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1 Introduction

A complex physical process with multi-variables can simplify in extreme situations, where
the leading behaviour is captured by a product of simpler processes with fewer variables.
For example, a scattering amplitude factorizes into two disconnected amplitudes with fewer
legs when an intermediate state is on the mass shell, as the intermediate particle can
propagate a large distance.1 Based on the simplification by factorization, the singular
kinematic configurations can furnish the starting points for systematic analytic studies.

In this paper, we are interested in conformal correlators near the lightcone, in the
context of the conformal bootstrap [1, 2].2 The lightcone limits are singular. When two
operators are spacelike separated, causality implies that their commutator vanishes. How-
ever, timelike-separated operators do not commute. The operator ordering is related to
the paths of analytic continuation from spacelike to timelike separation. The ambiguities
in ordering are precisely due to the presence of lightcone singularities at lightlike sepa-
ration. The simplification due to the singular lightcone limits makes analytic studies of
the bootstrap equations more tractable. In particular, according to the lightcone limit
of crossing constraints, the leading behaviour is determined by the vacuum contribution

1Here we consider tree amplitudes. The factorization of tree amplitudes also takes place in the soft
and collinear limits. Similarly, the discontinuities of loop amplitudes are associated with the products of
amplitudes with lower loops.

2Conformal blocks play a crucial role in the conformal bootstrap program and have been studied from
the 1970’s [3–7]. Based on Dolan and Osborn’s works [8–10], the conformal bootstrap program was revived
by the seminal work [11]. We refer to [12] for a comprehensive review on the numerical conformal bootstrap.
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in the cross-channel, and the large spin spectrum behaves as mean fields, even at strong
coupling [13, 14]. The other cross-channel intermediate states encode the corrections to the
generalized free theory. Furthermore, the twist spectrum is additive, so there are double-
twist trajectories and, more generally, multi-twist trajectories.3 One can also study real
time dynamics by analytic continuation around the lightcone singularities, which also sim-
plifies near the lightcone, such as in the Regge limit.4 The real-time dynamics is central
to many analytic developments in recent years, such as the chaos bound [16] and a proof
of the average null energy condition [17].

The lightcone bootstrap originally gives rise to asymptotic results at large spin [18–28].
In [21, 26], it was shown that the asymptotic methods are consistent with the numerical
results down to spin two for the 3d Ising CFT. By imposing good Regge behaviour, the
Lorentzian inversion formula proposed by Caron-Huot reconstructs the OPE data from the
double discontinuities of the conformal correlators [29–31], which also establishes analytic-
ity in spin assumed in the conformal Regge theory [32]. These double discontinuities encode
the essential information about lightcone singularities in terms of double commutators at
timelike separation. Based on the Lorentzian inversion formula, the lightcone bootstrap
becomes a method that gives reliable results at finite spin [33–39], as the nonperturbative
contributions in the large-spin expansion are also captured. More recently, it was proposed
in [40] that the CFT dispersive sum rules [40–44] can provide a more rigorous alternative
to the above lightcone bootstrap.

We will focus on the 4-point scalar conformal blocks, which play a crucial role in the
analytic bootstrap studies based on 4-point scalar correlators

〈φ1 φ2 φ3 φ4〉 =
(
x24
x14

)2a (x14
x13

)2b G(u, v)
x∆1+∆2

12 x∆3+∆4
34

. (1.1)

Here xi indicates the position of the external primary operators φi, and xij = |xi − xj |
denotes the distance between φi and φj . The external operators can have different scaling
dimensions, and their differences are encoded in

a = ∆1 −∆2
2 , b = ∆3 −∆4

2 . (1.2)

The 4-point function is determined by conformal symmetry up to a function of two cross-
ratios

u = x2
12 x

2
34

x2
13 x

2
24
, v = x2

14 x
2
23

x2
13 x

2
24
, (1.3)

as they are invariant under conformal transformations. In this work, we will mainly use
the (z, z̄) variables, which are related to (u, v) by

u = zz̄ , v = (1− z)(1− z̄) . (1.4)
3See [15] for an earlier discussion of double twists in a more concrete context.
4The analytic continuation of a conformal block around the lightcone limits leads to a linear combination

of the independent solutions of the Casimir equation. The different solutions have the same Casimir
eigenvalues, and are related by Weyl reflections, such as the shadow transform ∆→ d−∆.
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In the Lorentzian signature, (z, z̄) are real, independent coordinates. Although the cor-
relator is symmetric in (z, z̄), we will break this symmetry and focus on the regime
0 ≤ z < z̄ ≤ 1. The z → 0 limit is the direct-channel lightcone limit, as a pair of op-
erators in the direct-channel OPE becomes lightlike separated. Similarly, the z̄ → 1 limit
corresponds to the cross-channel lightcone limit.

The correlator G(u, v) can be decomposed into conformal blocks labelled by primary
operators

G(u, v) =
∑
Oi
PiG

(d,a,b)
τi,`i

(z, z̄), (1.5)

where τi, `i are the twist and spin of Oi. The contributions of descendants are encoded in
the conformal blocks according to their primary operators. These 4-point scalar conformal
blocks satisfy a differential equation associated with the quadratic Casimir [9]

D(2)G
(d,a,b)
τ,` (z, z̄) = 1

2
[
(τ + `)(τ + `− d) + `(`+ d− 2)

]
G

(d,a,b)
τ,` (z, z̄) , (1.6)

where the quadratic conformal Casimir and SL(2,R) Casimir are

D(2) = Dz +Dz̄ + (d− 2) zz̄

z − z̄
[
(1− z)∂z − (1− z̄)∂z̄

]
, (1.7)

Dx = (1− x)x2∂2
x − (1− a+ b)x2 ∂x + ab x . (1.8)

We will also use the SL(2,R) block

k
(a,b)
2h (x) = xh2F1(h− a, h+ b, 2h; x) , (1.9)

which solves the SL(2,R) Casimir equation

Dx k(a,b)
2h (x) = h(h− 1) k(a,b)

2h (x) . (1.10)

To simplify the notation, we will not write (a, b) explicitly in some equations.

