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Leading or Following? Dyadic Robot Imitative
Interaction Using the Active Inference Framework

Nadine Wirkuttis and Jun Tani

Abstract—This study investigated how social interaction among
robotic agents changes dynamically depending on the individual
belief of action intention. In a set of simulation studies, we examine
dyadic imitative interactions of robots using a variational recurrent
neural network model. The model is based on the free energy
principle such that a pair of interacting robots find themselves in
a loop, attempting to predict and infer each other’s actions using
active inference. We examined how regulating the complexity term
to minimize free energy determines the dynamic characteristics of
networks and interactions. When one robot trained with tighter
regulation and another trained with looser regulation interact, the
latter tends to lead the interaction by exerting stronger action
intention, while the former tends to follow by adapting to its
observations. The study confirms that the dyadic imitative interac-
tion becomes successful by achieving a high synchronization rate
when a leader and a follower are determined by developing action
intentions with strong belief and weak belief, respectively.

Index Terms—Predictive coding, Cognitive robotics, humanoid
robots, activity recognition, adaptive control, inference algorithms.

I. INTRODUCTION

OCIAL interaction is considered an essential cognitive

behavior. In both empirical studies and synthetic modeling,
researchers have investigated underlying cognitive, psychologi-
cal, and neuronal mechanisms accounting for various aspects
of social cognitive behaviors. This study investigates mech-
anisms underlying synchronized imitation as a representative
social cognitive act, by formulating the problem using the free
energy principle (FEP) [1], [2]. In simulation experiments of
dyadic robot imitative interaction, we examine how a leader
and follower can be determined in conflicting situations by
investigating the underlying network dynamics.

Numerous robotic studies have investigated imitative inter-
action. In the 90 s, imitation was identified as an indispensable
human competency required in early development of cognitive
behaviors [3]-[6]. Rizzolatti and colleagues [7] showed that the
mirror neuron system uses observations of an action to generate
the same action. Arbib and Oztop [8], [9] indicated that mirror
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neurons may participate in imitative behaviors. Upon this devel-
opment, several research groups proposed computational mirror
neuron models for imitation using Hidden Markov Models [10]
and neural network models [11]-[14].

An essential unsolved question in modeling of imitative in-
teraction is how a leader, who initiates an action, and a follower,
who imitates this action, can be determined when multiple
choices of actions are possible among a set of well-habituated
ones.

Recent theories on predictive coding (PC) and active inference
(AIF) based on the free energy principle (FEP) [2], [15] show
that “action intention” and its “belief” can be formulated as a
predictive model. “Action intention” is considered a top-down
prediction of action outcomes and “belief” as an estimated pre-
cision of this prediction or the strength of intention (as described
in [2], [15]). Analogous to PC and AIF, Ito and Tani showed that
imitative interaction can be performed using an RNN model by
minimizing the prediction error instead of free energy in order to
update deterministic latent variables [13]. However, this deter-
ministic model does not account for the belief of action intention
because the precision of prediction cannot be estimated. On
a related topic, Ahmadi and Tani developed predictive-coding
inspired variational RNN (PV-RNN) [16]. Their model was used
to investigate how the strength of top-down intention in predict-
ing fluctuating temporal patterns was modulated, depending on
learning conditions in the model. In the learning process, free
energy represented by the weighted sum of the accuracy term and
the complexity term is minimized. Ahmadi and Tani found that
softer regulation of the complexity term during network training
develops strong top-down intention. Predictions are more de-
terministic by self-organizing deterministic dynamics with the
initial sensitivity characteristics in the network. Likewise, tighter
regulation of the complexity term results in weaker intention
and increased stochasticity. Compared to other neural network
models based on the FEP [17]-[20], PV-RNN has advantages
when applied to problems in robotics. It can cope with temporal
structure by using recurrence associated with stochastic latent
variables and by hierarchical abstraction through a multiple
timescale structure [21].

