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Abstract

Background: Eukaryotic genomes undergo pervasive transcription, leading to the
production of many types of stable and unstable RNAs. Transcription is not restricted
to regions with annotated gene features but includes almost any genomic context.
Currently, the source and function of most RNAs originating from intergenic regions
in the human genome remain unclear.

Results: We hypothesize that many intergenic RNAs can be ascribed to the presence
of as-yet unannotated genes or the “fuzzy” transcription of known genes that
extends beyond the annotated boundaries. To elucidate the contributions of these
two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-
seq reads across 5 human cell lines and multiple cellular compartments to annotate
transcriptional units in the human genome. About 80% of transcripts from
unannotated intergenic regions can be attributed to the fuzzy transcription of
existing genes; the remaining transcripts originate mainly from putative long non-
coding RNA loci that are rarely spliced. We validate the transcriptional activity of
these intergenic RNAs using independent measurements, including transcriptional
start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in
various phosphorylation states. We also analyze the nuclear localization and
sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be
rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome.

Conclusions: We provide a curated atlas of intergenic RNAs that distinguishes
between alternative processing of well-annotated genes from independent
transcriptional units based on the combined analysis of chromatin signatures, nuclear
RNA localization, and degradation pathways.
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Background
Studies estimate that up to 85% of the human genome is pervasively transcribed by

RNA polymerase II (Pol II), resulting in a plethora of RNA products [1–4]. Many of

these transcripts belong to well-established categories, such as messenger RNAs

(mRNAs) which are characterized by the presence of 5′ cap, coding sequence (CDS),

and poly(A) tail. Other transcripts are categorized as long non-coding RNAs
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(lncRNAs), generally defined as RNA molecules longer than 200 nt with little coding

potential. Currently, lncRNAs are divided into three major groups depending on their

genomic location relative to protein-coding genes: promoter upstream transcripts

(PROMPTs), produced up to 2.5 kb upstream of active transcription start sites (TSSs)

[5]; enhancer RNAs (eRNAs), bi-directionally transcribed from enhancer DNA ele-

ments [6, 7]; and large intervening non-coding RNAs (lincRNAs), located in intergenic

regions, distal from protein-coding genes, and regulated as independent transcriptional

units [8]. Gene and transcript annotations for the human genome are continuously up-

dated, and their assignment to specific biotype categories can change across reference

databases [9]. In particular, in the past decade, efforts towards the identification and

characterization of novel lncRNA genes have been made, either through computational

predictions or functional assays [10, 11]. Despite such endeavors, a marked proportion

of RNA-seq reads from human cells still maps to unannotated, ostensibly intergenic

portions of the human genome [12]. It is therefore often challenging to understand

whether such reads originate from independent transcription units or are associated

with annotated genes.

Many well-characterized lncRNAs, such as the X-inactive-specific transcript Xist [13],

share-processing features (e.g., 5′ m7G cap and poly(A) tail) with mRNAs [8] and have

specific, experimentally validated functions. However, the majority of lncRNA gene loci

might not function through their resulting products, but rather through the act of tran-

scription itself, which for instance can affect the expression of neighboring genes [14–

16]. In support of this view, studies have highlighted how ncRNA genes are associated

with early transcriptional termination of Pol II and their products undergo rapid post-

transcriptional degradation [3, 17–20], thus explaining their low nuclear abundance.

Further, recent studies indicate a possible scenario in which nascent transcripts from

protein-coding genes play a similar role by regulating chromatin remodeling [21]. For

example, the binding of Polycomb repressive complex 2 (PRC2) to genomic targets was

initially ascribed to a specific set of lncRNAs [22–25]. However, it was later shown that

PRC2 also binds nascent, unspliced mRNAs, which sequester the complex, thus pre-

venting gene silencing [26–29].

In addition to mRNAs and lncRNAs described above, downstream of gene transcripts

(DoGs) arises when Pol II terminates far downstream of the ends of genes [30]. These

readthrough transcripts appear to be linked to stress conditions, such as osmotic and

oxidative stress [30, 31]. It remains unclear whether transcription of DoGs has any gene

regulatory function, but possible roles range from antisense-mediated gene expression

control [32] to maintenance of local open chromatin structure. Moreover, their regula-

tion remains largely unknown. Nevertheless, the existence of DoGs increases the com-

plexity of transcriptome annotation, posing additional challenges to the understanding

of function and regulation of intergenic transcripts.

