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Abstract We develop a constrained theory for

constituent migration in bodies with microstructure

described by a scalar phase field. The distinguishing

features of the theory stem from a systematic treatment

and characterization of the reactions needed to main-

tain the internal constraint given by the coincidence of

the mass fraction and the phase field. We also develop

boundary conditions for situations in which the

interface between the body and its environment is

structureless and cannot support constituent transport.

In addition to yielding a new derivation of the Cahn–

Hilliard equation, the theory affords an interpretation

of that equation as a limiting variant of an Allen–Cahn

type diffusion system arising from the unconstrained

theory obtained by considering the mass fraction and

the phase field as independent quantities. We corrob-

orate that interpretation with three-dimensional

numerical simulations of a recently proposed bench-

mark problem.

Keywords Microforce balance � Free-energy
imbalance � Allen–Cahn theory � Regularization �
Phase separation

1 Introduction

In this paper, we are concerned with continuum

theories for constituent migration in bodies with

microstructure described by a scalar phase field. We

consider two different constitutive theories according

to which the concentration and the phase field are

either constrained to be equal or are independent.

These considerations give rise to theories of the Cahn–

Hilliard (Cahn and Hilliard [1]) type and of the Allen–

Cahn (Allen and Cahn [2]) type, respectively.

Although they share the same basic principles, the

theories differ at the constitutive level. This leads to an

interpretation of the constrained theory underlying the

Cahn–Hilliard family as a limiting variant of the

unconstrained theory underlying the Allen–Cahn

family. Our approach to the constrained case relies

on a careful treatment and characterization of the

reactions needed to maintain the internal constraint.

To the extent that the phase field is assumed to

coincide with the constituent concentration, our
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pathway to the Cahn–Hilliard equation is in line with

all previous continuum mechanical derivations,

including the original one advanced by Gurtin [3]

and subsequent alternatives due to Miranville [4],

Fried and Sellers [5], Podio-Guidugli [6], Morro [7],

and Heida et al. [8]. In a departure from those

derivations, we treat the coincidence between the

phase field and the constituent concentration as an

internal constraint that is maintained by appropriate

reactions. The presence and implications of this

constraint have been overlooked in all previous

continuum mechanical derivations. In recognition of

the prominent importance of constrained materials in

continuum mechanics, we believe that an explicit

consideration of the internal constraints that underpin

certain phase-field models can provide important

insights. Support for this belief is provided by recent

studies of Duda et al. [9, 10], who exploit a phase-field

theory for irreversible fracture, due to da Silva et al.

[11], in which an internal constraint is used to prohibit

the spurious healing of cracks which would otherwise

be allowed.

The remainder of this paper is organized as follows.

First, in Sect. 2, we introduce the basic notions and

laws necessary to describe constituent migration in

continuum bodies with microstrucre described by a

scalar phase field. In Sect. 3, we introduce the

constitutive assumptions needed to obtain theories of

the Cahn–Hilliard type. In Sect. 4, we address theories

of the Allen–Cahn type coupled with diffusion and

observe that one such theory can be identified as a

regularization of the Cahn–Hilliard equation. In

Sect. 5, we develop boundary conditions contingent

on the simplifying assumption that the interface

between the body and the surrounding environment

is a structureless surface within which constituent

transport can be neglected. Furthermore, we restrict

attention to uncoupled zero-dissipation conditions.

Finally, in Sect. 6, we use numerical simulations of a

benchmark problem to corroborate the relation

between the Cahn–Hilliard equation and the coupled

Allen–Cahn diffusion system presented in Sect. 4.

2 Basic notions

In this section, we introduce the basic laws that govern

the problem of constituent transport in a two-

component body with microstructure. The state of

the body, hereafter identified with a fixed region B of

three-dimensional Euclidean point space, is described

by the mass fraction c of one of its components, while

its microstructure is described by a phase field u.
Following Fried and Gurtin [12], the latter field is

viewed as an independent kinematical descriptor. The

basic laws—namely the constituent content balance,

the microforce balance, and the free-energy imbal-

ance—that govern the behavior of B are introduced

next.

2.1 Constituent content and microforce balances

The constituent content balance states that

d

dt

Z
P
c dv ¼ �

Z
oP

||| � n daþ
Z
P
m dv ð1Þ

for every partP ofB, where ||| andm are the constituent

flux and supply, respectively. Using standard argu-

ments, we arrive at the pointwise constituent content

balance:

_c ¼ �div |||þ m: ð2Þ

Consistent with the interpretation of the phase field u
as an indepedent kinematical descriptor, we introduce

the microforce balance, which requires that

Z
oP

n � n daþ
Z
P
ðpþ cÞ dv ¼ 0 ð3Þ

for every part P of B, where n is the microstress

vector, and p and c the internal and external micro-

force densities. The corresponding pointwise version

is

div nþ pþ c ¼ 0: ð4Þ

2.2 Free-energy imbalance

The free-energy imbalance represents a mechanical

version of the first and second laws of thermodynam-

ics and in the present context requires that

d

dt

Z
P
w dv�

Z
oP
ðn _u� l|||Þ � n da

þ
Z
P
ðlmþ c _uÞ dv ð5Þ
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for every part P of B, where w is the free-energy

density and l is the constituent chemical potential.

The corresponding pointwise form reads

_w� l _cþ p _u� n � grad _uþ f � |||� 0; ð6Þ

where f denotes the gradient of the chemical potential:

f ¼ grad l: ð7Þ

3 Cahn–Hilliard type theory

We next derive a generalization of the Cahn–Hilliard

equation. In line with the approach of Gurtin [3], the

derivation is predicated on the assumption that the

mass fraction c must coincide with the phase field u.
Contrary to the classical approach, that coincidence is

given the status of an internal constraint and treated

accordingly. Our treatment follows ideas pioneered by

Capriz [13].

3.1 Constraint and its implications

We assume that the mass fraction cmust coincide with

the phase field u:

c ¼ u: ð8Þ

Our interpretation of (8) as an internal constraint

entails the decomposition of the chemical potential l,
the internal microforce p, the microstress n, and the

chemical potential gradient f into active and reactive

components:

l ¼ la þ lr;

p ¼ pa þ pr;

n ¼ na þ nr;

f ¼ fa þ fr:

9>>>>>=
>>>>>;

ð9Þ

In keeping with standard practice, we assume that lr,
pr, nr cannot expend power and that fr cannot produce
dissipation. Consequent to this requirement, the

equality

ðpr � lrÞ _u� nr � grad _uþ fr � ||| ¼ 0 ð10Þ

must hold for all choices of _u, grad _u, and |||.

Moreover, by (8) and (10), the pointwise form (6) of

the free-energy imbalance simplifies to

_w� ðla � paÞ _u� na � r _uþ fa � |||� 0: ð11Þ

From (11), we see that la � pa and fa are power-

conjugate to _u and r _u, respectively, and that fa is

dissipation conjugate to |||. Since it is possible to

construct a process in which _u, grad _u, and ||| can be

chosen independently at any arbitrary point in space

and instant of time, we infer from (10) that lr ¼ pr,
nr ¼ 0, and fr ¼ 0 or, equivalently, that

la � pa ¼ l� p; na ¼ n; and fa ¼ f: ð12Þ

Combining (10) and (11), we arrive a reduced version,

_w� ðl� pÞ _u� n � grad _uþ f � |||� 0; ð13Þ

of the pointwise free-energy imbalance.

