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We study the scattering problem in the static patch of de Sitter space, i.e., the problem of field evolution
between the past and future horizons of a de Sitter observer. We calculate the leading-order scattering for a
conformally massless scalar with cubic interaction, as both the simplest case and a warm-up towards Yang-
Mills and gravity. Our strategy is to decompose the static-patch evolution problem into a pair of more
symmetric evolution problems in two Poincare patches, sewn together by a spatial inversion. To carry this
out explicitly, we end up developing formulas for the momentum-space effect of inversions in flat
spacetime. The geometric construction of an electron’s 4-momentum and spin vectors from a Dirac spinor
turns out to be surprisingly relevant.

DOI: 10.1103/PhysRevD.103.065014

I. INTRODUCTION

A. Why scattering in the de Sitter static patch?

In field theory and gravity, a special role is played by
scattering problems, or, more generally, by observables
defined at the asymptotic boundary of spacetime. Of
course, one reason for this is mathematical physics for
its own sake: boundary observables are worth exploring
simply because they form a well-defined and relatively
simple subset of all possible questions in field theory.
Another reason is that sometimes an asymptotic quantity
turns out to be directly relevant to some experimental or
observational setup. The obvious case is that of scattering
amplitudes in flat spacetime, which directly describe
collider experiments. Similar hopes are now being placed
on future-boundary correlators in (nearly) de Sitter space-
time: within the paradigm of inflation, these should become
observable as non-Gaussianities in the cosmic microwave
background [1]. Fundamentally, though, the main reason to
be interested in asymptotic correlations is that currently
these are the only observables we can make sense of in
quantum gravity.
There is just one uncomfortable detail: as far as we can

tell from observations, our Universe is undergoing an

accelerated expansion driven by a positive cosmological
constant, which should lead to de Sitter asymptotics in the
future. In such a spacetime, observers such as ourselves are
trapped inside their cosmological horizons without causal
access to asymptotic infinity. This leaves two possibilities.
One is that the naïve extrapolation into the distant future is
wrong, and that the Universe’s present de Sitter–like phase
is merely temporary, just like the earlier de Sitter phase that
is conjectured in inflation (see e.g., [2]; for a review of the
difficulties with de Sitter space in string theory, see [3]).
The other possibility is that we take our de Sitter fate
seriously. We must then grapple with the question of how to
think about quantum gravity within a finite region of space,
without observables at infinity. This appears truly daunting.
In fact, a plausible reading of the theoretical evidence is that
it cannot be done without modifying quantum mechanics
itself. For what it is worth, our lot is thrown with the
position that this direction is ultimately the correct one, and
that it signals the next revolution in fundamental theory.
In the meantime, the least we can do is to familiarize

ourselves with the available observables in an asymptoti-
cally de Sitter universe. For simplicity, we leave real-world
cosmology aside, and focus on a pure de Sitter spacetime
dS4. We also leave aside the complications of dynamical
geometry, and focus on either nongravitational field theory,
or gravity viewed as perturbations over a dS4 background.
Further, we wish to retain as much contact as possible with
the familiar realm of asymptotic observables. What, then, is
the “most asymptotic” observable in dS4? Clearly, this will
be an observable defined not at the boundary of spacetime,
but at the boundary of the largest observable region. This
largest region is a static patch of dS4—the patch contained
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between the past and future cosmological horizons of a
bulk observer, depicted in Fig. 1.
This last statement is actually the subject of frequent

confusion, which we should address before proceeding. It
is often stated that an observer can see the entire spacetime
region inside his past light cone. This certainly seems true
from both everyday and scientific experience: are we not
seeing the Andromeda galaxy when we point our binoc-
ulars in its direction? However, our ability to think this way
is conditioned on an orderly, i.e., low-entropy, state of the
Universe. From the point of view of fundamental physics,
we have never seen the Andromeda galaxy: we are just
measuring the electromagnetic field on our retina, and
perhaps on various nearby surfaces, e.g., inside telescopes.
An honest observation/measurement is always local, and
honest inferences from them are always restricted to the
causal domain of dependence of the measured region. It is
in this strict, field-theoretic sense that the largest observable
region of dS4 is the static patch. This is illustrated from a
different point of view in Fig. 1 and discussed further in [4].
With that off our chest, let us concentrate on the static

patch. Its boundary is a pair of lightlike cosmological
horizons, one in the past and one in the future, much like
the null past/future boundary of Minkowski space. The
natural observable would thus be akin to the Minkowski S
matrix: an evolution from initial data on the past horizon to
final data on the future horizon. What do we mean by
“data”? In classical field theory, these would just be the

values of the fields on each horizon (because the horizons
are lightlike, the fields’ normal derivative does not need to
be specified separately). This statement of the problem can
be carried over to the quantum level, where we would now
seek to express the field operators on the future horizon in
terms of those on the past horizon. Note that this is not quite
the path that’s usually taken in the flat-spacetime case:
there, one tends to talk about scattering amplitudes between
initial and final states. Of course, if the evolution of field
operators is known, then the evolution of states can be
derived from it by acting with the operators on a vacuum
state. This vacuum state will usually be annihilated by half
of the field operators, specifically those with negative
frequency. In this paper, we will prefer to deal with fields
rather than states. This is for two reasons. First, the most
well-behaved vacuum state in dS4 is the Bunch-Davies
vacuum, but in the static patch this corresponds to a thermal
state, not a pure one. Second, we will find it useful to work
with a combination of positive-frequency and negative-
frequency modes in the Bunch-Davies sense, rather than
restrict to one or the other. Summing up, then, our general
problem statement will be to express the fields on the final
horizon in terms of those on the initial horizon.

B. Scope and structure of the paper

To our knowledge, there is virtually no published work
on static-patch scattering. This is probably for two reasons.
The first is that this problem has no claim to direct
observational relevance (unlike e.g., the future boundary
correlators of the inflationary dS4). The second is its low
degree of symmetry. The spacetime symmetry of the dS4
static patch is a meager R × SOð3Þ. The SOð3Þ describes
spatial rotations, while the R describes time translations in
the static patch; in Poincare coordinates, the latter take the
form of dilatations. Particularly painful in its absence is a
spatial translation symmetry, which would allow us to work
in momentum space. A central message of the present paper
is that there are ways around this low degree of symmetry.
In particular, we can construct the static-patch evolution by
first evolving the fields from the initial horizon to the dS4
boundary, and then from the boundary back to the final
horizon. Each of these evolutions is taking place in a
Poincare patch of dS4. The latter has spatial translation
symmetry, which allows us to work in momentum space,
performing essentially the same calculations as in the
standard framework of cosmological correlators. Each of
the two Poincare patches is conformal to (half of)
Minkowski spacetime, and the two patches are related to
each other by a spacetime inversion (which reduces to a
spatial inversion on the boundary). As a result, our main
technical task becomes expressing the effects of spatial and
spacetime inversions in momentum space.
In the present paper, we will apply this strategy to a

particular simple field theory in dS4, at leading order in
the interaction. Specifically, we consider a conformally

FIG. 1. A Penrose diagram of dS4, with a cartoon observer
inside the static patch D. The shaded area is the observer’s
“body”—a collection of worldlines that maintain causal contact
through the exchange of signals at or below the speed of light.
Exiting and reentering the shaded area is the worldline of a
“probe” dispatched by the observer to gather some data from
outside his body. The static patch D is the largest spacetime
region that can be covered by such an observer. Its boundaries are
the past horizon H̃− and future horizon Hþ. The region U, while
inside the observer’s past light cone, is not really observable. For
instance, the observer may measure the fields on H̃−, but the
fields within U cannot be deduced from these without some
assumptions about unobservable data, e.g., on H−.
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massless scalar field with cubic coupling. For this theory,
we calculate the evolution from initial to final horizon at
tree level (i.e., classically), to quadratic order (i.e., with just
a single cubic vertex). This work is a sequel to [5], where
the noninteracting version of the problem was considered
for massless fields of all spins. In this paper, we will ignore
“soft” effects. Specifically, we will assume an input field
configuration that vanishes at the initial horizon’s edges
(i.e., at the intersections with the past boundary and with
the future horizon), and we will calculate the output fields
up to terms concentrated on the edges of the final horizon.
The rest of the paper is structured as follows. In Sec. II, we

set up our momentum-space framework, along with the
decomposition of the static-patch problem into Poincare-
patch problems. In Sec. III, we perform a standard calcu-
lation of the Poincare-patch evolution. In Sec. IV, we derive
the necessary formulas for spacetime inversions, using
spinor techniques. In Sec. V, we present the final result
for the static-patch scattering. The result includes a partial
cancellation between the two Poincare-patch evolutions. As
wewill see, this is a general feature that will occur whenever
a Poincare-patch amplitude happens to have the full
SOð1; 4Þ de Sitter symmetry. In the simple case of single-
vertex diagrams, this will in turn occur whenever the
Poincare patch amplitude does not have singularities on
the energy axis. In Sec. VI, we present this argument inmore
detail, along with its expected consequences for Yang-Mills
and general relativity (GR), and other closing remarks.
For the reader in a hurry, the key formulas are as follows.

Our encoding of the field data on the initial and final
horizons is given in Eqs. (23) and (31). The scattering is
given by Eqs. (147) and (148). These make use of the
Minkowski-space inversion kernels from Sec. IV, which are
summarized in Eqs. (129)–(134).

II. DECOMPOSITION INTO
POINCARE-PATCH EVOLUTIONS

The field theory that we will consider in this paper is that
of a conformally massless scalar with cubic coupling. The
theory lives in dS4 spacetime, whose curvature radius we
set to 1. The Lagrangian is

L ¼ −
1

2
gμν∂μφ∂νφ − φ2 −

α

3
φ3; ð1Þ

where α is the coupling constant, and gμν is the dS4 metric.
We will not be bothered by the fact that the φ3 potential is
unbounded from below—this theory is just a toy example,
and it is healthy enough perturbatively (or classically).
The field equation for the Lagrangian (1) reads:

ð□ − 2Þφ ¼ αφ2; ð2Þ

where □ is the dS4 d’Alembertian. In this section, we will
show how the static-patch scattering problem decomposes

into a pair of Poincare-patch problems, using the theory (1)
as an example.

