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We establish a family of inequalities that allow one to estimate the Lq-norm of 
a matrix-valued field by the Lq-norm of an elliptic part and the Lp-norm of the 
matrix-valued curl. This particularly extends previous work by Neff et al. and, as 
a main novelty, is applicable in the regime p = 1.
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1. Introduction

1.1. Korn-Maxwell-type inequalities

Coercive or Korn-type inequalities are the key ingredient for the treatment of a variety of problems from 
elasticity or fluid mechanics [8,9,20]. In its most basic form, the classical Korn inequality asserts that for 
each 1 < p < ∞ there exists a constant c = c(p) > 0 such that for all u ∈ C∞

c (R3; R3) there holds

‖Du‖Lp(R3) � c‖ε(u)‖Lp(R3), (1.1)

where ε(u) := 1
2 (Du + Du�) is the symmetric gradient of u. As ε(u) is in general a weaker quantity than 

the full gradient Du, inequalities such as (1.1) are non-trivial and usually arise as a consequence of singular 
integral estimates. The latter necessitates the exponent restriction 1 < p < ∞ as (1.1) fails to hold for p = 1
by a celebrated counterexample due to Ornstein [24].
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There are several ways to generalise inequalities of the form (1.1). One possibility to do so are the so-called 
Korn-Maxwell inequalities that arise, for example, in the mathematical theory of elasticity or plasticity, 
respectively. Such inequalities have been considered and studied extensively by Neff and coauthors, cf.
[18,19,22,23]; one form thereof is given by

‖F‖Lp(Ω) � c(‖F sym‖Lp(Ω) + ‖ curl(F )‖Lp(Ω)) for F ∈ C∞
c (Ω;R3×3) (1.2)

for open and bounded sets Ω ⊂ R3. Here, F sym := 1
2 (F + F�) is the symmetric part of the R3×3-valued 

map F and curl(F ) denotes its row-wise curl. Let us note that if F ∈ C∞
c (Ω; R3×3) with curl(F ) = 0, 

then F is a gradient, and so (1.2) yields (1.1). Based on the zero boundary values of the admissible maps, 
we refer to (1.2) as Korn-Maxwell inequality of the first kind. Another relevant variant of (1.2) is given 
by replacing the symmetric part of F on the right-hand side of (1.2) by its trace-free or deviatoric part 
F dev := F sym − 1

3 tr(F )13, where 13 denotes the (3 ×3)-identity matrix. As established in [19], the analogue 
of (1.2) reads

‖F‖Lp(Ω) � c(‖F dev‖Lp(Ω) + ‖ curl(F )‖Lp(Ω)) for F ∈ C∞
c (Ω;R3×3) (1.3)

for open and bounded sets Ω ⊂ R3. The aim of this paper is to provide a common gateway to inequalities 
of the form (1.2) and their natural modifications, the Korn-Maxwell-Sobolev inequalities. This particularly 
motivates a framework that is both applicable to more general operators than the symmetric or trace-free 
gradient and to the borderline case p = 1, a theme that shall now be described in detail.

1.2. Korn-Maxwell-Sobolev-type inequalities

We start our discussion by noting that both (1.2) and (1.3) cannot hold for p = 1. This can be seen by 
taking F to be gradients, F = ∇u, and recalling that e.g. (1.1) does not extend to p = 1 by Ornstein’s 
Non-Inequality [24,17]. On the other hand, both inequalities (1.2) and (1.3) do not involve the requisite 
exponents that admit suitable scaling. For 1 � p < 3 instead, we consider the following inequality:

‖F‖Lp∗ (Ω) � c(‖F sym‖Lp∗ (Ω) + ‖ curl(F )‖Lp(Ω)) for F ∈ C∞
c (Ω;R3×3), (1.4)

where p∗ := 3p
3−p is the Sobolev conjugate of p. Clearly, if p = 3 or p > 3, the Lp∗

-norms should be replaced 

by the BMO- or corresponding C0,1−3/p-Hölder (semi)norms, respectively. Postponing the incorporation of 
other function spaces, we now set up the framework for the main results of the paper. To this end, let A be 
a linear, homogeneous differential operator of order one on R3 from R3 to some RN . By this we understand 
that A has a representation

Au :=
∑

j∈{1,2,3}
Aj∂ju, u : R3 → R3 (1.5)

with fixed linear maps Aj : R3 → RN . Following Hörmander and Spencer [13,30], we call A elliptic
provided for each ξ ∈ R3 \ {0} the symbol map

A[ξ] :=
∑

j∈{1,2,3}
ξjAj : R3 → RN (1.6)

is injective. Adopting the viewpoint of [10,26], Au = A[∇u] for some linear map A ∈ L (R3×3; RN ), and we 
call A the matrix representative of A; equally, every A ∈ L (R3×3; RN ) induces an operator A by means of 
Au := A[∇u]. Our main theorem then is this:
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Theorem 1.1 (Korn-Maxwell-Sobolev I). Let 1 � p < 3 and N ∈ N. Then the following are equivalent for 
A ∈ L (R3×3; RN ):

(1) A induces an elliptic operator A of the form (1.5).
(2) There exists a constant c = c(p, A) > 0 such that

‖F‖Lp∗ (Ω) � c(‖A[F ]‖Lp∗ (Ω) + ‖ curl(F )‖Lp(Ω)) (1.7)

holds for all open sets Ω ⊂ Rn and F ∈ C∞
c (Ω; R3×3).