Our research group further investigated human-robot imita-
tive interaction using PV-RNN. Chame and Tani [22] showed
that a humanoid robot with force feedback control tends to lead
or follow the human counterpart in imitative interaction when
its PV-RNN is set to softer or tighter regulation, respectively.
However, the result is preliminary, merely showing a one-shot
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experimental result without any quantitative analysis. In a sim-
ilar experimental setup, Ohata and Tani [23] showed that this
tendency can be also observed when regulation of the com-
plexity term is modulated during the interaction phase, rather
than during the prior learning phase. The study investigated
pseudo-imitative interaction between a simulated robot and a
human counterpart. This study, however, lacks genuine inter-
action between the simulated robot and the human counterpart
because the outputs of the counterpart were replaced with static
output sequences prepared in advance.

The main contribution of the current study is to clarify the
underlying mechanism of how a leader and a follower can be
determined in dyadic synchronized imitative interaction using
the framework of AIF. This study is distinct from the author’s
aforementioned past studies because genuine interaction be-
tween two robots using the same model is examined and results
are analysed both quantitatively and qualitatively. An advantage
of performing a robot-robot interaction experiment is that the
internal dynamics can be analyzed in a comparative way between
the two robots.

The interaction experiment considers two robotic agents that
are trained to generate a set of movement primitive sequences.
When movements are generated by following a probabilistic
finite state machine, the transition probability differs, depending
on each of the two robots. After each robot learns the given
probabilistic transition structure for a sequence, the experimen-
tal design allows us to investigate how two robots generate
movement primitives in the synchronised imitative interaction.
In particular, we examine conflicting situations in which each
robot prefers to generate different movement patterns, depend-
ing on its learned experience. Do they synchronize to generate
the same movement pattern with one robot following the other or
leading by adapting the intention? Or do they desynchronize by
generating different movement patterns, ignoring their counter-
parts by following their own action intentions? The current study
hypothesizes that these dyadic interaction outcomes depend on
the relative strength of the intention between the robots as a
result of regulating FEP complexity.

II. MODEL
A. Predictive Coding and Active Inference

The current study applies the concepts of PC and AIF based
on FEP [1]. PC considers perception as the interplay between a
priorexpectation of a sensation and a posterior inference about a
sensory outcome. Expectation of the sensation can be modeled
by a generative model that maps the prior of the latent state
to the expectation of sensation. The posterior inference of the
observed sensation can be achieved by jointly minimizing the
error computed between the expected sensation and its outcome,
i.e. the accuracy, plus the Kullback-Leibler (KL) Divergence
between the posterior and the prior distributions, i.e. the com-
plexity. Posterior and prior are both represented by Gaussian
probability distributions using means and variances. This is to
minimize free energy or to maximize the lower bound of the
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z, X, py, and g4 denote the latent state, the observation, the

prior distribution, and the approximate posterior, respectively. 6

and ¢ are the parameters of the generative and inference model.

In maximizing the lower bound, the interplay between accuracy

and complexity characterizes the model performance in learning,
prediction, and inference.

Consistent with the AIF, actions are generated so that the
error between the expected action outcome and the actual out-
come is minimized. In robotic applications, this is equivalent to
determining how expected proprioception in terms of robot joint
angles can be achieved by generating adequate motor torque. A
simple solution is to use a PID controller, in which adequate
motor torque to minimize errors between expected joint angles
and actual angles can be obtained by means of error feedback
schemes. Finally, perception by predictive coding and action
generation by active inference are deployed simultaneously,
thereby closing the loop of action and perception.

B. Overview of PV-RNN

The PV-RNN model is designed to predict future sensation by
means of prior generation, while reflecting the past by means of
posterior inference based on learning (see Fig. 1). One essential
element of the model is the introduction of a parameter w, the
so-called meta-prior, which regulates the complexity term in
free energy. Different w settings results in alternation of the
estimated precision in predicting the sensation, as described
later as prior generation (see section III-C). The model is
also characterised by employing an architecture of multiple
timescale RNN (MTRNN) [21]. The whole network comprises
multiple layers of RNNs wherein the dynamics of each layer are
governed by different time constant parameters 7. This scheme
supports development of hierarchical information processing by
adequately setting the timescale of each layer [14], [21]. This
approach is considered as analogous to [24], [25].