A. Geometric framework

We define de Sitter space dS4 as the sphere of unit
spacelike radius in 5D Minkowski space R1;4. We use light
cone coordinates ðu; v; rÞ for R1;4, such that its metric is
ds2 ¼ −dudvþ dr2. The dS4 spacetime is then defined by
the 4D hypersurface −uvþ r2 ¼ 1. The conformal boun-
dary of dS4 is described by the limit

ðu; v; rÞ → 1

t
ðU;V;RÞ; ð3Þ

with t → 0 and ðU;V;RÞ a null vector in R1;4, i.e.,
−UV þR2 ¼ 0. This description is redundant under
simultaneous rescalings of t and ðU;V;RÞ by the same
finite factor; these correspond to local rescalings of the
boundary metric. The conformal boundary is composed of
two 3-spheres: the 3-sphere Iþ of future-pointing null
directions in R1;4, and the sphere I− of past-pointing ones.
The notation t for the prefactor in (3) is not a common one,
but it will make the discussion below less cumbersome; in
bulk Poincare coordinates, t will become the conformal
time.
The 3D hypersurfaces ðu¼ 0;r2¼ 1Þ and ðv¼0;r2¼1Þ

form a pair of cosmological horizons in dS4. We will refer
to them, respectively, as the initial horizon H̃ and the final
horizon H. Each of these horizons is a 2-sphere’s worth of
light rays: the unit vector r specifies our position on the
2-sphere, and the lightlike coordinate u or v specifies our
position along the lightrays. The v < 0 past half H̃− of H̃
and the u > 0 future half Hþ of H form the past and future
boundaries of a static patch. The symmetries of the static
patch are the SOð3Þ rotations of r and the “time trans-
lations” ðu; vÞ → ðeτu; e−τvÞ, which are actually boosts in
the uv plane of R1;4.
The static-patch scattering problem is to find the final

field configuration φðu; rÞ on Hþ (with u > 0 and r2 ¼ 1)
as a functional of the initial field configuration φðv; rÞ on
H̃− (with v < 0 and r2 ¼ 1). Our strategy will be to work
instead with the full horizons H̃; H. That is, we will extend
the initial data on H̃− to all of H̃, evolve that to H, and
then restrict to Hþ. In addition, we will break down the
evolution from H̃ to H into two steps: we will first evolve
from H̃ backwards in time to the conformal boundary I−,
and then evolve forward to H. The advantage here is that
each of these evolutions takes place in a Poincare patch of
dS4, with its relatively high degree of symmetry. Instead of
I− as the intermediate hypersurface, we could alternatively
use Iþ, which would be more in line with the cosmological
literature. The choice is ultimately arbitrary; we will stick
here with I−, since it will lead to fewer minus signs along
the way.
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Let us now make the above discussion more explicit. We
define Poincare coordinates xμ ¼ ðt;xÞ for dS4 associated
with the final horizon H, and Poincare coordinates x̃μ ¼
ðt̃; x̃Þ associated with the initial horizon H̃. These are
related to the embedding-space coordinates ðu; v; rÞ as

ðu; v; rÞ ¼ 1

t
ðt2 − x2;−1;xÞ ¼ 1

t̃
ð−1; t̃2 − x̃2; x̃Þ: ð4Þ

The xμ ¼ ðt;xÞ, with t > 0, span the Poincare patch to
the past of the horizon H. The same coordinates with
t < 0 span the patch to the future of H, which we will
mostly ignore; note that t → −t implements the antipodal
map ðu; v; rÞ → −ðu; v; rÞ in dS4. The limit t → 0þ
describes the past conformal boundary I−, which is then
coordinatized by x, via the limiting procedure (3) with
ðU;V;RÞ ¼ ð−x2;−1;xÞ. The horizon H is described by
the simultaneous limit t; jxj → ∞, with t − jxj kept finite.
The horizon coordinates ðu; rÞ are then related to ðt;xÞ via

u ¼ 2ðt − jxjÞ; r ¼ x
jxj : ð5Þ

The evolution from I− to H can now be viewed as
evolution in the Poincare patch t > 0, all the way from
t ¼ 0þ to t ¼ ∞. The same remarks apply to the Poincare
coordinates x̃μ ¼ ðz̃; x̃Þ, for which t̃ ¼ 0þ is again the past
boundary I−, while the horizon H̃ is given by the limit
t̃; jx̃j → ∞ with

v ¼ 2ðt̃ − jx̃jÞ; r ¼ x̃
jx̃j : ð6Þ

The dS4 metric in the Poincare coordinates takes the
conformally flat form:

ds2 ¼ −dt2 þ dx2

t2
¼ 1

t2
ημνdxμdxν;

¼ −dt̃2 þ dx̃2

t̃2
¼ 1

t̃2
ημνdx̃μdx̃ν; ð7Þ

where ημν is the 4D Minkowski metric. From the point of
view of this metric, the boundary t ¼ 0 is just an ordinary
time slice, while the horizon (5) or (6) is future lightlike
infinity.
We can read off from (4) the relationship between the xμ

and x̃μ coordinates as

x̃μ ¼ ðt̃; x̃Þ ¼ ðt;xÞ
x2 − t2

¼ xμ

ηνρxνxρ
: ð8Þ

This is simply an inversion in Minkowski spacetime. In
particular, on the boundary t ¼ t̃ ¼ 0, the two frames are
related by a spatial inversion x̃ ¼ x=x2.

Our decomposition of the static-patch problem thus takes
the form

S ¼ RŜE; ð9Þ

Ŝ ¼ MIM−1: ð10Þ

Here, S is the desired evolution matrix from H̃− to Hþ.
Equation (9) describes the relatively trivial step of replacing
it by an evolution matrix Ŝ from all of H̃ to all of H.
Specifically, E is an extension (which we are free to
choose) of the initial data on H̃− onto all of H̃, while R
is the reduction of the final data on H onto Hþ. The less
trivial step is Eq. (10). There,M stands for the evolution in
a Poincare patch, from the conformal boundary t ¼ 0 to the
horizon t ¼ ∞, while I represents a coordinate inversion
(8). Equation (10) then decomposes the H̃ → H evolution
into H̃ → I− (described by M−1), followed by a switch
from one Poincare frame to another (described by I), and
finally an evolution from I− to H (described by M).
Note that the only step here that depends on the dynamics
(i.e., on the interaction) is the Poincare-patch evolution M:
the rest is kinematical. In this sense, Eqs. (9) and (10)
constitute a complete solution of static-patch scattering in
terms of Poincare-patch evolution. That being said, the
inversion operation I, though kinematical, is not quite
trivial to perform, and will make up the subject of
Sec. IV.
We close this subsection with some comments on the

structure of Eq. (10). First, let us note its similarity to the
standard procedure [1,6] for calculating cosmological
correlators at Iþ: there, one also evolves from the horizon
to the boundary, and then back to the horizon. The
differences are as follows:
(1) In [1,6], one imposes the Bunch-Davies vacuum on

the horizon, whereas we are evolving general initial
fields into final fields.

(2) In [1,6], one inserts operators at the boundary,
whereas we instead perform an inversion there.

Finally, let us comment on the spacetime symmetries of the
Poincare-patch evolutionM. By construction, it has the 3D
translation, rotation and dilatation symmetries of the
Poincare patch. However, this is not the end of the story:
as we will discuss in Sec. VI, certain pieces of M have the
full SOð1; 4Þ symmetry of de Sitter space, i.e., full 3D
conformal symmetry. Such pieces of M will commute with
the inversion I in (10), and cancel with their counterparts in
M−1. Due to such cancellations, the static-patch scattering
S ends up in some sense simpler than the Poincare-patch
evolution M, despite having lower overall symmetry.
Problems that have a square root, as in (10), always carry
some pleasant surprises.
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B. Plane waves in the Poincare patch

Let us now solve the linearized field equation
ð□ − 2Þφ ¼ 0, in the Poincare coordinates associated with
e.g., the final horizon H. The differential operator □ − 2 is
conformal to the flat d’Alembertian ημν∂μ∂ν, with the field
rescaled by the conformal factor of t:

ð□ − 2Þφ ¼ t3ημν∂μ∂νðt−1φÞ: ð11Þ

Therefore, the general solution to the free equation is
simply t times a superposition of plane waves, parametrized
by spatial momentum p and by the sign of the energy:

φðt;xÞ¼ t
Z

d3p
2jpjðaðpÞe

iðp·x−jpjtÞþa†ðpÞe−iðp·x−jpjtÞÞ: ð12Þ

Our chosen measure d3p
2jpj over momentum space is the

Lorentz-invariant measure over lightlike momenta in the
4D Minkowski space defined by xμ ¼ ðt;xÞ. In the quan-
tum picture, the coefficients aðpÞ and a†ðpÞ describe
annihilation and creation operators over the Bunch-
Davies vacuum. We can write the solution (12) more
compactly by unifying aðpÞ and a†ðpÞ into a single
function aðpμÞ of a lightlike 4-momentum pμ ¼ ðpt;pÞ,
which can be either future pointing (positive energy,
pt ¼ −jpj) or past pointing (negative energy, pt ¼
þjpj). In particular, we denote aðpÞ≡ að−jpj;pÞ and
a†ð−pÞ≡ aðjpj;pÞ. The solution (12) then takes the form:

φðxμÞ ¼ t
Z
p2¼0

d3p
2jpj aðpμÞeipμxμ ; ð13Þ

where
R
p2¼0 is shorthand for integration over both halves of

the light cone pt ¼ �jpj:
Z
p2¼0

≡
Z
pt¼jpj

þ
Z
pt¼−jpj

: ð14Þ

We will also find it useful to decompose the free field (12)
into even and odd pieces under the antipodal map t → −t:

φoddðt;xÞ ¼ t
Z

d3p
2jpj bðpÞe

ip·x cosðjpjtÞ;

bðpÞ ¼ aðpÞ þ a†ð−pÞ; ð15Þ

φevenðt;xÞ ¼ t
Z

d3p
2jpj cðpÞe

ip·x sinðjpjtÞ;

cðpÞ ¼ −iðaðpÞ − a†ð−pÞÞ: ð16Þ

These have different t scalings near the conformal
boundary t ¼ 0:

φoddðt;xÞ → t
Z

d3p
2jpj bðpÞe

ip·x; ð17Þ

φevenðt;xÞ →
t2

2

Z
d3pcðpÞeip·x: ð18Þ

In other words, φodd and φeven have boundary conformal
weights Δ ¼ 1 and Δ ¼ 2, respectively.
Also important is the behavior of the plane waves (12) at

the horizon. Up to the conformal rescaling by t, this is
directly analogous to the asymptotics of plane waves at
Minkowski lightlike infinity. In particular, a wave packet
with small but nonzero spread around a mean momentum p
will end up focusing in the direction of p. To see this
explicitly, let us decompose the momentum integral in (12)
into an integral over the magnitude ω≡ jpj and the
direction p̂≡ p=jpj:

φðt;xÞ ¼ t
2

Z
∞

0

ωdω

�
e−iωt

Z
S2

d2p̂aðωp̂Þeiωjxjp̂·x̂ þ c:c:

�
;

ð19Þ
where we denoted x̂≡ x=jxj. In the horizon limit, jxj
becomes very large. The exponential eiωjxjp̂·x̂ is then a
rapidly oscillating phase, and the d2p̂ integral can be
performed in the stationary-phase approximation. The
stationary points are p̂ ¼ �x̂, where the exponential takes
the values e�iωjxj. These combine with the e−iωt factor to
give eiωð−t�jxjÞ. For the lower sign choice, this is again a
rapidly oscillating phase, which will be killed by the dω
integral. Thus, only the p̂ ¼ x̂ stationary point contributes.
The Hessian of the phase ωjxjp̂ · x̂ at this point (in an
orthonormal basis on S2) is − 1

2
ωjxjdiagð1; 1Þ. The d2p̂

integral can now be evaluated as

φðt;xÞ → πt
jxj
Z

∞

0

dωð−iaðωx̂Þeiωðjxj−tÞ þ c:c:Þ: ð20Þ

In the horizon limit, we have t=jxj → 1, while jxj − t and x̂
become horizon coordinates according to (5). We thus
obtain the value of the free solution (12) at a horizon point
ðu; rÞ as

φðu;rÞ¼−πi
Z

∞

0

dωðaðωrÞe−iωu=2−a†ðωrÞeiωu=2Þ; ð21Þ

which decomposes into antipodally even and odd parts as

φoddðu; rÞ ¼ −
πi
2

Z
∞

0

dωðbðωrÞe−iωu=2 − bð−ωrÞeiωu=2Þ;

ð22Þ

φevenðu; rÞ ¼
π

2

Z
∞

0

dωðcðωrÞe−iωu=2 þ cð−ωrÞeiωu=2Þ:

ð23Þ
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Of course, the same plane wave decomposition can be
performed in the Poincare patch ðt̃; x̃Þ associated with the
initial horizon H̃. We again define the field and its
antipodally even/odd parts as

φðt̃; x̃Þ ¼ t̃
Z

d3p̃
2jp̃j ðãðp̃Þe

iðp̃·x̃−jp̃jt̃Þ þ c:c:Þ

¼ t̃
Z
p̃2¼0

d3p̃
2jp̃jaðp̃μÞeip̃μx̃μ ; ð24Þ

φoddðt̃; x̃Þ ¼ t̃
Z

d3p̃
2jp̃j b̃ðp̃Þe

ip̃·x̃ cosðjp̃jt̃Þ;

b̃ðpÞ ¼ ãðp̃Þ þ ã†ð−pÞ; ð25Þ

φevenðt̃; x̃Þ ¼ t̃
Z

d3p̃
2jp̃j c̃ðp̃Þe

ip̃·x̃ sinðjp̃jt̃Þ;

c̃ðpÞ ¼ −iðãðp̃Þ − ã†ð−p̃ÞÞ; ð26Þ

with boundary asymptotics at t̃ → 0:

φoddðt̃; x̃Þ → t̃
Z

d3p̃
2jp̃j b̃ðp̃Þe

ip̃·x̃; ð27Þ

φevenðt̃; x̃Þ →
t̃2

2

Z
d3p̃ c̃ðp̃Þeip̃·x̃; ð28Þ

and horizon values:

φðv;rÞ¼−πi
Z

∞

0

dω̃ðãðω̃rÞe−iω̃v=2− ã†ðω̃rÞeiω̃v=2Þ; ð29Þ

φoddðv; rÞ ¼ −
πi
2

Z
∞

0

dω̃ðb̃ðω̃rÞe−iω̃v=2 − b̃ð−ω̃rÞeiω̃v=2Þ;

ð30Þ

φevenðv; rÞ ¼
π

2

Z
∞

0

dω̃ðc̃ðω̃rÞe−iω̃v=2 þ c̃ð−ω̃rÞeiω̃v=2Þ:

ð31Þ

C. Static-patch scattering in the plane wave basis

Our decomposition (9)–(10) of the static-patch scattering
can now be made more explicit. We begin by choosing an
extension of the initial data on H̃−, i.e., at v < 0, to all
of H̃. As we will see, the choice that will avoid incon-
sistencies in our method is the antipodally even one
φðv; rÞ ¼ φð−v;−rÞ ¼ φevenðv; rÞ. We then Fourier trans-
form with respect to v as in (31), and encode the initial data
in terms of plane wave coefficients c̃H̃ðp̃Þ. The nonlinear
Poincare-patch evolution M−1 then evolves the field onto
the boundary I−, where it has the asymptotic structure
(27)–(28) of a free field, but with some new plane wave
coefficients b̃Iðp̃Þ; c̃Iðp̃Þ. We then apply an inversion I to

transform these into plane wave coefficients bIðpÞ; cIðpÞ
in the Poincare patch of the final horizon H. Finally, we
evolve those with the Poincare-patch evolution M into
plane wave coefficients bHðpÞ; cHðpÞ on H itself, from
which we can read off the field on H (and on Hþ in
particular) via the Fourier transforms (22)–(23).
Hidden in the above procedure is one crucial

assumption: that near the boundary I−, the interacting
field can be approximated as free, and therefore has
asymptotic behavior of the form (27)–(28). For this to
be true, the nonlinear φ2 term in the field equation (2)
should vanish at t → 0 faster than either of the free-field
solutions (27)–(28), i.e., faster than t2. This fails if the φ2

term contains two odd factors φodd ∼ t, but holds if at least
one of the factors is φeven ∼ t2. It is for this reason that we
choose even initial data on H̃.
That being said, during the intermediate stages of the

calculation, it will be more convenient to work in terms of
unrestricted plane wave coefficients aðpÞ; a†ðpÞ. The
problem with noneven data will then reveal itself as a
divergence at small t, which we will regularize; upon
restricting to even data, the divergence will cancel. For
compactness, we again unify aðpÞ and a†ðpÞ into a single
function aðpμÞ, as in (13). In this language, the most
general evolution Ŝ from H̃ to H (to first order in the
interaction, i.e., to second order in the fields) takes the
following form:

aHðkμÞ ¼
Z

k̃2¼0
k·k̃<0

d3k̃

2jk̃j I1ðkμ; k̃μÞãH̃ðk̃μÞ

þ
Z
p̃2¼0

d3p̃
2jp̃j

Z
q̃2¼0

d3q̃
2jq̃j S2ðkμ; p̃μ; q̃μÞ

× ãH̃ðp̃μÞãH̃ðq̃μÞ; ð32Þ

i.e., the scattering is parametrized by a function I1ðkμ; k̃μÞ at
linear order, and by another function S2ðkμ; p̃μ; q̃μÞ at
quadratic order (the font choice in I1 is to distinguish it
from Bessel functions below). The final 4-momentum kμ in
(32) is lightlike, and the integral in the first line is over
lightlike 4-momenta k̃μ with the same time orientation
as kμ: Z

k̃2¼0
k·k̃<0

≡
Z
k̃t¼signðktÞjk̃j

: ð33Þ

Now, to understand the structure of each term in (32), let us
recall the decomposition (10) of the horizon → horizon
evolution into Poincare-patch evolutions. In the plane wave
basis, the Poincare-patch evolution M at leading order is
just the identity. Therefore, the linear scattering function
I1ðkμ; k̃μÞ in (32) is simply the inversion I from (10), which
transforms a plane wave teipμxμ into a superposition of
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plane waves in the inverted Poincare frame (8). As we can
see from (8), under inversion, the t factor in the plane wave
teipμxμ simply rescales by the conformal factor ημνxμxν.
Therefore, we can identify I1ðkμ; k̃μÞ as the inversion kernel
for lightlike plane waves in flat spacetime, with conformal
weight 1:

eip̃μxμ=ðηνρxνxρÞ

ηνρxνxρ
¼
Z

p2¼0
p·p̃<0

d3p
2jpj I1ðpμ; p̃μÞeipμxμ : ð34Þ

Equivalently, we can evaluate (34) at t ¼ 0, and think of
I1ðpμ; p̃μÞ≡ I1ðp; p̃Þ as the inversion kernel for momenta
in R3. We will calculate I1 explicitly in Sec. IV.
Let us now consider the quadratic term S2ðkμ; p̃μ; q̃μÞ in