In a recent study [33], we performed RNA-seq of the nuclear and cytoplasmic com-

partments of untreated HeLa cells and found that an unexpectedly large fraction

(7.63%) of nuclear RNA-seq reads derived from intergenic genomic regions. Since the

majority of these reads (60.3%) could not be detected in the cytoplasmic samples, here,

we seek to investigate their transcriptional origin. We developed a computational

method to identify and classify the sources of intergenic transcription. We investigate

their characteristics, expression patterns, and epigenetic environment. Specifically, we
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observe that the largest fraction of intergenic RNA corresponds to DoGs, upstream of

gene transcripts (UoGs), which likely result from alternative TSSs upstream of annotated

genes, and linker of genes (LoGs), which are DoGs that continue into the neighboring

gene body. We find that most intergenic RNA is generated during transcription associated

with annotated genes and is confined to chromatin due to efficient degradation of DoGs

and LoGs by XRN2, and UoGs by the exosome. Most remaining intergenic RNA corre-

sponds to poorly spliced lncRNAs that are degraded by the exosome. We conclude that

most of the unannotated intergenic RNAs are the consequence of non-productive tran-

scription associated with known genes, and exert their potential functions locally, before

being rapidly removed through cellular quality control mechanisms.

Results
Identification of intergenic transcriptional units

To gain a comprehensive overview of the transcriptional landscape, we identified 38

publicly available datasets containing chromatin and nuclear fractionated RNA-seq

samples. These cover 5 human cell lines (HeLa, HEK293, HepG2, K562, HCT116) and

four subcellular fractions (cytosolic, nuclear, chromatin, and nucleoplasm). The initial

processing and mapping to the human genome yielded > 2.5 billion uniquely mapped

reads (Fig. 1 and Additional file 1: Table S1, S2, and S3). We employed StringTie [34]

to generate preliminary annotations of the transcriptional units expressed within each

dataset. We then merged the results into a comprehensive transcriptomic assembly

across the entire dataset and also included all genes present in the GENCODE refer-

ence annotation [35]. Finally, we employed a custom pipeline (see the “Methods” sec-

tion) to annotate transcripts expressed in intergenic regions and to define their

relationship with annotated genes (Figs. 1 and 2a; see the “Methods” section). We de-

fined transcriptional units (TU) as products of transcription from intergenic portions of

the genome, which can either take place as an independent event or in association with

features in the reference annotation.

We classified TUs into two broad groups based on their genomic location relative to

existing gene annotations (Fig. 2a, b). (i) Gene-associated TUs are those showing con-

tinuity of transcription from the body of annotated genes. These were further divided

into upstream of gene (UoG), downstream of gene (DoG), and linker of genes TUs

(LoG). (ii) Independent TUs are > 10 kb away from existing gene annotations and so

classed as purely intergenic. Although we use the term “independent TUs” for the sake

of clarity, it is possible that some might in the future end up annotated as new genes

that produce functional non-coding RNAs or perhaps even protein-coding mRNAs. In-

deed, up to 80% (1453) of these independent TUs overlap with transcriptional products

annotated in public databases (e.g., NONCODE [36], CHESS [37], and RefSeq [38];

Additional file 1: Table S4), while a number of the independent TUs we identified

(373) have not been reported in any of the aforementioned databases, thus indicating

that our results, on top of being supported by external sources, also expand the current

catalog of transcribed RNAs. In total, we classified 7411 TUs covering ~ 5.6% of the hu-

man genome (Fig. 2c). Both gene-associated and independent TUs are of comparable

lengths to previously annotated long non-coding RNA genes, ranging from 1 kb (the

minimum length threshold for a TU) to hundreds of kb (Fig. 2d).
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Assessing the expression levels in HeLa cells, it is apparent that the relative abun-

dance of TUs is higher in the nucleus (4.28% of mapped reads) compared with the

cytoplasm (1.34% of mapped reads; Fig. 2e). Moreover, within the nucleus, TUs tend to

be chromatin-associated (5.2% of mapped reads) rather than the nucleoplasm (1.21%)

(Fig. 2e). Intriguingly, we noticed that about 80% of these reads mapped to features

linked to transcription of previously annotated loci (i.e., gene-associated TUs), while

the remainder belongs to independent TUs (Fig. 2e). We also compared the normalized

expression levels of TUs with annotated genes (Fig. 2f). Protein-coding transcripts tend

to be the most highly expressed within the chromatin-associated and nucleoplasmic

compartments; however, in these subcellular fractions, both gene-associated and inde-

pendent TUs are more highly expressed than annotated lncRNAs. Additionally, we

found independent TUs tend to undergo less splicing than lncRNAs (Additional file 1:

Figure S1B). In agreement with previous reports [30, 39], DoGs and LoGs show the

highest expression among TUs, suggesting that levels of transcription outside annotated

loci primarily depend on the activity of annotated upstream features (Fig. 2f).

