηi =
∑N

n=1[Rb(hn)θni]∑N
n=1Rb(h

n)

σi =

√ ∑N
n=1

[
Rb(hn)(θni −ηi)2

]
∑N

n=1Rb(h
n)

Until Convergence

Policy Learning by Weighting Exploration
with the Returns
EM-based Policy Search (Peters and Schaal, 2007) has the lower
bound of the log-expected return defined from Jensen’s inequality
as

log J(θ′) ≥
∫
H

R(h)p(h|θ)
J(θ)

log p(h|θ′)
p(h|θ)

dh

+ log J(θ) ≡ log JL(θ′)

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 14

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

where the current policy parameter θ ismatchedwith a newpolicy
parameter θ′. Furthermore, the log-derivative of the lower bound
with respect to the new policy parameter is

∇θ′ log JL(θ′) =
∫
H

p(h|θ)R(h)∇θ′ log p(h|θ′)dh.

With the sampling trick, it can be approximated as

∇θ′ log JL(θ′) ≈ 1
N

N∑
n=1

T∑
t=1
∇θ′ log π

(
unt |xnt , θ′)R (hnt) (7)

where T is the number of time steps, and N is the number of
episodes.

In particular, PoWER (Kober and Peters, 2011) considered a
structured state-dependent exploration, where a stochastic policy
π(ut|xt, θ) is defined as

ut ∼ π(ut|xt, θ) = (θ + ε)TΦ(xt),

εTΦ(xt) ∼ Ν(0, Φ(xt)TΣΦ(xt)).

Note that Φ(xt) is the basis function vectors. Substituting it into
Eq. 7 yields the following update rules:

θ′ = θ′ +

(
1
N

N∑
n=1

T∑
t=1

W(xt)R(hnt)

)−1

×

(
1
N

N∑
n=1

T∑
t=1

W(xt)εtR(hnt)

)

Σ′ =

(
1
N

N∑
n=1

T∑
t=1

R(hnt)

)−1(
1
N

N∑
n=1

T∑
t=1

εtεTt R(hnt)

)

whereW(xt)= Φ(xt)Φ(xt)T(Φ(xt)TΣΦ(xt))−1.
Note that in episodic case, the update rules are simplified as

follows:

θ′ = θ′ +

(N∑
n=1

R(hn)

)−1(N∑
n=1

εR(hn)

)

Σ′ =

(N∑
n=1

R(hn)

)−1(N∑
n=1

εεTR(hn)

)
.

Consequently, it is shown that the original EPHE is equivalent
to the episodic PoWER although the hyperparameters are not
introduced in the episodic PoWER. The adaptive baseline can also
be equipped to the episodic PoWER.

SIMULATION EXPERIMENTS

In this section, we compare EPHE-AB-mean with EPHE with
CMAESweighting scheme (EPHE-CW) (Hansen andOstermeier,
2001), EPHE with REPS weighting scheme (EPHE-RW) (Peters
et al., 2010; Abdolmaleki et al., 2015), EPHE-K, PGPE (Sehnke
et al., 2010), NES (Wierstra et al., 2014), and FEM (Peters and

Schaal, 2007) in three simulation experiments. We also tested
EPHE-AB with the baselines of the mean, 1 and 2 SDs from the
mean. For each method we used N = 20 trajectories to update
one set of parameters. We selected K = 10 to obtain the elite
parameters for updating in EPHE-CW, EPHE-RW, and EPHE-
K. The results were taken by averaging 20 independent runs.
We plotted the learning curves of the average and the SE of the
cumulative returns and the number of discarded samples against
the iterations of the parameter updating.

The weights of EPHE-CW are computed by wk = lnK+1
2 −

ln k, for k = 1, . . . , K.

The weights of EPHE-RW are computed by wk = exp(R(hk)
η),

where η is the temperature parameter obtained by optimizing the
dual function g(η), such that η > 0 (Peters et al., 2010; Kupcsik
et al., 2013; Abdolmaleki et al., 2015)

g(η) = ηε + ηlog

(N∑
k=1

1
NexpR(hk)

η

)

and ε is the upper bound of KL divergence set as 0.1. We use the
function fminunc in MATLAB to obtain the optimal η. Note that
EPHEwithREPSweighting scheme is equivalent to episodic REPS
(Kupcsik et al., 2013).

Pendulum Swing Up with Limited Torque
The target of this non-linear control task is to swing up the pen-
dulum to an upright position where it stays for as long as possible
(Doya, 2000). See Section “Simulation Setup” in Appendix for
the details of the simulation setup. We used 16× 16 radial basis
functions to represent the two-dimensional state variables, the
angle, and the angular velocity of the pendulum: x = [ϕ, ϕ̇]T. We
used the normalized radial basis function defined by

Φk(x) =
e−∥s

T
k (x−ck)∥2∑K

k=1e
−∥sTk (x−ck)∥2

where k is the index of the radial basis functions and sk and ck
are the size and center of the k-th basis function. The action is
the torque applied to the pendulum u = 5 tanh(θθθTΦ(x)) with
maximum torque 5 [N·m], where θθθ is the policy parameter and
Φ(x) is the basis function vector. A strictly positive return for one
history is given by