3.2 Constitutive relations

Guided by (13), we identify u, gradu, and ||| as

independent constitutive variables and w, l� p, n,
and f as dependent constitutive variables. As conse-

quences of ensuring that the reduced free-energy

imbalance (4) holds in all processes, we then find that:

• wmust be independent of ||| and, thus, be given by a

relation of the form

w ¼ ŵðu; graduÞ; ð14Þ

• l� p and n must be generated from derivatives of

the response function ŵ through the relations

l� p ¼ oŵðu; graduÞ
ou

;

n ¼ oŵðu; graduÞ
oðgraduÞ ;

9>>>>=
>>>>;

ð15Þ

and, thus, must also be independent of |||;

• the response function f̂ determining f must satisfy

the residual free-energy imbalance

f̂ðu; gradu; |||Þ � |||� 0: ð16Þ

Noticing from (4), (9), and (12)1 that the pointwise

microforce balance (4) admits the equivalent form

l ¼ ðl� pÞ � div n� c ð17Þ

and invoking the constitutive relations (15)1 and (15)2
for l� p and n, we find that the constitutively
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augmented pointwise microforce balance determines

the chemical potential in the form

l ¼ oŵðu;graduÞ
ou

� div
�oŵðu;graduÞ

oðgraduÞ

�
� c: ð18Þ

The following remarks are in order:

• The pointwise free-energy imbalance (13) involves

the active parts la and pa of the chemical potential

l and the internal microforce p only through the

difference la � pa ¼ l� p. Thus, whereas (15)2
yields a constitutive relation for that difference, the

components la and pa of that difference remain

individually unspecified. We nevertheless arrive at

a complete specification of the chemical potential

l ¼ la þ lr, as (18) shows. Specifically, the

chemical potential is determined by the microforce

balance.

• Although la and pa need not be specified inde-

pendently to arrive at (18), doing so impacts the

interpretation of certain salient quantities. For

instance, the legitimate choice la � 0 implies that

the chemical potential l is a reaction that enters the

theory to ensure that the internal constraint (8) is

met and a completely analogous statement applies

regarding the role of the internal microforce p for

the complementary choice pa � 0. The freedom to

select la and pa independently in any manner

consistent with (15) should not be overlooked, as

certain particular choices might be advantageous.

• According to (18), the chemical potential l splits

into two contributions, one involving the free

energy density w and other involving the external

microforce density c. Hence, these contributions

can be called internal and external parts of the

chemical potential, respectively. The latter quan-

tity can represent, for instance, the gravitational

potential energy or the electric potential. There-

fore, the introduction of the microforce balance (3)

and the internal constraint (8) might be advanta-

geous even in the standard treatment of diffusion.

A more general perspective of this nature under-

pins a theory for constituent diffusion proposed by

Fried and Sellers [5, 14], in which the constituent

flux ||| is viewed as an additional kinematical

descriptor and an additional microforce balance is

introduced.

3.3 Summary of the evolution equations

Augmenting the pointwise constituent content and

microforce balances (2) and (4) with the thermody-

namically compatible constitutive relations (15)1 and

(15)2 for la � pa and n, we arrive at the system of

equations

_u ¼ div |̂||ðu; grad lÞ þ m;

l ¼ oŵðu; graduÞ
ou

� div
� oŵðu; graduÞ

oðgraduÞ

�
� c:

9>>>>>>>=
>>>>>>>;

ð19Þ

In writing (19), we have assumed that the relation

gradl ¼ f̂ðu; gradu; |||Þ (with the response function f̂

satisfying the residual free-energy imbalance (16)) can

be inverted to give

||| ¼ |̂||ðu; gradlÞ: ð20Þ

Recalling that la � 0 implies that the chemical

potential l is purely a reaction that enters the theory

to ensure that the internal constraint c ¼ u is main-

tained, (19) is to be solved for the phase field u and the

reaction l. This system should be supplemented by an

initial condition for u and a pair of boundary

conditions. We postpone the discussion of boundary

conditions to Sect. 5.

3.4 Specialized theory

We consider a simple theory in which, sufficient to

ensure that (16) holds, f̂ is independent of gradu and

of the particular form

f̂ðu; gradu; |||Þ ¼ �K�1ðuÞ|||; ð21Þ

where the mobility K is assumed to be positive definite

for all values of its argument. With the choice (21) and

recalling from (7) that f ¼ gradl, we find from (18)

that the constituent flux is given by

123

Meccanica



||| ¼� KðuÞgrad
� oŵðu; graduÞ

ou

� div
� oŵðu; graduÞ

oðgraduÞ
�
� c

�
:

ð22Þ

Next, bearing in mind the constraint (8), we may use

(22) in the pointwise constituent content balance (2) to

yield a single evolution equation,

_u ¼div
�
KðuÞgrad

� oŵðu; graduÞ
ou

� div
� oŵðu; graduÞ

oðgraduÞ

�
� c

��
þ m; ð23Þ

for the phase field u. If we next replace u by q, then
(23) is identical to (3.17) of Gurtin [3].

Finally, granted that the response function ŵ
determining the free-energy density w has the partic-

ular form

ŵðu; graduÞ ¼ f ðuÞ þ k
2
jgraduj2; ð24Þ

with f a double–well potential and k[ 0 a constant

gradient-energy modulus, that the mobility is inde-

pendent of the phase field and isotropic, whereby

KðuÞ ¼ j1; ð25Þ

with j[ 0 being a constant scalar mobility, and that

the external microforce density c and external supply

rate m of constituent content vanish, (23) reduces to

the classical Cahn–Hilliard equation

_u ¼ jMðf 0ðuÞ � kMuÞ: ð26Þ

Notice that (26) can be written equivalently as a

system

_u ¼ jMl;

l ¼ f 0ðuÞ � kMu;

)
ð27Þ

which must be solved for the fields u and l.
Suppose that there is reason for determining the

reactive contribution lr to the chemical potential. This

can be achieved by specifying la and rewriting (27) in
terms of la and lr. For the particular choice la � 0,

we have l ¼ lr but (27) is unchanged. If, however, we
insist also that la ¼ f 0ðuÞ, we then arrive at an

alternative system for u and lr of the form

_u ¼ jMðlr þ f 0ðuÞÞ;

lr ¼ �kMu:

)
ð28Þ

4 Allen–Cahn type theory coupled with diffusion

In this section, we derive a general theory of the

Allen–Cahn type coupled with constituent transport.

Towards this end, we find that it suffices to augment

the constituent-content and microforce balances (2)

and (4) with a certain class of constitutive relations.