In the case where 1 < p < ∞ and Ω ⊂ R3 is bounded, the same method underlying the proof of the 
previous theorem yields that the estimate

‖F‖Lp(Ω) � c(‖A[F ]‖Lp(Ω) + ‖ curl(F )‖Lp(Ω)) for F ∈ C∞
c (Ω;R3×3) (1.8)

is equivalent to A inducing an elliptic operator A of the form (1.5), see the discussion at the end of Section 2.1. 
By smooth approximation, this gives us back the corresponding inequalities considered in [18,19].

The proof of Theorem 1.1 together with various extensions is provided in Section 2. The paper then is 
concluded by discussing Korn-Maxwell-Sobolev-type variants of (1.2) and (1.3) on cubes in the situation of 
non-zero boundary values in Section 3 for the particularly important case of the symmetric and trace-free 
symmetric gradient operators. Lastly, the appendix provides an extension theorem for divergence-free vector 
fields.

Let us note that, when preparing the final version of the manuscript, we became aware of the recent 
preprint [4] of Conti & Garroni which also uses the Bourgain-Brezis estimate for solenoidal vector fields 
to arrive at a special case of Theorems 1.1 and 3.1 for the symmetric gradient operator A = 1

2 (D+D�), cf.
[4, Thm. 1.2]. Whereas [4] focuses on the symmetric gradient and a SO(n)-rigidity result [4, Thm. 1.1], our 
paper rather concentrates on a characterisation of operators A to yield such inequalities (Section 2), leading 
to a unifying theory for all 1 � p < 3; also note that Section 3 proceeds slightly differently and covers the 
trace-free symmetric gradient as well.

Notation

For a vector field F : R3 → R3×3, we denote F j the j-th row of F , j ∈ {1, 2, 3}. For vectors a, b ∈ Rn, 
we denote 〈a, b〉 the euclidean inner product on Rn, and for matrices A = (aij), B = (bij) ∈ Rn×n, we use 
the notation 〈A, B〉 =

∑
ij aijbij ; the meaning will be clear from the context. The n-dimensional Lebesgue 

measure will be denoted L n, and the symbol F represents the Fourier transform as usual.

2. Proof of Theorem 1.1

2.1. Korn-Maxwell inequality of the first kind

In this section we establish Theorem 1.1. As a vital ingredient, we require

Lemma 2.1 (of Mihlin-Hörmander type [6, Thm. 4.13]). Let m ∈ C∞(Rn \ {0}) be a function that is 
homogeneous of degree zero and Tm the operator given by (Tmf )̂ = mf̂ , then there exist a ∈ R and Θ ∈
C∞(Sn−1) with zero average over Sn−1 such that for any f ∈ C∞

c (Rn) there holds (with p.v. denoting the 
Cauchy principal value)

Tmf = af + p.v.
Θ( ·

|·| )
n

∗ f,
| · |
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and hence is an Lp-bounded operator for any 1 < p < ∞.

Moreover, we recall that for 0 < s < n and f ∈ L1
loc(Rn), the Riesz potential of order s is defined by

Isf(x) := 1
γ(s)

ˆ

Rn

f(y)
|x− y|n−s

dy, x ∈ Rn,

where

γ(s) :=
πn/22sΓ

(
s
2
)

Γ
(
n
2 − s

2
) .

Proof. We may suppose that Ω = R3, otherwise we extend F by zero to the entire R3. Ad (1) ⇒ (2). Let 
1 � p < 3. Writing F = (F 1, F 2, F 3)� with F j ∈ C∞

c (R3; R3), for each j ∈ {1, 2, 3}, we apply the Helmholtz 
decomposition to F j to obtain F j = F j

div + F j
curl, where F j

div is the divergence-free and F j
curl the curl-free 

part of F j . As F j ∈ C∞
c (R3; R3), one can check by vector-calculus identities (or Fourier transform) that 

F j
div and F j

curl can be obtained from F by means of

F j
div(x) = 1

4π curlx
ˆ

R3

curl(F j(y))
|x− y| dy,

F j
curl(x) = − 1

4π∇x

ˆ

R3

div(F j(y))
|x− y| dy.

(2.1)

We put Fdiv := (F 1
div, F

2
div, F

3
div)� and Fcurl := (F 1

curl, F
2
curl, F

3
curl)�. With the Helmholtz decomposition and 

the representation (2.1), we have with p∗ = 3p
3−p

‖F‖Lp∗ (R3) � ‖Fdiv‖Lp∗ (R3) + ‖Fcurl‖Lp∗ (R3) =: I + II, (2.2)

and depending on p, the single terms are treated differently as follows.
Ad I, Case 1 < p < 3. By the fractional integration theorem (see, e.g. [32, Theorem 1 on p. 119]) we have 

that if p > 1 and s > 0 satisfy 1 < sp < n, then Is : Lp(Rn) → L
np

n−sp (Rn) boundedly. Therefore, by (2.1)1
and the fractional integration theorem with s = 1 and n = 3, we consequently have with c = c(p) > 0

I �
∑

j∈{1,2,3}

1
4π

∥∥∥∥∇( 1
| · | ∗ curl(F j)

)∥∥∥∥
Lp∗ (R3)

� c
∑

j∈{1,2,3}

∥∥∥∥ 1
| · |2 ∗ curl(F j)

∥∥∥∥
Lp∗ (R3)

� c
∑

j∈{1,2,3}
‖ curl(F j)‖Lp(R3) � c‖ curl(F )‖Lp(R3).