R(h) =
T∑

t=1
exp
(
−xTt Qxt − uTt Rut

)
. (8)

where Q and R are the quadratic penalty matrices determined
by the users. Here, we used Q= I2 and R= 1, where I2 is the
2-dimensional identity matrix. Note that a linear state feedback
policy failed to achieve the task because the maximum torque
was smaller than the maximal load torque (Wang et al., 2014).
The system starts from initial state x0 = [ϕ0, 0], where ϕ0
was randomly selected from (−π, π] [rad], and terminated when
|ϕ̇| ≥ 4π [rad/s]. The sampling rate was 0.02 [s] for each time
step and the maximum time steps were 1,000 (=20 [s]) for one

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 15

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

episode. The initial hyper parameters were ηηη0 = 0, σσσ0 = 1 for
each algorithm. The best learning rates for PGPE and NES were
αη = 10−3 and ασ = 10−4 whichwere selected, respectively, from
sets {10−2, 10−3, 10−4, 10−5} and {10−2, 10−3, 10−4, 10−5}. The
forgetting rate for FEM is 0.05.

Figure 2 shows the EPHE-AB performance with the baseline
of mean, EPHE-CW, EPHE-RW, EPHE-K, PGPE, and NES with
the best learning rate and FEM. The error bars show 1 SD over
20 independent runs. There was no significant difference between
EPHE-AB and EPHE-K, but they learned faster and achieved
better performance than FEM and gradient based PGPE and NES
after 10 iterations.

Figure 3 shows the EPHE-AB performance with different base-
lines. There are no significant differences among the fixed baseline
and the baselines of mean and the 1 SD from it. Figure 3B shows
the number of discarded samples against the iterations, and we

FIGURE 2 | Learning curves of EM-based Policy Hyperparameter
Exploration (EPHE)-AB with baseline of mean, EPHE-CW, EPHE-RW,
EPHE-K, PGPE, Natural Evolution Strategy, and Fitness Expectation
Maximization in pendulum swing up task.

found that in the early stage of learning, the baseline with mean
discarded most of the samples while the other three discarded
about 60% of them.

Cart-Pole Balancing
In this task, the agent aims to maximize the length of time that a
movable cart is balancing a pole upright in the center of a track
(Riedmiller et al., 2007). The state variables are the position and
the velocity of the cart on the track and the angle and the angular
velocity of the pole: x = [x, ẋ, ϕ, ϕ̇]T. The action is the force
applied to the cart given by a linear parameterized policy where
u = θθθTx. See Section “Simulation Setup” in Appendix for the
details. We added Gaussian white noise with SDs of 0.001 [rad/s]
and 0.01 [m/s] to the dynamics. The system starts within a random
position and a random angle inside [−0.2,+0.2] [rad], and [−0.5,
+0.5] [m] until it reaches the target region of [−0.05,+0.05] [rad]
and [−0.05, +0.05] [m], and terminates at |x| ≥ 2.4 [m], and
|θ| ≥ 0.7 [rad]. The sampling rate was 0.02 [s] for each time step
and themaximum time steps were 1,000 (=20 [s]) for one episode.
The strictly positive return was the same as Eq. 8. Here, we used
Q= I4 and R= 1. The initializations of the hyperparameters for
PGPE andEPHEwere determined by reasonable prior knowledge,
which indicates a certain distance from the optimal parameters.
The initial parameters were σσσ0 = 35 for EPHEs, and FEM and
σσσ0 = 5 for PGPE and NES according to our previous study
(Wang et al., 2016). The best learning rates of PGPE andNESwere
αη = 10−4 and ασ = 10−5 whichwere selected, respectively, from
sets {10−2, 10−3, 10−4, 10−5} and {10−2, 10−3, 10−4, 10−5}. The
forgetting rate for FEM is 0.1.

Figure 4 shows the EPHE-AB performance with a baseline
of mean, EPHE-CW, EPHE-RW, EPHE-K, PGPE, and NES with
the best learning rate and FEM. The error bars show 1 SD over
20 independent runs. The proposed method learned faster and
achieved better performance after 10 iterations than the other
algorithms. PGPE and NES with the best learning rate learned
slowly, but they achieved almost the same performance as the best
performance at the end of the iterations.

FIGURE 3 | Effects of baseline functions in pendulum swing up task: (A) learning curves and (B) number of discarded samples.

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 16

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

Figure 5 shows the EPHE-AB performance with different base-
lines (Figure 5A) and the number of discarded samples against
the iterations (Figure 5B). There are no significant differences
among the baselines of mean, 1 and 2 SDs from it. However,
the adaptive baselines performed better than the fixed baseline.
Figure 5B suggests that in the early stage of learning, the baseline
with mean discarded most of the samples while the other three
discarded about 70% of them.

Standing Up and Balancing of
Two-Wheeled Smartphone Robot
Next, we used a simulator of a two-wheeled smartphone robot
(Wang et al., 2016). The agent is required to start moving from
a resting angle of 60°, bounce with the bumper to stand up and
finally balance itself. We considered only the sagittal plane behav-
iors for simplicity. The state variables are the body’s tilting angle

FIGURE 4 | Learning curves of EM-based Policy Hyperparameter
Exploration (EPHE)-AB with baseline of mean, EPHE-CW, EPHE-RW,
EPHE-K, PGPE, Natural Evolution Strategy, and Fitness Expectation
Maximization in cart-pole balancing task.

and angular velocity, and the wheel’s rotating angle and angular
velocity where x = [ϕ, ϕ̇, ϑ, ϑ̇]

T
. Control input u is the motor

torque applied to the left and right wheels. See Section “Simulation
Setup” in Appendix for details of the equation of motion. The
cumulative reward is the same as in Eq. 8.