To investigate the properties of TUs in greater detail, we focused further analysis to

those with the strongest evidence:

� Both the gene-associated TU and neighboring genes must have TPM expression ≥1

(Additional file 1: Figure S1D) and length ≥ 5 kb (to avoid overlaps when assessing

meta-profiles).

Fig. 1 Flow chart of the data analysis pipeline. Schematic describing the main data processing steps,
intermediate and final outputs of the analysis pipeline, applied to RNA-seq (left side) and other sequencing
(NET-seq, right side) data. Procedures (blue) and tools (orange) are indicated
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� UoG, LoG, and DoG TUs must be associated with a protein-coding gene (Add-

itional file 1: Figure S1C), thus reducing the chance of including poorly annotated

genes with relatively unreliable start and end genomic coordinates (e.g.,

pseudogenes).

Fig. 2 General features of newly identified transcriptional units (TUs). a Schematic representation of the
gene-associated (green) and independent (yellow) transcriptional units annotated in this study. b Upper
panels: genome browser views of nuclear RNA-seq signals in HeLa cells, for example, TUs (red and blue
indicate RNA-seq reads mapping to the sense and antisense strands, respectively). Lower panels: genomic
annotations of pre-existing genes and newly identified TUs; horizontal line divides the features on the sense
(S) and antisense (A) orientations. Coverage is reported at 1× depth (reads per genome coverage (RPGC)). c
Comparison of the number of annotated and newly identified transcripts detected in the current RNA-seq
dataset (TPM≥ 1). d Comparison of transcript lengths. e Proportions of uniquely mapping RNA-seq reads
originating from different transcript types for the whole cell (left) and nuclear (right) subcellular fractions of
HeLa cells. f Distributions of expression levels of annotated and newly identified TUs for the chromatin-
associated (left panel) and nucleoplasm (right panel) subcellular fractions of HeLa cells
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� Independent TUs must be ≥10 kb from any annotated feature on the same strand

orientation to ensure that they are not transcribed as part of a known gene

(Additional file 1: Figure S1A).

These filtering criteria left 1604 gene-associated TUs (88 UoG, 1329 DoG, 187 LoG)

and 571 independent TUs. As controls, we paired gene-associated TUs with their cor-

responding protein-coding genes, and we identified 3462 lncRNA genes in a similar size

range to independent TUs.

Gene-associated transcription breaks gene boundaries

Next, we sought to understand the transcriptional origins of gene-associated TUs. Here,

we focus on data from HeLa cells unless stated otherwise, as it is the cell type with the

largest variety of measurements.

Figure 3 displays meta-profiles of diverse transcriptional measurements aligned to the

start and ends of TUs and protein-coding genes (Figure S2 for LoGs). All categories of

TUs display clear RNA-seq coverage in the nuclear and chromatin-associated fractions,

but in contrast to protein-coding genes, the signal is virtually lost in the cytoplasm

(Figs. 3a and S2A). There is a clear jump in expression levels at the gene boundaries

Fig. 3 Meta-profiles of transcriptional measurements around gene-associated TUs. Meta-profiles of
transcriptional measurements plotted relative to the start positions of UoGs and their associated protein-
coding genes (left-hand panels) and relative to the end positions of DoGs and their associated genes (right-
hand panels). a RNA-seq measurements in different subcellular compartments. b CAGE-seq measurements
in the sense and antisense strands. c NET-seq measurements for different Pol II CTD modifications. d ChIP-
seq measurements for histone marks and EP300 occupancy-associated transcriptional activities
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upon transition between the TU and associated gene, but TUs nonetheless display re-

markably high relative expression levels in the nuclear and chromatin compartments.

Since the novel TUs are transcribed by RNA Pol II, we asked if the unannotated TSSs

initiating UoG transcription have previously been detected through cap analysis of gene

expression (CAGE). To this end, we used annotated CAGE peaks derived from a large

collection of cell lines and tissues [40, 41]. UoGs display a slight enrichment of CAGE

peaks at the start site, but we could hardly detect any signal for DoGs and LoGs (Figs.

3b and S2B); this suggests that whereas UoGs show evidence of independent transcrip-

tional initiation, DoGs and LoGs are most likely generated from transcriptional read-

through of the upstream gene. The modest CAGE signal for UoGs (detected for 48 out

of 98 UoGs) suggests that they are not efficiently capped, in contrast to mRNAs initiat-

ing at annotated start sites of protein-coding genes (Fig. 3b). This indicates that the

majority of intergenic TUs might be designated as substrates for exonucleases and

prone to degradation [42, 43].