1.1 Factorization at large spin

It was shown in [13] that a conformal block factorizes in the large spin and crossed lightcone
limit

G
(d,a,b)
τ,` (z, z̄) = k

(a,b)
τ+2`(z̄)F (d,a,b)(τ, z) + . . . , (1.11)

where the first part depends on the conformal spin β = τ + 2` and cross-ratio z̄, and
the second part is a function of the twist τ and cross-ratio z. The first part is explicitly
given by the SL(2,R) block associated with the symmetry of the direct-channel lightcone,
which is independent of the spacetime dimension d. On the other hand, the second part is
related to the cross-channel lightcone, and explicitly depends on the spacetime dimension
d. Recently, this factorization was used to study the cross-channel contributions of large
spin operators in the 3d Ising CFT [39]. However, for the cross-channel contributions at low
spin, one cannot use this simple large-spin formula.5 It will be useful to have a factorization

5In [39], the low spin contributions were computed using the dimensional reduction [45], in which 3d
conformal blocks are approximated by 2d conformal blocks.
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formula for arbitrary spin, so one can apply it to low spin as well. In addition, one can use
the general-spin formula to derive the subleading terms in the large-spin expansion, which
is necessary for a more precise approximation of the large spin contributions.6

In [36], a general formula for the crossed lightcone limit of 4-point scalar conformal
blocks was found. The explicit expression can be neatly packaged into a two-variable
hypergeometric function, which will be given later in (2.4) and discussed in more detail.
For physical spin `, it reduces to a sum of (` + 1) Gaussian hypergeometric functions.
Therefore, to obtain a finite-spin extension of (1.11), we just need to consider the product
of the analytic expressions for the two lightcone limits, i.e. the SL(2,R) block for the
direct-channel and the more recent formula (2.4) for the cross-channel.7 For arbitrary
spin, there is no large-spin suppression, so the product of the two lightcone blocks only
captures the leading behaviour near the lightcone. This is sufficient for the study of leading
twist trajectories. However, for more systematic investigations, we need to know the precise
subleading terms in the lightcone expansion.

1.2 Lightcone expansions to all orders

For the order-by-order lightcone expansion in one cross-ratio, it is more natural to use
(u, v), instead of (z, z̄). This can already be seen from the compact formula for the con-
formal blocks of spin-0 intermediate operators, whose explicit expression can be found
in (2.1). According to the spin-0 formula, it is clear that the small u or v expansion leads
to simpler results than the case of z or (1 − z̄). At each order of the single lightcone
expansions, the dependence on the other cross-ratio is encoded in one 2F1 function with
simple expansion coefficients.

For arbitrary spin, the explicit formulae for single lightcone expansions were recently
obtained in [46]. The dependence on the other cross-ratio is encoded in (` + 1) Gaussian
hypergeometric functions for physical spin `. Let us discuss the structure of the expansion
coefficients. The general formula for the cross-channel expansion coefficients is given by
multiple summations. One of them involves shifted series coefficients of SL(2,R) blocks,
so is closely related to the direct-channel expansion. On the other hand, if we examine the
direct-channel expansion coefficients, we can notice that they involve shifted parameters of
cross-channel basis functions. So there should exist a unifying decomposition for the direct
and crossed lightcone expansions.

Then it is natural to consider the factorized lightcone expansion in terms of the prod-
ucts of two basis functions. If some complexity of the single lightcone expansions is trans-
ferred to the additional basis functions, then the expansion coefficients should take a simpler
form. Inspired by the large-spin factorization, we switch to the (z, z̄) variables. It turns
out that this is indeed the case. The resulting decomposition is remarkably simple! We
will present the explicit formula for the factorized lightcone expansion in (3.1)–(3.5).

6In fact, [13] only derived the explicit expression of F (d,a,b)(τ, z) in 2d and 4d, as the conformal blocks
are known in simple closed form. We will give the general expression of F (d,a,b)(τ, z) in (4.8), which is also
related to the SL(2,R) block.

7Note that the small (1− z̄) expansion of kτ+2`(z̄) gives rise to two 2F1 functions, which are related by
interchanging external dimensions. They should be multiplied by the associated cross-channel formulae.
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2 Even spacetime dimensions are special

As another source of inspiration for the factorized decomposition, it is known that con-
formal blocks in even dimensions can be decomposed into a finite sum in factorized form
in terms of (z, z̄).8 The explicit expressions in d = 2, 4, 6 were discovered by Dolan and
Osborn [8, 9]. One may wonder if conformal blocks in general dimensions can also be
decomposed into a finite number of factorized summands. In this section, we want to ar-
gue that this is not likely for generic scaling dimensions and intermediate spin.9 We will
also discuss some previous results that lead us to the factorized lightcone expansion for
general d in (3.1).

Conformal blocks with ` = 0. Let us consider the simplest case of ` = 0. In general
dimensions, the conformal block for an intermediate operator of spin-0 reads [3, 4]

G
(d,a,b)
∆,0 (u, v) = v

a−b
2

(
Γ(b− a) v

a−b
2 u∆/2

(∆/2)−a(∆/2)b
F4

[
∆/2 + a,∆/2− b
∆− d−2

2 , 1 + a− b
;u, v

]
+ (a↔ b)

)
, (2.1)

where Appell’s F4 function is a two-variable hypergeometric function

F4

[
A1, A2
B1, B2

;u, v
]

=
∞∑

m,n=0

(A1)m+n (A2)m+n
(B1)m (B2)n

um vn

m!n! . (2.2)

Note that (x)y = Γ(x + y)/Γ(x) and Γ(x) is the Gamma function. In general, the F4
function is absolutely convergent for |u|1/2 + |v|1/2 < 1, which contains the Lorentzian
regime 0 ≤ z < z̄ ≤ 1 under consideration.