We adopted the switching framework shown in Figure 6. If the
tilting angle of the robot body is within the range of [−ϕs, ϕs],
we selected a linear feedback stabilizer u=−Kx, where K =
[kϕ, kϕ̇, kϑ, kϑ̇] is a feedback gain vector, to achieve balancing.
Otherwise, the central pattern generator (CPG)-based destabilizer
is applied, defined by:

ẋCPG = ωyCPG + βϕ̇, ẏCPG = −ωxCPG, (9)

where xCPG and yCPG are the CPG state and ω and β are its
parameters. The control signal is given by u= yCPG. The policy
parameters are the four-dimensional control gain vectors for the
linear stabilizer, the switching threshold, and two CPG param-
eters: θθθ = [kϕ, kϕ̇, kϑ, kϑ̇, ϕs, ω, β]T. We also added Gaussian
white noise with a SD of 0.01 to the system observation.

The simulation had a 0.02 [s] sampling rate for each step. The
agent learned one episode within a maximum of 1,000 steps (=20
[s]). We initialized hyperparameters ηηη0 and σσσ0 based on the prior
knowledge we obtained (Wang et al., 2013). σσσ0 for PGPE and

FIGURE 6 | Switching control architecture for standing up and balance
of a smartphone robot.

FIGURE 5 | Effects of baseline functions in cart-pole balancing task: (A) learning curves and (B) number of discarded samples.

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 17

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

NES was smaller than EPHE and FEM based on previous work
(Wang et al., 2016), because PGPE uses small initial variance to
approximate the gradient more precisely while EPHE uses large
initial variance to explore the parameter space. The forgetting rate
for FEM was 0.2.

Figure 7 shows the learning performance. The error bars show
1 SD over 20 independent runs. EPHE-AB with the mean learned
faster than the other four algorithms and achieved a more reliable
performance after seven iterations.

Figure 8 shows the EPHE-AB performance with different base-
lines (Figure 8A) and the number of discarded samples against
the iterations (Figure 8B). The baseline ofmean outperformed the
others and the adaptive baselines performed better than the fixed
baseline. Figure 8B suggests that in the early stage of learning,
the baseline with mean discarded most of the samples and had

FIGURE 7 | Learning curve of EM-based Policy Hyperparameter
Exploration (EPHE)-AB with mean, EPHE-CW, EPHE-RW, EPHE-K,
PGPE, Natural Evolution Strategy, and Fitness Expectation
Maximization in a standing up and balancing simulation of
smartphone robot.

a steady decrease during the learning. The baseline with 1 and 2
SDs from the mean preserved most of the samples due to a large
SD of returns based on the reward function.

HARDWARE EXPERIMENTS

Overview of Two-Wheeled Smartphone
Robot
Figure 9A shows the current version of our smartphone balancer.
Its chassis is designed as an assembly kit for convenient com-
position and modification (Figure 9B). The smartphone rests in
the middle slot, a battery is clipped to the bottom container, two
wheels are inserted into Lego cross sticks extruding from the body
side, and the IOIOboard (themicrocontroller chip) and break-out
board slide into slots on the back. By sliding in two spring arms on
both sides of the robot body, it becomes a spring-armed balancer
that can achieve various standing up, balancing, and approaching
behaviors. See more robot construction details in Section “Robot
Construction” in Appendix.

Standing Up and Balancing Task
Experimental Setting
This is a real hardware implementation of the simulation task
in Section “Standing Up and Balancing of Two-Wheeled Smart-
phone Robot.” The balancer is required to learn to get off the floor
and remain balancing in the upright region. It is equipped with

FIGURE 9 | Smartphone robot: current version (A) and 3D chassis (B).

FIGURE 8 | Effects of baseline functions in a standing up and balancing simulation of smartphone robot task: (A) learning curves and (B) number of
discarded samples.

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 18

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

an elastic bumper with a 0.8869 [N/mm] spring coefficient and an
initial resting angle: ϕ0=25 [deg]. The state variables are the tilting
angle and angular velocity of the body obtained from the sensor
fusion of the gyroscope and accelerometer inside the smartphone,
and the angular velocity of the left and rightwheels from the rotary
encoder inside the wheel: x = [ϕ, ϕ̇, ϑ̇L, ϑ̇R]

T
. We eliminated

the rotating angle of the wheels due to the accumulated error of
the rotary encoder. Since we considered only the sagittal plane
behaviors, the same control signal was sent to both wheels. The
reward function was +1 when the tilting angle was inside [−5°,
5°] and the angular velocity of the robot body was inside [−173,
173] [deg/s], and otherwise it was 0.