4.1 Constitutive relations

Guided by (6), we identify c, u, gradu, _u, and ||| as

independent constitutive variables andw, l, p, n, and f
as dependent constitutive variables. Further, we

decompose p as

p ¼ pe þ pd; ð29Þ

where pe and pd are defined such that

pe ¼ pðc;u; gradu; 0; 0Þ ð30Þ

and

pd ¼ pðc;u; gradu; _u; |||Þ � pe: ð31Þ

With these provisions, we find that: w must be

independent of ||| and, thus, be given by a relation of

the form

w ¼ ~wðc;u; graduÞ; ð32Þ

l, n, and pe must be generated from derivatives of the

response function ~w through the relations

l ¼ o ~wðc;u; graduÞ
oc

;

n ¼ o ~wðc;u; graduÞ
oðgraduÞ ;

pe ¼ � o ~wðc;u; graduÞ
ou

;

9>>>>>>>>>=
>>>>>>>>>;

ð33Þ

and, thus, must also be independent of |||; the response

functions pd and f̂ determining p� pe and f must

satisfy the residual free-energy imbalance
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pdðc;u; gradu; _u; |||Þ _u
þ f̂ðc;u; gradu; _u; |||Þ � |||� 0:

ð34Þ

Instead of considering the most general expressions pd
and f̂ satisfying (34), we content ourselves with the

choices

pdðc;u; gradu; _u; |||Þ ¼ �bðu; _uÞ _u;

f̂ðc;u; gradu; _u; |||Þ ¼ �K�1ðcÞ|||;

)
ð35Þ

where the kinetic modulus b is nonnegative for each

choice of its arguments and, as previously, the

mobility K is positive definite for each choice of its

argument.

4.2 Governing equations

The governing equations of the theory are obtained by

augmenting the pointwise constituent content balance

(2) and the pointwise microforce balance (4) with the

thermodynamically compatible constitutive relations

(33) and (35). The resulting system of equations is

comprised by an evolution equation

_c ¼ div
�
KðcÞgrad

� o ~wðc;u; graduÞ
oc

��
þ m ð36Þ

for the mass fraction c coupled to an evolution

equation

bðu; _uÞ _u ¼ div
� o ~wðc;u; graduÞ

oðgraduÞ
�

� o ~wðc;u; graduÞ
ou

þ c

ð37Þ

for the phase field u. This system requires initial

conditions for both c and u. The matter of boundary

conditions is considered in Sect. 5.

4.3 Specialized theory

Our next aim is to introduce a simple theory that can

serve to approximate the Cahn–Hilliard eq. (26). The

theory is based on:

• Choosing the constitutive response function ~w
determining the free-energy density w such that

~wðc;u; graduÞ ¼ f ðuÞ þ k
2
jgraduj2 þ v

2
ðc� uÞ2;

ð38Þ

with f and k being identical to the corresponding

quantities in (24) and with v[ 0 being a constant

coupling energy modulus, in which case (33)2�4

specialize to

l ¼ vðc� uÞ;

n ¼ k gradu;

pe ¼ �f 0ðuÞ � vðu� cÞ:

9>>=
>>;

ð39Þ

• Choosing the kinetic modulus and mobility such

that

b ¼ 0 and K ¼ j1; ð40Þ

with j[ 0 being identical to the corresponding

quantity appearing in (25).

With (38)–(40) and the assumption that the external

microforce density c and external supply rate m of

constituent content vanish, the system (36), (37)

simplifies to

_c ¼ jvMðc� uÞ;

0 ¼ kMu� f 0ðuÞ � vðu� cÞ:

)
ð41Þ

The system (41) can be written in various equivalent

ways. From the particular alternative

_c ¼ jMðf 0ðuÞ � kMuÞ;

c ¼ uþ f 0ðuÞ � kMu
v

;

9>=
>; ð42Þ

we are led to conjecture that the Cahn–Hilliard

equation (26) should be recovered in the limit as v
tends to infinity. Furthermore, on comparing (27)2 to

(41)2, we hypothesize that vðu� cÞ should tend to the
chemical potential l of the Cahn–Hilliard theory as v
tends to infinity. Another alternative to (41) arises on

using (39)1 to eliminate the constituent concentration c

in favor of the chemical potential l, leading to the

system

_u ¼ jMl� _l
v
;

l ¼ f 0ðuÞ � kMu:

9>=
>; ð43Þ
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The systems of equations described above must be

supplemented with appropriate initial and boundary

conditions. Whereas (41) and (42) require initial

condition for the constituent concentration c, (43)

requires an initial condition for uþ l=v. The issue of
boundary conditions will be addressed next.

5 Boundary conditions

Following the procedure advanced in a thermome-

chanical context by Fried and Gurtin [15], we now

consider the localization of the basic laws for points at

the boundary oB ofBwith the objective of formulating

boundary conditions for the theories developed in

Sects. 3 and 4. We begin by formulating the basic

laws for boundary pillboxes which include infinites-

imal portions of the environment and the body,

assuming throughout that oB is a structureless surface

within which constituent transport is negligible. We

emphasize that this treatment is completely indepen-

dent of the constitutive theories developed in

Sects. 3.2 and 4.1.

For a boundary pillbox A, the constituent content

and microforce balances require thatZ
A
ð|env þ ||| � nÞ da ¼ 0 ð44Þ

and

Z
A
ðnenv � n � nÞ da ¼ 0; ð45Þ

where n denotes the unit normal to oB, directed

outward from B, |env and nenv represent, respectively,
the constituent flow into A from the environment and

the microtraction exerted on A by the environment,

and ||| � n and �n � n represent, respectively, the

constituent flow into A from B and the microtraction

exerted onA by the material in B. SinceA is arbitrary,

(44), (45) localize to yield pointwise conditions

|env þ ||| � n ¼ 0 ð46Þ

and

nenv � n � n ¼ 0 ð47Þ

on oB. Additionally, the free-energy imbalance for A
requires that

Z
A
ð|envlenv þ nenv _uenv þ ðl|||� _unÞ � nÞda� 0; ð48Þ

where lenv anduenv are the limits of the environmental

chemical potential and the phase field at oB. Whereas

the first two integral contributions of (48) represents

the energy inflow into A from the environment, the

remaining two represent the energy inflow intoA from

B. On taking (46), (47) into account, it thus follows

from (48) and the arbitrariness of A that

|envðlenv � lÞ þ nenvð _uenv � _uÞ� 0: ð49Þ

The left-hand side of the pointwise inequality (49)

represents the interfacial dissipation. To ensure that

(49) holds, it is sufficient but certainly not necessary to

require that

|envðlenv � lÞ ¼ 0 and nenvð _uenv � _uÞ ¼ 0: ð50Þ

Fried and Gurtin [15] refer to stipulations of the form

(50) as ‘‘uncoupled zero-dissipation conditions’’.

Although (46), (47) and (49) can be used to

formulate boundary conditions that allow coupling

between constituent transport and microstructural

evolution while accounting for dissipative interactions

with the environment, we work instead with (46), (47)

and the conditions (50) sufficient to satisfy (49). It is

evident that the following classes of boundary condi-

tions, posed for an arbitrary subsurface S of oB, are
consistent with (46), (47) and (50):

• Assigned constituent flow across S: For this class
of boundary conditions, |env is given and ||| � n is

prescribed on S in accord with

||| � n ¼ �|env; ð51Þ

(46) is trivially satisfied on S, lenv is determined on

S through (50)1 granted that |||env 6¼ 0. If |env ¼ 0,

then B is chemically insulated from the environ-

ment on the subset of S of oB and (50)1 is trivially

satisfied.