When B1+B2 = 1+A1+A2, it was shown by Bailey that the F4 function factorizes into
a product of two 2F1 functions [47]. This is precisely the case of 2d conformal blocks [4].
For d = 4, conformal blocks also admit finite decompositions, and the corresponding F4
functions can be decomposed into two terms. The precise decomposition formulae for these
F4 functions are given in (A.1) and (A.2). To our knowledge, a generic F4 function cannot
be written as a finite sum in factorized form. The above d = 2, 4 conformal blocks are
special in that the F4 functions are 0-balanced or 1-balanced. More generally, the even-
dimensional conformal blocks for intermediate scalars are associated with integer-balanced
F4 functions of (u, v), and this property is independent of the external and intermediate
scaling dimensions. Therefore, only in even dimensions, the factorized decomposition of
generic conformal blocks can be written as a finite sum.

Nevertheless, Burchnall and Chaundy found that a generic F4 function admits a nice
factorized decomposition (see eq. (54) in [48]). The related decomposition formulae are

8To be more precise, the inseparable part is encoded in simple integer powers of (z − z̄).
9Conformal blocks in general dimensions can become simpler for special scaling dimensions, i.e. when

∆, a, b take special values. The important examples are intermediate operators that saturate the unitarity
bounds, such as the stress tensor, where some descendants become null states due to the conserved current
equations. Below the unitarity bound, there can also be partially conserved currents, which are non-unitary
representations of the conformal algebra.
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recorded in (A.3) and (A.4). As a result, we can express an ` = 0 conformal block as an
infinite sum of factorized summands in (z, z̄). The explicit F4 function in (2.1) becomes

F4

[
∆/2 + a,∆/2− b
∆− d−2

2 , 1 + a− b
;u, v

]

=
∞∑
k=0

(
d−2

2
)
k

k!
(∆/2 + a)k (∆/2− b)k
(∆− d−2

2 )k (1 + a− b)k
zk2F1

[
∆/2 + a+ k,∆/2− b+ k

∆− d−2
2 + k

; z
]

× (1− z̄)k 2F1

[
∆/2 + a+ k,∆/2− b+ k

1 + a− b+ k
; 1− z̄

]
, (2.3)

where the parameters in the expansion coefficients and 2F1 functions are directly related to
the F4 parameters. This nice factorized decomposition for ` = 0 motivates us to consider
the generalization to arbitrary spin `.

Note that (d − 2)/2 is the difference between the sums of F4 parameters in the top
and bottom rows. For d = 2, we can see explicitly that the k-summation terminates at
k = 0, and the factorized decomposition contains only one term. For generic d, we do not
expect that the factorized decompositions terminate at finite order when scaling dimensions
are generic.

Cross-channel lightcone limit. The simplicity of even-dimensional conformal blocks
can also be noticed from the cross-channel lightcone limit.10 The closed-form expression
reads [36]

G
(d,a,b)
τ,` (z, z̄)

∣∣∣
z̄→1

= v
a−b

2

(
Γ(b− a) v

a−b
2

(β/2)−a (β/2)b
zτ/2

(1− z)
d−2

2 +a−b
(2.4)

× F 0,2,2
0,2,1

[∣∣∣−`, 3− d− `
2− d/2− ` , γ

∣∣∣γ/2− a, γ/2 + b

β/2 + γ/2

∣∣∣z,−z]+ (a↔ b)
)
,

where β = τ + 2`, γ = τ − d + 2, and F 0,2,2
0,2,1 is a Kampé de Fériet function. Note that

the crossed lightcone limit satisfies a quartic differential equation [29]. More explicitly, the
Kampé de Fériet function in (2.4) can be decomposed into

zτ/2

(1− z)
d−2

2 +a−b
F 0,2,2

0,2,1 [. . . ] =
∞∑
n=0

C0,0,n g0,n(z) . (2.5)

The expansion coefficients are

C0,0,n = (−1)n

n!
(−`)n (3− d− `)n

(2− d/2− `)n
(γ/2− a)n (γ/2 + b)n

(γ)n (β/2 + γ/2)n
, (2.6)

10The direct-channel lightcone limit does not depend on d, and always takes a compact form

G
(d,a,b)
τ,` (z, z̄)

∣∣
z→0

= zτ/2k
(a,b)
τ+2`(z̄) .

– 6 –
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so the n-summation terminates when ` is a nonnegative integer. The basis functions are

g0,n(z) = zτ/2+n

(1− z)
d−2

2 +a−b 2F1

[
γ/2− a+ n, γ/2 + b+ n

β/2 + γ/2 + n
; z
]
. (2.7)

The lower index 0 implies that they are the zeroth order expression in the small (1 − z̄)
expansion. These expansion coefficients and basis functions will be generalized to higher
orders in section 3. For d = 2, 4, the coefficients C0,0,n are simpler because (2− d/2− `)n
cancel out a Pochhammer symbol in the numerator. Then the Kampé de Fériet function
is independent of ` and reduces to a Gaussian hypergeometric function

F 0,2,2
0,2,1 [. . . ]

∣∣
d=2,4 = 2F1

(
γ/2− a, γ/2 + b, γ; z

)
, (2.8)

which is associated with an SL(2,R) block parameterized by γ = τ − d+ 2. Furthermore,
the d = 2, 4 conformal blocks have simple closed-form expressions

G
(d,a,b)
τ,` (z, z̄)

∣∣∣
d=2,4

= Γ(β/2)2

Γ(β)

(
zz̄

z̄ − z

) d−2
2
kγ(z) kβ(z̄) + (z ↔ z̄) , (2.9)

where the second term is required by the symmetry in (z, z̄) and becomes redundant when
d = 2, ` = 0.11 In section 4, we will revisit the factorized lightcone expansion at large spin.
We will show that the leading term at large spin is d-independent up to