We used the same control architecture in Figure 6. We fixed
ϕs = 20 [deg] and the policy parameters to be optimized were the
three-dimensional control gain vector and CPG parameters θθθ =
[kϕ, kϕ̇, kϑ̇, ω, β]T. Note that since ϑ̇L, ϑ̇R share the same control
gain as kϑ̇ the feedback gain is given by K = [kϕ, kϕ̇, kϑ̇L, kϑ̇R]

T.
The sampling rate was 0.005 [s] for each step, and one episode

contained 12,000 steps (=60 [s]). The robot rested for 4 [s] at the
end of each episode to recover its resting angle. We updated the
hyperparameters every 10 episodes for 10 iterations, meaning 100
episodes for an entire run. The initializations of the hyperparam-
eters were ηηη0 = [0, 0, 0, 0, 0]T, and σσσ0 = [100, 200, 20, 20, 20]T.
The best PGPE learning rates were selected, respectively, from sets
{10−6, 5 · 10−6, 10−5} and {10−5, 3 · 10−5, 5·10−5, 10−4}. Since
EPHE-AB-mean was better than or equal to the other methods
in all the three simulation results, we focused on a comparison
between EPHE-AB-mean, (EPHE-AB in short in the following
content) and PGPE with the best learning rate to investigate the
different updating approaches of gradient estimating and reward
weighting.

Results
We ran five independent runs and measured the average and
the SE of the cumulative returns against the iterations of hyper
parameter updating. An episode was regarded as successful if
the agent bounced to the upright position and maintained its
balancing until the episode’s end. Failures includedwhen the agent
could not stand up at all, swinging forward and backward at a
relatively high speed, etc. We defined a successful learning as
when the agent found the hyperparameters that achieved suc-
cessful episodes within five iterations. The successful learnings of
EPHE-AB and PGPE were 5/5 and 3/5, respectively.

Figure 10 compares the learning curves of EPHE-AB and
PGPE with the best learning rate (αη = 5 · 10−6, ασ = 3 · 10−5).
The error bars show 1 SD over five independent runs. Although
PGPE learned successful behaviors, the successful rate was low.
EPHE-AB outperformed PGPE during the whole learning pro-
cess. Figure 11 shows the distributions of the final parameters
found by five runs of EPHE-AB and PGPE with the best learn-
ing rate. With EPHE-AB, the parameters converged to similar
distributions, while with PGPE, they often stayed flat or degen-
erated. For example, for key parameter kϕ , EPHE-AB and PGPE
found similar parameters ranging from 150 to 350, but only
three of PGPE’s final distributions converged. For the second key
parameter kϕ̇, three of the PGPE distributions were near those
successfully found by EPHE-AB but with larger variance, and

FIGURE 10 | Learning curves of EM-based Policy Hyperparameter
Exploration-AB and PGPE in hardware experiments of standing up
and balancing task.

two converged to the values away from the parameters found by
EPHE-AB. Figure 12 shows the trajectory of a successful standing
up and balancing task with one of the final hyper parameters:
θ = [248.66, 1,007.23,−8.51,−5.85, 17.15] learned by EPHE-AB.
The yellow area shows when the bumper was activated. The agent
bounced three times, reached, and stayed in the target position
after 4 s.

Vision-Based Approaching Task
Experimental Setting
This task requires the smartphone balancer to learn to stand up
and approach a visual target while balancing. The basic hard-
ware setting is the same as in Section “Standing Up and Balanc-
ing Task.” We used an Android phone’s camera and detected a
blob of a specified color and computed its center position and
area using the OpenCV library. The state variables are x =
[ϕ, ϕ̇, ϑ̇L, ϑ̇R, cx,D]

T
, where cx∈[−0.3, 0.3] is the blob center on

the X axis, and D∈[0, 10] is the distance to the target calculated
by the inverse of the square root of the blob area D = a√

Sblob
,

where parameter a is set to scale D= 1–10 dm. When the target
is invisible, we set cx =±0.4 based on the previous sign of cx, and
D= 15. When the target is visible, the immediate reward at time t
is given by

rt = exp

(
−w1

(
ϕt
Zϕ

)2
− w2

(
cxt
Zcx

)2
− w3

(
Dt − 5
ZD

)2
)

,

where Zϕ, Zcx and ZD are, respectively, the constants to normal-
ize ϕt, cxt (Dt− 5) to [−1, 1]. We assigned w1 =w2 = 1.2, and
w3 = 0.6. When the target was not visible, the reward was rt = 0.
The return was computed by

R(h) =
T∑

t=1
rt, T = 12, 000.

We set up four initial positions of the robot to start (Figure 13).
The robot’s desired behavior is to start running from D= 10 (X2,

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 19

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

FIGURE 11 | Distributions of final parameters found by five runs of EM-based Policy Hyperparameter Exploration-AB and PGPE with best learning
rate in hardware experiments of standing up and balancing task.

FIGURE 12 | Typical trajectory of states and control signal with
switching controller optimized by EM-based Policy Hyperparameter
Exploration-AB.

X3, X4) orD= 2 (X1); it stops atD= 5 (star marks) while keeping
the target in the middle and balancing. The robot lies down and
faces straight ahead with initial state X1, X2, X3 and faces back to
the target with initial state X4.

The following is the control structure:
When ϕ is inside the threshold ϕs = [−20°, 20°], and the linear

feedback stabilizer is activated:

uL = −
(
kϕLϕ + kϕ̇Lϕ̇ + kϑ̇Lϑ̇L + refL + kcLcx + kdL(D− 5)

)
uR = −

(
kϕRϕ + kϕ̇Rϕ̇ + kϑ̇Rϑ̇R + refR + kcRcx + kdR(D− 5)

)

FIGURE 13 | Landscape and initial position of robot in approaching
task.

Otherwise, the CPG-based destabilizer is activated as subsu-
per1.

