
fcell-09-653801 March 26, 2021 Time: 17:39 # 1

REVIEW
published: 01 April 2021

doi: 10.3389/fcell.2021.653801

Edited by:
Anne Straube,

University of Warwick,
United Kingdom

Reviewed by:
Andreas Merdes,

Centre de Biologie Intégrative (CBI),
France

Sachin Kotak,
Indian Institute of Science (IISc), India

Sander Van Den Heuvel,
Utrecht University, Netherlands

*Correspondence:
Tomomi Kiyomitsu

tomomi.kiyomitsu@oist.jp

Specialty section:
This article was submitted to

Cell Growth and Division,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 January 2021
Accepted: 10 March 2021

Published: 01 April 2021

Citation:
Kiyomitsu T and Boerner S (2021)

The Nuclear Mitotic
Apparatus (NuMA) Protein: A Key

Player for Nuclear Formation, Spindle
Assembly, and Spindle Positioning.

Front. Cell Dev. Biol. 9:653801.
doi: 10.3389/fcell.2021.653801

The Nuclear Mitotic Apparatus
(NuMA) Protein: A Key Player for
Nuclear Formation, Spindle
Assembly, and Spindle Positioning
Tomomi Kiyomitsu* and Susan Boerner

Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan

The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and
dynamically changes its subcellular localization from the interphase nucleus to the
mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA
acts as a key structural hub in nuclear formation, spindle assembly, and mitotic
spindle positioning, respectively. To achieve its variable functions, NuMA interacts with
multiple factors, including DNA, microtubules, the plasma membrane, importins, and
cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives
spindle pole focusing and spindle positioning, while multiple interactions through its
C-terminal region define its subcellular localizations and functions. In addition, NuMA can
self-assemble into high-ordered structures which likely contribute to spindle positioning
and nuclear formation. In this review, we summarize recent advances in NuMA’s
domains, functions and regulations, with a focus on human NuMA, to understand
how and why vertebrate NuMA participates in these functions in comparison with
invertebrate NuMA-related proteins.
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INTRODUCTION

The nuclear mitotic apparatus (NuMA) protein was initially identified as a non-histone chromatin
protein in human cell lines (Lydersen et al., 1980) and named after its localization pattern to
both the interphase nucleus and mitotic spindle poles (Lydersen and Pettijohn, 1980; Figure 1A).
Since NuMA’s dynamic translocation from the nucleus to the spindle poles was different from
previously characterized nuclear components, NuMA was regarded as a novel class of nuclear
protein, involved in both mitosis and nuclear reformation (Compton and Cleveland, 1994). Over
the last 40 years, NuMA has been extensively studied in mammalian cultured cells, Xenopus egg
extracts, and other vertebrate models (Cleveland, 1995; Sun and Schatten, 2006; Radulescu and
Cleveland, 2010). One of the key findings early on was that NuMA interacts with cytoplasmic
dynein to tether microtubules to spindle poles (Merdes et al., 1996). Later studies confirmed and
expanded upon this result, positioning NuMA as a mitotic dynein adaptor, as described below.

Another important finding was that NuMA interacts with leucine/glycine/asparagine-repeat-
containing protein (LGN) to form the evolutionarily conserved NuMA/LGN/Gαi complex at
the mitotic cell cortex (Du and Macara, 2004). This study led to the discovery that NuMA
plays a conserved role at the mitotic cell cortex for spindle positioning like C. elegans LIN-5
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FIGURE 1 | Nuclear mitotic apparatus (NuMA’s) functions during the cell cycle. (A) Images of endogenous NuMA fused with mClover in human HCT116 cells
(Okumura et al., 2018). NuMA accumulates in the nucleus in interphase, but mainly localizes at the spindle poles in metaphase. NuMA is also targeted to the cell
cortex near the spindle poles during metaphase, and the level increases during anaphase (Collins et al., 2012; Kiyomitsu and Cheeseman, 2013; Kotak et al., 2013;
Seldin et al., 2013; Zheng et al., 2014). Scale bars = 10 µm. (B) Schematic showing how NuMA (blue) dynamically changes its subcellular localization during the cell
cycle. Chromosomes and microtubules are shown in pink and green, respectively. Key functions of NuMA at these locations are summarized.

(Lorson et al., 2000; Srinivasan et al., 2003) and Drosophila
Mud [Bowman et al., 2006; Izumi et al., 2006; Siller et al.,
2006; The first publication is Lorson et al. (2000)]. Building
on this, and other pioneering work on asymmetric cell division
in C. elegans and Drosophila (Galli and van den Heuvel,
2008; Gonczy, 2008; Siller and Doe, 2009), further studies
have established the conceptual framework that cortical cues
converge on a conserved ternary complex, NuMA/LGN/Gαi in
vertebrates, Lin-5/GPR-1/2/Gα in C. elegans, and Mud/Pins/Gα

in Drosophila, that recruits and activates dynein to position
the spindle in asymmetric division (Lechler and Fuchs, 2005;
Poulson and Lechler, 2010; Morin and Bellaiche, 2011; Williams
et al., 2011). In symmetrically-dividing vertebrate cells, the
NuMA/LGN/Gαi complex is also involved in recruiting dynein
and controlling spindle position and orientation (Figure 1A;
Woodard et al., 2010; Peyre et al., 2011; Collins et al.,
2012; Kiyomitsu and Cheeseman, 2012; Kotak et al., 2012;
Kiyomitsu, 2019).