(
z

1−z
)(d−2)/2, so

the SL(2,R) block kγ(z) also appears there.
For higher even d, the coefficients C0,0,n are also simpler than the general case. In fact,

there exists an alternative formula for the cross-channel lightcone limit, which manifestly
reduces to a finite sum of 2F1 functions for even d. The explicit formula is given in (B.3).
According to this equivalent expression, the cross-channel lightcone limit reduces to at
most (1 + |d− 3|)/2 independent 2F1 functions in even dimensions, so the d = 2 and d = 4
decompositions have only one term. Note that the spin ` is generic here. The cases of
higher even dimensions also admit finite decompositions, but the complexity of the exact
expression grows with d, as expected from the generic d formula.12

3 Factorized lightcone expansion of conformal blocks

To generalize (2.3) and (2.5), we study the factorized lightcone expansion of generic 4-point
scalar conformal blocks. A remarkably simple formula is obtained:

G
(d,a,b)
τ,` (z, z̄) = v

a−b
2

(
Γ(b− a) v

a−b
2

(β/2)−a(β/2)b

∞∑
k=0

∑
m,n

Ck,m,n fk,m(1− z̄) gk,n(z) + (a↔ b)
)
, (3.1)

11One should be careful about the order of the even-d and integer-` limits. In this sense, the even-d limits
are singular, so one can achieve the special simplifications. There might be an interesting interplay between
d/2 and ` such that special simplification can take place.

12As in [49], one may consider an expansion in large d, which significantly simplifies the analytic expression
of conformal blocks. This is similar to the expansion in large `.
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where k denotes the order of the lightcone expansion and v = (1−z)(1− z̄). It is convenient
to use the anomalous dimension γ and conformal spin β:

γ = τ − d+ 2 , β = τ + 2` , (3.2)

where twist is defined as τ = ∆− `.13 The expansion coefficients also factorize:

Ck,m,n =
(−1)n (−k)m (−`)n (d−2

2 −m)k+m
k!m!n!

(τ + `− 1)k−m (3− d− `− k +m)n
(γ)n (2− d/2− `)m+n

× (−β/2 + a+ 1)m (−β/2− b+ 1)m
(1 + a− b)m

(γ/2− a)n (γ/2 + b)n
(β/2 + γ/2)k+n

, (3.3)

where the essential terms are in the first line and they are independent of (a, b). The
second line of (3.3) is closely related to the basis functions, and can be absorbed into their
definitions in the form of hypergeometric series. The basis functions are associated with
2F1 functions

fk,m(1− z̄) = (1− z̄)k

z̄β/2−1+k−m 2F1

[
−β/2 + a+ 1 +m,−β/2− b+ 1 +m

1 + a− b+m
; 1− z̄

]
, (3.4)

gk,n(z) = zτ/2+k+n

(1− z)
d−2

2 +a−b+k 2F1

[
γ/2− a+ n, γ/2 + b+ n

β/2 + γ/2 + k + n
; z
]
, (3.5)

which can also be expressed in terms of y = z/(1 − z) and ȳ = (1 − z̄)/z̄. To approxi-
mate a conformal block near the direct or crossed channel lightcone, we can truncate the
summation to k = kcutoff, which neglects some terms of higher order than zτ/2+kcutoff or
(1 − z̄)kcutoff . The truncated sum still contains an infinite number of higher order terms,
so gives a better approximation than the order-by-order expansion in one variable. At
large spin, the low order terms in k capture the dominant contributions, and hence the
factorized decomposition (3.1) is particularly suitable for the systematic expansion in large
spin, which will be discussed in section 4. The decomposition coefficients are nonzero when

0 ≤ m ≤ k , (3.6)

so the z̄-dependence is encoded in at most (k+ 1)-independent 2F1 functions at order k.14

For physical spin ` = 0, 1, 2, · · · , the n-summation terminates at n = `, then we have

0 ≤ n ≤ ` . (3.7)

Furthermore, the m-summation of fk,m reduces to at most (`+1) Gaussian hypergeometric
functions. This becomes manifest if we use a different set of basis functions

f̃k,m(1− z̄) = z̄β/2−m (1− z̄)k 2F1

[
β/2 + a+ k −m,β/2− b+ k −m

1 + a− b+ k −m
; 1− z̄

]
. (3.8)

13To be precise, γ is the anomalous dimension for spinning operators.
14For the order-by-order expansion in small z, the number of independent basis functions for the z̄

dependence increases as 2k + 1.
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Accordingly, we have

G
(d,a,b)
τ,` (z, z̄) = v

a−b
2

(
Γ(b− a) v

a−b
2

(β/2)−a(β/2)b

∞∑
k=0

∑̀
m,n=0

C̃k,m,n f̃k,m(1− z̄) gk,n(z)+(a↔ b)
)
, (3.9)

where the expansion coefficients can be expressed in terms of (3.3)

C̃k,m,n =
m∑

m′=0

(k −m+m′)!
(k −m)! (m′)!

(β/2 + a)k−m (β/2− b)k−m (1− β)m′
(−β/2 + a+ 1)k−m+m′ (−β/2− b+ 1)k−m+m′

× (k −m+ 1 + a− b)m′ Ck,k−m+m′,n . (3.10)

Therefore, the concrete expression of the factorized decomposition further simplifies at low
spin. The complexity increases with spin, but there is an emergent simplicity at large spin
as mentioned earlier. In section 4, we will discuss the systematic large-spin expansion, as
an application of the factorized decomposition (3.1).

In the limit a− b→ 0, the general formula (3.1) becomes divergent due to the Gamma
functions Γ(a − b) and Γ(b − a), but the divergent contributions cancel out. The finite
pieces are given by a regular part and a logarithmic part, arising from the derivative with
respect to (a− b). The explicit expression is

G
(d,a,a)
τ,` (z, z̄) = (−1)

(β/2)−a(β/2)a

(
log v +Hβ/2+a−1 +Hβ/2−a−1 + ∂a − ∂b

)
×
∞∑
k=0

∑
m,n

Ck,m,n fk,m(1− z̄) gk,n(z)
∣∣∣
b→a

. (3.11)

When a = b = 0, an especially interesting case is the conformal blocks with intermediate
conserved currents, which can be obtained by taking the limit γ → 0. For the spin-
2 conserved current, i.e. the stress tensor,15 the log v part is consistent with the recent
results in [51].