The policy parameters are 14-dimensional

θθθ = [kϕL, kϕ̇L, kϑ̇L, kϕR, kϕ̇R, kϑ̇R, refL, refR, kcL, kdL, kcR, kdR, ω, β]

kϕL, kϕ̇L, kϑ̇L, kϕR, kϕ̇R, kϑ̇R are the linear feedback control gains
for stabilization, refL and refR are the reference constants for the
wheel tomove forward and backward, kcL, kdL, kcR, kdR are the con-
trol gain for the steering, and ω, β are the CPG parameters. The
difference of kcL and kcR can cause rotation toward the target, but
we set up all the parameters differently for the left and right wheels

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 110

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

to adapt to any asymmetry in the hardware and the electronics.
The sampling rate was 0.005 [s] for each step, and one episode was
12,000 steps (=60 [s]). We changed the initial position in every
five episodes. The hyperparameters are updated every 20 episodes
for 10 iterations, resulting in 200 episodes for 1 entire run.

The robot was forced to stop when D≤ 1 for safety concerns.
The initial hyper parameters were setup based on the optimal
parameters we obtained from Section “StandingUp andBalancing
Task”:

ηηη0 = [250, 1000,−9, 250, 1000,−9, 200, 200, 0, 0, 0, 0,−6, 17]T

σσσ0 = [50, 50, 10, 50, 50, 10, 500, 500, 2, 000, 100, 2, 000, 100,

10, 10]T.

The best learning rates for PGPEwere selected from sets {10−6,
10−5, 10−4} and {10−6, 10−5, 10−4}.

Results
We ran five independent runs and measured the average and the
SE of the cumulative returns against the iterations of hyperpa-
rameter updating. An episode was regarded as successful if the
robot could stand up regardless of its initial position and facing
direction, move toward the target position, and keep balancing
until the end of the episode. Failures included when the agent
kept moving around and was unable to stand up when the target
was spotted, or when it took too long to learn balancing instead
of moving forward, etc. A successful learning was defined as
when the agent identified the hyperparameters that achieved the
successful episodes within five iterations. The successful learning
of EPHE-AB and PGPE was 2/5 and 0/5, respectively.

Figure 14 shows the learning curves of EPHE-AB and PGPE
with the best learning rate (αη = 10−5, ασ = 10−5). The error
bars show 1 SD over five independent runs. PGPE failed to
learn successful behaviors while EPHE-AB shows a clear learning
curve.

Figure 15 shows the distributions of the final parameters found
by EPHE-AB and PGPE with the best learning rate. Most of the

FIGURE 14 | Learning curve of EM-based Policy Hyperparameter
Exploration-AB and PGPE in hardware experiments of vision based
approaching task.

parameters found by EPHE-AB converged, while with PGPE,
even though each parameter has one or two convergent cases, the
directions of the convergences were scattered. The key steering
parameters in this task were kcL and kcR. The successful pairs
found by EPHE-AB were {kcL, kcR}= {2,548, −1,377} and {1,092,
−2,230}, while PGPE failed to discover similar pair values. Hence,
it was difficult for the agent to spot the target, not to mention
standing and approaching.

The figures in the SupplementaryMaterial show the trajectories
and video snapshots of the successful episodeswith the parameters
[290, 955, 4, 226, 1,096, 9, 204, 189, 1,092, 48, −2,230, −33,
−11, 25] found by EPHE-AB from starting positions X2, X4, X1,
and X3.

DISCUSSION

In Section “Method,” we compared EPHE-AB with the baseline
of mean, EPHE-CW, EPHE-RW, EPHE-K, PGPE, NES, and FEM
in three simulation tasks. EPHE-AB significantly outperformed
the others in the cart-pole balancing and smartphone standing
up tasks in the beginning of learning. In smartphone standing
up task, EPHE with REPS Weighting achieved higher returns in
the end of learning, this is due to the convergence of η to small
value when most of the returns are close to 1,000. When η is
small, it gives heavy weights to very small number of the highest
returns.

We examined the learning behaviors of EPHE-ABs with differ-
ent baselines, including the fixed baseline with half of the sample
size, mean, and 1 and 2 SDs from the mean. We found no sig-
nificant performance differences among all of the baselines in the
swing up and cart-pole balancing tasks; however, the baseline with
the mean outperformed the others in the smartphone standing
up tasks. This result suggests that the baseline with the mean
discarded most of the samples in the early stage of learning and
led to a steady decrease of the number of discarded samples during
learning. By examining the return distribution of different tasks,
we found that the adaptive baseline plays an important role in the
beginning of learning, when a relatively small number of episodes
result in large returns. While in the end of learning, the mean
baseline is lower than the fixed baseline when the returns contain
several values around 0. This also explains the better performance
of EPHEwithREPSWeighting in the smartphone standing up task
(see Figure S1 in Supplementary Material).

In the hardware experiments in Section “Hardware Experi-
ments,” we compared EPHE-AB with the baseline of mean with
PGPE with the best learning rate and showed that EPHE-AB
learned the tasks more reliably and efficiently than PGPE.

In the Android-bot simulation task (see Standing Up and Bal-
ancing of Two-Wheeled Smartphone Robot), PGPE with the best
learning rate performed worse than EPHEs. A possible reason
is that, we used the same learning rate for updating all of the
hyperparameters, even though the gradients for the mean and
the variance of different parameters can be largely different. This
reason might also have caused PGPE to be trapped in the local
optima. In the hardware experiments, the results in Figure 10
showed that PGPE learned appropriate parameters with slow
climbing. However, in a more complicated task, the results of

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 111

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

FIGURE 15 | Distributions of final parameters found by five runs of EM-based Policy Hyperparameter Exploration-AB and PGPE with best learning
rate in hardware experiments of vision-based approaching task.