The following briefly describes the two essential parts, a
generative model which is used for prior generation to make
future predictions, and an inference model, which is used for
posterior inference about the past. For further details, refer
to [16], [23].

1) Generative Model: The stochastic generative model is
used for prior generation, as illustrated in the future prediction
part (after time step 4) in Fig. 1.

PV-RNN is comprised of deterministic variables d and ran-
dom variables z. An approximate posterior distribution gy is
inferred based on the prior distribution py by means of error
minimization on the generated prediction X. The generative
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Fig. 1. Graphical representation of a hierarchical 3-layer PV-RNN ar-

chitecture. Layers are indicated on the left. Time increases from left to right
and is indicated as a subscript. The representation shows the network in ¢ = 3
with a two-time-step posterior inference window [2,3] and prior generation for
t = [4,5]. In the posterior inference window, prediction error e® and the w
weighted KL Divergence e* are minimized.

model can be factorized as:

po(X 1.7, d1.1, 21.7|do)

S

Although d is a deterministic variable, it can be considered to
have a Dirac delta distribution centered on daso(d—d). X
is conditioned directly on z through d. At the initial time step,
d is set to 0. Otherwise, d is recursively computed, for which
the internal state before activation is denoted by h. This internal
state h is a vector, calculated as the sum of the internal states of
the current level [ and its connecting layers of the previous time
step t — 1 plus the latent z in the same layer of the current time
step ¢:

X |dt ped(dt|dt 1,zt)Pe (Zt|dt 1) (2)

dit = tanh(hl)

1
hl = (1 - 7'l> hi .+
L (Whd, Wl e Wi W)

3)
7! denotes the layer-specific time constant. With larger value for
7t slower timescale dynamics develop, whereas with a smaller
value set, faster timescale dynamics dominate. W represents
connectivity weight matrices between layers and their determin-
istic and stochastic units. The output with size NV, is computed

as mapping from (11 as:

X, = Wi, d, + by @
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The prior distribution pg(zt) is a Gaussian distribution rep-
resented with mean p} and standard deviation o. The prior
depends on d, by following the idea of a sequence prior [26],
except at £ = 1 where it follows a unit Gaussian distribution.

= N(0,1)
= N(u?, (6?)?) where t > 1

po(21)
pe(zt|&t—1)

P n g ©)
py = tanh(Wy ,d; 1)

ol = eXp(Wgap cit,l)

Based on the work on variational autoencoders, we use the
reparameterization trick to formulate the latent prior of z; as
mean p} and standard deviation of. The reparameterization
trick was introduced by Kingma and Welling [27] to make ran-
dom variables differentiable for backpropagating errors through
the network for learning. The same consideration is taken for
the posterior of z; in the inference model as well (cf. below 7).

2) Inference Model: Posterior inference is performed during
learning and afterward, during action and perception. Fig. 1
illustrates information flow in the posterior inference in a time
window from time step 2 to time step 3. The inference model
for the posterior is described as:

Q¢(zt|dt—1;et:T) = N(z; pi, of) (6)

where e; denotes the error between the target X, and the
predicted output X. Like the prior pg, the posterior gy is also a
Gaussian distribution with mean p{ and standard deviation oy.
For zq.p it is defined as:

q¢(zt|et:T) = N(“’gv O'g)

pi = tanh(AY) ©)

o} = exp(A7)

Since computing the true posterior is intractable, an approxi-
mate posterior gy is inferred by maximizing the lower bound,
analogous to Eq. (1). Here, the adaptation variable A ;.7 forces
the parameters ¢ of the inference model to represent meaningful
information. The lower bound of PV-RNN can be derived as:

26.0)=> (5

By (zildis,enr) [IngeX (thdt)} N

L
Z KDKL [q¢(zt‘Jt—17 et:T)Hpez (zt|d~t71)} )

l
3

where the first term is the accuracy and the second term is the
complexity (for details referred to [16]). N, and Ni are the
number of sensory dimensions and the number of the latent
random variables at the /' layer, respectively. w' serves as a
weighting parameter for the complexity term in layer [ and is
referred to as the meta-prior [16]. The meta-prior represents the
strength for regulating the closeness between the posterior and
the prior distributions. Int = 1, w! is set with 1.0. w)_. is set to
a specific value when the sequence prior [26] is used after time
step 1. In the posterior inference, all learning-related network
parameters of 6, ¢, and the adaptive variable A are updated to
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Fig. 2. Schematic of dyadic robot interaction where robots are equipped
with the PV-RNN model.

maximize the lower bound by back-propagating the error from
time step 7" back to ¢; [28].

3) PV-RNN in Dyadic Robot Interaction: Two robots
equipped with the PV-RNN model interact during synchronized
imitation. In the interaction, the robots predict proprioception
X771, and exteroception X§¥, for the next time step. The
predicted Xf:_l regulates joint angle movements of a robot by
considering a PID controller. This movement X}, can then
be sensed by the other robot in terms of exteroception X¢¥ ;.
This is provided through the kinematic transformation of joint
angles X{" | (cf. Fig. 2). While in the training phase, the error
signal is taken from the proprioceptive XP" as well as the
exteroceptive X °* target sequences, in the interaction phase the
error signal for each robot is taken only from X¢*!. During
interactions, prediction errors e” are generated and propagated
bottom-up throughout all layers, as well as time steps in the
posterior inference window, in terms of the latent error e®. This
updates posterior distributions in the network and minimizes
the variational free energy. In this phase, only A;.p is updated
without updating network parameters ¢ and ¢.

III. ROBOT EXPERIMENTS

To investigate how the interaction of two robots changes
with tighter and looser regulation of complexity, each robot was
trained and tested individually, as described in I1I-B and in III-C,
respectively. Finally, two robots were examined during a dyadic
interaction (III-D).

A. Task Design

Robotic agents are trained with three movement primitives A,
B, and C (Fig. 3 (a)). Each primitive is 40 time steps in length.
A human experimenter generated the primitive data via a master
control of a humanoid OP22. The experimenter controlled six

!Considering only X ©* for the error term in interaction settings assumes that
the PID controller generates only negligible position errors for the joints.

2Humanoid OP2 and its master controller are developed by Robotis: www.
robotis.us/robotis-op2-us/ www.robotis.us/robotis-op2-us/.
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Fig. 3. Task design. Robot movement primitives A, B, and C of the train-
ing dataset (a). Proprioceptive trajectories XPT plus exteroceptive trajectories
X% and X7®. Colors represent six dimensions of joint angles for X" and
xy-coordinate positions of the right and left end effector X% and Xlez (b).
Two P-FSMs representing different movement primitive transition patterns of
A20%B80%C and A80%B20%C (c).

joints in the upper body of one humanoid X?". The exteroceptive
trajectory X°® is generated by mirroring its own movement
XP" and transformed into X°* xy-coordinate positions of the
left hand and right hand tips of the robot (Fig. 3(b)). xer
and X are six and four dimensions, respectively. Individual
movement primitives are sampled and combined to form a
continuous pattern of 400 time steps that follows a probabilis-
tic sequence (analogous to [23]). Two probabilistic patterns
were generated, A20%B80%C and A80%B20%C as shown
in the form of a probabilistic finite state machine (P-FSM)
(Fig. 3 (c)). The difference between these two probabilistic
patterns is that C is biased and comes more often (80%)
than B (20%) after A in the former, and vice versa for the
latter.