• Assigned chemical potential on S: For this class of
boundary conditions, lenv is given and l is

prescribed on S in accord with

l ¼ lenv; ð52Þ

|env is determined on S through (46), and (50)1 is

trivially satisfied on S. If, in particular,

lenv ¼ constant, then B is in contact with a
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reservoir of uniform chemical potential on the

subset of S of oB.
• Assigned microtraction on S: For this class of

boundary conditions, nenv is given and n � n is

prescribed on S in accord with

n � n ¼ nenv; ð53Þ

(47) is trivially satisfied on S, and _uenv is

determined on S through (50)2 granted that

nenv 6¼ 0. If nenv ¼ 0, then B is free of microtrac-

tion and (50)2 is trivially satisfied.

• Assigned microstructure on S: For this class of

boundary conditions, uenv is given and u is

assigned on S in accord with

u ¼ uenv; ð54Þ

nenv is determined on S by (47), and (50)2 is

trivially satisfied on S.

The boundary conditions (51) and (52) are commonly

encountered as mutually exclusive alternatives in

conventional formulations of problems involving

constituent transport, which allow one boundary

condition on any open subset of the boundary.

Therefore, (51) and (52) cannot be used on a common

portion of oB at the same time. The boundary

condition (53) is commonly invoked in the context

of microforce-based phase field problems, which also

require just one boundary condition on any open

subset of oB. Although the remaining boundary

condition (54) is a mathematically viable alternative

to (53), its use is difficult to justify from a physical

perspective.

The foregoing discussion of boundary conditions

was based exclusively on the local forms of the basic

laws on the interface between the body and its

surrounding environment, namely the constituent

content balance (46), the microforce balance (47),

and the free-energy imbalance (49). Therefore, it

applies to both classes of diffusion theories considered

here. However, the following remarks are in order:

• The boundary conditions (51) and (52) are condi-

tions on the normal component of the constituent

flux and chemical potential and, hence, have the

same physical interpretation for the two classes of

diffusion theories considered here. On the other

hand, the interpretation of the boundary conditions

(53) and (54) depends on the meaning of the phase

field itself. Consider, for instance, the specialized

theories introduced in Subsections 3.4 and 4.3,

which respectively lead to the Cahn–Hilliard

theory and its Allen–Cahn type regularization. In

both cases, (53) and (54) turn out to be boundary

conditions on the normal derivative of the phase

field and the value of the phase field. For the Cahn–

Hilliard theory, since the concentration and phase

field coincide, (53) and (54) yield boundary

conditions for the concentration and its the normal

derivative, whereas for the Allen–Cahn type theory

(53) and (54) are boundary conditions on the

normal derivative and value of a combination of

the concentration and chemical potential, as is

evident from (39).

• The boundary conditions for the Cahn–Hilliard

theory that are commonly adopted in the literature

require that the normal derivative of both the

constituent chemical potential and the concentra-

tion vanish at the boundary. In view of (39), these

conditions are equivalent to homogeneous Neu-

mann boundary conditions for the constituent

chemical potential and the phase field in the

Allen–Cahn type diffusion theory.

• The issue of boundary conditions for the Cahn–

Hilliard equation has been addressed in other

works specially to generalize the standard bound-

ary conditions to incorporate short-ranged interac-

tions between the mixture and the walls in confined

systems. These generalizations give rise to what

have been referred to as dynamic boundary con-

ditions. Researchers who have considered such

conditions include Binder and Frisch [16], Fischer

et al. [17], Kenzler et al. [18], Goldstein et al. [19],

Heida [20], Liu andWu [21], Fukao [22], and Colli

and Fukao [23]. In this case, the body–environment

interface cannot be treated as structureless

anymore.

6 Numerical results

To explore the viability of approximating solutions of

the Cahn–Hilliard equation (26) by solutions of the

Allen–Cahn type diffusion system (43), we consider

the three-dimensional version of the benchmark

problem for the Cahn–Hilliard equation formulated

and studied by Jeong et al. [24].
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For Jeong et al. [24], the phase-field variable

represents the difference of the concentration of the

two components of a binary mixture and thus should,

in principle, be confined to the interval ½�1; 1�. This
expectation is not, however, met by the numerical

solutions to the benchmark problem. This is a

recognized drawback of the classical version of the

Cahn–Hilliard equation, which is predicated on

assuming that the mobility is constant and that the

homogeneous contribution to the free-energy density

is given by a symmetric double-well potential with

wells at �1 that does not strongly penalize values of

the phase field outside of ½�1; 1�. Detailed discussions
of this issue are provided by Elliott and Garcke [25]

and Novick–Cohen [26], among others.

6.1 Dimensionless evolution equations

To formulate initial-boundary-value problems consis-

tent with that considered by Jeong et al. [24], we

introduce characteristic measures L and E of length

and energy and we identify the ratio

L5

Ej
¼ T ð55Þ

as a characteristic measure of time. In addition, we

choose the double-well potential f to be of the

particular form

f ðuÞ ¼ E

L3
u2ð1� uÞ2 ð56Þ

and, noticing that the gradient energy modulus k and

the coupling energy modulus v carry dimensions of

energy per unit length and energy per unit volume,

respectively, define the dimensionless gradient energy

modulus r[ 0 and the dimensionless coupling energy

coefficient i[ 0 by

r ¼ Lk
E

and i ¼ E

L3v
: ð57Þ

Adopting a scaling in which lengths, times, and

energies are measured relative to L, T, and E,

respectively, and referring to (56) and (57), we thus

find that the dimensionless version of the free-energy

density (24) underlying the Cahn–Hilliard equation

(26) is given by

w
CH
¼ ŵðu; graduÞ

E=L3
¼ u2ð1� uÞ2 þ r

2
jgraduj2; ð58Þ

where, in an abuse of notation, the symbol ‘grad’ used

previously to denote the gradient now (and hereafter)

denotes the dimensionless gradient. Moreover, we find

that the dimensionless version of the evolution equa-

tion (26) has the form

_u ¼ Mð2uð1� uÞð1� 2uÞ � rMuÞ; ð59Þ

where, in a further abuse of notation, a superposed dot

and a triangle now (and hereafter) denote the partial

derivative with respect to dimensionless time and the

dimensionless Laplacian.

Analogously, we find that the dimensionless ver-

sion of the free-energy density (38) for the Allen–

Cahn type diffusion theory is given by

w
AC

¼
~wðc;u; graduÞ

E=L3

¼ u2ð1� uÞ2 þ r
2
jgraduj2 þ 1

2i
ðc� uÞ2 ð60Þ

and, on introducing the dimensionless chemical

potential

t ¼ l
E=L3

¼ c� u
i

; ð61Þ

we see that the dimensionless version of the associated

system (43) for the Allen–Cahn type diffusion theory

has the form

_u ¼ Mt� i _t;

t ¼ 2uð1� uÞð1� 2uÞ � rMu:

)
ð62Þ

For later use, we see from (61) that, in the context of

the Allen–Cahn type diffusion theory, the constituent

concentration is given by

c ¼ uþ it: ð63Þ

Moreover, we use (61) and (62)2 to eliminate c from

(60) and thereby obtain an alternative representation,

w
AC

¼ u2ð1� uÞ2 þ r
2
jgraduj2 þ i

2
t2; ð64Þ

for the dimensionless free-energy density of the

Allen–Cahn type diffusion theory. Although the

representation (64) merely provides a means to

evaluate w
AC

in terms of u, gradu, and the
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dimensionless chemical potential t, it should not be

misinterpreted as a constitutive relation.