(2.3)

Ad I, Case p = 1. It is well-known that the fractional integration theorem does not extend to p = 1 for 
general functions. However, the case we treat has the additional information that

div curl(F j) = 0 (2.4)

in the sense of distributions for j ∈ {1, 2, 3}. Therefore we may use the Bourgain-Brezis estimate 
‖T‖L3/2(R3) � c‖ curlT‖L1(R3) for divergence-free T ∈ L1

loc(R3; R3) (cf. [1, Thm. 2]) or the inequality 
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(1.3) on p. 294 of [28], respectively, in place of the classical theorem on fractional integration to conclude 
the desired result with the rest of the argument unchanged.

We now come to the estimation of II. By ellipticity of A, cf. (1.6), for i ∈ {1, 2, 3} the Fourier multiplication 
operator

T i
A : ψ �→ F−1[ξi(A∗[ξ]A[ξ])−1A∗[ξ]ψ̂(ξ)] (2.5)

satisfies T i
A(Aψ) = ∂iψ for ψ ∈ C∞

c (R3; R3). The symbol map R3 \ {0}  ξ �→ ξi(A∗[ξ]A[ξ])−1A∗[ξ] ∈
L (RN ; R3) is of class C∞(R3 \ {0}; L (RN ; R3)) and homogeneous of degree zero. Lemma 2.1 thus implies 
that T i

A extends to an Lq-bounded operator for all 1 < q < ∞. Applying this result componentwise, for 
each 1 < q < ∞ there exists c = c(q, A) > 0 such that

‖Fcurl‖Lq(R3)
(2.1)2
� c

∥∥∥∥∇( 1
| · | ∗ div(F l)

)
l=1,2,3

∥∥∥∥
Lq(R3)

� c
∑

i∈{1,2,3}

∥∥∥∥T i
A

(
A
(( 1

| · | ∗ div(F l)
)
l=1,2,3

))∥∥∥∥
Lq(R3)

� c

∥∥∥∥A(( 1
| · | ∗ div(F l)

)
l=1,2,3

)∥∥∥∥
Lq(R3)

� c

∥∥∥∥A [
∇
( 1
| · | ∗ div(F l)

)
l=1,2,3

]∥∥∥∥
Lq(R3)

� c ‖A[Fcurl]‖Lq(R3) � c ‖A[F ]‖Lq(R3) ,

(2.6)

since the entries of A[F curl] are linear combinations of the entries of A[F ], and (2) follows with q = 3p
3−p .

Ad ‘(2) ⇒ (1)’. This is a standard construction which we review only briefly: Suppose that (2) holds. 
Applying (1.7) to F = ∇u for u ∈ C∞

c (R3; R3), (1.7) implies ‖∇u‖Lp∗ (R3) � c‖Au‖Lp∗ (R3). Then a classical 
construction1 (see [5, Prop. 4.1] for the precise argument in a more general context) implies that A must 
be elliptic. The proof is complete. �

If Ω ⊂ R3 is open and bounded, Hölder’s inequality implies that ‖I1f‖Lq(Ω) � c(q, diam(Ω))‖f‖Lq(Ω) for 
f ∈ C∞

c (Ω) for any 1 � q < ∞. With this estimate instead of (2.3), (1.8) follows; however, note that this 
estimate does not scale conveniently.

2.2. Variations on Korn-Maxwell-Sobolev-type inequalities

We conclude this section by discussing several other embeddings. The underlying approach is the same 
as for Theorem 1.1, now invoking boundedness properties of fractional and singular integral operators on 
different function spaces. Suppose that item (1) of Theorem 1.1 holds.

Limiting Korn-Maxwell-Sobolev. If p = 3 in Theorem 1.1, we let F ∈ C∞
c (R3; R3×3) and proceed exactly 

as up to (2.2), where Lp∗
(R3; R3×3) is now replaced by the space BMO(R3; R3×3). Since

I1 : Ln(Rn) → BMO(Rn) boundedly, (2.7)

1 Namely, there exist v ∈ R3 \ {0} and ξ ∈ R3 \ {0} such that A[ξ]v = 0. Then put ψk(x) := ρ(x)ηk(〈x, ξ〉)v for some 
ρ ∈ C∞

c (B(0, 1); [0, 1]) with 1B(0,1) � ρ � 1B(0,2) and ηk ∈ C∞
c (R) with supk ‖ηk‖Lp(R) < ∞ and limk→∞ ‖η′

k‖Lp(R) = ∞. Then 
supk ‖Aψk‖Lp(R3) < ∞ but supk ‖Dψk‖Lp(R3) = ∞.
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the analogue of (2.3) yields (upon redefining I in the obvious way) I � c‖ curl(F )‖L3(R3). On the other hand, 
the singular integral operators underlying (2.5) map BMO(R3; RN ) → BMO(R3; R3) boundedly (see, e.g. 
[25, Theorem 1.1 on p. 296] or [31, Chpt. IV.6.3(b)]). Thus we obtain

‖F‖BMO(R3) � c
(
‖A[F ]‖BMO(R3) + ‖ curl(F )‖L3(R3)

)
(2.8)

for all F ∈ C∞
c (R3; R3×3), where c > 0 is a constant. Here, we have set

‖u‖BMO(Rn) := sup
Q non-degenerate cube

 