Interestingly, the cortical function seems to be most conserved
in NuMA-related proteins. For example, LIN-5 and Mud localize

at both spindle poles and the cell cortex, but only serve an
essential function at the cell cortex for spindle positioning and
are non-essential for bipolar spindle assembly (Lorson et al.,
2000; Bowman et al., 2006; Izumi et al., 2006; Siller et al., 2006).
In addition, yeast Num1 was recently proposed as a functional
homolog of NuMA based on its functional similarities at the
cell cortex (Greenberg et al., 2018). Intriguingly, plants lack
a homolog of NuMA, as well as cytoplasmic dynein (Yamada
and Goshima, 2017), suggesting that plants have developed
alternative mechanisms to control nuclear formation, spindle
assembly and positioning.

In the last 10 years, many functional domains of human
NuMA were identified, providing useful information to
understand NuMA’s functions and regulations at the molecular
level. In this review, we focus on vertebrate NuMA because
several features, such as nuclear localization, appear to be specific
to this group. We begin with an overview of the localization and
the structural domains of the human NuMA protein, and then
discuss how vertebrate NuMA participates in spindle assembly,
spindle positioning and nuclear formation.
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LOCALIZATION AND AN OVERALL
STRUCTURE OF NuMA

In cultured human cells, NuMA accumulates in the nucleus in
interphase and at the spindle poles and cell cortex during mitosis
(Figure 1A). NuMA’s spindle-pole localization is most likely
conserved in all cell types, including meiotic cells (Taimen et al.,
2004; Alvarez Sedo et al., 2011; Kolano et al., 2012), but its nuclear
and cortical localization may vary in different developmental
contexts: nuclear NuMA is degraded in some specialized cells,
such as smooth and skeletal muscle fibers (Merdes and Cleveland,
1998; Figure 1B left). Furthermore, cortical NuMA targeting
is differentially regulated between symmetric and asymmetric
division in mouse epidermal cells (Poulson and Lechler, 2010).

Human NuMA is a large (∼238 kDa) protein that consists
of N-terminal and C-terminal globular domains and a central
long coiled-coil domain (Compton et al., 1992; Yang et al., 1992;
Figure 2A). Full length NuMA expressed in E. coli forms a
homo-dimer using the coiled-coil region (Harborth et al., 1995;
Forth et al., 2014). Purified NuMA shows a long rod-shaped
structure that has globular ends and a central long (∼210 nm)
α-helical domain that appears more or less flexible (Harborth
et al., 1995, 1999; Figure 2A). The globular domains interact with
many factors, whereas the central region has structural and likely
intramolecular regulatory roles as described below.

DYNEIN-BINDING DOMAINS IN THE
N-TERMINAL REGION OF NuMA

The N-terminal region is required to interact with cytoplasmic
dynein and dynactin complexes during mitosis (Kotak et al.,
2012). A recent structural study revealed that NuMA1−153

contains a Hook domain that directly interacts with dynein
light intermediate chain (LIC) 1 and 2 (Renna et al., 2020;
Figure 2B; all domains are listed in Table 1). The authors
also identified a CC1-box like motif, NuMA360−385, adjacent to
the Hook domain which forms part of the binding interface
between NuMA and LIC (Renna et al., 2020; Figure 2B). In
addition, NuMA417−422 contains a Spindly-like motif which is
well conserved in vertebrates (Okumura et al., 2018; Tsuchiya
et al., 2021), and may interact with the dynactin point-end
complex (Gama et al., 2017; Lee et al., 2020). As NuMA1−505,
but not NuMA1−413 and NuMA214−705, is sufficient for dynein
recruitment to the cell cortex (Okumura et al., 2018), multiple
interaction sites in the N-terminal region appear to be important
to stably interact with the dynein-dynactin complex during
mitosis. These studies indicate that NuMA acts as a dynein
activating adaptor (Lee et al., 2020), but in contrast to other
established dynein adaptors such as BICD2 (McKenney et al.,
2014; Schlager et al., 2014), its ability to form a ternary complex
with purified dynein and dynactin and activate dynein motility
in vitro has not been shown; post translational modifications may
be required to form dynein–dynactin–NuMA complexes during
mitosis.

On the other hand, the interphase role of the N-terminal
region of NuMA is not clear. Although both N-terminal and

C-terminal globular domains contain several S/TPXX motifs
which are supposed to contribute to DNA binding (Suzuki,
1989), the N-terminal NuMA fragments do not show clear DNA
or chromatin binding compared to NuMA’s C-terminal (Serra-
Marques et al., 2020). However, the N-terminal domain may
contribute to the lattice formation of NuMA oligomers in the
nucleus (Gueth-Hallonet et al., 1998; Harborth et al., 1999), as
described below.