6.2 Boundary and initial conditions

Consistent with the work of Jeong et al. [24], we

consider the dimensionless Cahn–Hilliard equation

(59) subject to the natural boundary conditions

gradMu � m ¼ 0; gradu � m ¼ 0; on oR; ð65Þ

where m is the outward unit normal at all smooth points

of the boundary oR of the dimensionless cube R.

Since, by (62)2 and (65),

grad t ¼ 2ð1� 6uþ 6u2Þgradu� rgradMu; ð66Þ

we infer that the natural boundary conditions

grad t � m ¼ 0; gradu � m ¼ 0; on oR; ð67Þ

for the dimensionless Allen–Cahn type diffusion

system (62) are equivalent to (65). Granted our choice

of scales, (65) and (67) are the dimensionless versions

of the boundary conditions (51) and (53) for |env ¼ 0

and nenv ¼ 0 that correspond, respectively, to (65) and

(67). These conditions require that the normal deriva-

tives of the constituent chemical potential and con-

centration vanish on oR for both diffusion theories

considered here. For the Cahn–Hilliard diffusion

theory, this requirement is immediate since u coin-

cides with the constituent concentration c. For the

Allen–Cahn type diffusion theory, it hinges on the

specific form (61) of the dimensionless chemical

potential and (67)2.

The initial condition for the dimensionless Cahn–

Hilliard equation (59) is simply

uð�; 0Þ ¼ c0; on R; ð68Þ

where c0 is the prescribed constituent concentration at

dimensionless time t ¼ 0. With reference to (63), the

corresponding initial condition for the Allen–Cahn

type diffusion system (62) is

uð�; 0Þ þ itð�; 0Þ ¼ c0; on R: ð69Þ

6.3 Weak versions of the evolution equations

for natural boundary conditions

We work with weak versions of the dimensionless

Cahn–Hilliard eq. (59) and the dimensionless Allen–

Cahn type diffusion system (62) subject to the

respective natural boundary conditions (65) and (67).

For (59) and (65), we multiply (59) by a smooth test

field w satisfying gradw � m ¼ 0 on oR, integrate the

resulting identity over R, apply the divergence

theorem, and invoke (65), giving
Z
R
w _u dv ¼r

Z
R
MwMu dv

� 2

Z
R
uð1� uÞð1� 2uÞgradw � gradu dv:

ð70Þ

Similarly, for (62) and (67), we multiply (62)1 by a

smooth test field w and (62)2 by a smooth test field q,

integrate both of the resulting identities overR, apply

the divergence theorem, and invoke (67), giving

Z
R
w _u dv ¼ �

Z
R
gradw � grad t dv

� i
Z
R
w _t dv;

Z
R
qt dv ¼ 2

Z
R
quð1� uÞð1� 2uÞ dv

þ r
Z
R
grad q � gradu dv:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð71Þ

6.4 Spatial and temporal discretizations

We divide the region R into a uniform mesh of 1283

cubes and use isogeometric finite elements of the type

developed by Hughes et al. [27] to discretize (70) over

that mesh. Since the Laplacians of the test field w and

the trial solution u appear in (70), we employ test

fields and trial solutions of polynomial order three and

interelemental continuity two, as the spatial resolution

afforded by this choice is sufficient to yield the

accuracy and resolution needed to provide an accurate

baseline for exploring the fidelity of the solutions

arising from the Allen–Cahn type diffusion theory.

Working on the same uniform mesh of 1283 cubes and

recognizing that only the first gradients of the test

fields w and q and the trial solution u appear in (62),
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we also discretize (62) with isogeometric finite

elements but, in so doing, employ test fields and trial

solutions of polynomial order two and interelemental

continuity unity.

To discretize (70) and (71) with respect to the

dimensionless time t, we apply the second-order

accurate generalized-a method of Chung and Hulbert

[28] with uniform step size 10�4. That method requires

the provision of a spectral radius which is associated

with numerical dissipation and can take values

between zero and unity, inclusive. If the spectral

radius is equal to unity, no frequencies are damped; if

the spectral radius is close to unity, a corresponding

range of high frequencies is damped; if the spectral

radius is equal to zero, all frequencies are damped.

Based on prior work of Sarmiento et al. [29], we set

the value of the spectral radius equal to 0.9.

Our choices of spatial and temporal discretization

schemes for (70) have been applied previously by

Gómez et al. [30] and Vignal et al. [31] to construct

numerical approximations to solutions of various

initial-boundary-value problems for the Cahn–Hilliard

equation. These choices for the discretization schemes

were dictated by convenience only and hence any

comparison to alternative schemes is outside the scope

of this paper.

6.5 Comparisons

To enable comparisons with the simulations of Jeong

et al. [24], we choose the value

r ¼ 1

512 arctanh2ð9=10Þ ð72Þ

for the dimensionless gradient energy modulus and

take the dimensionless open cube R to be of side

length 2. Recalling that our discretization rests on the

uniform division ofR into 1283 cubes, we furthermore

choose the value of the initial constituent concentra-

tion c0 to be given by

c0ðxÞ ¼
1

2

�
tanh

�
1

2
ffiffiffi
r

p
�

1

10
� dðxÞ

��
þ 1

�
; ð73Þ

with

dðxÞ ¼
�
x21 þ

�
x2 �

1

128

�2

þ
�
x3 �

1

128

�2

� 3

4

�1=2

;

ð74Þ

where xi ¼ ðx� oÞ � ei satisfying jxij � 1, i ¼ 1; 2; 3,

denote the components of x relative to a fixed

orthonormal basis fe1; e2; e3g and the origin o lies at

the center of the cube R.

We use the spatial and temporal discretization

schemes described in the previous subsection to

construct numerical solutions to the initial-value

problems for (70) and (71), bearing in mind that the

respective initial conditions for those problems are

determined by using the particular expression (73) for

the initial constituent concentration c0 in (68) and (69).

Although the initial-value problem (70) for the Cahn–

Hilliard theory is completely determined without

additional input, its counterpart, (71), for the Allen–

Cahn type diffusion theory requires input in the form

of the dimensionless coupling energy coefficient i.
The solution to the initial value problem for (70)

serves as a reference with respect to which we

compare solutions to the initial-value problem for

(71) for various values of i. To test our previously

stated conjecture that the Cahn–Hilliard equation (26)

should be recovered from the Allen–Cahn type

diffusion system in the limit as v ! 1 or, equiva-

lently, by (57)2, as i ! 0, we consider values of i
ranging from i ¼ 8:0	 100 to i ¼ 4:0	 10�2. Our

simulations are conducted up to dimensionless time

t ¼ 1:5 and thus include the interval considered by

Jeong et al. [24, Table 4], who terminate their simu-

lations at dimensionless time t 
 1:2.