Figure 3c (and Additional file 1: Figure S3A) shows prominent Pol II occupancies

at the start sites of UoGs, albeit at lower levels than at the TSS of associated

genes. Together with the CAGE data, this possibly indicates the formation of a

pre-initiation complex (PIC) and therefore the existence of unannotated, upstream

TSSs. Active transcription of TUs is supported by mammalian native elongating

transcript sequencing (NET-seq) data, which identifies nascent RNA fragments at-

tached to transcriptionally engaged RNA Pol II [39]. NET-seq is capable of differ-

entiating between distinct transcriptional stages by mapping nascent RNAs

associated with different patterns of RNA Pol II C-terminal heptad repeat domain

(CTD) phosphorylation. The annotated and UoG TSSs display similar NET-seq

profiles, thus suggesting that the TUs are not the result of stochastic Pol II binding

but rather the outcome of coordinated transcriptional initiation events. Indeed, the

profile for tyrosine-1 (Y1P) phosphorylated Pol II—a hallmark of TSS-paused

protein-coding gene transcripts [17]—displays the highest signal at the start posi-

tions of both UoGs and protein-coding genes, with the former having a less pro-

nounced peak and a broader distribution of the signal. Moreover, serine-5 (S5P)

phosphorylated Pol II, which is mainly associated with TSS events such as co-

transcriptional capping and early transcriptional elongation [44], follows a pattern

similar to the total and Y1P profiles around these regions.

Threonine-4 (T4P) phosphorylation is a hallmark of terminating Pol II and causes a

characteristic NET-seq signal near transcription end sites (TESs) of protein-coding

genes [17]. Among protein-coding genes, the T4P profile peaks immediately after ca-

nonical TESs and remains high, while gradually decreasing towards the end of the asso-

ciated DoG (Fig. 3c). This observation implies that although Pol II is poised to

terminate after encountering the canonical TES, actual Pol II detachment might occur

several kilobases downstream, as previously reported [45]. LoGs represent a special

case, in which a high T4P signal after the TES of the upstream gene is maintained

throughout the intergenic space only to peak again at the TSS of the downstream gene

(Additional file 1: Figure S2C and S3B). This suggests either that transcription of LoGs

joins two adjacent transcripts thereby generating pseudo-bicistronic nascent RNAs or,

alternatively, that Pol II reaches the downstream gene and reinitiates transcription from

a T4P state. In both cases, the downstream gene is potentially dependent on the
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transcription and by extension the promoter state of its upstream gene, thus implying

the existence of co-regulation.

Finally, we examined the ChIP-seq profiles for four histone marks associated with

transcriptional activity, as well as the histone acetyltransferase EP300 (Fig. 3d and Add-

itional file 1: Figure S4A). Epigenetic modifications such as H3K4me3 and H3K27ac,

which are associated with active promoters and enhancers respectively [46, 47], are

enriched at both protein-coding and UoG start sites (Fig. 3d). Furthermore, the tri-

methylated forms of H3K27 and H3K9, commonly found at transcriptionally silenced

regions [46, 47], are depleted. Interestingly, the histone acetyltransferase EP300, which

regulates transcription of genes via chromatin remodeling, shows a comparable enrich-

ment in binding at both UoG TSSs and annotated TSSs (Fig. 3d). EP300 is also known

as a transcriptional coactivator, due to its ability to bind to transcription factors and

the transcription machinery, and consequently activates transcription [46, 47]. There-

fore, the presence of this protein more than 5 kb (size used for selecting the intergenic

features) upstream of the canonical TSS is intriguing, as it suggests that transcription

from the upstream intergenic regions is not merely the consequence of stochastic initi-

ation events, but rather a concerted and precisely regulated process.

Transcription from deep intergenic regions

Next, we focused on independent TUs. We noticed a number of similarities between

these elements and the 3426 control lncRNAs. Specifically, for both classes, we could

detect RNA-seq signal upstream of the TSS and downstream of the TES (Fig. 4a). This

is probably due to the sub-optimal annotation of these reference positions, a challen-

ging task considering the intrinsically low level of expression of such transcripts [48,

49]. Interestingly, the CAGE signal displays equal enrichment in both orientations

around the TSS of lncRNAs, possibly indicating that most of these RNAs originate

from divergent transcription (Fig. 4b). The NET-seq profiles show similar enrichment

patterns for total RNA Pol II and the CTD modifications TSSs and TESs of lncRNAs

and independent TUs (Fig. 4c and Additional file 1: Figure S3C). Finally, the H3K9me3

and H3K27ac profiles around the TSSs of both lncRNAs and independent TUs resem-

ble those of protein-coding genes and UoGs (Figs. 3d and 4d), highlighting equivalent

chromatin statuses. Thus, based on the transcriptional and related measurements, inde-

pendent TUs appear to be bona fide lincRNAs that eluded reference annotation.