Q

∣∣∣∣∣∣u−
 

Q

u dy

∣∣∣∣∣∣ dx.
Korn-Maxwell-Morrey. Now suppose that 3 < p < ∞. Then it is well-known that there exists a constant 

c = c(p) > 0 such that

‖I1f‖Ċ0,α(R3) � c‖f‖Lp(R3) for all f ∈ C∞
c (R3),

where α = 1 − 3
p and ‖ · ‖Ċ0,α(R3) is the corresponding α-Hölder seminorm. The singular integral operator 

underlying (2.5) is bounded as a map Ċ0,α(R3; RN ) → Ċ0,α(R3; R3); this can be seen by the same argument 
as in (2.11)ff. below, realising the Hölder spaces as Besov spaces (as 0 < α < 1) and appealing to [11, 
Cor. 6.7.2]. We thus obtain the estimate

‖F‖
Ċ0,1− 3

p (R3)
� c

(
‖A[F ]‖

Ċ0,1− 3
p (R3)

+ ‖ curl(F )‖Lp(R3)
)

(2.9)

for all F ∈ C∞
c (R3; R3×3), where c > 0 is a constant.

Korn-Maxwell-Lorentz. Let 1 � p < ∞ and 1 � q � ∞. Recall that for u ∈ L1
loc(Rn) its (p, q)-Lorentz 

norm is given for 1 < q < ∞ by

‖u‖Lp,q(Rn) := p
1
q

( ∞̂

0

tqL n({|u| � t})
q
p
dt
t

) 1
q

whereas ‖u‖Lp,∞(Rn) := supt>0 tL
n({|u| � t}) 1

p . Then the operator defined in (2.5) maps Lr → Lr bound-
edly for each 1 < r < ∞, and L1 → L1,∞ boundedly. Hence, by interpolation (see [14]) the operator defined 
in (2.5) extends to a bounded linear operator on Lorentz spaces Lp,q(Rn) for 1 < p < ∞ and all 1 � q < ∞. 
Now, given 1 < p < 3, put p∗ := 3p/(3 − p). Then O’Neil’s classical convolution inequality implies that 
I1 : Lp,q(R3) → Lp∗,q(R3) boundedly for any q ∈ [1, ∞]. Then we obtain as above

‖F‖Lp∗,q(R3) � c
(
‖A[F ]‖Lp∗,q(R3) + ‖ curl(F )‖Lp,q(R3)

)
for all F ∈ C∞

c (R3;R3×3).

This estimate equally persists for p = 1 but must be approached differently. Namely, taking into account 
(2.4), by an estimate of Hernandez and the second named author [12, Theorem 1.1] one has the inequality

‖I1 curl(F )‖L3/2,1(R3) � C‖ curl(F )‖L1(R3).

This completes the argument for the endpoint case q = 1, while the remaining cases 1 < q � +∞ then 
follow from a classical inequality due to Calderón,

‖g‖L3/2,q(R3) � C‖g‖L3/2,1(R3)
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for all g ∈ L3/2,1(R3). One could alternatively argue these cases via Van Schaftingen’s duality estimate 
[35, Prop. 8.7].

Fractional Korn-Maxwell. Let θ ∈ (0, 1) and p ∈ [1, ∞). The Wθ,p-Sobolev seminorm of a compactly 
supported function u ∈ L1

loc(Rn) then is given by

‖u‖Ẇθ,p(Rn) :=
( ¨

Rn×Rn

|u(x) − u(y)|p
|x− y|n+θp

dx dy
) 1

p

.

Given θ ∈ (0, 1) and 1 � p < 3, the desired inequality now takes the form

‖F‖Ẇθ,p∗(θ)(R3) � c
(
‖A[F ]‖Ẇθ,p∗(θ)(R3) + ‖ curl(F )‖Lp(R3)

)
(2.10)

for F ∈ C∞
c (R3; R3×3), where p∗(θ) := 3p/(3 −(1 −θ)p) denotes the associated Sobolev embedding exponent. 

Toward (2.10), we adopt a slightly more general viewpoint since multiplier theorems are most conveniently 
stated in terms of homogeneous Besov spaces. Consider the kernel from Lemma 2.1

K(x) :=
Θ( x

|x| )
|x|n , x ∈ Rn \ {0},

for Θ ∈ C∞(Sn−1) with zero mean over Sn−1. This kernel satisfies the three Calderón-Zygmund-Hörmander 
conditions

sup
0<R<∞

1
R

ˆ

B(x,R)

|K(x)| |x|dx � A1, (2.11)

sup
y∈Rn\{0}

ˆ

{x : |x|�2|y|}

|K(x− y) −K(x)|dy � A2, (2.12)

sup
0<R1<R2<∞

∣∣∣∣∣∣∣
ˆ

{x : R1<|x|<R2}

K(x) dx

∣∣∣∣∣∣∣ � A3 (2.13)

for three finite constants A1, A2, A3 � 0. Here, (2.11) and (2.13) straightforwardly follow by passing to polar 
coordinates, where we moreover use for (2.13) that K has vanishing mean over Sn−1. By [6, Prop. 5.2] this 
follows from |∇K(x)| � C|x|−n−1 for all x ∈ Rn \ {0} and a constant C > 0, here being a consequence 
of Θ ∈ C∞(Rn \ {0}). In conclusion, since (2.11)–(2.13) are satisfied, [11, Cor. 6.7.2] implies that Tm from 
Lemma 2.1 is a bounded linear operator on the homogeneous Besov space Ḃs

p,q(Rn) for all 1 � p � ∞, 
0 < q � ∞ and s ∈ R. By a component-wise application, this carries over to T i