THE CENTRAL LONG COILED-COIL
DOMAIN OF NuMA

Electron micrographs of recombinant human NuMA indicate
that the central region forms a long flexible rod-shaped structure
(Harborth et al., 1995; Figure 2A). One of most important
functions of the central region is homo-dimerization. In vitro
studies suggest that either the N-terminal (199–432 or 1–400
a.a) or C-terminal part (670–1700 a.a.) of the central coiled-
coil is sufficient to form a homo-dimer (Harborth et al., 1995;
Forth et al., 2014). Dimerization is most likely critical for most
NuMA functions, including dynein binding via its N-terminal
Hook domain (Renna et al., 2020) and microtubule cross-linking
activities via the C-terminal domain (Forth et al., 2014).

The predicted long coiled-coil region of vertebrate NuMA
proteins, which exceeds 1,000 a.a. in length, is likely to perform
other important functions. Transient overexpression of wild type
NuMA in HeLa cells induced a regular nuclear lattice structure
which has quasi-hexagonal organization (Gueth-Hallonet et al.,
1998). Interestingly, an addition or deletion in the coiled-coil
domain changed the spacing of the hexagons, suggesting that
the central coiled-coil defines the length of the nuclear lattice
structure (Gueth-Hallonet et al., 1998; Harborth et al., 1999).

Recently, Serra-Marques et al. (2020) found that the long
coiled-coil is also required for the formation of a single, round
nucleus, and that this role is independent from NuMA’s role
in spindle formation. In addition, the authors revealed that a
small portion of the coiled-coil213−705 is sufficient to prevent
NuMA’s C-terminal region from binding chromosomes during
late metaphase and anaphase (Serra-Marques et al., 2020).

At the mitotic cell cortex, the coiled-coil region of
NuMA706−1699 is required to generate proper spindle pulling
forces when NuMA constructs are targeted to the membrane
during mitosis (Okumura et al., 2018). However, the coiled-coil
region is dispensable for bipolar spindle formation (Hueschen
et al., 2017). At the cell cortex, the long coiled-coil may be used
to separate dynein from the actin-rich cell cortex and/or to
increase the efficiency of astral microtubule capture by cortical
NuMA-dynein complexes during mitosis (Kiyomitsu, 2019).

MICROTUBULE-BINDING DOMAINS IN
NuMA’S C-TERMINAL REGION

The C-terminal globular region of NuMA1700−2115 contains
several important domains that determine its localization
and function (Figure 2C). First, this region contains two
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FIGURE 2 | NuMA’s domain structure. (A) Diagrams of full length NuMA. Human NuMA isoform 1 (NP_006176) consists of 2,115 amino acids (a.a.) (Yang et al.,
1992), whereas NuMA isoform 2 (NP_001273490) is lacking 14 a.a. at the 1,539–1,552 region (Compton et al., 1992). In this review, we refer to isoform 1. NuMA
forms a homodimer through its central coiled-coil region. The central rod-shaped structure has an average length of ∼207 nm and a thickness of ∼2–3 nm, while
N-terminal and C-terminal globular structures show a diameter of ∼14 and ∼15 nm, respectively (Harborth et al., 1995). (B) Domains in the N-terminal region.
(C) Domains, motifs, phosphorylation sites, and functional regions in the C-terminal region of NuMA. See the text and Table 1 for details. NuMA1944−2003,
corresponding to either exon 22 for mice or exon 24 for human, was deleted in Silk et al. (2009); Kolano et al. (2012), and Tsuchiya et al. (2021), instead of depleting
the complete MTBD1.

microtubule binding domains (MTBDs); here we refer to them
as MTBD11914−1985 (Du et al., 2002) and MTBD22002−2115

(Gallini et al., 2016; Chang et al., 2017; Figure 2C). Although
MTBD1 has weaker microtubule-binding affinity than MTBD2

in vitro (Chang et al., 2017), MTBD1 contains the conserved
NuMA–LIN-5–Mud (NLM) motif1922−1957 (Siller et al., 2006)
and acts to establish and maintain spindle-pole focusing
(Figure 3A) in mouse fibroblasts (Silk et al., 2009), mouse
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TABLE 1 | A summary of NuMA’s domain and modifications.