A point of interest is the interaction phase after the learning
phase. It is expected that both robots can generate A syn-
chronously, since it is a deterministic state. This could be dif-
ferent from generating B or C as two robots learned different
preferences in terms of transition probabilities. One robot may
lead so as to generate B or C while the other may just follow
it. However, both robots may generate their own biased move-
ments and, thus, desynchronize their behavior. The current study
hypothesizes that whether B or C is generated synchronized or
desynchronized between the two robots depends on the com-
plexity regulation of each robot.
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TABLE I
NETWORK PARAMETERS FOR TRAINING PV-RNNS

d zZ T Wi wa.T
layer 1 40 4 2 1  w!'=1/0.0,0.001,...4.999,5.0]
layer 2 20 2 4 1 w2 =w! x 10
layer 3 10 1 8 1 w3 = w! x 100

B. Robot Training

The PV-RNN was trained with 20 data samples on a set of
different parameters (TABLE I). All network specific param-
eters were fixed during training. To explore the influence of
the meta-prior, w, only this parameter changed for different
networks and was repeated with different random seeds to ensure
reproducibility.

Networks were trained for 80 000 epochs, using Adam
Optimizing and back-propagation through time (BPTT) [28]
with learning rate 0.001. After training, network performance
was first analysed in stand-alone robot experiments (subsection
III-C). Thereafter, dyadic robot interaction was studied using
networks trained with w set for the two representatives of tight
and loose regulation of FEP complexity (subsection III-D).

C. Preparatory Analysis of Training Results

To investigate how the model learns the probabilistic struc-
ture of the training data, we conducted a first analysis in the
form of prior regeneration. For prior regeneration we choose
one training sample and use two time steps of the adaption
variable A¥, to initialize the prior distribution p(z;.2) in the
PV-RNN. Thereafter the future prediction X3.4099 for the re-
maining training sample length can be calculated (cf. prior
generation in Fig. 1). Using this scheme, we generated 20
sequences for each meta-prior w. This was repeated for each
network that was trained for that parameter for all random seeds.
For brevity, training analysis is reported only for the network
that was trained on the probabilistic sequence A20%B80%C.
Training of A80%B20%C showed comparable results. An Echo
State Network for multivariate time series classification [29]
with reservoir size N = 45, 25% connectivity and leakage 60%
was used for classification of movement primitives. Movement
patterns were identified as not classified below a 55% threshold.

1) Analysis of Probabilistic Transition: A robot that is
trained with A20%B80%C will first generate an A movement,
and then transition to B with 20 percent probability and to C
with 80 percentage probability. We found that smaller w settings
are less stable in reproducing the probabilistic structure of the
training data. The BC-ratio was either greater or less than 20%
for B or greater or less than 80% for C. Networks trained
with larger meta-priors become more reliable in regenerating
the probabilistic training sequence (BC-ratio in Table II). In
addition to the capacity of learning the probability distribution
of the training data, we found that smaller meta-priors show
noisier pattern generation. Non-classified movements were as
high as 22% =+ 4 with w = 0.01 and decreased to 6% =+ 0.6 with
w = 3.4.

2) Divergence Analysis: Repeatability in generating se-
quences in prior generation was examined by conducting a
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divergence analysis. Sequences are considered diverged when
a comparison per time step of X?" exceeds a threshold?. Out
of 20 regeneration sequences, we randomly select one as a
reference and calculate the average divergence step of the other
sequences to this the reference. Out of 400 time steps of prior
generation, sequences diverged from the reference around time
step 43 for networks trained with smaller w. With increasing w,
repeatability of the trajectories increased. Here the divergence
step was around 139 (cf. divergence step ¢ in Table II).

3) Summary of Preparatory Analysis: Loose regulation of
the complexity term results in noisier, less repeatable prior gen-
eration performance. Also the learned probability for transition
to either B or Cis not accurate. This observation changes with in-
creasing meta-prior. The larger w, the more accurate the learned
transition probability becomes. Also, prior generation becomes
more repeatable by developing more deterministic dynamics
with the initial sensitivity characteristics (i.e., the sequence is
generated solely depending on the latent state in the initial
time step). For subsequent dyadic robot interaction experiments,
we empirically select the meta-prior setting w = 0.005 and
w = 3.4 as two representatives of tight and loose regulation
of the FEP complexity.