A given by (2.5) as well.
Given 1 < p < 3 and θ ∈ (0, 1), put p := p∗(θ) for brevity. Then, e.g., [33, Chpt. 5.2.3, Thm. 1, Chpt. 2.7.1, 

Thm. 1(ii)] and [15, Thm. 2.1] imply that for any 1 < q < ∞ there holds

Lp(Rn) � Ḟ0
p,2(Rn) ↪→ Ḟθ−1

p,q (R3) I1−→ Ḟθ
p,q(R3), (2.14)

and Ḟθ
p,q(R3) ↪→ Ḃθ

p,q(R3) boundedly provided q � p with the corresponding homogeneous Triebel-Lizorkin 
spaces Ḟs

p,q. For such θ, p, q we then obtain with the above multiplier estimate

‖F‖Ḃθ
p,q(R3) � c

(
‖A[F ]‖Ḃθ

p,q(R3) + ‖ curl(F )‖Lp(R3)

)
, F ∈ C∞

c (R3;R3×3). (2.15)
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For p = 1, the requisite modification of (2.14) merely yields (2.15) with the homogeneous Hardy-H1-norm 
of curl(F ) instead of ‖ curl(F )‖L1(R3). Yet, validity of (2.15) for p = 1 can be seen as follows: By Van 
Schaftingen’s duality estimate [35, Prop. 8.7] we have for ϑ ∈ (0, 1) and 1 < p2, q2 < ∞ with ϑp2 = n

ˆ

Rn

〈Φ, ϕ〉 dx � c‖Φ‖L1(Rn)‖ϕ‖Ḃϑ
p2,q2 (Rn) (2.16)

for all Φ ∈ L1(Rn; Rn) with div(Φ) = 0 in D ′(Rn) and all ϕ ∈ C∞
c (Rn; Rn). In consequence, a row-wise 

application of (2.16) with ϑ = 1 − θ and p2 = 1′ yields

‖F div‖Ḃθ
1,q(R

3) � c

∥∥∥∥∇( 1
| · | ∗ curl(F )

)∥∥∥∥
Ḃθ

1,q(R
3)

� c ‖curl(F )‖Ḃθ−1
1,q (R3) � c ‖curl(F )‖(Ḃ1−θ

1′,q′ (R
3))′ � c‖ curl(F )‖L1(R3).

Now (2.10) follows upon realising that Ẇθ,p(R3) � Ḃθ
p,p(R3); other variants of (2.10) involving other Besov 

spaces can be obtained similarly.

Remark 2.2. For an open set with Lipschitz boundary and 1 < p < ∞, the space Wcurl,p
0 (Ω; R3×3) may be 

introduced as the completion of C∞
c (Ω; R3×3) for the norm ‖u‖curl,p := (‖u‖pLp(Ω) + ‖ curl(u)‖pLp(Ω))

1
p . Such 

fields can be characterised as those u ∈ Lp(Ω; R3×3) such that curl(u) ∈ Lp(Ω; R3×3) and the componentwise 
tangential traces ui × ν∂Ω vanish in B−1/p

p,p (∂Ω; R3), i ∈ {1, 2, 3} (see, e.g., [18, Sec. 3]). By density, all of 
the previous inequalities on open and bounded Lipschitz domains Ω persist for such maps.

3. Korn-Maxwell-Sobolev inequality of the second kind

We conclude the paper by addressing a variant of the Korn-Maxwell-Sobolev type inequality on domains 
that allows for non-zero boundary values. Here our focus is on the specific operators ε or εD as alluded to 
in the introduction, cf. (1.2) and (1.3); the case of general elliptic operators is addressed below in Open 
Question 3.4.

To keep our exposition at a reasonable length, we work with the unit cube Q := (0, 1)3 in R3 throughout; 
see Open Question 3.4 for more general domains. We note that inequalities (1.2) and (1.3) do not extend 
to maps F ∈ C∞(Q; R3×3). In fact, should (1.2) hold for all F ∈ C∞(Q; R3×3), we necessarily have

(F sym ≡ 0 and curl(F ) = 0) =⇒ F ≡ 0 in Q.

To see this, curl(F ) = 0 implies by virtue of Q being simply connected that F = ∇u for some u ∈ C∞(Q; R3), 
and F sym = 0 yields F sym = ε(u) = 0. By connectedness of Q, u must be of the form u(x) = Ax + b for 
some A ∈ R3×3

skew and some b ∈ R3; maps of this form are called rigid deformations and denoted R(R3). But 
then F = ∇u = A which, in general, does not equal zero. A similar argument also applies to inequalities of 
the form (1.3), where we must now use the fact that the nullspace of εD(u) := ε(u) − 1

n div(u)1n for n � 3
is given by the conformal Killing vectors

K(Rn) := {p : x �→ 2〈a, x〉x− |x|2a + Q′x + ρx + b : a, b ∈ Rn, ρ ∈ R, Q′ ∈ Rn×n
skew},

see [27]. Here we use where 1n to denote the (n × n)-identity matrix. In light of these considerations, the 
inequality of interest consequently is given by the following