(32). To evaluate it, we will need the boundary → horizon
evolutionM and its inverseM−1. The most general form of
M to quadratic order, evolving the field from I− toH, reads

aHðkμÞ ¼ aIðkμÞ þ
Z
p2¼0

d3p
2jpj

Z
q2¼0

d3q
2jqj

×M2ðkμ;pμ; qμÞaIðpμÞaIðqμÞ; ð35Þ

where M2ðkμ;pμ; qμÞ is a function of three lightlike
4-momenta—two incoming pμ, qμ, and one outgoing kμ.
We will calculate this function in Sec. III. For now, we note
that by spatial translation symmetry, it must contain a
momentum-conserving delta function:

M2ðkμ;pμ; qμÞ ¼ M̂2ðkμ;pμ; qμÞδ3ðpþ q − kÞ: ð36Þ

The inverse evolution M−1 from H̃ to I− takes the same
form as (35) but with the sign of the quadratic term flipped:

ãIðk̃μÞ ¼ ãH̃ðk̃μÞ −
Z
p̃2¼0

d3p̃
2jp̃j

Z
q̃2¼0

d3q̃
2jq̃j

×M2ðk̃μ; p̃μ; q̃μÞãH̃ðp̃μÞãH̃ðq̃μÞ: ð37Þ

Sewing the two evolutions together with the inversion (8),
we obtain the quadratic scattering function S2ðkμ; p̃μ; q̃μÞ as

S2ðkμ; p̃μ; q̃μÞ¼−
Z

k̃2¼0
k·k̃<0

d3k̃

2jk̃j I1ðkμ; k̃μÞM2ðk̃μ; p̃μ; q̃μÞ

þ
Z

p2¼0
p·p̃<0

d3p
2jpj I1ðpμ; p̃μÞ

×
Z

q2¼0
q·q̃<0

d3q
2jqj I1ðqμ; q̃μÞM2ðkμ;pμ;qμÞ: ð38Þ

The first term in (38) is relatively simple because the
momentum-conserving delta function δ3ðp̃þ q̃ − k̃Þ inside
M2ðk̃μ; p̃μ; q̃μÞ will cancel the d3k̃ integral. The second
term is more problematic, because the integral there is over

6-momentum components d3pd3q. To simplify it, we make
the following observation. Due to the nonderivative form of
the φ3 coupling, M2ðkμ;pμ; qμÞ only depends on the local
product of the incoming waves:

ðteipμxμÞðteiqμxμÞ ¼ t2eiPμxμ ; Pμ ≡ pμ þ qμ; ð39Þ

where the total 4-momentum Pμ ≡ pμ þ qμ is now generic,
rather than lightlike. We can thus write our evolution
functions more compactly as

M2ðkμ;pμ; qμÞ≡M2ðkμ;PμÞ
¼ M̂2ðkμ;PμÞδ3ðP − kÞ; ð40Þ

S2ðkμ; p̃μ; q̃μÞ≡ S2ðkμ; P̃μÞ: ð41Þ

More importantly, the double inversion in (38) can now be
replaced by a single one:

S2ðkμ; P̃μÞ ¼ −
Z

k̃2¼0
k·k̃<0

d3k̃

2jk̃j I1ðkμ; k̃μÞMðk̃μ; P̃μÞ

þ
Z

d4PI2ðPμ; P̃μÞMðkμ;PμÞ; ð42Þ

where I2ðPμ; P̃μÞ is the inversion kernel for plane waves
(39) with generic 4-momentum and conformal weight 2:

eiP̃μxμ=ðηνρxνxρÞ

ðηνρxνxρÞ2
¼
Z

d4PI2ðPμ; P̃μÞeiPμxμ : ð43Þ

The second term in (42) now contains an integral over just
4-momentum components Pμ. Three of these integrals will
be canceled by the momentum-conserving delta function
inside Mðkμ;PμÞ, leaving just an integral over the energy
Pt. This simplifies the scattering function (42) into

S2ðkμ; P̃μÞ ¼ −I1ðkμ; k̃μÞM̂2ðk̃μ; P̃μÞ
���
k̃μ¼ðsignðktÞjP̃j;P̃Þ

þ
Z

dPtI2ðPμ; P̃μÞM̂2ðkμ;PμÞ
����
P¼k

: ð44Þ

What remains now is to calculate the Poincare-patch
evolution function M̂2ðkμ; PμÞ, and the inversion kernels
I1ðkμ; k̃μÞ and I2ðPμ; P̃μÞ. This will be the job of Secs. III
and IV, respectively.

III. EVOLUTION IN THE POINCARE PATCH

Let us now calculate the Poincare-patch evolution (35)
from the boundary I− to the horizon H, to first order in the
interaction. Since we are at tree level, this can be done by
simply evolving from t ¼ 0 to t ¼ ∞ with the field
equation (2). We encode the initial data at t ¼ 0 in terms
of plane wave coefficients aIðpμÞ. The linearized
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approximation to the bulk solution is given by the free
field (12):

φð1Þðt;xÞ ¼
Z

d3pfðt;pÞeip·x;

fðt;pÞ ¼ t
2jpj ðaIðpÞe

−ijpjt þ a†Ið−pÞeijpjtÞ; ð45Þ

where fðt;pÞ simply denotes the spatial Fourier transform
of φð1Þðt;xÞ. The quadratic correction to the field (45) due
to the nonlinear term in the field equation (2) can be
constructed as

φð2Þðt;xÞ¼ α

Z
d3keik·x

Z
d3p

×
Z

∞

0

dt0fðt0;pÞfðt0;k−pÞGðt;x; t0;kÞ: ð46Þ

Here, t0 denotes the time at which the interaction takes
place, while Gðt;x; t0;kÞ is the Green’s function for
evolution from t0 to a later time t, defined as a retarded
solution to the linearized field equation with following
source:

ð□ − 2ÞG ¼ t3ημν∂μ∂νðt−1GÞ
¼ δðt − t0Þeik·x; G ¼ 0 ∀ t < t0: ð47Þ

The solution to (47) is a step function θðt − t0Þ multiplied
by a combination of plane waves, which is determined by
requiring a vanishing value and a normalized ∂t derivative
at t ¼ t0:

Gðt;x; t0;kÞ ¼ −
t

jkjt03 e
ik·x sin½jkjðt − t0Þ�θðt − t0Þ: ð48Þ

The evolution functionM2ðkμ;PμÞ from (35), (40) can now
be read off by collecting the coefficients of plane waves
teiðk·x�jkjtÞ from (45), (46), (48):

M2ðkμ;PμÞ ¼ M̂2ðkμ;PμÞδ3ðP − kÞ;

M̂2ðkμ;PμÞ ¼ iαsignðktÞ
Z

∞

0

dt
t
eiðPt−ktÞt; ð49Þ

where we relabeled the interaction time from t0 to t. Note
that M̂2ðkμ;PμÞ depends only on the energies kt, Pt. As
anticipated, the integral in (49) is divergent at t ¼ 0. We can
apply dimensional regularization, multiplying the integrand
by tε with ε > 0. Denoting Pt − kt ≡ E for brevity, the
integral becomes

Z
∞

0

dttε−1eiEt ¼ ΓðεÞ
�
i
E

�
ε

→
ε→0

1

ε
− ln jEj þ πi

2
signðEÞ;

ð50Þ

which brings the evolution function (49) into the following
form:

M̂2ðkμ;PμÞ¼ iαsignðktÞ
�
1

ε
− lnjPt−ktjþ

πi
2
signðPt−ktÞ

�
:

ð51Þ

The divergent 1=ε term has no dependence on Pμ, and thus
on the incoming 4-momenta pμ, qμ. As a result, it will
cancel whenever we integrate (51) against an even combi-
nation að−jpj;pÞ ¼ −aðjpj;pÞ of incoming waves.

IV. IMPLEMENTING THE
SPACETIME INVERSIONS

In this section, we calculate explicitly the inversion
kernels I1ðpμ; p̃μÞ and I2ðPμ; P̃μÞ from Eqs. (34) and (43).
Since these can be viewed as implementing inversions in
flat spacetime, we will forget about de Sitter space in this
section; in particular, we will raise/lower indices with the
Minkowski metric ημν. As we will see, both I1 and I2 can be
expressed in terms of Bessel functions. Our main trick in
the derivation will be to take spinor square roots of the
4-momenta. This will turn plane waves into Gaussians, and
spacetime inversion into a Fourier transform between one
Gaussian and another.