Let us explain how we arrive at the complete decomposition formula (3.1). We use
the general formula of the cross-channel lightcone expansion in [46] to derive the double
expansion in small z and small (1− z̄). According to the results in [46], it is expected that
for physical spin ` we need (`+1) basis functions to encode the z-dependence at each order.
The basis functions gk,n(z) can be inferred from the spin-0 decomposition (2.3) and the
k = 0 basis functions (2.7). For the z̄ dependence, we know the precise zeroth-order basis
function f0,0(z̄) from the direct-channel lightcone limit, i.e. the SL(2,R) block. To find
natural generalizations of f0,0(z̄) at higher order, we subtract the double series in (1− z̄, z)
by the zeroth order contribution

∑
nC0,0,n f0,0(1 − z̄) g0,n(z), and compute the first order

series coefficients in the small z expansion. The general result is associated with a sum
of two 2F1 functions, suggesting two basis functions fk,m(1 − z̄) at order k = 1, but the
choices are not unique. Then we also compute the expansion coefficients of g1,n(z), and
the general expression can be decomposed into two terms again. As we are looking for a
factorized decomposition, the coefficients of g1,n(z) should be equal to the small (1 − z̄)

15The multi-stress tensor operators can also be studied by the Lorentzian inversion [50, 51].
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limit of
∑
m=0,1C1,m,n f1,m(1− z̄). By matching the two sides, we find that (3.4) provides

natural basis functions because the resulting C1,0,n, C1,1,n also factorize, as in the k = 0
case in (2.6). Based on these basis functions, we further compute the expansion coefficients
at order k = 2, and find the general form of Ck,m,n up to normalization. Then we compute
the k = 3 coefficients and determine the (k,m)-dependent normalization. In this way, we
obtain the complete decomposition formula (3.1), together with (3.3), (3.4), (3.5). Using
the Casimir equation (1.6), we test the factorized decomposition to order k = 10, which
can be carried out efficiently by setting the parameters to rational numbers.

In the lightcone bootstrap, we need to compute the Lorentzian inversion of cross-
channel conformal blocks

u(∆1+∆2)/2

v(∆2+∆3)/2 G
(d,a′,b′)
τ ′,`′ (1−z̄,1−z) =

∑
k,m,n

(zz̄)(∆1+∆2)/2(zz̄)
a′−b′

2

[(1−z)(1−z̄)](∆2+∆3)/2 (3.12)

×

Γ(b′−a′)(zz̄)
a′−b′

2

(β′/2)−a′(β′/2)b′
C

(a′,b′)
k,m,n f

(a′,b′)
k,m (z)g(a′,b′)

k,n (1−z̄)+(a′↔ b′)

 ,
which involves a typical z̄ integral. We use the primes to emphasize that the parameters
are for the cross-channel, such as

a′ = ∆3 −∆2
2 , b′ = ∆1 −∆4

2 . (3.13)

The general result of the basic z̄ integral reads∫ 1

0

dz̄

z̄2 k
(−a,−b)
β (z̄) z̄(∆1+∆2)/2

(1−z̄)(∆2+∆3)/2 z̄
a′−b′ g

(a′,b′)
k,n (1−z̄)

=Γ(β)Γ
(
γ′+β′

2 +k+n
)

Γ
(
τ ′−∆2−∆3

2 +k+n+1
)

Γ
(
τ ′−∆1−∆4

2 +k+n+1
)

×Γ
(
β+γ′−τ ′+∆1+∆2

2 −k−1
)

Γ
(
β+β′−τ ′+∆3+∆4

2 −n−1
)

×ψ
(
β+β′+γ′−∆1+∆2

2 +k+n−1; β−∆1+∆2
2 ,

β′−∆1+∆4
2 +k,

γ′+∆2−∆3
2 +n, τ

′−∆1−∆4
2 +k+n+1, β

′+γ′−τ ′+∆2+∆3
2 −1

)
. (3.14)

We have introduced a very well-poised 7F6 function

ψ(A;B1, B2, B3, B4, B5) =
Γ(A+ 1) 7F6

[
A,A/2 + 1, B1, . . . , B5

A/2, A−B1 + 1, . . . , A−B5 + 1
; 1
]

Γ
(
2A+ 2−

∑5
k=1 Bk

)∏5
k=1 Γ(A−Bk + 1)

, (3.15)

which is also known as the Wilson function [52, 53]. The 7F6 function can be written as a
sum of two 1-balanced 4F3 functions. The Wilson function has several equivalent expres-
sions due to its symmetry. The other part with (a′ ↔ b′) can be obtained by interchanging
(∆1,∆2) and (∆3,∆4), due to a symmetry of the direct-channel OPE. To derive (3.14), it
is useful to consider the variable ȳ = (1− z̄)/z̄ and Mellin-Barnes integral [33].
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4 Application to the large-spin expansion

In the lightcone bootstrap, a subtle point is that the conformal-block summations and the
lightcone limits may not commute. The reason is that the lightcone singularities of correla-
tors have a richer structure than those of individual cross-channel conformal blocks or their
finite sums. One may encounter divergent sums if the lightcone limit is taken before the
summation over intermediate operators. For SL(2,R) blocks, this problem can be resolved
by the resummation identities in [26], at least order by order. The asymptotic behaviour
at large spin is associated with the emergent singularities, which cannot be produced by a
finite sum of blocks. By adding and subtracting the corresponding identities, the remaining
summation gives finite regular terms. Using the factorized decomposition (3.1), we can ex-
tend this technique to the resummations of full conformal blocks. The leading divergences
are regularized by a few SL(2,R) resummation identities for one cross-ratio multiplied by
simple functions in the other cross-ratio [46].

The leading divergences are determined by the large spin behaviour, so we only need
the low order terms of conformal blocks in the large-spin expansion. In the small (1 − z̄)
expansion, the basis functions fk,m are of order `−2k compared to f0,0, so we can use the
low order terms in (3.1) to derive the leading terms in large spin. We have used the fact
that the z̄-independent part, i.e. Ck,m,n and gk,n, is at most of order `0.