Theorem 3.1 (Korn-Maxwell-Sobolev II). Let 1 � p < 3. Then there exists a constant c = c(p) > 0 such that 
the following hold:
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(1) For all F ∈ C∞(Q; R3×3) with
ˆ

Q

〈F,Π〉 dx = 0 for all Π ∈ R3×3
skew = ∇R(R3) (3.1)

there holds

‖F‖
L

3p
3−p (Q)

� c
(
‖F sym‖

L
3p

3−p (Q)
+ ‖ curl(F )‖Lp(Q)

)
. (3.2)

(2) For all F ∈ C∞(Q; R3×3) with
ˆ

Q

〈F,Π〉 dx = 0 for all Π ∈ ∇K(R3) (3.3)

there holds

‖F‖
L

3p
3−p (Q)

� c
(
‖F dev‖

L
3p

3−p (Q)
+ ‖ curl(F )‖Lp(Q)

)
. (3.4)

Here, we have set Adev := Asym − 1
3 tr(A)13 for A ∈ R3×3.

Condition (3.1) is particularly transparent, being equivalent to F skew having integral zero over Q. Coming 
back to our initial discussion, in the framework of (3.2) F sym = 0 and curl(F ) = 0 imply that F = ∇u = A

for some A ∈ R3×3
skew. However, in this situation, the orthogonality condition (3.1) with Π = A implies Π = 0

and so F = 0, too. A similar consideration equally yields consistency of inequality (3.4) subject to (3.3).
The strategy to arrive at Theorem 3.1 is similar to that of Theorem 1.1, where now the global singular 

integral or Fourier multiplier estimate underlying (2.6) is replaced by the Nečas-Lions lemma. This strategy 
has also been pursued in [18,19], where we now employ a duality estimate as in [1,34] to deal with the 
corresponding negative norms.

In [34] (also see [1,2]) the following fundamental inequality is established, which moreover can be used 
to derive the Bourgain-Brezis-estimate for solenoidal fields: There exists a constant c = c(n) > 0 such that 
for all Φ ∈ L1(Rn; Rn) with div(Φ) ∈ L1(Rn) there holds

ˆ

Rn

〈Φ, ϕ〉 dx � c(‖Φ‖L1(Rn)‖∇ϕ‖Ln(Rn) + ‖ div(Φ)‖L1(Rn)‖ϕ‖Ln(Rn)) (3.5)

for all ϕ ∈ C∞
c (Rn; Rn). The importance of (3.5) is based on the fact that Ẇ1,n(Rn) �↪→ L∞(Rn) for n � 2. 

To utilise (3.5) in view of Theorem 3.1, we require a localised version as follows:

Proposition 3.2. There exists a constant c = c(n) > 0 such that we have
ˆ

(0,1)n

〈Φ, ϕ〉 dx � c‖Φ‖L1((0,1)n)‖∇ϕ‖Ln((0,1)n) (3.6)

for all Φ ∈ C((0, 1)n; Rn) ∩ C1((0, 1)n; Rn) with div(Φ) = 0 and all ϕ ∈ C∞
c ((0, 1)n; Rn).

Note that (3.6) differs from (3.5) (for solenoidal fields) merely by the domain of integration and that of 
the corresponding Lebesgue norms on the right-hand side.
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Proof of Proposition 3.2. Let Φ be as in the proposition. By Lemma 3.5 in the Appendix there exists 
Φ̃ ∈ L1((−1, 2)n; Rn) such that Φ̃|(0,1)n = Φ, div(Φ̃) = 0 in D ′((−1, 2)n; Rn) and ‖Φ̃‖L1((−1,2)n) �
3n‖Φ‖L1((0,1)n). We pick a smooth cut-off function ρ ∈ C∞

c ((−1, 2)n) with 1(0,1)n � ρ � 1(−1,2)n . Then 

we have, using div(ρΦ̃) = ρdiv(Φ̃) + 〈Φ̃, ∇ρ〉,
ˆ

(0,1)n

〈Φ, ϕ〉 dx =
ˆ

Rn

〈ρΦ̃, ϕ〉 dx

(3.5)
� C

(
‖ρΦ̃‖L1(Rn)‖∇ϕ‖Ln(Rn) + ‖div(ρΦ̃)‖L1(Rn)‖ϕ‖Ln(Rn)

)
� C

(
‖Φ̃‖L1((−1,2)n)‖∇ϕ‖Ln((0,1)n) + ‖div(Φ̃)‖L1((−1,2)n)‖ϕ‖Ln(Rn)

+ ‖〈Φ̃,∇ρ〉‖L1(Rn)‖ϕ‖Ln(Rn)
)

Properties of Φ̃
� C‖Φ‖L1((0,1)n)(‖ϕ‖Ln((0,1)n) + ‖∇ϕ‖Ln(Rn))

� C‖Φ‖L1((0,1)n)‖∇ϕ‖Ln((0,1)n),

the ultimate inequality being a consequence of Poincaré’s inequality. This finishes the proof. �
Proof of Theorem 3.1. Ad (1). Let 1 < q < ∞ and pick L2(Q; R3×3)-orthonormal bases {e1, ..., em1}, 
{f1, ..., fm2} of ∇R(R3) or ∇K(R3), respectively. We then record from [18, Eq. (42)] and [19, Eq. (3.24)]
that there exists a constant c = c(q) > 0 such that2