A. Inverting lightlike plane waves

We begin with inversions (34) of lightlike waves in
Minkowski space. For this calculation, we introduce left-
handed spinor indices ðα; β;…Þ and right-handed ones
ð _α; _β;…Þ, raised and lowered by the respective 2D Levi-
Civita symbols:

ψα ¼ ϵαβψ
β; ψβ ¼ ψαϵ

αβ;

ψ _α ¼ ϵ _α _βψ
_β; ψ _β ¼ ψ _αϵ

_α _β: ð52Þ

The spinor indices are related to vector indices ðμ; ν;…Þ via
the 4D Pauli matrices σα _αμ , which satisfy the following:

σμα _ασ
α _α
ν ¼ −2δμν ; σα _αμ σμ

β _β
¼ −2δαβδ

_α
_β
;

σα _αðμ σνÞβ _α ¼ −ημνδαβ; σα _αðμ σνÞα _β ¼ −ημνδ _α_β: ð53Þ

For concreteness, we will assume that the lightlike
4-momentum p̃μ is future pointing. As we will now see
[and as already assumed implicitly in Eqs. (32) and (34)], it
will transform under inversion into 4-momenta pμ that are
again lightlike and future pointing. The case with past-
pointing pμ; p̃μ is completely analogous and can be
obtained by flipping the sign of σα _αt , which is arbitrary
anyway. We express pμ and p̃μ in terms of spinors as
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pμ ¼ σα _αμ λαλ̄ _α; p̃μ ¼ σα _αμ μαμ̄ _α;

pμp̃μ ¼ −2ðλαμαÞðλ̄ _αμ̄ _αÞ; ð54Þ

where λ̄ _α; μ̄ _α are the complex conjugates of λα, μα. Note that
the correspondence between the real, lightlike pμ and the
complex λα is not one to one: there is a residual Uð1Þ
summetry of phase rotations λα → eiϕλα that preserve pμ.
The spacetime position xμ becomes a spinor matrix, with

determinant and inverse given by

xα _α ≡ xμσα _αμ ; detðxα _αÞ ¼ −xμxμ;

ðx−1Þ _αα ¼ −
xμσ

μ
α _α

xνxν
¼ −x̃μσ

μ
α _α ≡ −x̃α _α: ð55Þ

Thus, spacetime inversion xμ → x̃μ is basically a matrix
inversion of xα _α. A lightlike plane wave can now be written
as a Gaussian in λα; λ̄ _α:

eipμxμ ¼ eix
α _αλαλ̄ _α ; ð56Þ

and its inversion as a Fourier transform:

eip̃μxμ=ðxνxνÞ

xνxν
¼ −

eix̃α _αμ
αμ̄ _α

detðxα _αÞ
¼ 1

π2

Z
d4λeix

α _αλαλ̄ _αeiðλαμαþλ̄ _αμ̄
_αÞ; ð57Þ

where
R
d4λ is a C2 ≅ R4 integral over the real and

imaginary parts of λα. What remains is to express this
d4λ integral as an integral over momenta pμ, and integrate
out the residual Uð1Þ symmetry λα → eiϕλα. We begin by
expressing the Fourier phase λαμ

α þ λ̄ _αμ̄
_α in the inte-

grand as

2ReðλαμαÞ ¼ 2Re

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
pμp̃μ

2

r
eiϕ
�

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2pμp̃μ

p
cosϕ; ð58Þ

where ϕ is the Uð1Þ phase of λα, and we chose ϕ ¼ 0 as the
value for which λαμα is real. As for the integration measure
d4λ, it becomes

d4λ ¼ d3p
8jpj dϕ: ð59Þ

The numerical coefficient in (59) is basically 1
2
for each of

the degrees of freedom in p. For example, in spherical
coordinates, the magnitude jλj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jλ0j2 þ jλ1j2
p

is
ffiffiffiffiffiffijpjp

, so
differentiating it gives a factor of 1

2
; another factor of 1

2

then comes from each of the two angles that determine

the direction of p, which are halved in the spinor
representation.
Putting everything together, we obtain the inversion

kernel (34) as

I1ðpμ; p̃μÞ ¼
1

4π2

Z
2π

0

dϕei
ffiffiffiffiffiffiffiffiffiffiffiffi
−2pμp̃μ

p
cosϕ

¼ 1

2π
J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2pμp̃μ

p Þ; ð60Þ

where Jn is the Bessel function of the first kind. We can
now write down explicitly the linearized approximation to
the horizon → horizon evolution (32) as

aHðkμÞ ¼
1

2π

Z
k̃2¼0
k·k̃<0

d3k̃

2jk̃j J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2kμk̃μ
q �

ãH̃ðk̃μÞ

þOðã2
H̃
Þ: ð61Þ

This was presented in [5] in the spinor language, i.e.,
without performing the ϕ integral.

B. Inverting timelike plane waves

To evaluate the interacting term (44) in the horizon →
horizon evolution (32), wewill need to also know the kernel
I2ðPμ; P̃μÞ for inversions with nonlightlike 4-momentum.
As in the lightlike case, we will see that the causal nature of
the 4-momentum is preserved: a plane wave with spacelike
4-momentum P̃μ inverts into a superposition of spacelike
4-momenta Pμ, while a wave with timelike P̃μ inverts into a
superposition of timelike Pμ with the same time orientation.
We begin with the timelike case, which is a bit easier. Again,
it will be sufficient to consider future-pointing Pμ; P̃μ: the
past-pointing case follows trivially.
Let us now express a future-pointing timelike 4-momen-

tum Pμ in terms of spinors. This can be done by temporarily
undoing Eq. (39), and expressing the timelike Pμ as a sum
of two lightlike vectors. Each of these can be composed as
before out of Weyl spinors. Thus, we introduce two left-
handed Weyl spinors λα; λ0α along with their right-handed
counterparts λ̄ _α; λ̄0_α, and write

Pμ ¼ σα _αμ ðλαλ̄ _α þ λ0αλ̄0_αÞ: ð62Þ

This is just the famous construction Pμ ¼ Ψ̄γμΨ of the
4-current (or 4-momentum) of a massive electron in terms
of a Dirac spinor Ψ ¼ ðλα; λ̄0_αÞ. However, in our context, it
will be more convenient to think of the left-handed spinors
λα; λ0α on an equal footing, without combining one of them
with the complex conjugate of the other. For P̃μ, we define
similarly as follows:

P̃μ ¼ σα _αμ ðμαμ̄ _α þ μ0αμ̄0_αÞ: ð63Þ
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The inversion (43) can now be expressed as a product of
two lightlike inversions, just like in the second line of (38):
the first inverting λαλ̄ _α into μα _μ _α, and the second inverting
λ0αλ̄0_α into μ0α _μ0_α. As we saw in (57), each of these lightlike
inversions is a Fourier transform of the relevant spinor
variables. Thus, we arrive at

eiP̃μxμ=ðxνxνÞ

ðxνxνÞ2
¼ 1

π4

Z
d4λd4λ0eiPμxμeiðλαμ

αþλ0αμ0αþλ̄ _αμ̄
_αþλ̄0

_αμ̄
0 _αÞ:

ð64Þ

At this point, we switch back to treating the timelike vector
Pμ as a whole. As in the lightlike case, the construction (62)
of Pμ (which has four real components) out of the spinors
λα; λ0α (which have eight real components) comes with a
residual symmetry, this time a four-dimensional one.
Indeed, Eq. (62) is invariant under transformations

λα → gαβλβ; λ0α → gαβλ0β; ð65Þ

where g belongs to a Uð2Þ ¼ SUð2Þ × Uð1Þ subgroup of
SLð2;CÞ. Here, the SUð2Þ describes 3D spatial rotations
around the direction of Pμ, while the Uð1Þ is an overall
phase rotation of the spinors. Our task now is to convert the
spinor integral d4λd4λ0 into a 4-momentum integral d4P,
and integrate out this residual Uð2Þ symmetry.
We begin by choosing reference values for the integra-

tion variables λα; λ0α:

λ̂α ¼
ffiffiffiffi
m
2

r �
1

0

�
; λ̂0α ¼

ffiffiffiffi
m
2

r �
0

1

�
: ð66Þ

These describe a 4-momentum Pμ ¼ ðm; 0; 0; 0Þ of length
m, oriented along the time axis. Now, an arbitrary point in
ðλα; λ0αÞ space can be parametrized analogously to (65)

λα ¼ Gα
βλ̂β; λ0α ¼ Gα

βλ̂0β; ð67Þ

whereGα
β ∈ GLð2;CÞ is now an arbitrary complex matrix.

Indeed, the components of λα and λ0α are just the first and
second columns of Gα

β, up to the factors of
ffiffiffiffiffiffiffiffiffi
m=2

p
in (66).

It is convenient to impose a group-invariant metric on
GLð2;CÞ:

ðd2sÞGLð2;CÞ ¼
1

2
Re½trðG−1dGÞ2�: ð68Þ

At the identity Gα
β ¼ δβα, this metric assigns unit norm to

the standard GLð2;CÞ generators:

Gα
β ¼ δβα;

dGα
β ¼

� ðaþ bÞ þ iðcþ dÞ ðe− fÞ þ iðg− hÞ
ðeþ fÞ þ iðgþ hÞ ða− bÞ þ iðc− dÞ

�
ð69Þ

⇒ ðd2sÞGLð2;CÞ ¼ a2 þ b2 þ e2 þ h2 − c2

− d2 − f2 − g2: ð70Þ

Our integration measure at Gα
β ¼ δβα can now be

rewritten as

d4λd4λ0 ¼ m4d8G; ð71Þ

where d8G is the measure associated with the metric (68),
i.e., 1=24 times the trivial measure over the real and
imaginary parts of the matrix elements Gα

β. Now, this
d8G decomposes into two orthogonal 4D pieces. First, we
have the space of unitary matrices g ∈ Uð2Þ, which
describe the residual symmetry (66) that preserves the
reference vector Pμ ¼ ðm; 0; 0; 0Þ. Second, we have the
orthogonal complement of Uð2Þ, which changes Pμ via
boosts and rescalings. Again, in the spinor representation,
the scale factor and the boost angles are related to those in
the vector representation by a square root and by factors of
1
2
, respectively. Taking these into account, we write the
measure as

d8G ¼ d4P
ð2mÞ4 d

4g; ð72Þ

where the factor of 1=24 essentially consists of 1
2
for each

component of Pμ. Altogether, we conclude that the measure
in (64) decomposes as

d4λd4λ0 ¼ 1

24
d4Pd4g: ð73Þ

Thanks to our group-invariant definition (68) of the group
metric, we are now free to use Eq. (73) everywhere, not
only in the infinitesimal neighborhood of Gα

β ¼ δβα, i.e., of
the reference spinors (66).
Let us now integrate out the residual symmetry g. We

again denote the timelike length of Pμ asm. Similarly, let m̃
denote the timelike length of P̃μ, and let χ denote the boost
angle between Pμ and P̃μ:

PμPμ¼−m2; P̃μP̃μ¼−m̃2; PμP̃μ¼−mm̃coshχ: ð74Þ

We choose a Lorentz frame such that Pμ again points
along the time axis, Pμ ¼ ðm; 0; 0; 0Þ, while P̃μ lies in the
tz plane, P̃μ ¼ m̃ðcosh χ; 0; 0; sinh χÞ. This value of P̃μ can
be composed from the following spinors:

μα ¼
ffiffiffiffi
m̃
2

r �
eχ=2

0

�
; μ0α ¼

ffiffiffiffi
m̃
2

r �
0

e−χ=2

�
: ð75Þ
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Now, the spinors λα; λ0α that make up Pμ will be given
by (66), multiplied by g ∈ Uð2Þ. This can be para-
metrized as

gαβ ¼ eiϕ
�
cos θeiβ − sin θe−iγ

sin θeiγ cos θe−iβ

�
; ð76Þ

λα ¼ gαβλ̂β ¼
ffiffiffiffi
m
2

r
eiϕ
�
cos θeiβ

sin θeiγ

�
;

λ0α ¼ gαβλ̂
0
β ¼

ffiffiffiffi
m
2

r
eiϕ
�
− sin θe−iγ

cos θe−iβ

�
; ð77Þ

where the ranges are β; γ ∈ ð0; 2πÞ, θ ∈ ð0; π
2
Þ and

ϕ ∈ ð0; πÞ. The measure induced by the metric (68) on
the Uð2Þ matrices (76) is

d4g ¼ dθðcos θdβÞðsin θdγÞdϕ
¼ sin θdðsin θÞdβdγdϕ: ð78Þ

The Fourier phase in the integrand of (64) now takes the
form

2Reðλαμα þ λ0αμ0αÞ
¼

ffiffiffiffiffiffiffiffi
mm̃

p
sin θReðeχ=2eiðϕþγÞ þ e−χ=2eiðϕ−γÞÞ;

¼ sin θðAþ cosðϕþ γÞ þ A− cosðϕ − γÞÞ; ð79Þ

where we denoted

A�ðPμ; P̃μÞ≡
ffiffiffiffiffiffiffiffi
mm̃

p
e�χ=2

¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−PμP̃μ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

qr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμP̃μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

qr �
: ð80Þ

Note that the phase (79) does not depend on β, and has a
clean, factorized dependence on θ and ϕ� γ. Plugging
Eqs. (73) and (78)–(79) back into (64), we obtain the
inversion kernel (43) in the form

I2ðPμ; P̃μÞ ¼
1

32π4

Z
1

0

sin θdðsin θÞ
Z

2π

0

dβ
Z

2π

0

dγ

×
Z

2π

0

dϕei sin θðAþ cosðϕþγÞþA− cosðϕ−γÞÞ; ð81Þ

where we doubled the range of ϕ for uniformity with the
other angles, and compensated with a factor of 1

2
. Let us

now switch variables from ϕ; γ to ϕ� ≡ ϕ� γ, while
maintaining an integration range of ð2πÞ2 over the two
angles. Performing the trivial β integral and renaming
sin θ≡ ξ, we arrive at

I2ðPμ; P̃μÞ ¼
1

16π3

Z
1

0

ξdξ
Z

2π

0

dϕþ

×
Z

2π

0

dϕ−eiξðAþ cosϕþþA− cosϕ−Þ: ð82Þ

The ϕ� integrals factorize, each yielding a Bessel function
J0. We thus get

I2ðPμ; P̃μÞ ¼
1

4π

Z
1

0

ξdξJ0ðAþξÞJ0ðA−ξÞ;

¼ 1

4π
·
AþξJ1ðAþξÞJ0ðA−ξÞ − A−ξJ1ðA−ξÞJ0ðAþξÞ

A2þ − A2
−

����1
ξ¼0

;

¼ AþJ1ðAþÞJ0ðA−Þ − A−J1ðA−ÞJ0ðAþÞ
4πðA2þ − A2

−Þ
; ð83Þ

where A� are the functions of Pμ; P̃μ given by (80).

C. Inverting spacelike plane waves

We now turn to the case of spacelike P̃μ, which will
invert into a superposition of spacelike Pμ. We follow the
same strategy as with the timelike case, writing Pμ; P̃μ as
sums of two lightlike vectors, this time with opposite time
orientations:

Pμ ¼ σα _αμ ðλαλ̄ _α − λ0αλ̄0_αÞ; ð84Þ

P̃μ ¼ σα _αμ ðμαμ̄ _α − μ0αμ̄0_αÞ: ð85Þ

In Dirac-spinor notation, this construction is just Pμ ¼
Ψ̄γμγ5Ψ, which produces e.g., the angular momentum
vector of a Dirac electron.
Equation (64), which expresses the inversion as a

spinor Fourier transform, stays unchanged. The residual
symmetry of transformations gαβ that preserve Pμ is now
SLð2;RÞ ×Uð1Þ, where SLð2;RÞ is the Lorentz group in
the 3D hyperplane perpendicular toPμ, andUð1Þ is again an
overall phase rotation. The decomposition (73) of the spinor
measure into d4P and d4g takes the same form as before.
However, now comes a complication that did not appear

in the timelike case. A priori, the spinor Fourier transform
(79) turns any 4-momentum of the form (85) into a
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superposition of all possible 4-momenta of the form (84),
i.e., a spacelike P̃μ becomes a superposition of all possible
spacelike Pμ. However, there are three distinct ways in
which such vectors can be related:

(I) Pμ; P̃μ lie in the same quadrant of a timelike plane,
separated by a boost angle χ.

(II) Pμ; P̃μ lie in opposite quadrants of a timelike
plane, such that Pμ and −P̃μ are separated by a
boost angle χ.

(III) Pμ; P̃μ lie in a spacelike plane, separated by an
angle χ.

These three possibilities describe three regions of the d4P
integral in (43). We will now calculate the kernel I2ðPμ; P̃μÞ
in each of these regions separately.

1. Region I

Here, we have.

PμPμ ¼m2; P̃μP̃μ ¼ m̃2; PμP̃μ ¼mm̃coshχ; ð86Þ

where m; m̃ are now the spacelike lengths of Pμ; P̃μ,
respectively. In an adapted Lorentz frame, we can set Pμ ¼
ð0; 0; 0; mÞ and P̃μ ¼ m̃ðsinh χ; 0; 0; cosh χÞ, and represent
these vectors with the same spinors (66), (75) that we used
in the timelike case. Despite its group structure, the
SLð2;RÞ symmetry that preserves the direction of Pμ (in
this case, the z axis) is not represented by real matrices;
instead, it takes the same form as the SUð2Þ in (76), but
with the angle θ turned hyperbolic, with the range
θ ∈ ð0;∞Þ. Overall, the residual SLð2;RÞ ×Uð1Þ sym-
metry and its action on the reference spinors λ̂α; λ̂

0
α take the

following form:

gαβ ¼ eiϕ
�
cosh θeiβ sinh θe−iγ

sinh θeiγ cosh θe−iβ

�
; ð87Þ

λα ¼ gαβλ̂β ¼
ffiffiffiffi
m
2

r
eiϕ
�
cosh θeiβ

sinh θeiγ

�
;

λ0α ¼ gαβλ̂
0
β ¼

ffiffiffiffi
m
2

r
eiϕ
�

sinh θe−iγ

cosh θe−iβ

�
: ð88Þ

The measure d4g takes the same form as in (78), but with
sinh θ instead of sin θ:

d4g ¼ dθðcosh θdβÞðsinh θdγÞdϕ
¼ sinh θdðsinh θÞdβdγdϕ: ð89Þ

The Fourier phase in (64) becomes

2Reðλαμαþλ0αμ0αÞ¼ sinhθðAþ cosðϕþ γÞ−A− cosðϕ− γÞÞ;
ð90Þ

where A� are defined similarly to (80), but without minus
signs in front of PμP̃μ:

A�ðPμ; P̃μÞ≡
ffiffiffiffiffiffiffiffi
mm̃

p
e�χ=2;

¼ 1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PμP̃μ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

qr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PμP̃μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

qr !
: ð91Þ

Putting everything together, we obtain the same integral
as in (83), but with ξ≡ sinh θ ∈ ð0;∞Þ instead of
ξ≡ sin θ ∈ ð0; 1Þ:

I2ðPμ; P̃μÞ ¼
1

4π

Z
∞

0

ξdξJ0ðAþξÞJ0ðA−ξÞ

¼ 1

4πAþ
δðAþ − A−Þ: ð92Þ

Here, we used an orthogonality property of the Bessel
functions, which can be derived e.g., as the n ¼ 0, ε → 0
limit of Weber’s second integral:

Z
∞

0

ξdξJnðAþξÞJnðA−ξÞe−ε2ξ2 ¼
1

2ε2
e−

A2þþA2−

4ε2 In

�
AþA−

2ε2

�
;

ð93Þ

where In is the modified Bessel function of the first kind.
In our context, the delta function on the rhs of (92) can be

neglected. Indeed, Aþ − A− vanishes at the edge of the
momentum-space region we are considering, where the
boost angle χ goes to zero, and the plane of ðPμ; P̃μÞ
becomes lightlike. Near this edge, Aþ − A− depends on the
components of Pμ (e.g., on Pt) as a square root

ffiffiffiffiffiffiffiffiffiffiffi
fðPtÞ

p
,

where f and its derivative do not generally vanish together.
The delta function (92) thus enters into the d4P integral as
∼δð ffiffiffiffiffiffiffiffiffiffiffi

fðPtÞ
p ÞdPt, which vanishes. We conclude that region

I does not contribute to the inversion (43):