Rapid degradation of chromatin-associated intergenic RNAs

We showed that both gene-associated and independent TUs are widespread across the

genome, and their expression levels in the nucleus are comparable to those of anno-

tated genes. Moreover, analysis of the transcribed loci did not highlight distinctive

characteristics that explain why TUs are found only in the chromatin cellular compart-

ment. Therefore, we hypothesized that there may be differences in the control of reten-

tion and stability of these transcripts.

First, we compared the expression levels of annotated RNAs and intergenic TUs be-

tween chromatin-associated and nucleoplasmic fractions. We found that unspliced

protein-coding and long ncRNA transcripts tend to be equally distributed between the
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two fractions, whereas TUs, in particular, DoGs and LoGs, are preferentially confined

to the chromatin-associated fraction (Fig. 5a and Additional file 1: Figure S5A).

The scarcity of these transcripts in the nucleoplasm suggests that they exert their

function, if any, bound to the chromatin fraction or that they are transcriptional by-

products that are rapidly degraded. We examined recently published RNA-seq data fol-

lowing knockdown or depletion of proteins involved in the processing and degradation

of transcriptional products: specifically, EXOSC3 [17], CSTF2 (and its paralog

CSTF2T), CPSF3 (also known as CPSF73) knockdowns in HeLa cells [39], and XRN2

depletion in HCT116 cells [50].

EXOSC3 is part of the RNA exosome complex; it possesses 3′ to 5′ exoribonuclease

activity, and it is involved in eliminating transcriptional by-products. Known substrates

include non-coding transcripts, such as promoter-upstream transcripts (PROMPTs),

mRNAs with processing defects [51, 52], and most prominently rRNA and snoRNAs,

as part of their normal processing and maturation in the nucleolus [53]. The EXOSC3

knockdown had little or no effect on transcripts of protein-coding genes and their

associated DoGs and LoGs; however, there is a marked effect on the stability of

lncRNAs, UoGs, and independent TUs in the nucleoplasmic fraction (Fig. 5b and

Additional file 1: Figure S5B). Moreover, the accumulation of these transcriptional

products, caused by the loss of a functional nuclear RNA exosome, is more dra-

matic in the nucleoplasm than in the chromatin fraction, suggesting that they are

generally targeted post-transcriptionally and cleared once they move away from the

chromatin environment.

Fig. 4 Meta-profiles of transcriptional measurements around independent TUs. Meta-profiles of
transcriptional measurements plotted relative to the start and end positions of independent TUs and
control long non-coding RNA genes. a–d as in Fig. 3
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Since we observed a predominant chromatin retention (Fig. 5a) and no effect of

EXOSC3 knockdown on DoGs and LoGs (Fig. 5b and Additional file 1: Figure S5B), we

hypothesized that other mechanisms must regulate these TUs. We examined the fac-

tors involved in processing the terminal regions of nascent transcripts: CSTF2 (and its

paralog CSTF2T), implicated in 3′ end cleavage and polyadenylation of pre-mRNAs;

CPSF3 (also known as CPSF73), a 3′ end-processing endonuclease; and XRN2, an exor-

ibonuclease with 5′ to 3′ activity. Indeed, knockdowns of CPSF3 and of CSTF2+

CSTF2T lead to increased levels of DoGs and LoGs (Fig. 5c and Additional file 1: Fig-

ure S5C), suggesting that degradation of these transcripts is strongly dependent on the

correct processing of the 3′ end of nascent transcripts. Downstream of cleavage at the

poly(A) signal by the CPSF/CSTF complex, the remaining 3′ by-product is depleted by

the 3′→5′ exonuclease XRN2 [54]. Hence, we evaluated the expression of these tran-

scripts in XRN2 depletion [50] to assess whether LoGs, like DoGs, are coupled with 3′

end processing of the upstream gene. XRN2 depletion greatly increased the expression

of DoGs and LoGs, while leaving other transcript types unchanged (Fig. 5d and Add-

itional file 1: Figure S5D), thus indicating that XRN2 activity indeed regulates DoG and

LoG abundance.