‖F‖Lq(Q) � c
(
‖F sym‖Lq(Q) + ‖ curl(F )‖W−1,q(Q) +

m1∑
	=1

∣∣∣∣∣∣
ˆ

Q

〈e	, F 〉 dx

∣∣∣∣∣∣
)
, (3.7)

‖F‖Lq(Q) � c
(
‖F dev‖Lq(Q) + ‖ curl(F )‖W−1,q(Q) +

m2∑
	=1

∣∣∣∣∣∣
ˆ

Q

〈f	, F 〉 dx

∣∣∣∣∣∣
)

(3.8)

hold for all F ∈ C∞(Q; R3×3). It is precisely these estimates which are a consequence of the Nečas-Lions 
lemma. We now distinguish two cases:

Case 1 < p < 3. We note that ( 3p
3−p )′ = 3p

4p−3 and, since 1 < p < 3, 3p
4p−3 ∈ (1, 3). Thus, by the usual 

Sobolev embedding theorem and denoting θ∗ = 3θ
3−θ ,

Ẇ1, 3p
4p−3 (R3;R3×3) ↪→ L( 3p

4p−3 )∗(R3;R3×3) = Lp′
(R3;R3×3). (3.9)

Therefore, by Hölder’s inequality,

‖ curl(F )‖
W−1, 3p

3−p (Q)
= sup

ϕ∈C∞
c (Q;R3×3)

‖∇ϕ‖
L

3p
4p−3 (Q;R3×3)

�1

ˆ

Q

curl(F ) · ϕdx

� sup
ϕ∈C∞

c (Q;R3×3)
‖∇ϕ‖

L
3p

4p−3 (Q;R3×3)
�1

‖ curl(F )‖Lp(Q)‖ϕ‖Lp′ (Q) (3.10)

2 In the argument underlying [18, Eq. (42)] (and similarly for [19, Eq. (3.24)]), the authors deal with functionals li : ∇R(R3) → R
or li : ∇K(R3) → R which satisfy li(ej) = δij and extend them to Wcurl,p(Q; R3×3) by Hahn-Banach. The choices F �→ 〈ei, F 〉L2

or F �→ 〈fi, F 〉L2 can, since ej , fj ∈ L∞, directly be defined on Wcurl,p(Q; R3×3) without appealing to Hahn-Banach.



F. Gmeineder, D. Spector / J. Math. Anal. Appl. 502 (2021) 125226 11
(3.9)
� c‖ curl(F )‖Lp(Q).

Now, combining (3.7) and (3.10) with q = 3p
3−p , we obtain Theorem 3.1 (1) for 1 < p < 3 by virtue of (3.1). 

To arrive at Theorem 3.1 (2) for 1 < p < 3, we argue analogously but now using (3.8).
Case p = 1. We only have to establish (3.10) for p = 1. We apply Proposition 3.2 to Φi := curl(F i) so 

that div(Φi) = 0 for i ∈ {1, 2, 3}. Therefore,

‖ curl(F )‖
W−1, 32 (Q)

= sup
ϕ∈C∞

c (Q;R3×3)
‖∇ϕ‖L3(Q;R3×3)�1

ˆ

Q

〈curl(F ), ϕ〉 dx

�
∑

i∈{1,2,3}
sup

ϕ∈C∞
c (Q;R3×3)

‖∇ϕ‖L3(Q;R3×3)�1

ˆ

Q

〈curl(F i), ϕi〉 dx

� c sup
ϕ∈C∞

c (Q;R3×3)
‖∇ϕ‖L3(Q;R3×3)�1

( ∑
i∈{1,2,3}

‖ curl(F i)‖L1(Q)

)
‖∇ϕ‖L3(Q)

� c‖ curl(F )‖L1(Q).

The proof is hereby complete. �
Remark 3.3. If 1 < p < 3, then the above proof shows that we may replace the unit cube Q by any open 
and bounded, simply connected domain Ω with Lipschitz boundary.

We conclude the paper by addressing possible generalisations of Theorem 3.1:

Open Question 3.4 (On more general operators and domains). (a) Following the argument of [18,19] (in 
particular [18, Cor. 2.3]), if A is an operator of the form (1.5) with RN = R9 ∼= R3×3, the Nečas-Lions lemma 
(cf. [21, Thm. 1]) can be utilised to derive the respective variant of (3.2) or (3.4) provided dim(ker(A)) < ∞
and there exists m ∈ N�1 and a linear map L : �m−1 (R3; R3×3) → �m(R3; R3×3) such that

DmF = L(Dm−1 curl(F )) for all F ∈ Cm(Q; (Id −A)(R3×3)). (∗)

This suggests that Theorem 3.1 should be generalisable to the class of C-elliptic differential operators 
(cf. [29,16,3]) as the finite dimensionality of the nullspace is the characterising feature of such differential 
operators, but it is not clear to us how to establish (∗) for this class of operators.
(b) If Ω ⊂ R3 is an open, bounded, simply connected Lipschitz domain, then estimates (3.7) and (3.8) persist. 
To obtain Theorem 3.1, the above approach works analogously provided one can establish an extension 
operator E : C(Ω; Rn) ∩ C1(Ω; Rn) → L1(U ; Rn), where U ⊂ Rn is open with Ω � U , such that⎧⎪⎪⎨⎪⎪⎩

(EΦ)|Ω = Φ,

div(Φ) = 0 in Ω =⇒ div(EΦ) = 0 in D ′(U),
‖EΦ‖L1(U) � c‖Φ‖L1(Ω)