I2ðPμ; P̃μÞ ¼ 0: ð94Þ

2. Region II

Here, we have

PμPμ ¼m2; P̃μP̃μ ¼ m̃2; PμP̃μ ¼−mm̃coshχ: ð95Þ

We can keep our parametrization of Pμ, λ̂α, λ̂
0
α and gαβ from

region I. However, we now set P̃μ to minus its previous
value, i.e., P̃μ ¼ −m̃ðsinh χ; 0; 0; cosh χÞ. This vector can
be constructed by interchanging the two spinors μα; μ0α
in (75):
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μα ¼
ffiffiffiffi
m̃
2

r �
0

e−χ=2

�
; μ0α ¼

ffiffiffiffi
m̃
2

r �
eχ=2

0

�
: ð96Þ

The Fourier phase in (64) now reads

2Reðλαμα þ λ0αμ0αÞ
¼ cosh θðAþ cosðϕ − βÞ − A− cosðϕþ βÞÞ; ð97Þ

where A� are given by the same expression (80) as in the
timelike case. Because of the appearance of cosh θ in (97),
it is convenient to rewrite the measure (89) as

d4g ¼ cosh θdðcosh θÞdβdγdϕ: ð98Þ

We end up with the same kind of integral as in (83) and
(92), but now with ξ≡ cosh θ ∈ ð1;∞Þ. Due to the
vanishing (92), (94) of the integral from 0 to ∞, this is
just minus the integral from (83):

I2ðPμ;P̃μÞ¼
1

4π

Z
∞

1

ξdξJ0ðAþξÞJ0ðA−ξÞ

¼−
1

4π

Z
1

0

ξdξJ0ðAþξÞJ0ðA−ξÞ

¼−
AþJ1ðAþÞJ0ðA−Þ−A−J1ðA−ÞJ0ðAþÞ

4πðA2þ−A2
−Þ

: ð99Þ

3. Region III

The final region—spacelike 4-momenta separated by a
spatial rotation angle—is the trickiest. Here, we have

PμPμ ¼m2; P̃μP̃μ ¼ m̃2; PμP̃μ ¼mm̃cosχ: ð100Þ

This time, it will be convenient to fix our representative
vectors as Pμ¼ð0;0;m;0Þ and P̃μ ¼ m̃ð0;− sin χ; cos χ; 0Þ,
where we take χ ∈ ð0; πÞ. These 4-momenta can be
constructed from the following spinors:

λ̂α ¼
ffiffiffiffi
m

p
2

�
1

−i

�
; λ̂0α ¼

ffiffiffiffi
m

p
2

�
1

i

�
; ð101Þ

μα ¼
ffiffiffiffi
m̃

p

2

�
eiχ=2

−ie−iχ=2

�
; μ0α ¼

ffiffiffiffi
m̃

p

2

�
eiχ=2

ie−iχ=2

�
: ð102Þ

With Pμ now chosen along the y axis, the SLð2;RÞ
symmetry now literally consists of real 2 × 2 matrices
with unit determinant. These can be parametrized similarly
to (76), (87), but at the cost of splitting SLð2;RÞ into
different domains, distinguished by the signs of the differ-
ent matrix elements:

�
�
ηcoshθeβ sinhθe−γ

sinhθeγ ηcoshθe−β

�
; �

�
ηcosθeβ −sinθe−γ

sinθeγ ηcosθe−β

�
;

�
�
ηsinhθeβ −coshθe−γ

coshθeγ −ηsinhθe−β

�
: ð103Þ

We thus have three kinds of matrices, which will make up
three integration domains. Within each one, there is a
further choice of sign η ¼ �1 for the diagonal elements,
and an additional overall sign on the entire matrix. η will
end up decoupling from the inversion integral (64), so that
the sum over its values will simply show up as a factor of 2.
As for the matrix’s overall sign, we will absorb it into the
Uð1Þ phase freedom. Overall, we parametrize the residual
SLð2;RÞ ×Uð1Þ symmetry as

Domain1∶ gαβ ¼ eiϕ
�
ηcoshθeβ sinhθe−γ

sinhθeγ ηcoshθe−β

�
;

Domain2∶ gαβ ¼ ieiϕ
�
ηcosθeβ −sinθe−γ

sinθeγ ηcosθe−β

�
;

Domain3∶ gαβ ¼ ieiϕ
�
ηsinhθeβ −coshθe−γ

coshθeγ −ηsinhθe−β

�
; ð104Þ

where the factor of i in domains 2,3 is for later convenience.
The parameter ranges in (104) are

η ¼ �1; β; γ ∈ ð−∞;∞Þ; ϕ ∈ ð−π; πÞ;

θ ∈
� ð0;∞Þ Domains 1; 3

ð0; π
2
Þ Domain 2

: ð105Þ

Recall that in the previous momentum regions, it was a
good idea to switch variables from ϕ and γ to ϕ� γ, and
from θ to its (ordinary or hyperbolic) sine. In the present
case, we similarly define new variables as

ζ ≡ γ þ iϕ; ξ ¼
8<
:

sinh θ Domain 1

i sin θ Domain 2

i cosh θ Domain 3

; ð106Þ

where instead of ϕ� γ we now have ζ and its complex
conjugate, and ξ now ranges over the positive real
and imaginary axes. In terms of these variables, the
SLð2;RÞ ×Uð1Þ measure d4g (up to sign, which will be
fixed by contour orientation) reads

d4g ¼ i
2
ξdξdβdζdζ̄; ð107Þ

while the Fourier phase in (64) takes the compact form

2Reðλαμα þ λ0αμ0αÞ ¼ 2ReðAξ cosh ζÞ: ð108Þ

Here, A is a complex function of the momenta Pμ; P̃μ:
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AðPμ; P̃μÞ ¼
ffiffiffiffiffiffiffiffi
mm̃

p
eiχ=2;

¼ 1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPμPμÞðP̃νP̃νÞ
q

þ PμP̃μ

r

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

q
− PμP̃μ

r !
; ð109Þ

and we have arranged things such that ImðAξÞ > 0.
Plugging everything into (64), the inversion kernel takes
the form

I2ðPμ; P̃μÞ ¼
i

16π4

�Z
∞

0

þ
Z

0

i∞

�
ξdξ

Z
∞

−∞
dβ

×
Z
Ω
dζdζ̄e2iReðAξ cosh ζÞ; ð110Þ

where Ω is the strip Imζ ∈ ð−π; πÞ in the complex ζ plane.
As in the previous momentum regions, the integrand does
not depend on β (or on η, which we already summed over).
In this case, though, the range of β is infinite, making the
integral diverge. As we will see, this divergence will cancel
against a zero in the ξ integral. For now, let us focus on the
complex integral over ðζ; ζ̄Þ. In the previous regions, the
analogs ϕ� γ of ðζ; ζ̄Þwere independent real variables, and
the integral over them factorized to give a product of Bessel
functions. Our present situation is similar, but since ðζ; ζ̄Þ
are not really independent, more care is needed. First, we
reduce the area integral into a contour integral:

Z
Ω
dζdζ̄e2iReðAξ cosh ζÞ ¼

Z
Ω
dζeiAξ cosh ζdζ̄eiĀ ξ̄ cosh ζ̄

¼
I
∂Ω

Fdζ̄eiĀ ξ̄ cosh ζ̄; ð111Þ

where FðζÞ is the primitive function of eiAξ cosh ζ. The
integral along the boundary contour ∂Ω is counterclock-
wise, and consists of four straight segments, as depicted in
Fig. 2. We begin by considering segments 1,3. At any two
“opposite” points ζ ¼ γ � πi along these segments, the
function eiĀ ξ̄ cosh ζ̄ takes the same value e−iĀ ξ̄ cosh γ . This
brings the integral over these segments into the following
form:

�Z
1

þ
Z
3

�
Fdζ̄eiĀ ξ̄ cosh ζ̄

¼
Z

∞

−∞
dγe−iĀ ξ̄ cosh γðFðγ − πiÞ − Fðγ þ πiÞÞ: ð112Þ

The difference in F values can now be converted back
into an integral eiAξ cosh ζdζ along the vertical segment
ðγ − πi; γ þ πiÞ. Since eiAξ cosh ζ takes the same value at
ζ ¼ γ � πi, we can shift this vertical segment horizontally
(by adding horizontal segments that will cancel), turning it
into ð−πi; πiÞ. The integral (112) then factorizes as

�Z
1

þ
Z
3

�
Fdζ̄eiĀ ξ̄ cosh ζ̄

¼ −i
Z

∞

−∞
dγe−iĀ ξ̄ cosh γ

Z
π

−π
dϕeiAξ cosϕ

¼ −4πiK0ðiĀ ξ̄ÞJ0ðAξÞ; ð113Þ

where Jn is again the Bessel function of the first kind, and
Kn is the modified Bessel function of the second kind.
We now turn to segments 2,4 of the contour ∂Ω, where
Reζ ¼ �∞. At these respective segments, cosh ζ ≈ 1

2
e�ζ is

very large in absolute value, so the primitive function of
eiAξ cosh ζ can be approximated as

FðζÞ ≈ c� � eiAξ cosh ζ

iAξ cosh ζ
; ð114Þ

where c� are integration constants that will be different
between the two segments. At Imζ ¼ 0, the numerator in
(114) has an absolute value smaller than 1, while the
denominator is very large. Therefore, at these points F is
given simply by c�, and we can find the difference between
these two values as

cþ − c− ¼ Fðþ∞Þ − Fð−∞Þ

¼
Z

∞

−∞
dγeiAξ cosh γ ¼ 2K0ð−iAξÞ: ð115Þ

At general points on segments 2,4, the integrand in (111)
becomes

FðζÞeiĀ ξ̄ cosh ζ̄ ≈ c�eiĀ ξ̄ cosh ζ̄ � e2iReðAξ cosh ζÞ

iAξ cosh ζ
: ð116Þ

We can again neglect the second term because the numer-
ator has unit absolute value, while the denominator is very
large. This brings the integrals over segments 2,4 into the
form