D. Dyadic Robot Interaction Experiments

In the following experiments, robots are either trained with
w = 0.005 or w = 3.4. For readability, we will consider R%U
and R2, with subscripts of the respective meta-priors w. In the
dyadic interaction, we present the network of each robot with
observations of movements of the counterpart robot X* as the
target and perform posterior inference in a regression window
with size wing;,. = 70. Inference is performed from the current
time step ¢ back to ¢ — wing;,e, Or t1 in case t — Wing .. < 1.
After 200 epochs of iteration to maximize the lower bound,
the time window is shifted one time step forward. Note, all
experiments were conducted in simulation due to the difficulty
of real-time posterior inference computation.

We investigated how two robots interact in three different
dyadic conditions (TABLE III). We then analysed whether
the robots trained with A80%B20%C maintained the learned
preference between B and C or adapted to their counterparts
that were trained with A20%B80%C. We also calculated the
so-called BC-synchronization rate during the interaction. If at
any time step ¢, one of the robots generated B or C and the other
robot generated the same movement primitive, the interaction
was considered synchronized. Note that time steps in which
movement patterns were identified as not classified by the Echo
State Network (cf. subsection III-C) were excluded from the
computation.

TABLE III shows the summary of the analysis for all three
experiments. To better understand effects of loose and tight
regulation of FEP complexity, exemplar plots of robot movement
patterns, as well as corresponding network dynamics, are shown
(cf. Fig. 4 and Fig. 5). We provide supplementary movies of the
experiments showing humanoid robot interaction and network

3 As the threshold for the divergence analysis, we use the mean squared error
of joint angle data [—180, 180] of XP". The threshold is set to 55.
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TABLE II
TRAINING PERFORMANCE OF REPRESENTATIVE META-PRIOR w. THE MEAN £ STANDARD DEVIATION REPRESENT THREE RANDOM SEEDS AND 20 REPETITIONS
OF PRIOR GENERATION FOR EACH w

w training sequence A20%B80%C BC-ratio divergence step t
A B C not classified
0.005 34+1 11+3 40 £ 2 15+1 22+ 6B 78 £ 5C 43
0.01 3542 13+0.2 30+ 2 224+4 30+ 5B 70 £ 5C 50
1.0 36+1 11+2 40+ 2 134+0.2 22 +4B 78 £ 4C 91
2 41+0.7 104+£0.5 39+0.7 10+ 0.3 21 +8B 79 + 8C 120
3.4 45+ 1 11+1 38+2 6+0.5 24 + 2B 76 £ 2C 139
TABLE III

INTERACTION PERFORMANCE OF THREE EXPERIMENTAL SETTINGS

Experiment BC-ratio BC-sync
ID  robots stand-alone interaction
B C B C
RlA005 22+6 78+ 5 70+11 30410
1 2‘4 75+ 2 25+3 73+10 27410 56 +23
R}, 24+ 2 76 + 2 17+12 83+18
2 R¥ 75i2 2513 61t12 s9r12 O
Rl_o05 22+6 78+5 52413 4849
3 G.005 44+11 56+ 11 20+ 7 80+ 8 42:£20

dynamics here: https://doi.org/10.6084/m9.figshare.14 099 537
https://doi.org/10.6084/m9.figshare.14 099 537.

1) Experiment 1: R} yo5 Vs. R2 ;- In Experiment 1, R} o5
adapts to the probabilistic transition of R3 , by increasing the
probability of performing B from 22% in the stand-alone con-
dition to 70% in the dyad (Table III Experiment 1). Both robots
are performing more B than C with a BC-synchronization of
56 + 23% which is significantly higher than the chance rate of
32%*.

Fig. 5 shows an example of how prediction of the future
and posterior inference of the past proceed as time passes from
time step 199, 229, to 259 for both robots. We observe that the
intended future behavior (the prior generation) of R} 5 is not
consistent with the actually performed actions after posterior
inference. On the other hand, in the case of R2 ,, the performed
action complies with its prediction.