6.5.1 Cahn–Hilliard theory

The initial distribution of u determined by (68) and

(72)–(73) involves a spherical shell within which

u ¼ 1. That shell is bounded by transition layers, also

spherical shells, within which 0\u\1 and outside of

which u ¼ 0. As the dimensionless time t increases

from ti ¼ 0:0 to tf ¼ 1:5, the transition layers remain

roughly concentric and spherical and propagate

toward the origin, the inner one at a velocity exceeding

that of the outer one. At a critical time t� 
 1:283, the

inclusion where u ¼ 0 collapses and the inner tran-

sition layer disappears, leaving a transition layer

between a roughly spherical inclusion within which

u 
 1 and the remainder of R, within which u 
 0.

The system then equilibrates by what appear to be

small adjustments to the distribution of u. The

123

Meccanica



observed sequence of events reflects the decay of the

dimensionless total free-energy

WCH ¼
Z
R

�
u2ð1� uÞ2 þ r

2
jgraduj2

�
dv ð75Þ

for the dimensionless Cahn–Hilliard eq. (59), which

occurs as the volume occupied by the transition layers

decreases. A plot ofWCH versus the dimensionless time

t is provided in Fig. 1, from which it is apparent that a

pronounced drop occurs at t ¼ t�.
A consequence of the natural boundary conditions

(65) and the initial condition (68) is that any solutionu
of the dimensionless Cahn–Hilliard equation (59)

must satisfy the condition

DUCH ¼

Z
R
ðu� c0Þ dvZ
R
c0 dv

¼ 0; ð76Þ

meaning, in view of the constraint (8), that the total

constituent concentration must be conserved. To

determine the extent to which our scheme satisfies

the foregoing requirement, we use our numerically

generated solution u to the initial-value problem for

(70) and the initial condition (68) to compute DUCH at

each dimensionless time step. The resulting plot,

provided in Fig. 2, shows that DUCH is conserved to

within a tolerance of 1:6	 10�7.

In Fig. 3, we plotu at dimensionless time t ¼ 1:192

on the line segment fx : jx1j\1; x2 ¼ 0; x3 ¼ 0g
along with the corresponding data from the benchmark

simulations of Jeong et al. [24, Table 3]. Although the

benchmark data is for the spherically symmetric

version of the problem, we see reasonable agreement.

Notice also that u takes values outside the interval

[0, 1]. As noted in the second paragraph at the

beginning of Sect. 6, this is a manifestation of certain

inherently nonphysical features of the classical for-

mulation of the Cahn–Hilliard equation. We next

compare the Allen–Cahn type diffusion theory to our

results for the Cahn–Hilliard theory.

6.5.2 Allen–Cahn type diffusion theory

In Figs. 4 and 5, we compare the profiles of u
and c, respectively, on the line segment fx :
�1\x1\1; x2 ¼ 0; x3 ¼ 0g at dimensionless times

t ¼ 0:5, t ¼ 1:0, t ¼ 1:286, and t ¼ 1:5, as determined

by solving (71) subject to the initial condition

determined by (69) and (73) for various values of i
to the analogous profiles obtained from solving (70)

subject to the initial condition determined by (68) and

(73). From these profiles, we see that, for the Allen–

Cahn type diffusion theory, the transition layers of

both u and c move inward more rapidly than the

corresponding layers for the Cahn–Hilliard theory but

that this discrepancy diminishes noticeably as i
decreases. At the dimensionless times t ¼ 0:5 and

t ¼ 1:0, Fig. 4 contains profiles of u with negative

values in the collapsing region. This is a consequence

of the particular choice of double-well potential (56),

which, as in the Cahn–Hilliard case, does not penalize

values of u outside of [0, 1]. For this potential, the

concentration c is also not constrained to the interval

[0, 1], as Fig. 5 shows. We also observe from Fig. 4

that, at t ¼ 0:5 and around x1 ¼ 0, u is negative,

independent of i, and approximately constant. This

suggests that Mu can be neglected around x1 ¼ 0 and

hence, by (62)2, that t can be considered as an i-
independent constant. Sinceu is negative and constant

around x1 ¼ 0 and the same is true of t, we conclude
from (63) that there, as indicated in Fig. 5, the greater

the value of i the more negative the corresponding

value of cmust be. The same thing happens at t ¼ 1:0.

With similar reasoning, it can thus be shown that the

opposite occurs around x1 ¼ 0 at t ¼ 1:5: the greater

the value of i the more positive the corresponding

value c must be.

0.0 0.3 0.6 0.9 1.2 1.5
t

0.10

0.14

0.18

0.22

Ψ
C
H

t∗

Fig. 1 The dimensionless total free-energy WCH defined in (75)

versus the dimensionless time t. The dotted line indicates the

critical time t� when the inner wall of the shell within which

u ¼ 1 collapses
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In Fig. 6, we plot the averages distances ro and ri to

the intersections between the outer and inner portions

of the level surface fx : uðx; 0Þ 
 1=2g and the line

segment fx : jx1j\1; x2 ¼ 0; x3 ¼ 0g. In that figure,

dotted and solid are used to distinguish ro and ri,

respectively. Consistent with the results obtained in

our solution of the initial-value problem for (70) and,

thus, with the benchmark results, the inner transition

layer accelerates inward as t increases and the roughly

spherical inclusion where u 
 0 eventually collapses

and the inner transition layer disappears. The velocity

of outer transition layer decreases shortly prior to the

disappearance of the inclusion and vanishes subse-

quently as the system approaches equilibrium. In

Table 1, we present the critical time t�i and ro at the

final time t ¼ 1:5 for different values of the coupling

coefficient i and for the Cahn–Hilliard theory (70). In

Fig. 7, we plot t�i and ro at t ¼ 1:5 along with the

corresponding quantities from the Cahn–Hilliard the-

ory, which are indicated by dotted horizontal lines.

The figures show again that the approximation to the

results for the Cahn–Hilliard theory afforded by the

Allen–Cahn type diffusion theory improves as the

dimensionless coupling energy coefficient i defined in
(57)2 decreases.

We hereafter use ui and ti to denote our numerical

solution to the initial-boundary value problem for the

Allen–Cahn type diffusion theory and thereby distin-

guish these quantities from the phase field u and the

chemical potential t obtained from the corresponding

problem for the Cahn–Hilliard theory. In Fig. 8, we

make use of the alternative representation (64) of w
AC

to calculate and plot the total dimensionless free-

energy

WAC ¼
Z
R
u2
i ð1� uiÞ

2
dv

þ
Z
R

� r
2
jgraduij2 þ

i
2
t2i

�
dv ð77Þ

for the Allen–Cahn type diffusion system (62) versus

time for various values of the coupling coefficient i.
Consistent with thermodynamic requirements, our

results show that WAC decays monotonically for all

values of i considered. Moreover, comparison to

Fig. 1 demonstrates that the deviation between WAC

and WCH decreases monotonically as i decreases.
In Fig. 9, we plot the normalized difference

DUAC ¼

Z
R
ðu� uiÞ dvZ

R
u dv

ð78Þ

between the total values of the phase field for the

solutions of the initial-value problems for (70) and

(71) versus the dimensionless time for various values

of the dimensionless coupling coefficient. In contrast

to DUCH defined in (76), DUAC increases with dimen-

sionless time for each value of the dimensionless

coupling energy coefficient i considered. From this,

0.0 0.3 0.6 0.9 1.2 1.5
t

−0.8

0.0

0.8

1.6

Δ
Φ

C
H

×10−7

Fig. 2 The dimensionless measure DUCH of constituent

conservation defined in (76) versus the dimensionless time t,

from which it follows that jDUCHj � 1:6	 10�7

−1.0 −0.5 0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

ϕ

This work
Jeong et al.