For fixed twist, the higher order terms in the small z expansion of gk,n(z) are suppressed
by large spin, which simplifies the n-summation. As an example, let us consider the k = 0
case. Here we also have m = 0 due to m ≤ k. The large-spin expansion reads

(1− z)a−b
∞∑
n=0

C0,0,n g0,n(z) ∼
∞∑
p=0

p∑
q=−p

Dp,q
0
J2p

(
z

1− z

) d−2
2 +p

kγ+2q(z) , (4.1)

where the basis functions are given by SL(2,R) block kγ(z) with shifted parameters. The
low order coefficients are

D0,0
0 = 1 , D1,−1

0 = 0 , D1,0
0 = −

d−2
2

d−4
2
∏
α=−a,b

(
γ/2 + α

)
γ

, (4.2)

D1,1
0 =

d−2
2

d−4
2
∏
α=±a,±b

(
γ/2 + α

)
γ2(γ + 1) . (4.3)

We notice that the coefficients Dp,−p
0 always vanish when p > 0. The large-spin expansion

is naturally organized by
J2 = 1

4 β(β − 2) , (4.4)

which is the eigenvalue of the SL(2,R) Casimir operator associated with the direct-channel
lightcone. Since the large-spin expansion is based on the small z expansion, it is more
accurate at small z, and less near z = 1. We examine the large-spin expansion (4.1) in
some concrete cases with d = 3, γ = 1/3 and a = b = 0. The zeroth order approximation
already reaches the 10−2 precision, i.e. the relative error is about or smaller than 10−2,
when ` ≥ 2 and 1−z > 0.02. In the case of first order approximation, the precision reaches
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10−3 for ` ≥ 6, 1 − z > 0.04. For second order approximation, the precision goes to 10−4

if ` ≥ 10 and 1 − z > 0.04. At larger spin, the good precision extends to almost the full
range 0 ≤ z < 1 as expected.

In general, the large-spin expansion of a k-th order term reads

va−b
k∑

m=0

∞∑
n=0

Ck,m,n fk,m(1− z̄) gk,n(z)

∼
∞∑
p=k

(p−k)∑
q=−(p−k)

Dp,q
k

J2p

(
z

1− z

) d−2
2 +p

kγ+2q(z) (1− z̄)a−b f0,0(1− z̄) . (4.5)

Note that Dp,q
k with k > 0 can contain derivatives. For example, the lowest order coefficient

for k = 1 is given by

D1,0
1 = d− 2

2

(
d− 4

2 + ∂log(1−z̄)

) (
− a+ b+ ∂log(1−z̄)

)
, (4.6)

where the derivatives with respect to log(1− z̄) encode the differences between f0,0(1− z̄)
and fk,m(1−z̄) near z̄ = 1 at large spin. Combining the two parts of the factorized lightcone
expansion in (3.1), we obtain

G
(d,a,b)
τ,` (z, z̄) ∼ Γ(β/2)2

Γ(β)

∞∑
k=0

∞∑
p=k

p−k∑
q=−(p−k)

Dp,q
k

J2p

(
z

1− z

) d−2
2 +p

kγ+2q(z) kβ(z̄) , (4.7)

where the z̄ dependence is encoded in terms of SL(2, R) blocks as well. More explicitly,
the low order terms in the large-spin expansion are

G
(d,a,b)
τ,` (z, z̄) ∼ Γ(β/2)2

Γ(β)

(
z

1− z

) d−2
2
[(

1 + D1,0
0 +D1,0

1
J2

z

1− z + . . .

)
kγ(z)

+
(
D1,1

0
J2

z

1− z + . . .

)
kγ+2(z) + . . .

]
kβ(z̄) . (4.8)

Note that D1,0
0 +D1,0

1 also generates the correct coefficients for the other part with leading
power law v0, which are associated with the va−b coefficients by a ↔ b. Since the large-
spin expansion is based on the lightcone expansion, one should be more careful about the
nonperturbative effects if the near z = 1 or z̄ = 0 contributions are important. We have
used ∼ to indicate the asymptotic nature.

Using the simplified factorization at large spin, we can readily derive twist conformal
blocks [24], which are defined as infinite sums of conformal blocks with identical twist. The
direct-channel lightcone limit plays the role of a boundary condition. If the small z limit
of a twist conformal block is given by a power law (1− z̄)p, then we have∑

`

Pτ,`Gτ,`(z, z̄) ∼ y
d−2

2 kγ(z) (1− z̄)p

+ y
d−2

2 +1
(
D1,0

0 +D1,0
1
)
kγ(z) +D1,1

0 kγ+2(z)
(p+ 1)(p+ 1− a+ b) (1− z̄)p+1

+ O
(
(1− z̄)p+2) , (4.9)
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where only the emergent power laws have been written explicitly and we have used the
natural variable y = z

1−z . The large-spin expansion parameter J−2 corresponds to an
inverse action of the SL(2,R) Casimir operator on (1 − z̄)p, which increases the power to
p+1 and generates the denominator (p+1)(p+1−a+b). The leading large-spin expansion
coefficients Dp,q

k can be found in (4.2), (4.3), (4.6). In particular, the derivatives become
p+ 1, so we have

D1,0
1 → d− 2

2

(
d− 4

2 + p+ 1
)

(−a+ b+ p+ 1) . (4.10)

As shown in [24], the twist conformal blocks also satisfy a differential equation. By com-
bining the quadratic and quartic Casimir equations, one can remove the spin dependence,
and derive a fourth order differential equation. In principle, the coefficients of the series
solution can be computed order by order using this quartic differential equation, but the
complexity grows rapidly at high orders. As a consistency check, we verify that the series
solution of the quartic differential equation resums to (4.9). For a = b = 0, the leading
term, i.e. the first line of (4.9), was obtained in [24]. Here we give the general (a, b) results
to subleading order, and it is straightforward to go to higher orders. Our approach seems
to be more efficient as the results are directly expressed in terms of the simple SL(2,R)
blocks, which is not obvious if one only knows the low order series coefficients.