Region (a.a.) Domain and modification References

1–153 Hook domain that interacts
with LIC 1 and 2

Renna et al., 2020

1–213 Globular domain Radulescu and
Cleveland, 2010

1–505 Sufficient for cortical dynein
recruitment

Okumura et al., 2018

360–385 CC1-box like motif Renna et al., 2020

417–422 Spindly-like motif Okumura et al., 2018;
Tsuchiya et al., 2021

199–432 Dimerization Harborth et al., 1995

670–1700 Dimerization Harborth et al., 1995

1–400 Dimerization Forth et al., 2014

Coiled-coil
region
(706–1699)

Required for spindle pulling
force generation. Inhibits
chromatin binding during
anaphase and promotes
the formation of a single
round nucleus

Okumura et al., 2018;
Serra-Marques et al.,
2020

1699–1876 Membrane binding region
(Mem-BD) 1

Kotak et al., 2014

1701–1725 Cleavage site during
apoptosis

Gueth-Hallonet et al.,
1997

1701–1981 C-tail1 + 2A: sufficient for
minus-end targeting

Hueschen et al., 2017

1768–1777 Clustering domain Okumura et al., 2018

1788–1925 Sufficient for metaphase
cortical localization

Seldin et al., 2013

1802–1824 4.1 protein binding region Mattagajasingh et al.,
2009

1811–1985 NuMA-TIP Seldin et al., 2016

1861–1928 Longer binding region of
LGN7−367

Pirovano et al., 2019

1900–1926 Minimal binding region of
LGN

Zhu et al., 2011b

1914–1985 Microtubule binding domain
(MTBD) 1

Du et al., 2002

1922–1957 NLM motif Siller et al., 2006

1944–2003 Human exon 24 (=mouse
exon 22)

Silk et al., 2009; Gallini
et al., 2016

1996–2074 Membrane binding region
(Mem-BD) 2

Zheng et al., 2014

1988–2005 NLS sequence Tang et al., 1994;
Chang et al., 2017

2002–2115 Microtubule binding domain
(MTBD) 2

Gallini et al., 2016;
Chang et al., 2017

2058–2115 DNA binding domain Rajeevan et al., 2020

Y1774 Phosphorylation residue by
ABL1

Matsumura et al., 2012

SS1833/34 Phosphorylation residues
by Plk1

Kettenbach et al., 2011

S1969 Phosphorylation residue by
Aurora-A kinase (at spindle
pole)

Gallini et al., 2016;
Kotak et al., 2016

T2055 Phosphorylation residue by
CDK (during metaphase)

Compton and Luo,
1995; Kotak et al.,
2013

Full length
NuMA

MARs (DNA sequence)
binding

Luderus et al., 1994

meiosis I spindle (Kolano et al., 2012), and human HCT116 cells
(Tsuchiya et al., 2021).

In some cells, such as mouse keratinocytes, MTBD1 is
not required for spindle pole focusing, but is required for
spindle orientation (Seldin et al., 2016). Full length NuMA
accumulates at the minus-end of microtubules, and the
NuMA1701−1981 fragment, called C-Tail1 + 2A, is sufficient for
minus-end recognition (Hueschen et al., 2017). In addition,
NuMA’s dimerized C-terminal fragment that crosslinks two
parallel microtubules tends to move in the minus-end direction
under forces (Forth et al., 2014). However, intriguingly,
the NuMA1811−1985 fragment, called NuMA-TIP, appears to
preferentially accumulate at the curling microtubule ends, and
can remain attached to the depolymerizing microtubule plus-
end (Seldin et al., 2016). The authors propose that this unique
property of MTBD1 may be important to facilitate the interaction
of astral microtubule plus-ends with NuMA at the cell cortex
during spindle orientation (Seldin et al., 2016). However, in
human cells, MTBD2, but not MTBD1, is required for spindle
pulling activity when NuMA constructs are targeted to the
cell cortex (Okumura et al., 2018). Interestingly, MTBD2 can
bind both the microtubule lattice and tubulin dimers (Pirovano
et al., 2019), indicating that MTBD2 may act not only for
astral microtubule binding, but also for regulating plus-end
dynamics of astral microtubules during the cortical pulling-force
generation. How and when the MTBDs come into play during
spindle pole focusing and orientation likely depends on the
cellular context (Borgal and Wakefield, 2018).

CORTICAL TARGETING DOMAINS IN
NuMA’S C-TERMINAL REGION

NuMA’s C-terminal domain also defines its cortical localization
during mitosis by binding to LGN, band 4.1 proteins and
the plasma membrane. Whereas LGN is targeted to the cell
cortex by binding to GDP-bound Gαi through its C-terminal
GoLoco motif, LGN binds and links NuMA to the cell cortex
using its N-terminal TPR motif (Figure 3B). LGN and Gαi are
indispensable for cortical localization of NuMA in metaphase
(Du and Macara, 2004; Woodard et al., 2010; Kiyomitsu and
Cheeseman, 2012; Kotak et al., 2012). Zhu et al. (2011b) identified
the NuMA1900−1926 peptide as the minimal region required
to bind to the inner groove of LGNTPR. This LGN-binding
domain partially overlaps with MTBD1 (Figure 2C), and LGN
binding thus inhibits the microtubule binding activity of NuMA
in vitro (Du et al., 2002; Figure 3, green asterisk). Recently,
Pirovano et al. (2019) revealed that a longer NuMA1861−1928

region forms a hetero-hexamer with LGN7−367, in which
an extended NuMA1861−1880 region hooks onto an adjacent
LGN to form oligomers. Consistently, expression of a longer
NuMA1788−1925 fragment is targeted to the LGN-localizing
metaphase cell cortex, whereas a shorter one, NuMA1892−1925, is
not (Seldin et al., 2013).