Discussion
In 2010, van Bakel and colleagues explored transcribed unannotated transcripts by

using tiling arrays and poly(A)+ RNA-seq technologies. Despite their study proving

valuable to better characterize intergenic fragments associated with transcription of

Fig. 5 Impact of nuclease depletion on TU expression. a Expression levels of protein-coding genes and TUs
in the chromatin and nucleoplasm fractions. b Relative nucleoplasmic-to-chromatin expression levels in
response to EXOSC3 knockdown and control siLuc treatments. c Expression levels in CSTF2+CSTF2T and
CPSF3 knockdowns relative to control in the chromatin fraction. d Expression levels in XRN2 knockdown
(via activation of the auxin-inducible degron system) and basal (uninduced; minus auxin) treatments relative
to unmodified XRN2 control in the nuclear fraction. p values were calculated using the two-sided Wilcoxon
rank sum test, with asterisks indicating statistical significance at the following thresholds: nsp > 0.05; *p ≤
0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001
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annotated genes, the methods used limited their detection potential. Indeed, the au-

thors were able to identify a large number of novel alternative exons, although the

functional implications of the intergenic transcripts they defined remained elusive [55].

Here, we take advantage of the large amounts of nuclear and chromatin subcellular

fraction RNA-seq and NET-seq data, which allow a deeper and more comprehensive

detection of short-lived long RNAs, and investigate their stability and degradation

mechanisms. As a result, we were able to expand the current catalog of intergenic

RNAs that are either associated with the transcription of annotated genes or produced

as independent transcriptional units.

Non-canonical transcription upstream of genes

To date, transcription upstream of canonical genes has been reported as a consequence

of bidirectional transcription from neighboring promoters or enhancers, with the tran-

script being generated in the antisense direction. In contrast to these transcripts, the

UoGs identified here originate from the same strand as the associated downstream

genes, thus limiting the possibility that these are products of enhancer- or promoter-

derived divergent transcription. The presence of CAGE peaks on opposite strands

around the beginning of these transcripts suggests that a minor fraction could instead

originate from convergent transcription [56]. Either way, transcription close and across

the canonical promoter region of the respective gene is expected to result in the regula-

tory impact of UoG units, such as altering chromatin accessibility, or recruitment of

Pol II and co-factors. Our study highlights examples in widespread used cell lines that

can be studied in depth leveraging further genome-wide transcription data (such as Hi-

C) or mechanistic analysis through genome editing.

Non-canonical transcription downstream of genes

Studies have recently highlighted the presence of widespread transcription of intergenic

regions downstream of protein-coding genes in mice and humans in response to heat

shock, osmotic stress, or oxidative stress [30, 31]. Although this form of transcriptional

readthrough has been ascribed to the mammalian stress response, here, we found evi-

dence for such behavior in unstimulated, normally proliferating cell lines. We observed

two categories of readthrough, which are characterized by distinctive patterns of Pol II

CTD phosphorylation. In the first group, DoGs arise from the transcription of canon-

ical genes that then continues for a few to hundreds of kilobases across intergenic space

(DoG), as previously reported [17, 30, 39]. These are marked by the sharp increase in

threonine 4 phosphorylation of Pol II (T4P) after the annotated TES, and the gradual

and eventual loss of Pol II binding with distance. In the second group, Pol II continues

transcribing to the next gene (LoG), thus hinting at the possibility of polycistronic tran-

scription in higher eukaryotes [57]. In this case, the T4P signal does not fade, suggest-

ing that most Pol II continues transcribing until it reaches the downstream gene. It is

not clear whether Pol II proceeds uninterrupted through the next gene or reinitiates a

separate transcriptional event. Co-regulation of genes in close proximity on the same

chromosome has previously been described [58], and the existence of LoGs could be

one of the factors explaining such observations.
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Functional consequences of non-canonical transcription on canonical genes

Although intergenic transcription has been commonly considered a consequence of per-

vasive transcription and, therefore, having no apparent functional role, accumulating evi-

dence indicates that such processes can have major repercussions on the activities of

neighboring genes [14]. Indeed, the effect of lncRNA transcription on gene activation or

repression has been reported by a few studies [15, 59–61]. Interestingly, this phenomenon

does not seem to be restricted to lncRNAs but also extends to protein-coding mRNAs

and, potentially, to all transcriptional events [21]. Gene-associated RNAs can recruit chro-

matin remodelers that are able to maintain an open chromatin state or act as binding plat-

forms for protein complexes at gene-proximal sites, such as the transcriptional factor Yin

and Yang 1 (YY1) [62] and the MLL complex subunit WD repeat-containing 5 (WDR5)

[63]. As a result, transcription upstream and downstream of annotated genes that we

identified in this study might be functionally important for maintaining an open chroma-

tin state and for the correct expression of neighboring genes. That these transcripts are

tightly associated with chromatin and are rapidly degraded by nuclear surveillance pro-

cesses, suggesting that their functions do not go beyond the course of transcription. For

example, DoGs are highly sensitive to XRN2-mediated degradation; it has been previously

reported that this protein promotes transcriptional termination at protein-coding genes

via the torpedo mechanism model, in which the exonuclease degrades the gene-associated

RNA until it reaches the elongation complex, consequently causing its termination [64–

66]. Hence, transcription of very long DoGs might underlie a longer engagement of RNA

Pol II and, consequently, its inability to readily detach from DNA and restart transcription

elsewhere and its contribution to maintain chromatin in an open state.