This behavior can be explained by looking at exemplar
priors pip and posteriors uéq for layer [ and neuron ¢ between
two robots. In layer 1, selected posterior network dynamics
119 and ;37 are deviating from prior dynamics ;” and pa?
for robot R} oo5. Whereas the dynamics of R32 , are mostly
overlapping (cf. Fig. 4(a) and https://doi.org/10.6084/m9.
figshare.14 099 537 supplementary movie). More specifically,
the average KL Divergence e* of R} o5 is larger for all
layers ((e*1,e*? e*3) = (109.1,1.4,0.06)) than for RZ,
((e*!,e*2 e*3) = (0.4,0.0003,0.00001)). This means that
R3, tends to behave as intended because the posterior is
attracted by the prior. On the other hand, R}, o5 tends to adapt

#We assume that B and C are independent probabilistic events. Then we can
consider the probabilities for a robot R to perform either a B movement as
PR(B) or a C movement as P (C'). The actual BC-synchronization chance
level can then be calculated as: P'(B) x P2(B) + P (C) x P%(C) =
0.8x0.2+0.8x0.2=0.16+0.16 = 0.32.

to RZ , since the posterior is rather attracted by the observation
than by the weaker prior belief.

Note that z5% and 42" in layer 3 change only slowly with
time. This indicates that these latent variables represent how
movement primitives transit from deterministic states to non-
deterministic states using their slower timescale properties char-
acterized by 73.

2) Experiment 2: R}, Vs. R ,: When two robots with
loose complexity regulation interact, both robots maintain their
learned preferences in terms of probability in generating ei-
ther B or C. R} ,, which learns a 76% transition to C in a
stand-alone situation, shows its preference to C in the dyad
with probability of 83%. R3 ,, which in a stand-alone condition
would maintain its preference to B with a probability of 75%,
shows 61% percentage transition to B in the interaction. BC-
synchronization rate turns out to be low as 31 4 24%, which
is almost equal to the chance rate. Examining the network
dynamics of the prior and posterior distributions shows that
the robots executed movements based upon their prior action
intention without adapting their posteriors to observations of
the other robot’s movement (cf. Fig. 4(b) and https://doi.org/10.
6084/m9.figshare.14 099 537 supplementary movie).

3) Experiment 3: R} o5 Vs. RZ o05- When two robots with
tight regulation of complexity interact, both try to adapt their
own action to the one demonstrated by the other. Indeed,
Fig. 4(c) shows that the prior and posterior do not comply,
but deviate. Whether trained with the probabilistic transition
of A20%B80%C or A80%B20%C, both robots significantly
reduce the tendency to perform their own intended behavior C
or B, respectively. This is evidenced by changes of the BC-ratio
from stand-alone compared to the dyadic setting (TABLE III
Experiment 3). BC-synchronization rate is 42 + 20% which is
higher than the chance rate but not significantly. The interaction
becomes noisier, compared to results of Experiments 1 and 2 (cf.
Fig. 4(c) and https://doi.org/10.6084/m9.figshare.14 099 537
supplementary movie), which indicate that tight regulation
makes robots more sensitive to temporal fluctuations in obser-
vations of their counterparts.

IV. DISCUSSION

The current study examined how social interaction in robotic
agents dynamically changes depending on how the complexity in
the free energy is regulated. For this purpose, we conducted sim-
ulation experiments on dyadic imitative interactions using hu-
manoid robots equipped with PV-RNN architectures. PV-RNN is
ahierarchically organized variational RNN model that employs a
framework of predictive coding and active inference based on the


https://doi.org/10.6084/m9.figshare.14&nbsp;099&nbsp;537
https://doi.org/10.6084/m9.figshare.14&nbsp;099&nbsp;537
https://doi.org/10.6084/m9.figshare.14&nbsp;099&nbsp;537
https://doi.org/10.6084/m9.figshare.14&nbsp;099&nbsp;537
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Fig. 4. Movement trajectories and network dynamics of dyadic robot
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steps ¢t = [100300] of movements and selected neurons in layer 1 and 3 are
shown.
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Fig.5. Posterior inference and prior generation in Experiment 1. Interac-
tion of R(1)4005 (upper) and Rg' 4 (lower) in terms of XP". The first, the second,
and the third row show XP" after the posterior inference in the inference window
with size wing;,. = 70, as well as its future prior generation with current time
steps of 199, 229, and 259, respectively.