However, given the complicated cortical protein network,
additional mechanisms might contribute to cortical NuMA–
LGN targeting and stability. In fact, it has been shown that
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FIGURE 3 | Physical interaction map of NuMA at the spindle pole and the mitotic cell cortex. (A) Models of the spindle pole focusing function of NuMA. Using two
microtubule-binding C-terminal globular domains, the NuMA homodimer bundles and crosslinks microtubules around the spindle pole region (Radulescu and
Cleveland, 2010; Forth et al., 2014). In addition, NuMA recognizes the minus-ends of spindle microtubules and recruits the dynein-dynactin complex, which
transports NuMA-bound spindle microtubules toward poles, resulting in microtubule focusing at the poles (Hueschen et al., 2017). See text for details. (B) NuMA
interacts with the cortical proteins and plasma membrane through its C-terminal region, whereas it binds to dynein and dynactin via its N-terminal region. Arrows
indicate physical interactions. As indicated by red asterisks, NuMA competes with Afadin for LGN binding. In addition, NuMA competes with mInsc for LGN binding
during asymmetric cell division (black asterisks). The MTBD1 overlaps LGN–BD, and thus LGN binding to NuMA inhibits the microtubule binding activity of MTBD1
(green asterisks). LGN consists of TPR, Linker and GoLoco motifs, and each motif interacts with Afadin (Carminati et al., 2016), Dlg1 (Saadaoui et al., 2014), and the
GDP-bound form of Gαi (Jia et al., 2012), respectively. NuMA/LGN/Gαi constitutes a conserved core pathway for cortical dynein recruitment. The C-terminal domain
(CTD) of band 4.1 proteins interacts with the NuMA C-terminal domain, and is sufficient to rescue cortical NuMA enrichment in anaphase in LGN and 4.1
co-depleted cells (Kiyomitsu and Cheeseman, 2013). See text for details.

cortical NuMA–LGN is affected by disrupting cortical actin
networks (Kaji et al., 2008; Carminati et al., 2016) or their
regulators (Machicoane et al., 2014; Kschonsak and Hoffmann,
2018). Recently, Carminati et al. (2016) demonstrated that F-actin
binding protein Afadin, which also binds LGN competitively with
NuMA, is required to facilitate NuMA–LGN complex formation
at the metaphase cell cortex (Figure 3B). On the other hand, Dlg1,
that directly interacts with the phosphorylated LGN linker region
(Zhu et al., 2011a) is also required for cortical LGN and NuMA
localization (Saadaoui et al., 2014).

In asymmetrically dividing epithelial or mammary stem cells,
the situation is more complex. Par3-binding mInsc (mammalian

homolog of Inscuteable) and NuMA compete for binding to
LGNTPR, with mInsc showing a more than fivefold higher
affinity (Culurgioni et al., 2011; Yuzawa et al., 2011; Zhu et al.,
2011b). Previously, mInsc-bound LGN-Gαi was supposed to be
transferred to NuMA, but Cukurgioni et al. recently reported
that the Inscuteable-LGN tetramer is so stable that LGN cannot
be dissociated from Inscuteable by NuMA (Culurgioni et al.,
2018). The authors proposed that the Inscuteable-LGN tetramer
generates a localized pool of Gαi-GTP molecules, which upon
GTP-hydrolysis recruits a distinct population of LGN that
subsequently recruits NuMA and dynein to orient the spindle
(Culurgioni et al., 2018).
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Although the LGN pathways are critical for cortical
NuMA localization during metaphase in both symmetric and
asymmetric divisions (Morin and Bellaiche, 2011), recent studies
revealed that NuMA can be targeted to the anaphase cell cortex
independently of LGN in symmetrically dividing mammalian
cells (Collins et al., 2012; Kiyomitsu and Cheeseman, 2013; Kotak
et al., 2013; Seldin et al., 2013; Zheng et al., 2014). Band 4.1
proteins link the plasma membrane to the actin cytoskeleton
(Baines et al., 2014), and interact with NuMA via their C-terminal
domain (CTD) and NuMA’s 4.1-binding domain (1802–1824)
(Mattagajasingh et al., 2009; Figure 3B). This NuMA-4.1
interaction appears to be important for the cortical stability of
NuMA in metaphase keratinocytes (Seldin et al., 2013), but also
has an important role for anaphase NuMA localization: double
depletion of LGN and 4.1 proteins eliminates cortical NuMA
in anaphase human cells (Kiyomitsu and Cheeseman, 2013).
Importantly, this phenotype was rescued by the expression of
the membrane-targeted C-terminal domain (CTD) of band
4.1 (Kiyomitsu and Cheeseman, 2013), which does not bind
to actin, suggesting that 4.1 proteins contribute to anaphase
NuMA localization independently of LGN and cortical actin
structures. How 4.1 proteins regulate NuMA remains unclear;
one possibility is that they increase cortical NuMA retention
by linking it with the cell cortex and/or transferring NuMA
to the plasma membrane (as described below). In addition
to these cortical proteins, other proteins may be involved in
cortical NuMA recruitment in developmental contexts. For
example, NuMA’s C-terminal region interacts with Disheveled,
which controls spindle orientation during Zebrafish gastrulation
(Segalen et al., 2010).