We have explained how to determine the lightcone singularities from a resummation
of conformal blocks with identical twist based on the small z limit. It is straightforward
to generalize the method to the case of Regge trajectories. We should expand the twists
around the large spin limit. More explicitly, the resummation of the large-spin tail of a
Regge trajectory can be computed as

∑
`

f2
` Gτ,`(z, z̄) =

∑
`

∂β

∂β̄
λ2
β

∑
k,p,q

Dp,q
k (γ)

(β2 (β2−1))p
y
d−2

2 +p kγ+2q(z)kβ(z̄)

=
∞∑
m=0

(∂τ̄ )m

m!
∑
k,p,q

y
d−2

2 +pkγ̄+2q(z)Dp,q
k (γ̄)

∑
`

(δτβ̄)mλ2
β̄

( β̄2 ( β̄2−1))p
kβ̄(z̄) , (4.11)

where β̄ = τ̄ + 2`, γ̄ = τ̄ −d+ 2 and δτβ = τβ − τ̄ . Note that we have isolated the Jacobian
∂β/∂β̄ in the first line, which leads to τ̄ -derivatives and δτβ̄ insertions in the second line.16

Then we can perform the resummations of large-spin tails as in the case of identical twist.
If the finite spin data deviates from the large spin behaviour significantly, we should not
expand the twist around the large spin limit. We can still use (4.7) for relatively large
conformal spin. At low conformal spin, we should use the exact formula (3.9).

16The small z limit reduces to the case of SL(2,R) blocks discussed in [26]

∑
`

f2
` kβ(z̄) =

∑
`

∂β

∂β̄
λ2
β kβ(z̄) =

∞∑
m=0

(∂τ̄ )m

m!
∑
`

(δτβ̄)m λ2
β̄ kβ̄(z̄) ,

which contains the main features.
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For the lightcone bootstrap, the Lorentzian inversion of the resummed Regge trajec-
tories in the cross-channel involves the basic z̄-integral∫ 1

0

dz̄

z̄2 k
(−a,−b)
β (z̄) z̄(∆1+∆2)/2

(1− z̄)(∆2+∆3)/2
(1− z̄)p

z̄p
k

(a′,b′)
γ′ (1− z̄)

= Γ(β) Γ(γ′) Γ
(
β + ∆1 + ∆2

2 − p− 1
)

Γ
(
β + ∆3 + ∆4

2 − p− 1
)

× Γ
(
γ′ −∆1 −∆4

2 + p+ 1
)

Γ
(
γ′ −∆2 −∆3

2 + p+ 1
)

× ψ

(
β + 2γ′ −∆1 + ∆2

2 − 1; β −∆1 + ∆2
2 ,

γ′ −∆1 + ∆4
2 ,

γ′ + ∆2 −∆3
2 ,

γ′ −∆1 −∆4
2 + p+ 1, γ

′ + ∆2 + ∆3
2 − p− 1

)
, (4.12)

which can be viewed as a special case of (3.14).

5 Conclusions

We have presented a new complete formula (3.1) for the lightcone expansion of 4-point
scalar conformal blocks in factorized form. Although it applies to arbitrary intermediate
spin and general spacetime dimensions, the factorized decomposition takes a remarkably
simple form. For physical spin `, an equivalent formula has been given in (3.9), where
two summations terminate at order `. As an application of the general formula (3.1), we
discuss the large-spin expansion (4.7), which can be systematically derived from (3.1). We
further explain how to resum the large-spin tails of Regge trajectories using the factorization
structure. In (3.14) and (4.12), the basic integrals for the general Lorentzian inversion have
been carried out, and the results are given by Wilson functions. In this work, we consider
generic external scalar operators. The factorization structure should extend to the cases of
external spinning operators, and the especially interesting cases are those involving external
conserved currents [54, 55].

As our results apply to general spacetime dimensions, it would be interesting to con-
sider the analytic bootstrap of the Wilson-Fisher fixed point in fractional dimensions.
This was first studied by the numerical bootstrap in [56]. A subtlety about non-integer
dimensions is that there exist negative-norm states [57].17 The analytic bootstrap can
provide a complementary approach to study the smooth deformation from Gaussian mod-
els to strongly interacting models, without using unitarity or an asymptotic expansion in
ε = d0 − d.

17If the non-unitary effects are small, one can obtain reasonable results from the numerical method based
on unitarity, up to certain precision. This is similar to the case of O(N) models with non-integer N [58],
whose non-unitary nature was recently discussed in the language of Deligne categories [59]. It would also
be interesting to study them using the truncation methods [60, 61]. The alternative approach does not
use unitarity, so is more suitable for many important problems in statistical physics [62–71]. To obtain
stronger results, one may need to combine them with the analytic methods, in order to reduce the number
of independent parameters, as proposed in [26].
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In [72], we revisit the mixing problem of the 3d Ising model [26, 39] using the new
results presented in this paper. The resolution of the mixing problem gives rise to the
repulsion of near-degenerate Regge trajectories and vanishing OPE coefficients at low spin.
The lower trajectory becomes non-unitary below the decoupling spin, so is in conflict with
unitarity. We believe that this is the analytic origin of the 3d Ising kink [73, 74]. In fact, the
kink phenomena are ubiquitous in the numerical bootstrap studies. It is straightforward
to generalize the above analytic interpretation.