free energy principle. In a preparatory analysis we showed that
PV-RNNSs trained with looser regulation of complexity develop
stronger action intentions by self-organizing more deterministic
dynamics with strong initial sensitivity. Networks trained with
tighter regulation develop weaker intentions by self-organizing
more stochastic dynamics.

Our experiments revealed different types of interactions be-
tween robots. In the experiment where a robot having looser
regulation interacts with a robot with tighter regulation, the
former tends to lead the interaction by exerting action intention
with stronger belief, while the latter tends to follow the other.
The following robot adapts its posterior to its observations of the
leading robot. In this setting, the synchronization of movement
B and C (BC-synchronization rate) between the two robots was
significantly higher than the chance rate. When two robots with
looser regulation, i.e. intentions with stronger belief, interact,
each robot tends to generate its own intended movements. Fi-
nally, in case both robots have tighter regulation, a fluctuating
dyadic interaction develops where each robot attempts to adapt
to the counterpart with an intention with weaker belief. In the
last two cases, the BC-synchronization rate was not signifi-
cantly higher than the chance rate. It can be summarized that
the dyadic imitative interaction, including situations where the
other’s movements are unpredictable, tends to be synchronized
successfully when a dedicated leader and follower are deter-
mined; a leader develops action intentions with strong belief
whereas a follower develops action intentions with weak belief.

The readers may ask why tighter or looser regulation of the
complexity termresults in development of weaker or stronger be-
lief of action intention for each robot. Let us consider a situation
in which the PV-RNN learns to predict probabilistic sequences
X 1.7 with meta-prior w set either with a large value (loose
regulation) or a smaller one (tight regulation). The learning
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process infers the posterior mean pf and standard deviation
o at each time step t. In order to minimize the error e in
the accuracy term, pf is fitted with an arbitrary value, where
o"tl will be minimized, in both cases. Notably, when the data
X, is observed as random, the corresponding posterior g also
becomes random.

Let us consider the two cases when the meta-prior w is either
set large or small. In case w is set large, the KL Divergence
between the posterior and the prior is strongly minimized. Thus,
pl and o of the prior latent state become close to pf and
o of the posterior. By this, o¥ in the prior is forced to take a
minimal value close to 0; therefore, the prior generation becomes
deterministic. Since p1}. ;- should be reconstructed as close to the
sequence pf - inferred with randomness, the prior generative
model is forced to develop strongly nonlinear deterministic
dynamics with the initial sensitivity through learning. On the
other hand, if w is set with a small value, the KL Divergence
is only weakly minimized. In this case, prior pu! and o can
diverge from the posterior ones; therefore, the learning becomes
“relaxed”. As a result, the prior generative model develops
stochastic dynamics with only weak non-linearity, wherein p?
takes an average of u{ over all occurrences and o takes their
distribution at each time step. Consequently, with larger w, the
generative model develops action intention with stronger belief
(i.e. smaller o”) whereas in the case of tighter regulation using a
smaller w, the generative model develops action intention with
weaker belief (i.e. larger o?).

The current experiments consider a fixed meta-prior setting
only. Since the meta-prior is the essential network parameter to
guide the strength of action intention in the proposed framework,
future studies should target meta-learning of the meta-prior
in developmental processes or through autonomous adaption
within dyadic contexts. This could provide further understanding
of more complex social interaction phenomena, including turn-
taking in the context of adaptive regulation of the complexity
term in free energy.
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