Importantly, NuMA can directly interact with the plasma
membrane. The C-terminal region contains two membrane-
binding domains, NuMA1699−1876 (Kotak et al., 2014) and
NuMA1996−2074 (Zheng et al., 2014), which overlap with 4.1-
BD and MTBD2, respectively, (Figure 2C) and are referred to as
Mem-BD1 and 2 in this review (Figure 2C). Both membrane-
binding domains preferentially bind to phosphorylated forms
of phosphatidylinositol (PIPs) and are required for efficient
cortical accumulation of NuMA (Kotak et al., 2014; Zheng
et al., 2014). Mem-BD2, which partially overlaps with the DNA-
binding domain (Figure 2C), is required for proper chromosome
separation during anaphase (Zheng et al., 2014).

DNA-BINDING DOMAIN IN NuMA’S
C-TERMINAL REGION

In contrast to invertebrate NuMA-related proteins, vertebrate
NuMA proteins analyzed so far localize in the nucleus (Lydersen
and Pettijohn, 1980; Compton et al., 1992; Yang et al., 1992;
Merdes et al., 1996). Previously, human NuMA was reported
to interact with defined DNA sequences called matrix attached
regions (MARs) in vitro (Luderus et al., 1994). Recently, two
studies demonstrated that the C-terminal region of human
NuMA interacts with DNA in vitro and chromatin in cells
(Rajeevan et al., 2020; Serra-Marques et al., 2020). Rajeevan et al.
(2020) showed that the C-terminus NuMA2058−2115 fragment

is sufficient to bind DNA in vitro, and the basic amino acids
within the region are critical for its interaction with chromatin in
cells (Figure 2C). When endogenous NuMA was replaced with
mutated versions lacking its DNA-binding ability, cells showed
improper chromosome decondensation during mitotic exit and
an abnormal nuclear shape (Rajeevan et al., 2020), suggesting
that NuMA–DNA interactions are critical for proper regulation
of chromosome decondensation during nuclear reformation.

NUCLEAR LOCALIZATION
SEQUENCE/SIGNAL IN NuMA’S
C-TERMINAL REGION

NuMA has a nuclear localization signal/sequence (NLS) between
the MTBDs in its C-terminal region (Tang et al., 1994;
Figure 2C). When Chang et al. (2017) solved the crystal structure
of the importin-α-NuMA-C-terminus complex, they found that
NuMA–NLS exhibits a novel, non-classic interaction mode
with importin-α, and that importin-β sterically inhibits NuMA’s
MTBD2 in vitro. The NLS sequence is well conserved from
H. sapiens to X. laevis (Chang et al., 2017), but not in C. elegans
LIN-5, or drosphila Mud (Lorson et al., 2000; Siller et al., 2006).
In fish, the highly conserved KR, H and KK residues of the
NLS, which interact with the minor-, linker and the major-NLS-
binding site on importin-α, respectively (Chang et al., 2017), are
not identical and several amino acids are inserted between the H
and KK residues (Tsuchiya et al., 2021); yet the Zebrafish NuMA
C-terminal region can be targeted to the nucleus (Segalen et al.,
2010). It would be interesting to understand whether NuMA
localizes to the nucleus in other fish species, and why the NLS
was acquired in vertebrates.

THE CLUSTERING DOMAIN IN NuMA’S
C-TERMINAL REGION

The C-terminal globular domain has another key feature that
facilitates NuMA’s self-assembly into oligomers (Harborth et al.,
1999). In vitro, 10–12 NuMA homo-dimers assemble through its
C-terminal region to form multi-arm oligomers. Each oligomer
has a central clustered core with projected arms, and may be
connected to create 3D nuclear architecture during interphase
(Harborth et al., 1999). NuMA’s punctate signals at the cell
cortex are most likely a result of its oligomerization/clustering.
This clustering activity is attributed to a well-conserved 10 a.a
sequence of NuMA1768−1777 (Okumura et al., 2018). Mutant
analyses indicated that NuMA’s clustering is required for spindle
pulling and spindle orientation at metaphase (Okumura et al.,
2018), and for spindle bipolarization during prometaphase in
acentrosomal human cells (Chinen et al., 2020), but is dispensable
for spindle pole focusing (Okumura et al., 2018). It will be exciting
to see what kind of structures are actually generated in cells
by NuMA’s clustering activity both in mitosis and interphase.
Especially, it is important to understand how this clustering
activity synergetically functions with NuMA–LGN oligomer
formation to organize high-ordered functional structures that
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capture and pull on astral microtubules at the mitotic cell cortex
(Pirovano et al., 2019; Figure 3).