These mechanisms of transcription-associated chromatin regulation are not necessar-

ily confined to intergenic regions linked to previously annotated genes but might be

broadened to independent TUs. However, since these regions are usually found in

gene-poor portions of the genome, their products are more likely to exert their func-

tional role in trans. This and their similarities in terms of transcriptional activity, chro-

matin state, and degradation patterns to lncRNAs support the hypothesis that

independent TUs could be novel lncRNA loci.

Conclusions
In summary, we assembled publicly available RNA-seq data to identify and classify inter-

genic transcripts based on their expression and location relative to annotated genes. We

showed that gene-associated and independent RNAs have characteristic patterns of tran-

scription and that they are highly sensitive to nuclear degradation processes. Our data are

consistent with recently reported chromatin remodeling and gene expression regulatory

mechanisms associated with transcription. Collectively, the results expand the current cat-

egories in gene annotation and provide the tools to further investigate the underappreci-

ated role of intergenic transcription as a function of gene expression and regulation.

Methods
Read alignment and post-processing

Sequencing quality checks were performed on all experiments using FastQC [67].

Adaptor sequences were removed using TrimGalore (v0.4.4_dev) [68] with default
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parameters. Reads were filtered against human rRNA and tRNA sequences obtained from

the NCBI using Bowtie2 (v2.3.3.1) [69] with the option --sensitive-local. Reads that failed

to align were mapped with STAR (v2.5.3a) [70] to UCSC hg38/GRCh38 genome assembly

using GENCODE (v27) gene annotation [35] as a reference, with the following parame-

ters: --twopassMode Basic --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --sjdbScore

1 --outFilterMultimapNmax 1 --outFilterMismatchNmax 999 --outFilterMismatchNover-

ReadLmax 0.04 --outFilterType BySJout --outSAMattributes All --outSAMtype BAM Sor-

tedByCoordinate, and specific options for gapped (--alignIntronMin 20 --alignIntronMax

1000000 --alignMatesGapMax 1000000) and ungapped (--alignIntronMax 1 --alignMa-

tesGapMax 300) alignments. PCR duplicates were removed using Picard MarkDuplicates

(v2.18.3) with default parameters. Quantification of expression was performed using

QoRTs (v1.3.0) [71] and the GENCODE (v27) gene annotation [35].

Genomic coverage tracks

Deduplicated unique alignments were converted to stranded normalized coverage big-

Wig files using deeptools (v3.0.2) [72] with --normalizeUsing CPM --binSize 20

--smoothLength 60 options, and --filterRNAstrand for the selection of forward and re-

verse strands.

De novo transcriptome assembly

Deduplicated uniquely mapped reads were assembled into a de novo annotation GTF

using StringTie (v1.3.4c) [34] with the GENCODE (v27) gene annotation [35] as a ref-

erence, and the following parameters: -f 0.2 -g 100 -j 3 -t. The individual annotation

GTFs from all wild-type RNA-seq datasets (no treatment condition was used to anno-

tate the intergenic regions) were then used as input for StringTie with the --merge op-

tion to generate a non-redundant set of predicted transcripts. The output, which

consists of a GTF file with merged gene models, was filtered using the gffcompare util-

ity [73] with the -C option to discard predicted transcripts that were fully contained

within larger annotated regions.

Identification of intergenic transcriptional units

A custom pipeline written in R was used to process the GTF file generated as described

above. The pipeline performs several steps, the first of which is the discrimination of

the purely intergenic regions (i.e., defined using the sequencing data) from the known

features (i.e., already present in the GENCODE gene annotation). This operation is per-

formed by the setdiff() function from the GenomicFeatures R package [74] on the

gffcompare-generated GTF and GENCODE reference annotation files. Intergenic re-

gions with length ≤ 1 kb are discarded. Although these can represent true signals, the

low number of supporting reads observed in these small regions can be seen as a con-

sequence of misannotation or misalignment. The remaining are further divided into

“gene-associated” and “independent” transcriptional units (“gene-associated TUs” and

“independent TUs,” respectively) based on whether they originate from annotated

genes, thus showing transcriptional continuity with the gene body, or from regions de-

void of annotated features, and therefore, they are considered independent events of
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transcription. Gene-associated transcriptional units are assigned to different sub-groups

depending on their position and connection to the neighboring gene(s):

� Upstream of gene (UoG): the unit is located upstream of the associated gene.