Fig. 3 Profiles on the line segment fx : jx1j\1; x2 ¼ 0;
x3 ¼ 0g, of the phase field u at dimensionless time t ¼ 1:192
determined by solving the initial-boundary value problem for

the Cahn–Hilliard theory (black) and the corresponding data

(red) from the benchmark simulations of Jeong et al. [24,

Table 3]
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we see that the volume of the shell in the Allen–Cahn

type diffusion system (62) decreases as i increases.
However, the growth of DUAC with t decreases

monotonically as i decreases.
To study the convergence of the results for the

Allen–Cahn type diffusion theory towards those of the

Cahn–Hilliard theory, we compute the time-averaged

L2 error

eðu; uiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tf � ti

Z tf

ti

Z
R
ju� uij2 dv dt

s
; ð79Þ

for ðu; uiÞ ¼ ðu;uiÞ, ðu; uiÞ ¼ ðu;ui þ itiÞ,
ðu; uiÞ ¼ ðw

AC
;w

CH
Þ, and ðu; uiÞ ¼ ðt; tiÞ, bearing in

mind the internal constraint c ¼ u that applies in the

Cahn–Hilliard theory. From plots of these quantities

provided in Fig. 10, we see that ui, ui þ iti, and w
AC

converge linearly with i to u, u, and w
CH
. In Fig. 11,

we see that the chemical potential ti converges to t as
i ! 0, albeit at a rate considerably slower than linear.

We speculate that the key to developing improved

numerical strategies for solving the Allen–Cahn type

diffusion theory might hinge on finding ways to reduce

the error incurred in approximating the chemical

potential of the Cahn–Hilliard theory. This difficulty

likely stems from the nonlocal nature of that quantity.

7 Discussion and conclusions

In this paper, we formulated two continuum theories,

one constrained and the other unconstrained, for

constituent migration in bodies with microstructure

described by a scalar phase field. The theories are built

Fig. 4 Profiles, at dimensionless times t ¼ 0:5, t ¼ 1:0,
t ¼ 1:286, and t ¼ 1:5, of the phase field u on the line segment

fx : �1\x1\1; x2 ¼ 0; x3 ¼ 0g for various values of i and the
analogous profiles obtained from solving (70) subject to the

initial condition determined by (68) and (73). These profiles

show that the approximation to the results for the Cahn–Hilliard

theory afforded by the Allen–Cahn type diffusion theory

improves as the dimensionless coupling energy coefficient i
defined in (57)2 decreases
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on the same basic principles—namely the constituent

content balance, the microforce balance, and the free-

energy imbalance—but rely on different constitutive

assumptions. In the constrained theory, the concen-

tration and phase field are constrained to coincide,

whereas in the unconstrained theory they are consid-

ered independent. From these alternative approaches,

we provided a new derivation of the Cahn–Hilliard

equation. On the basis of that derivation, we found that

the Cahn–Hilliard equation can be interpreted as the

limiting variant of a system of Allen–Cahn type

diffusion equations that arises from the unconstrained

theory. We then used numerical simulations of a

benchmark problem proposed recently by Jeong et al.

[24] to support this new interpretation. In particular,

we found through an error comparison based on

varying the dimensionless coupling energy coefficient

that the numerical results of the Allen–Cahn type

diffusion system converge linearly to those of the

Cahn–Hilliard equation as the coupling coefficient

tends to zero.

In the constrained theory developed here, the

chemical potential and the internal microforce density

are decomposed into sums of reactive and active

components. As a consequence of requirement that the

reactions be powerless, it follows that they must be

equal and, moreover, that only the difference between

the actions can be assigned constitutively. It is

consequently permissible to prescribe the form the

active component of the chemical potential. If, in

particular, we choose that quantity to vanish identi-

cally, then the chemical potential is necessarily a pure

reaction which, consistent with intuition, serves to
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−1.0 −0.5 0.0 0.5 1.0
x1

0.0
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ι = 4.0× 10−2
CH

Fig. 5 Profiles, at dimensionless times t ¼ 0:5, t ¼ 1:0,
t ¼ 1:286, and t ¼ 1:5, of the constituent concentration c ¼
uþ it on the line segment fx : �1\x1\1; x2 ¼ 0; x3 ¼ 0g for
various values of i determined from (63) by postpocessing after

obtaining u and t by solving (71) subject to the initial condition

determined by (68) and (73). As with the profiles of the phase

fieldu presented in Fig. 4, these profiles show an approximation

to the results for the Cahn–Hilliard theory that improves as the

dimensionless coupling energy coefficient i defined in (57)2
decreases
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ensure that, granted no-flux boundary conditions, the

total concentration is preserved.

To conclude, we remark on the commonalities and

differences between our derivation of the Cahn–

Hilliard equation and the derivation originated by

Gurtin [3]. These derivations share the same basic

principles and are predicated on the assumption that

the phase field coincides with the constituent

concentration. Their essential difference lies with the

approach to treating the mentioned coincidence.

Whereas Gurtin [3] identifies the concentration with

the phase field from the outset, we treat the equality

between concentration and phase field as an internal

constraint that must be maintained by suitable reac-

tions. Our motivation for doing that stems from the

0.0 0.2 0.4 0.60.6 0.8 1.0 1.2 1.4
t

0.00
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ι = 4.0× 100

ι = 8.0× 10−1

ι = 4.0× 10−1

ι = 8.0× 10−2

ι = 4.0× 10−2

CH

1.21 1.23
0.16

0.175

Fig. 6 Average of the distances ro and ri at which the outer

(dotted lines) and inner (solid lines) transition layers intersect

the line segment fx : jx1j\1; x2 ¼ 0; x3 ¼ 0g versus the dimen-

sionless time t. The inner transition layer accelerates inward

until the collapse of the roughly spherical inclusion. The outer

transition layer moves inward at a decreasing velocity and

appears to come to rest after the inner layer disappears

Table 1 Critical time t�i and the average distance ro [ 0 of the

intersections between the outer portion of the level surface

fx : uðx; 0Þ 
 1=2g and the line segment fx : jx1j\1; x2 ¼
0; x3 ¼ 0g at the final time t ¼ 1:5 for the Allen–Cahn type

diffusion system (71) with various values of the coupling

coefficient i and for the Cahn–Hilliard theory (70) denoted by

CH.