MITOTIC AND MEIOTIC REGULATION
OF NuMA

Since NuMA’s C-terminal domain binds to microtubules,
the plasma membrane, and chromatin (Figure 2C), these
interactions must be regulated throughout the cell cycle. In fact,
the well conserved threonine at 2055 (T2055) is phosphorylated
by CDK during metaphase (Compton and Luo, 1995; Kotak
et al., 2013; Seldin et al., 2013), which inhibits NuMA’s cortical
association and thus promotes microtubule-binding. CDK-based
phosphorylation of NuMA is also critical for releasing NuMA
from the chromosomes at mitotic entry (Rajeevan et al., 2020).
During anaphase, NuMA is dephosphorylated by the PPP2CA–
B55gamma–PPP2R1B complex (Keshri et al., 2020), which
dissociates NuMA from the spindle poles (Gehmlich et al., 2004)
and promotes its cortical association.

The microtubule binding activity of NuMA is vital for its
mitotic and meiotic functions (Silk et al., 2009; Kolano et al.,
2012; Tsuchiya et al., 2021). Thus, importins that sterically
inhibit C-terminal microtubule-binding (Chang et al., 2017)
must be released during mitosis. Previously, it was demonstrated
that the NuMA-importin interaction is disrupted by Ran-GTP
binding to importin-β in Xenopus egg extracts (Nachury et al.,
2001; Wiese et al., 2001), and that Ran-GTP is essential for
acentrosomal spindle assembly in female meiosis (Dumont et al.,
2007; Holubcova et al., 2015; Drutovic et al., 2020). However,
recent evidence suggests that Ran-GTP is not essential for mitotic
spindle assembly and mitotic progression in chicken DT40
(Furuta et al., 2016) and human HCT116 cells (Tsuchiya et al.,
2021). In addition, Ran-GTP is not required to activate NuMA
and TPX2 in HCT116 cells (Tsuchiya et al., 2021), suggesting that
additional parallel pathways exist to activate these proteins at a
distance from chromosomes (Wei et al., 2015; Eibes et al., 2018;
Brownlee and Heald, 2019). As cellular concentrations of Ran-
GTP are variable across cell types and organisms (Kalab et al.,
2006; Hasegawa et al., 2013), and the size of spindles and cells
change dramatically during early embryonic divisions (Courtois
et al., 2012; Levy and Heald, 2012), it would be important to
determine how NuMA is spatiotemporally activated by Ran and
other factors during mitosis and meiosis.

MITOTIC REGULATION OF NuMA AT
THE SPINDLE POLES AND THE CELL
CORTEX

Once activated, the NuMA homo-dimer binds to microtubules
independently of dynein (Heald et al., 1997; Hueschen et al.,
2017) and cross-links two microtubules using its two C-terminal
globular domains (Figure 3A; Forth et al., 2014). This
microtubule crosslinking function may be facilitated at the
spindle poles by binding to other microtubule associated proteins
such as Rae1 (Wong et al., 2006), Eg5 (Iwakiri et al., 2013), and

dynein/dynactin complexes (Merdes et al., 1996, 2000). On the
other hand, when new microtubules are created in the spindle,
NuMA is targeted to their minus-ends and subsequently forms
a complex with dynein and dynactin; when this complex binds
adjacent microtubules and moves toward their minus end, it pulls
the NuMA-bound microtubules along, resulting in a focused
spindle pole (Hueschen et al., 2017; Figure 3A).

At the poles, NuMA is phosphorylated by Aurora-A kinase
at S1969, which leads to its dynamic mobility from the spindle
poles to the cell cortex during metaphase (Gallini et al., 2016;
Kotak et al., 2016; Figure 2C). NuMA is also phosphorylated
by Polo-like kinase 1 (Plk1) at SS1833/34 (Kettenbach et al.,
2011), which promotes NuMA’s turnover rate at both spindle
poles and the cell cortex, and when inhibited results in NuMA’s
accumulation at both locations (Sana et al., 2018). Plk1 localizes
at the spindle poles, but also accumulates at kinetochores of
misaligned chromosomes which locally diminish cortical LGN
when they are located near the cell cortex (Tame et al., 2016).
Since NuMA and LGN are inter-dependent (Du and Macara,
2004), the kinetochore-localized Plk1 may also target NuMA,
which in turn reduces LGN. However, artificial membrane
tethering of Plk1 dissociated dynein, but not LGN, from the cell
cortex (Kiyomitsu and Cheeseman, 2012). In addition, when the
immunoprecipitated GFP–LGN complexes were incubated with
Plk1, Plk1 dissociated dynein and dynactin, but not NuMA, from
LGN (Kiyomitsu and Cheeseman, 2012). Therefore, kinetochore-
or centrosome-localized Plk1 may down-regulate the NuMA–
LGN interaction synergetically in cooperation with other factors
derived from chromosomes or centrosomes. Another kinase,
ABL1, phosphorylates the well-conserved Y1774 residue of
NuMA to control spindle orientation (Matsumura et al., 2012).
Y1774 is located in the clustering motif (Okumura et al.,
2018), but it remains unknown whether ABL1 regulates NuMA’s
clustering activity.