Figure 14 showed that even with the best learning rate PGPE per-
formed much worse than EPHE-AB. Figures 11 and 15 showed
different situations of the convergence of EPHE-AB and PGPE
based on the learned hyperparameters and provided a hint of

the failures of PGPE resembled the smartphone simulation task.
PGPE might work better if we introduced different learning rates
for different hyperparameters, but that would necessitate more
samples for reliable estimates of the optimal learning rates. On the

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 112

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

other hand, EPHE-AB realized adaptive step size based on simple
reward-weighted mean and variances of the sampled parameters.
It could almost reach the optimum in the hyper parameter space
after only one or two iterations while PGPE might move slowly in
the wrong direction.

EM-based Policy Hyperparameter Exploration-AB achieved
better performances in the hardware experiments. In the standing
up and balancing tasks, it achieved a 100% successful rate. The
vision-based approaching task was much more challenging not
only because of its additional task requirement but also due to
the various initial positions, which increased the variance in the
performance evaluation. Nevertheless, EPHE-AB achieved a 40%
success rate. By analyzing the learning history, we found thatmany
of the episodes starting from the most difficult position X4 were
discarded because of relatively low returns. A possible solution is
to evaluate each sample of the parameters over multiple starting
conditions.

PGPE worked much worse in the hardware experiments than
in the simulation tasks. For the standing up and balancing task in
the hardware, the wheel angle was not usable andwe used a simple
binary reward function might be the reason. In the approaching
task, the increased number of policy parameters indicates more
difficulties to PGPE. As illustrated in Figure 15, such hyperpa-
rameters for steering the robot as kcL, kdL, kcR, kdR in PGPE usually
failed. Hence, the robot never fairly spotted the target, so that it
obtained low rewards.

CONCLUSION AND FUTURE WORK

In this paper, we improved the updating mechanism of the EPHE
method by computing an adaptive baseline (EPHE-AB) to discard
inferior samples. Note that the adaptive baseline can be applied to
the methods under the EM-based policy search framework. We
verified the improvements in three simulation tasks, a pendulum
swing up with limited torque, cart-pole balancing, and a simulator
of our smartphone balancer that compared to EPHE-CW, EPHE-
RW, EPHE-K, PGPE, and NES with the best learning rate and
FEM. Our results showed that EPHE-AB achieved the best per-
formance among the other methods in the beginning of learning
when a fixed baseline is inadequate to preserve informative sam-
ples. The choice of the baseline of mean is more effective in focus-
ing on positive outliers than others in the early stage of learning.
This is important for learning from primitive initial parameters
and random initial states. We also implemented EPHE-AB with
the baseline of mean in our real smartphone robot system to
achieve two tasks, standing up and balancing, and approaching
a visual target while balancing. We compared EPHE-AB-mean
with PGPE in hardware experiments. EPHE-AB-mean achieved

nearly optimal behaviors in as few as five iterations in both tasks,
demonstrating its efficient and tuning-free learning.

Note that in the episodic manner, many policy search meth-
ods derived from different principles are equivalent or similar,
like EPHE-K, PoWER, and PI2, and EPHE-RW and REPS. In
the future, we investigate the step-based EPHE for optimizing
stochastic policies to reveal the difference between EPHE and the
other algorithms. Since EPHE can use different probability distri-
bution for policy parameters and hyperparameters, the different
update rules can be derived in this case.

The EPHE methods with adaptive baseline were shown to be
a promising approach in actual robotic tasks, but they discarded
a part of the training samples based on the return values. To
overcome this data inefficiency, a promising direction is the
importance sampling technique that reuses samples over multiple
iterations. Previous studies show that using an importance sam-
pling technique achieves significant performance improvement
in PGPE (Zhao et al., 2013) and RWR (Hachiya et al., 2011).
EPHE-AB can be straightforwardly integrated with importance
sampling by considering the ratio between parameter distribu-
tions in different iterations. This extension will be left for future
study.

The smartphone robot project is developing a low-cost and
high-performance robotic platform to form a sustainable robot
colony, where individuals can achieve self-preservation and self-
reproduction behaviors (Doya and Uchibe, 2005). With a two-
wheeled balancer, we utilized a smartphone’s multiple sensors
and achieved such basic behaviors as standing up, balancing,
and approaching. For the next stage, we will continue developing
reinforcement learning algorithms to achieve foraging, homing
behaviors of single agents, and communication among multiple
agents to form an adaptive, autonomous robotic colony.

AUTHOR CONTRIBUTIONS

JW, EU, and KD conceived the method. JW performed experi-
ments and analyzed data. JW, EU, and KD wrote the paper.

FUNDING

EU was supported by JSPS KAKENHI 16K12504.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00001/
full#supplementary-material.
VIDEO S1 | Learning behaviors of smartphone balancer.

REFERENCES
Abdolmaleki, A., Lau, N., Reis, L. P., and Neumann, G. (2015). “Regularized

covariance estimation for weighted maximum likelihood policy search meth-
ods,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids) (Seoul: IEEE), 154–159.

Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy search
for robotics. Found. Trends Rob. 2, 1–142. doi:10.1561/2300000021

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
Comput. 12, 219–245. doi:10.1162/089976600300015961

Doya, K., and Uchibe, E. (2005). The Cyber rodent project: exploration of adap-
tive mechanisms for self-preservation and self-reproduction. Adapt. Behav. 13,
149–160. doi:10.1177/105971230501300206

Hachiya, H., Peters, J., and Sugiyama, M. (2011). Reward-weighted regression with
sample reuse for direct policy search in reinforcement learning.Neural Comput.
23, 2798–2832. doi:10.1162/NECO_a_00199

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 113

http://journal.frontiersin.org/article/10.3389/fnbot.2017.00001/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00001/full#supplementary-material
https://doi.org/10.1561/2300000021
https://doi.org/10.1162/089976600300015961
https://doi.org/10.1177/105971230501300206
https://doi.org/10.1162/NECO_a_00199
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

Hansen, N., and Ostermeier, A. (2001). Completely derandomized self-
adaptation in evolution strategies. Evol. Comput. 9, 159–195. doi:10.1162/
106365601750190398

Kober, J., and Peters, J. (2011). Policy search for motor primitives in robotics.Mach.
Learn. 84, 171–203. doi:10.1007/s10994-010-5223-6

Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neumann, G. (2013). “Data-
efficient generalization of robot skills with contextual policy search,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, Bellevue.

Mannor, S., Rubinstein, R. Y., andGat, Y. (2003). “The cross-entropymethod for fast
policy search,” in Proc. of the 20th International Conference onMachine Learning,
Washington, DC.

Peters, J., Katharina, M., and Yasemin, A. (2010). “Relative entropy policy search,”
in Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta.

Peters, J., and Schaal, S. (2007). “Reinforcement learning by reward-weighted
regression for operational space control,” in International Conference onMachine
Learning, Corvallis.

Riedmiller, M., Peters, J., and Schaal, S. (2007). “Evaluation of policy gradient
methods and variants on the cart-pole benchmark,” in IEEE Symposium on
Approximate Dynamic Programming and Reinforcement Learning, Honolulu.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber,
J. (2010). Parameter-exploring policy gradients. Neural Networks 21, 551–559.
doi:10.1016/j.neunet.2009.12.004

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
“Deterministic policy gradient algorithms,” in Proc. of 31st International Confer-
ence on Machine Learning, Beijing.

Stulp, F., and Sigaud, O. (2012). “Path integral policy improvement with covariance
matrix adaptation,” in Proc. of the 29th International Conference on Machine
Learning, (Edinburgh), 281–288.

Theodorou, E., Buchli, J., and Schaal, S. (2010). A generalized path inte-
gral control approach to reinforcement learning. J. Mach. Learn. Res. 11,
3137–3181.

Wang, J., Uchibe, E., and Doya, K. (2013). Standing-Up and Balancing Behaviors of
Android Phone Robot. Hongkong: Technical Committee onNonlinear Problems,
IEICE.

Wang, J., Uchibe, E., and Doya, K. (2014). “Control of two-wheel balancing and
standing-up behaviors by an android phone robot,” in Annual Conference on
Robotics Society of Japan – RSJ, Fukuoka.

Wang, J., Uchibe, E., and Doya, K. (2016). EM-based policy hyper parameter
exploration: application to standing and balancing of a two-wheeled smartphone
robot. Artif. Life Rob. 21, 125–131. doi:10.1007/s10015-015-0260-7

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J.
(2014). Natural evolution strategies. J. Mach. Learn. Res. 15, 949–980.

Wierstra, D., Schaul, T., Peters, J., and Schmidhuber, J. (2008). “Fitness expectation
maximization,” in Proceedings of Parallel Problem Solving from Nature (PPSN)
(Dortmund).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Mach. Learn. 8, 229–256. doi:10.1023/A:
1022672621406

Yoshida, N., Yoshimoto, J., Uchibe, E., and Doya, K. (2012). “Development of robot
platform with smart phone,” in The Annual Conference on Robotics Society of
Japan – RSJ, Sapporo.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2012). Analysis and improve-
ment of policy gradient estimation. Neural Networks 26, 118–129. doi:10.1016/
j.neunet.2011.09.005

Zhao, T., Hachiya, H., Tangkaratt, V., Morimoto, J., and Sugiyama, M. (2013).
Efficient sample reuse in policy gradients with parameter-based exploration.
Neural Comput. 25, 1512–1547. doi:10.1162/NECO_a_00452

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Wang, Uchibe and Doya. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 114

https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/s10994-010-5223-6
https://doi.org/10.1016/j.neunet.2009.12.004
https://doi.org/10.1007/s10015-015-0260-7
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1023/A:1022672621406
https://doi.org/10.1016/j.neunet.2011.09.005
https://doi.org/10.1016/j.neunet.2011.09.005
https://doi.org/10.1162/NECO_a_00452
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Wang et al. An EM-Based Deterministic Policy Search

APPENDIX

A.1 Robot Construction
Hardware Components and Connection
As the balancer’s brain, we used Nexus 4, which was co-developed
by Google and LG in November 2012. It has a 1.512-GHz quad-
core Krait CPU, 2GB RAM, and is operated on an Android Jelly
Bean 4.2 system, which is compatible with IOIO OTG USB in
the debugging mode. IOIO OTG is a board that provides a host
machine that can interface with external hardware over various
commonly used protocols. Since it was specifically designed to
work with Android devices, programing can only be done on the
Android side with IOIO libraries. We used the HUB-EE wheel as
a robot servo. It integrates a DC motor, a Toshiba TB6593FNG
motor driver, and a quadrature encoder, for real-time data recov-
ery. AutoCADwas used to design the chassis, andUltimaker 2 was
used to print out each bit of the chassis.