i t�i ro at t ¼ 1:5

8:0	 100 1.139 0.609475586517

4:0	 100 1.207 0.647080424181

8:0	 10�1 1.267 0.674244203927

4:0	 10�1 1.275 0.677421146421

8:0	 10�2 1.282 0.679920378295

4:0	 10�2 1.282 0.680229937614

CH 1.283 0.680565172583

For each choice of i, the critical time t�i underestimates the

value 1.283 obtained for the Cahn–Hilliard theory but the

discrepancy decreases as i decreases
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Fig. 7 Plot of the critical time t�i and the average distance

ro [ 0 versus the dimensionless coupling energy coefficient i.
The critical time t�i is defined as the time at which the inner

transition layer of the roughly spherical shell in which u ¼ 1

collapses. The value ro [ 0 is the average distance to the

intersections between the outer portion of the level surface fx :
uðx; 0Þ 
 1=2g and the line segment fx : jx1j\1; x2 ¼ 0; x3 ¼
0g at the final time t ¼ 1:5 of the simulation
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Fig. 8 The dimensionless total free-energy WAC defined in (77)

versus the dimensionless time t for various values of the

dimensionless coupling energy coefficient i. This quantity

decreases monotonically for all values of i until the collapse of
the inner transition layer, when it exhibits a sudden drop. The

corresponding quantity, WAC, as defined in (75), for the Cahn–

Hilliard theory is also shown
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prominent importance of internally constrained mate-

rials in continuum mechanics and the consequential

belief that the explicit recognition of internal con-

straints that tacitly underpin certain phase-field mod-

els can provide important insights opening new

possibilities that may deserve further investigation.
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Fig. 9 Plot of the relative difference DUAC of the total

constituent versus the dimensionless time t for various values
of the dimensionless coupling energy coefficient i. Positive
values of DUAC indicate that the total concentration of the

solution arising from the Cahn–Hilliard theory is greater than

that arising from the Allen–Cahn type diffusion theory. The

difference DUAC reduces monotonically as i decreases, indicat-
ing that the approximation provided by latter theory improves as

i ! 0
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potential t determined by (79), versus the dimensionless

coupling energy coefficient i defined in (57)2. The rate at which
this error decreases as i ! 0 is much slower than the linear rate

observed for the quantities considered in Fig. 10

4.0
×10

−2

8.0
×10

−2

4.0
×10

−1

8.0
×10

−1

4.0
× 10

0

8.0
× 10

0

ι

10−3

10−2

10−1

e

1
1

e(ϕ,ϕι + ιυι)
e(ϕ,ϕι)
e(ψAC, ψCH)
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energy density w, as determined by (79), versus the dimension-

less coupling energy coefficient i defined in (57)2. Each of these
quantities decreases linearly with i as i ! 0
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8. Heida M, Málek J, Rajagopal KR (2012) On the develop-

ment and generalizations of Cahn–Hilliard equations within

a thermodynamic framework. Z Angew Math Physik

63(1):145–169. https://doi.org/10.1007/s00033-011-0139-y

9. Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE (2015) A

phase-field/gradient damage model for brittle fracture in

elastic-plastic solids. Int J Plast 65:269–296. https://doi.org/

10.1016/j.ijplas.2014.09.005

10. Duda FP, Ciarbonetti A, Toro S, Huespe A (2018) A phase-

field model for solute-assisted brittle fracture in elastic-

plastic solids. Int J Plast 102:16–40. https://doi.org/10.1016/

j.ijplas.2017.11.004

11. da SilvaMN, Duda FP, Fried E (2013) Sharp-crack limit of a

phase-field model for brittle fracture. J Mech Phys Solids

61(11):2178–2195. https://doi.org/10.1016/j.jmps.2013.07.

001

12. Fried E, Gurtin ME (1993) Continuum theory of thermally

induced phase transitions based on an order parameter. Phys

D 68(3):326–343. https://doi.org/10.1016/0167-2789(93)

90128-N

13. Capriz G (1989) Continua with microstructure. Springer,

Berlin. https://doi.org/10.1007/978-1-4612-3584-2

14. Fried E, Sellers S (2000a) Microforces and the theory of

solute transport. Z AngewMath Physik (ZAMP) 51(5):732–

751. https://doi.org/10.1007/PL00001517

15. Fried E, Gurtin ME (2007) Thermomechanics of the inter-

face between a body and its environment. Continuum Mech

Thermodyn 19(5):253–271. https://doi.org/10.1007/s00161-

007-0053-x

16. Binder K, Frisch HL (1991) Dynamics of surface enrich-

ment: a theory based on the Kawasaki spin-exchange model

in the presence of a wall. Z für Phys B 84(3):403–418.

https://doi.org/10.1007/BF01314015

17. Fischer HP, Maass P, Dieterich W (1997) Novel surface

modes in spinodal decomposition. Phys Rev Lett

79:893–896. https://doi.org/10.1103/PhysRevLett.79.893

18. Kenzler R, Eurich F, Maass P, Rinn B, Schropp J, Bohl E,

Dieterich W (2001) Phase separation in confined geome-

tries: solving the Cahn–Hilliard equation with generic

boundary conditions. Comput Phys Commun

133(2):139–157. https://doi.org/10.1016/S0010-4655(00)0

0159-4

19. Goldstein GR,Miranville A, Schimperna G (2011) A Cahn–

Hilliard model in a domain with non-permeable walls. Phys

D 240(8):754–766. https://doi.org/10.1016/j.physd.2010.

12.007

20. Heida M (2013) On the derivation of thermodynamically

consistent boundary conditions for the Cahn–Hilliard–

Navier–Stokes system. Int J Eng Sci 62:126–156. https://

doi.org/10.1016/j.ijengsci.2012.09.005

21. Liu C, Wu H (2019) An energetic variational approach for

the Cahn–Hilliard equation with dynamic boundary condi-

tion: Model derivation and mathematical analysis. Arch

RationMech Anal 233(1):167–247. https://doi.org/10.1007/

s00205-019-01356-x

22. Fukao T (2016) Convergence of Cahn–Hilliard systems to

the Stefan problem with dynamic boundary conditions.

Asymptotic Anal 99(1–2):1–21. https://doi.org/10.3233/

ASY-161373

23. Colli P, Fukao T (2015) The Allen–Cahn equation with

dynamic boundary conditions and mass constraints. Math

Methods Appl Sci 38:3950–3967. https://doi.org/10.1002/

mma.3329

24. Jeong D, Choi Y, Kim J (2018) A benchmark problem for

the two- and three-dimensional Cahn–Hilliard equations.

Commun Nonlinear Sci Numer Simul 61:149–159. https://

doi.org/10.1016/j.cnsns.2018.02.006

25. Elliott CM, Garcke H (1996) On the Cahn–Hilliard equa-

tion with degenerate mobility. SIAM J Math Anal

27(2):404–423. https://doi.org/10.1137/S003614109426

7662

26. Novick-Cohen A (2008) The Cahn–Hilliard equation. In:

Dafermos C, Pokorny M (eds) Handbook of differential

equations: evolutionary equations, vol IV. North-Holland,

Amsterdam, pp 201–228. https://doi.org/10.1016/S1874-

5717(08)00004-2

27. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric

analysis: CAD, finite elements, NURBS, exact geometry

and mesh refinement. Comput Methods Appl Mech Eng

194(39):4135–4195. https://doi.org/10.1016/j.cma.2004.

10.008

28. Chung J, Hulbert G (1993) A time integration algorithm for

structural dynamics with improved numerical dissipation:

the generalized-amethod. J Appl Mech 60:371–375. https://

doi.org/10.1115/1.2900803

29. Sarmiento A, Espath L, Vignal P, Dalcin L, Parsani M, Calo

VM (2018) An energy-stable generalized-a method for the

Swift–Hohenberg equation. J Comput Appl Math

344:836–851. https://doi.org/10.1016/j.cam.2017.11.004
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