(∗∗)

for some c > 0 and all Φ ∈ C(Ω; Rn) ∩ C1(Ω; Rn). Note that the usual extension techniques hinging on 
localisation by means of partitions of unity (cf. [7, Chpt. 4.4]) destroy the solenoidality of the extensions. In 
consequence, it would be of interest to know whether any open, bounded and simply connected Lipschitz 
domain Ω ⊂ R3 admits an extension operator E satisfying (∗∗) for some open set U with Ω � U .
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Appendix

Although the following extension result underlying the proof of Proposition 3.2 should be well-known to 
the experts, it is hard to be traced back in the literature and so we state and give the quick proof here:

Lemma 3.5. There exists a linear extension operator E : C((0, 1)n; Rn) ∩C1((0, 1)n; Rn) → L1((−1, 2)n; Rn)
such that the following hold for all Φ ∈ C((0, 1)n; Rn) ∩ C1((0, 1)n; Rn):⎧⎪⎪⎨⎪⎪⎩

(EΦ)|(0,1)n = Φ,

div(Φ) = 0 in (0, 1)n =⇒ div(EΦ) = 0 in D ′((−1, 2)n),
‖EΦ‖L1((−1,2)n) � 3n‖Φ‖L1((0,1)n).

(3.11)

Proof. We proceed by induction over the first k elements of {1, ..., n − 1}. Suppose that Ψ is defined on 
(−1, 2)k−1 × (0, 1)n−k+1. We claim that there exists an operator Ek with EkΨ: (−1, 2)k × (0, 1)n−k → Rn

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(EkΨ)|(−1,2)k−1×(0,1)n−k+1 = Ψ,

div(Ψ) = 0 in (−1, 2)k−1 × (0, 1)n−k+1

=⇒ div(EkΨ) = 0 in D ′((0, 1)k × (0, 1)n−k),
‖EkΨ‖L1((−1,2)k×(0,1)n−k) � 3‖Ψ‖L1((−1,2)k−1×(0,1)n−k+1),

(3.12)

where we adopt the convention (−1, 2)0 × (0, 1)n = (0, 1)n. Then, by construction, E := En ◦ En−1 ◦ ... ◦ E1
satisfies (3.11). For k ∈ {1, ..., n − 1}, define for Ψ: (−1, 2)k−1 × (0, 1)n−k+1 → Rn

EkΨ(x) :=

⎧⎪⎪⎨⎪⎪⎩
E+
k Ψ(x) if x ∈ (−1, 2)k−1 × (1, 2) × (0, 1)n−k

Ψ(x) if x ∈ (−1, 2)k−1 × (0, 1) × (0, 1)n−k

E−
k Ψ(x) if x ∈ (−1, 2)k−1 × (−1, 0) × (0, 1)n−k,

where E±
k Ψ = ((E±

k Ψ)1, ..., (E±
k Ψ)n) with{

(E+
k Ψ)j(x1, ..., xn) := −Ψj(x1, ..., xk−1, 2 − xk, xk+1, ..., xn−1, xn) if j �= k,

(E+
k Ψ)k(x1, ..., xn) := Ψk(x1, ..., xk−1, 2 − xk, xk+1, ..., xn) if j = k

for x ∈ (1, 2)k−1 × (1, 2) × (0, 1)n−k,{
(E−

k Ψ)j(x1, ..., xn) := −Ψj(x1, ..., xk−1,−xk, xk+1, ..., xn−1, xn) if j �= k,

(E−
k Ψ)k(x1, ..., xn) := Ψk(x1, ..., xk−1,−xk, xk+1, ..., xn) if j = k

for x ∈ (1, 2)k−1 × (−1, 0) × (0, 1)n−k.

By construction, (3.12)1 and (3.12)3 follow. Let ϕ ∈ C∞
c ((−1, 2)k × (0, 1)n−k). Since div(E±

k Ψ) = 0 on 
(1, 2)k−1 × (1, 2) × (0, 1)n−k or (1, 2)k−1 × (−1, 0) × (0, 1)n−k, respectively, we have with ν = (νi)i =
(0, ..., 0, −1, 0, ..., 0) and ν̃ = (ν̃i)i = (0, ..., 0, 1, 0, ..., 0) (the non-zero entry sitting at the k-th position)

ˆ

(−1,2)k×(0,1)n−k

〈EkΨ,∇ϕ〉 dx = −
∑

j∈{1,...,n}\{k}

( ˆ

(−1,2)k−1×{0}×(0,1)n−k

(E−
k Ψ)jϕνj dH n−1

−
ˆ

k−1 n−k

Ψjϕνj dH n−1
)

(−1,2) ×{0}×(0,1)
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−
∑

j∈{1,...,n}\{k}

( ˆ

(−1,2)k−1×{1}×(0,1)n−k

(E+
k Ψ)jϕν̃j dH n−1

−
ˆ

(−1,2)k−1×{1}×(0,1)n−k

Ψjϕν̃j dH n−1
)

∓
( ˆ

(−1,2)k−1×{0}×(0,1)n−k

Ψkϕνk dH n−1

+
ˆ

(−1,2)k−1×{1}×(0,1)n−k

Ψkϕν̃k dH n−1
)

= 0

as only those summands with j = k are potentially non-zero, and for j = k the corresponding integrals 
cancel out. Hence div(EkΨ) = 0 in D ′((−1, 2)k × (0, 1)n−k). This finishes the proof. �
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