In addition to these kinases, Ran-GTP gradients negatively
regulate cortical NuMA–LGN localization near chromosomes in
a distance dependent manner (Kiyomitsu and Cheeseman, 2012).
Although molecular mechanisms by which Ran-GTP eliminates
the NuMA–LGN complex from the cell cortex remain unclear,
the cortical patterning created by chromosome-derived Ran-GTP
is sufficient to explain why the mitotic spindle orients along
its interphase cell axis (Dimitracopoulos et al., 2020). NuMA’s
continuous exclusion from the equatorial region of the cell cortex
during anaphase is dependent on the signals downstream of the
centralspindlin complexes (Kotak et al., 2014).

INTERPHASE FUNCTION OF NuMA

Several lines of evidence indicate that NuMA acts as a non-
essential nucleoskeletal element in interphase (Zeng et al., 1994;
Merdes and Cleveland, 1998; Harborth et al., 1999), which is
nicely reviewed by Radulescu and Cleveland (2010). However,
it is difficult to understand this role separately from the several
roles it plays during mitosis since mitotic errors cause abnormal
nuclei. Recently, Serra-Marques et al. (2020) nicely demonstrated
that NuMA’s contribution to building a single, round nucleus
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is independent from its mitotic functions by inducing mitotic
exit in NuMA KO Rpe1 cells without spindles (Figure 1B).
Furthermore, they showed that NuMA keeps the decondensing
chromosome mass compact during mitotic exit (Serra-Marques
et al., 2020). Although the precise mechanisms are still unclear,
evidence suggests that NuMA, like barrier-to-auto integration
factor (BAF) at the chromosome ensemble surface (Samwer et al.,
2017), may offer structural support throughout the nucleus by
cross-linking chromosomes and preventing the nuclear envelop
from penetrating into the chromosome mass, which results in a
decrease of multinucleation and abnormally shaped nuclei during
mitotic exit (Serra-Marques et al., 2020). Alternatively, NuMA
may coordinate chromosome compaction and nuclear envelop
assembly using its binding abilities to both chromosomes and
membrane (Serra-Marques et al., 2020), as well as its binding to
importins which can recruit membrane vesicles and nucleoporins
(Lu et al., 2012).

In addition to its roles during mitotic exit, NuMA promotes
the nucleus’ mechanical robustness (Serra-Marques et al., 2020)
and could contribute to several interphase events, including
chromatin organization (Abad et al., 2007), gene expression
(Harborth et al., 2000; Ohata et al., 2013), DNA repair (Vidi
et al., 2014; Moreno et al., 2019), and apoptosis (Gueth-Hallonet
et al., 1997; Kivinen et al., 2005; Lin et al., 2007). Since chromatin
architecture is highly dynamic during different phases of the cell
cycle (Shoaib et al., 2020), acute protein depletion technologies,
such as auxin-inducible degron (AID) (Natsume et al., 2016;
Yesbolatova et al., 2020; Tsuchiya et al., 2021), would be useful
to precisely understand the interphase functions of NuMA
in future studies.

DISCUSSION

Vertebrate NuMA, and its related proteins in invertebrates,
have been extensively studied using many techniques and
model organisms. Over the past 10 years, much light has been
shed on this multi-functional protein, revealing key domains,
modifications and binding partners. However, we still do not
know how NuMA contributes to spindle pole focusing, spindle
positioning or nuclear formation at the molecular and structural
level. In the next 10 years, it would be especially important to
visualize the functional structures of NuMA and its complexes
using biochemical reconstitution, high-resolution imaging and
in situ structural analyses. In addition, most reported interactions
and functions are not sufficiently validated in a physiological
condition. Since many functions discussed in this review appear
to be specific in vertebrates, vertebrate developmental models

would be useful to obtain a comprehensive understanding
of the diverse functions of NuMA. Furthermore, optogenetic
manipulation of NuMA, or its related proteins, would serve
as a powerful tool to control spindle position and orientation
(Fielmich et al., 2018; Okumura et al., 2018), and could reveal
physiological roles of division orientation and daughter cell size
during development (Jankele et al., 2021).

Many key questions about NuMA remain to be answered.
(1) How does NuMA recognize microtubule minus-ends and
depolymerizing microtubule plus-ends? (2) How are dynein–
dynactin–NuMA complexes formed during mitosis and meiosis
and regulated at the spindle poles? (3) How are different cortical
NuMA complexes assembled at the mitotic cell cortex and
spatiotemporally regulated by intrinsic and extrinsic signals?
(4) When does NuMA start to localize at the mitotic cell
cortex to control spindle positioning during early vertebrate
development? (5) What kinds of high-ordered structures are
created by NuMA at the cell cortex and interphase nucleus
to generate cortical spindle pulling forces and a mechanically
robust nucleus, respectively? (6) How is NuMA dissociated from
importins in a Ran-independent manner? (7) Why did NuMA
acquire an NLS in vertebrates? (8) How has the NuMA gene
evolved to achieve different functions in different organisms?
Addressing these questions must provide new, exciting insights
not only to advance our knowledge about nucleus formation,
spindle assembly and spindle positioning, but also to understand
how complex human cell architecture evolved.
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