Further numerical bootstrap studies have led to the beautiful discoveries of precision
islands [75–81]. To obtain an isolated region, one needs at least three cuts in a two-
parameter space, where one cut separates a non-unitary region from a potentially unitary
region.18 It was shown in [75] that an isolated region can be obtained by considering the
mixed correlator. Previously, two sides of the 3d Ising kink have been shown to be related
to the decoupling of subleading operators of spin-0 and spin-2 [73, 74].19 The third side
should be related to the leading Z2-odd family, where the continuation to spin-0 and the
spin-1 decoupling were recently discussed in [39]. To derive precision islands, one needs
to be sensitive to more non-unitary sectors, which are associated with subleading Regge
trajectories. A larger system of crossing equations can capture more trajectories and help
to efficiently resolve the subleading mixing problems. The importance of considering more
crossing equations has been noticed in the numerical studies of precision islands [80, 81].20

We plan to apply our new results to the analytic study of precision islands.
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19For the spin-0 decoupling, one may need to use analytic continuation. For the Wilson-Fisher CFT, the
analytic continuation to the lowest Z2-even scalar was shown in [82], based on the perturbative expansion in
ε = 4− d. For the 3d Ising and O(2) CFTs, this phenomenon has also been studied in [38, 39]. (See [39] for
the relation to asymptotic transparency.) The fact that the continuation gives the correct results, i.e. the
low-lying operators also lie on the Regge trajectories, implies that physical correlators have exceptionally
good behaviour beyond the Euclidean regime, and hence nontrivial constraints on the full spectrum, which
is similar to the relation between a bounded Regge limit and analyticity in spin above spin-1.

20In 2d, the Regge trajectories have simpler structure due to the Virasoro symmetry. One side of the
2d Ising kink [83] has an analytic interpretation as a one-parameter family of crossing solutions [84]. If
we assume the twists of the low-lying trajectories are partly constrained, we can “define” the 2d Lee-Yang
and Ising CFTs as the decoupling points, where the crossing constraint implies that the OPE coefficient
of a low-lying spin-2 operator vanishes [85]. Perhaps we can extend this definition to higher dimensions
using the powerful analyticity in spin. The decoupling of more operators from the null state conditions of
Virasoro multiplets should be related to the decoupling in higher Regge trajectories.
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A Factorized decomposition of Appell’s F4 function

The integer-balanced F4 functions admit finite decompositions. For B1 +B2 = 1+A1 +A2,
i.e. 1-balanced, the F4 function factorizes into a product of two 2F1 functions [47]

F4

[
A1, A2
B1, B2

;x(1− y), y(1− x)
]

= 2F1

[
A1, A2
B1

; x
]

2F1

[
A1, A2
B2

; y
]
. (A.1)

For B1 +B2 = A1 +A2, i.e. 0-balanced, there exists a 2-term decomposition:

(1− x− y)F4

[
A1, A2
B1, B2

;x(1− y), y(1− x)
]

= 2F1

[
A1 − 1, A2 − 1

B1 − 1
; x
]

(1− y) 2F1

[
A1, A2
B2

; y
]

+ (A1 −B1)(A2 −B1)
B1(B1 − 1) x 2F1

[
A1, A2
B1 + 1

; x
]

2F1

[
A1 − 1, A2 − 1

B2
; y
]
. (A.2)

For a generic F4 function, the factorized decomposition found by Burchnall and Chaundy
reads [48]

F4

[
A1,A2
B1,B2

;x(1−y),y(1−x)
]

=
∞∑
k=0

(1+A1+A2−B1−B2)k
k!

(A1)k (A2)k
(B1)k (B2)k

×xk 2F1

[
A1+k,A2+k

B1+k
; x
]
yk 2F1

[
A1+k,A2+k

B2+k
; y
]
. (A.3)

In terms of derivatives, the above decomposition can be written as a product of three
hypergeometric series

F4

[
A1, A2
B1, B2

;x(1− y), y(1− x)
]

= 3F2

[
1 +A1 +A2 −B1 −B2 ,−∂log x,−∂log y

A1 , A2
; 1
]

× 2F1

[
A1, A2
B1

; x
]

2F1

[
A1, A2
B2

; y
]
, (A.4)

which can be viewed as a generalization of (A.1).

B More on the cross-channel lightcone limit

The Kampé de Fériet function F 0,2,2
0,2,1 is defined as

F 0,2,2
0,2,1

[∣∣∣A1, A2
B1, B2

∣∣∣A3, A4
B3

∣∣∣x, y] =
∞∑

m,n=0

(A1)n (A2)n
(B1)n (B2)n

(A3)m+n (A4)m+n
(B3)m+n

xm yn

m!n! . (B.1)

The cross-channel lightcone limit of conformal blocks is associated with the case of y = −x,
which can be expressed in a product form using derivatives

F 0,2,2
0,2,1

[∣∣∣A1, A2
B1, B2

∣∣∣A3, A4
B3

∣∣∣x,−x] = 3F2

[
A1, A2,−∂log x

B1 , B2
; 1
]

2F1

[
A3, A4
B3

; x
]
. (B.2)
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For even d, the cross-channel channel lightcone limit of a conformal block reduces to a
finite sum of 2F1 functions. In (2.4), the n-summation terminates for physical ` in general
dimensions. Based on the even-dimensional results, we find an alternative expression such
that the even-d termination becomes manifest. The Kampé de Fériet function in (2.4) can
be written as

F 0,2,2
0,2,1

[∣∣∣−`, 3− d− `
2− d/2− ` , γ

∣∣∣γ/2− a, γ/2 + b

β/2 + γ/2

∣∣∣z,−z]

=F 0,2,2
0,2,1

[∣∣∣ (d− 2)/2, −(d− 4)/2
2− d/2− `, β/2 + γ/2

∣∣∣γ/2− a, γ/2 + b

γ

∣∣∣z,−z]

=
∞∑
n=0

(d/2− 1− n)2n (γ/2− a)n (γ/2 + b)n
(2− d/2− `)n (β/2 + γ/2)n (γ)n

zn

n! 2F1

[
γ/2− a+ n, γ/2 + b+ n

γ + n
; z
]
, (B.3)

where two parameters in the bottom row are interchanged, and two parameters in the top
row are modified. For even d, the n-summation terminates due to (d/2− 1−n)2n, so there
are at most (1 + |d− 3|)/2 independent 2F1 functions in the cross-channel lightcone limit.
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