� Downstream of gene (DoG): the unit is located downstream of the associated gene.

� Linker of genes (LoG): the unit is located between two genes and transcriptionally

associated with them.

To confirm the co-occurrence of the annotated gene(s) and gene-associated features,

their expression is re-assessed across the RNA-seq datasets within R using a custom-

ized countOverlapsUnion() function. Features are considered co-transcribed if

expressed (TPM ≥ 1) in the same cell line and in at least two datasets. At this level, the

categorization is also re-evaluated and, if necessary, TUs can be re-assigned to the

proper sub-group (e.g., a linker of gene TU whose downstream gene is not expressed

will become a downstream of gene TU).

Independent TU comparison with public databases

Expressed independent TUs were used as input for BEDtools intersect to calculate the

individual overlaps with annotated features retrieved from NONCODE [36], CHESS

[37], and RefSeq [38] databases, using the options -s (stranded) and -f (to test the frac-

tions of overlaps from 0.1 to 1). The number of independent TUs not annotated in any

of the databases was obtained by performing sequential intersections (adding the op-

tions -wa -v).

Splicing analysis

Deduplicated unique alignments were parsed using samtools [75] view, and gapped

alignments (i.e., reads encompassing known or putative splice junctions) were extracted

based on their CIGAR information (i.e., whether or not it contained “N”). Reads were

then assigned to “long ncRNA” or “independent TU” features using the countOverlap-

sUnion() function from the GenomicFeatures R package [74]. For each dataset, the frac-

tion of junction reads was calculated over the total number of deduplicated unique

reads.

Selection of HeLa TUs and metadata profiles

Since the large majority of data available for validation derived from HeLa cells, we de-

cided to focus our analysis of intergenic features only to those expressed in this cell

line. Therefore, we generated a set of annotated genes and gene-associated and inde-

pendent TUs where each feature had an average expression of ≥1 TPM across the HeLa

RNA-seq datasets. In addition, we required the gene-associated features to be con-

nected to annotated protein-coding genes, thus reducing the chance to include poorly

annotated genes for which start and end genomic coordinates are not reliable (e.g.,

pseudogenes). We retained only the independent TUs located ≥10 kb from any anno-

tated feature on the same strand orientation, to ensure that their transcription is not

directly linked to known genes. Finally, we discarded features with length < 5 kb to

avoid signal overlaps between the start and end positions in metadata profiles.
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The metadata profiles were generated using the CPM-normalized coverage bigWig

files (see “Genomic coverage tracks” section) and a custom wrapper of the ScoreMatrix-

Bin() function from the genomation R package [76]. The wrapper function is used to fa-

cilitate strand splitting, centering, and resizing (i.e., ±5 kb from region start or end

position), binning (i.e., 200 bins over the 10-kb window), and normalization and aver-

aging of the signal. When not specified in the figure legend, normalization was per-

formed by dividing the bins of each feature (or group of features in case of paired

annotated gene and its gene-associated TU) by the value of the bin with the higher

count across the region.

Epigenetic modification profiles

We collected the “fold change over control” and merged replicates ChIP-seq bigWig

files from ENCODE. The list of epigenetic modifications and associated accession num-

bers can be found in Additional file 1: Table S3. The ChIP-seq signals across the re-

gions of interest were calculated using the wrapper function described in the previous

section.

CAGE peak profiles

We retrieved the hg38 CAGE reprocessed data [40] from the FANTOM Consortium

[77]. The density of the CAGE peaks (phases 1 and 2) was calculated using the wrapper

function described in the “Selection of HeLa TUs and metadata profiles” section, with-

out applying any normalization.

Quantification of expression and degradation

We collected data from cells in wild-type/untreated conditions and after the knock-

down of several proteins from different sources (Additional file 1: Table S2). The data-

sets were processed as described in the “Read alignment and post-processing” section.

Deduplicated uniquely mapped reads were loaded into R using the GenomicAlignments

R package [74], and the expression of the features quantified with the countOverlapsU-

nion() function. The estimateSizeFactorForMatrix function from the DESeq2 R package

[78] was used to normalize the counts for each group of experiments. The ggpubr R

package was used to visualize the results and perform the statistical tests (i.e., two-

sided Wilcoxon rank sum test).
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