Figure S6 in Supplementary Material shows the hardware’s
connection. Nexus 4 is connected to IOIO through a USB cable.
The battery outputs 5V into the IOIO board to supply power to
both the IOIO board and the smartphone. The IOIO board also
provides 5V to trigger the HUB-EEwheel. The connect break-out
board clarifies communication channel and provides a neat socket
connection between the HUB-EE wheel and the IOIO board.

Software Setup
The program was written in Java by developing an Android
app under Android Studio. The IOIO developer provides high
level Java APIs including IOIOLib Core, and IOIOLib Applica-
tion to read in and out the digital input/output and the PWM
input/output to transfer the sensory information and control sig-
nals. We also used the Open CV library to capture the target’s
visual information. In the standing up and balancing task, three
threads work simultaneously: the IOIO thread that sends control
signals and retrieves encoder data every 1ms (control cycle), a
sensor thread that retrieves a fused gyro and an accelerometer
every 6ms, and a UI thread that visualize the robot’s state and
its learning process. In the approaching task, the camera sensor
is activated and updated every 30ms.

A.2 Simulation Setup
The equation of motion of the inverted pendulum task in Section
“Pendulum Swing Up with Limited Torque” was given by

ml2ϕ̈ = −μϕ̇ + mgl sin ϕ + u

where m= 1 [kg] is the pendulum mass, l= 1 [m] is the pendu-
lum length, μ = 0.01 [kgm2/s] is the coefficient of friction, and
g= 9.81 [m/s2] is the gravitational constant.

The equation of motion of the cart-pole balancing task in
Section “Cart-Pole Balancing” was given by

ẍ =
F−mpl(ϕ̈ cos ϕ − ϕ̇2 sin ϕ)

mc + mp

ϕ̈ =
g sin ϕ(mc + mp)−

(
F + mslϕ̇2 sin ϕ

)
cos ϕ

4
3 l(mc + mp)−mplcos2ϕ

wheremc = 1 [kg] is the cart mass,mp = 0.1 [kg] is the pole mass,
l= 0.5 [m] is the half length of the pole, g= 9.81 [m/ss] is the
gravitational constant and−10N≤ F≤+ 10N is the force applied
to the cart.

The equation of motion of the two-wheeled smartphone robot
in Section “Standing Up and Balancing of Two-Wheeled Smart-
phone Robot” was given by

ϑ̈ =
[
(α + mplr cos ϕ) (TR + TL) + m2

pl2rg sin ϕ cos ϕ

−mplrαϕ̇2 sin ϕ −mplr sin ϕ cos ϕFsh

−2bϑ̇ (mplr cos ϕ + α)
]
/
[

αβ + m2
pl2r2cos2ϕ

]
ϕ̈ =

[
(β −mplr cos ϕ) (TR + TL) + m2

pl2r2ϕ̇2 sin ϕ cos ϕ

+ mplβg sin ϕ − β sin ϕFsh + 2bϑ̇

× (mplr cos ϕ − β)
]
/
[

αβ + m2
pl2r2cos2ϕ

]
where

α = Ip + mpl2

β = 2Iw −mpr2 − 2mcr2

Specifically, the spring force is derived by Hooke’s law:

Fs = kΔL + cϕ̇ = kh(cos ϕ0 − cos ϕ) + cϕ̇

where mp = 0.354 [kg] is the robot body mass, mw = 0.024 [kg]
is the single wheel mass, l= 0.06 [m] is the length from the
center of the robot body, r= 0.03 [m] is the wheel’s radius,
Iw = 1

2mwr2 [kgm2] is the moment of inertia of the wheel,
Ip = 4

3mpl2 [kgm2] is the moment of inertia of the robot
body, g= 9.81 [m/s2] is the gravity acceleration, c= 0.05 [N2/s]
is the damper coefficient of the spring, k= 0.8869 [N/mm] is the
spring coefficient, h= 0.096 [m] is the spring location along the
robot body, ϕ0 is the threshold angle for the activating spring,
b= 0.0001 [kgm2/s] is the friction coefficient of the wheel axle,
and TR and TL are the applied torque to the right and left wheels,
respectively.

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 115

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Adaptive Baseline Enhances EM-Based Policy Search: Validation in a View-Based Positioning Task of a Smartphone Balancer
	Introduction
	Method
	Policy Gradients with Parameter-Based Exploration (PGPE)
	EM-Based Policy Hyperparameter Exploration
	Policy Learning by Weighting Exploration with the Returns

	Simulation Experiments
	Pendulum Swing Up with Limited Torque
	Cart-Pole Balancing
	Standing Up and Balancing of Two-Wheeled Smartphone Robot

	Hardware Experiments
	Overview of Two-Wheeled Smartphone Robot
	Standing Up and Balancing Task
	Experimental Setting
	Results

	Vision-Based Approaching Task
	Experimental Setting
	Results

	Discussion
	Conclusion and Future Work
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix
	A.1 Robot Construction
	Hardware Components and Connection
	Software Setup

	A.2 Simulation Setup