FIG. 2. The integration contour ∂Ω in the complex ζ plane from
Eq. (111).
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�Z
2

þ
Z
4

�
Fdζ̄eiĀ ξ̄ cosh ζ̄

¼ cþ

Z
2

dζ̄eiĀ ξ̄ cosh ζ̄ þ c−

Z
4

dζ̄eiĀ ξ̄ cosh ζ̄: ð117Þ

The vertical integration segments can now again be shifted
horizontally into the segment ð−πi; πiÞ. This leads again to
a factorized result:

�Z
2

þ
Z
4

�
Fdζ̄eiĀ ξ̄ cosh ζ̄ ¼ −iðcþ − c−Þ

Z
π

−π
dϕeiĀ ξ̄ cosϕ

¼ −4πiK0ð−iAξÞJ0ðĀ ξ̄Þ: ð118Þ

Altogether, the dζdζ̄ integral (111) evaluates intoZ
Ω
dζdζ̄e2iReðAξ cosh ζÞ

¼ −4πiðJ0ðAξÞK0ðiĀ ξ̄Þ þ J0ðĀ ξ̄ÞK0ð−iAξÞÞ: ð119Þ

We can achieve a cleaner separation between ξ and ξ̄, using
the fact that ξ in (110) is always real or imaginary, and that
J0 is an even function:Z

Ω
dζdζ̄e2iReðAξ cosh ζÞ

¼ −4πiðJ0ðAξ̄ÞK0ðiĀ ξ̄Þ þ J0ðĀξÞK0ð−iAξÞÞ: ð120Þ

This brings the inversion kernel (110) into the form

I2ðPμ; P̃μÞ ¼
1

4π3

�Z
∞

0

þ
Z

0

i∞

�
½ξdξJ0ðĀξÞK0ð−iAξÞ

þ ξ̄dξ̄J0ðAξ̄ÞK0ðiĀ ξ̄Þ�
Z

∞

−∞
dβ; ð121Þ

where we again used the fact that ξ is either real or
imaginary to replace ξdξ by ξ̄dξ̄ where convenient. We
now see that, while the β integral diverges, the ξ, ξ̄ integral
vanishes: the integrand has no singularities in the upper-
right quadrant of the complex ξ plane, and the contour can

be closed at infinity. To extract an overall finite answer, we
will employ a regularization that ties both integrals
together. Notice that the divergence of the β integral is a
reflection of the infinite volume of the SLð2;RÞ residual
symmetry group. We can thus regularize by imposing an
“IR cutoff” within the SLð2;RÞ. This can be done in a
group-invariant fashion by imposing a cutoff Λ on the trace
of the SLð2;RÞ matrix:

jtrgj < Λ: ð122Þ

This will result in a cutoff jβj < βmax on the β integral,
where βmax depends on both Λ and ξ; we assume an order
of limits such that βmax ≫ 1 everywhere. Explicitly, in the
different integration domains (104),(106), βmax is given by

βmax ¼
8<
:

ln Λ
cosh θ Domain 1

ln Λ
cos θ Domain 2

ln Λ
sinh θ Domain 3

;

¼ lnΛ −
1

2

�
lnðξ2 þ 1Þ Domains 1; 2

lnð−ξ2 − 1Þ Domain 3
;

¼ lnΛ −
1

2
lnðξ2 þ 1Þ þ

�
0 Domains 1; 2
πi
2

Domain 3
: ð123Þ

Here, we used the standard definition of the complex
logarithm, which has an imaginary part þπi when evalu-
ated on negative numbers. With this definition, lnðξ2 þ 1Þ
has no singularities in the upper-right quadrant of the
complex ξ plane. In terms of ξ̄, we can write instead:

βmax ¼ lnΛ −
1

2
ln�ðξ̄2 þ 1Þ −

�
0 Domains 1; 2
πi
2

Domain 3
; ð124Þ

where ln� is an alternative branch of the logarithm, with
imaginary part −πi when evaluated on negative numbers.
With this definition, lnðξ̄2 þ 1Þ again has no singularities in
the upper-right quadrant of the complex ξ plane. We now
plug (123)–(124) into (121) by changing the β integration
limits from �∞ to �βmax. This yields

I2ðPμ; P̃μÞ ¼
lnΛ
2π3

�Z
∞

0

þ
Z

0

i∞

�
½ξdξJ0ðĀξÞK0ð−iAξÞ þ ξ̄dξ̄J0ðAξ̄ÞK0ðiĀ ξ̄Þ�

−
1

4π3

�Z
∞

0

þ
Z

0

i∞

�
½ξdξJ0ðĀξÞK0ð−iAξÞ lnðξ2 þ 1Þ þ ξ̄dξ̄J0ðAξ̄ÞK0ðiĀ ξ̄Þ ln�ðξ̄2 þ 1Þ�

þ i
4π2

Z
i

i∞
½ξdξJ0ðĀξÞK0ð−iAξÞ − ξ̄dξ̄J0ðAξ̄ÞK0ðiĀ ξ̄Þ�: ð125Þ

The first and second lines again vanish because the integrand is regular in the upper-right quadrant, and the contour can be
closed at infinity. We are left with the finite term on the third line, which evaluates to (setting ξ≡ ix):
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I2ðPμ; P̃μÞ

¼ 1

2π2
Im
Z

∞

1

xdxI0ðAxÞK0ðĀxÞ;

¼ 1

2π2
Im

AxI1ðAxÞK0ðĀxÞ þ ĀxK1ðĀxÞI0ðAxÞ
A2 − Ā2

����∞
1

;

¼ Re½AðI1ðAÞK0ðĀÞ þ K1ðAÞI0ðĀÞÞ�
4π2ImA2

: ð126Þ

Here, InðxÞ ¼ i−nJnðixÞ is the modified Bessel function
of the first kind, and A is the function of Pμ; P̃μ given
by (109).

D. Summary

In this section, we calculated two kernels for implement-
ing inversions in Minkowski spacetime: I1ðpμ; p̃μÞ for
lightlike 4-momenta (or, equivalently, spatial 3-momenta),
and I2ðPμ; P̃μÞ for general 4-momenta. We defined these as
the kernels for the decomposition of an inverted plane wave
(with appropriate conformal weight) into ordinary plane
waves:

eip̃μxμ=ðxνxνÞ

xνxν
¼
Z

p2¼0
p·p̃<0

d3p
2jpj I1ðpμ; p̃μÞeipμxμ ; ð127Þ

eiP̃μxμ=ðxνxνÞ

ðxνxνÞ2
¼
Z

d4PI2ðPμ; P̃μÞeiPμxμ : ð128Þ

For I1ðpμ; p̃μÞ, we found

I1ðpμ; p̃μÞ ¼
1

2π
J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2pμp̃μ

p Þ: ð129Þ

The results for I2ðPμ; P̃μÞ can be summarized as follows.
I2ðPμ; P̃μÞ is nonzero only when Pμ and P̃μ have the same
causal character (both timelike with the same time ori-
entation, or both spacelike). In the timelike case, I2ðPμ; P̃μÞ
is given by

I2ðPμ;P̃μÞ¼
AþJ1ðAþÞJ0ðA−Þ−A−J1ðA−ÞJ0ðAþÞ

4πðA2þ−A2
−Þ

; ð130Þ

while in the spacelike case, it is given by

I2ðPμ;P̃μÞ¼

8>>><
>>>:
0 PμP̃μ>mm̃

−AþJ1ðAþÞJ0ðA−Þ−A−J1ðA−ÞJ0ðAþÞ
4πðA2

þ−A2
−Þ PμP̃μ<−mm̃

Re½AðI1ðAÞK0ðĀÞþK1ðAÞI0ðĀÞÞ�
4π2ImA2 jPμP̃μj<mm̃

;

ð131Þ

where we defined the shorthands as

mm̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃νP̃νÞ

q
; ð132Þ

A� ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−PμP̃μ þmm̃
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμP̃μ −mm̃

q �
; ð133Þ

A ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mm̃þ PμP̃μ
q

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mm̃ − PμP̃μ

q �
: ð134Þ

We note that both inversion kernels are symmetric in their
arguments, i.e., I1ðpμ; p̃μÞ ¼ I1ðp̃μ; pμÞ and I2ðPμ; P̃μÞ ¼
I2ðP̃μ; PμÞ.

E. Consistency check and the near-lightlike limit

Having obtained results for the inversion of lightlike and
nonlightlike momenta, it is interesting to compare the two.
Consider first a plane wave with timelike 4-momentum P̃μ,
which is close to being lightlike (in some preferred
reference frame). What are the coefficients I2ðPμ; P̃μÞ for
its decomposition into new timelike momenta Pμ upon
inversion? Plugging m̃ ¼ 0 into (130), (133), we get

Aþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2PμP̃μ

q
; A− ¼ 0 ð135Þ

⇒ I2ðPμ; P̃μÞ ¼
1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2PμP̃μ

q J1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2PμP̃μ
q �

: ð136Þ

In particular, even though P̃μ is almost lightlike, (136) is
not exclusively concentrated at almost-lightlike Pμ. This is
not as strange as it may seem: while the light cone is
invariant under inversion, the property of being “almost
lightlike” is not. We can similarly consider a spacelike
4-momentum P̃μ that is close to being lightlike. In region II
of (131), we again obtain Eqs. (135) and (136) but with an
opposite overall sign in (136):

I2ðPμ; P̃μÞ ¼ −
1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2PμP̃μ

q J1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2PμP̃μ
q �

: ð137Þ

As for region III of (131), it shrinks in the limit of near-
lightlike P̃μ, and the function A from (109), (134) becomes
small there:

A ¼
ffiffiffiffiffiffiffiffi
mm̃

p
eiχ=2 → 0: ð138Þ

This makes I2ðPμ; P̃μÞ in region III large. In particular,
the second term in the numerator in (131) dominates, and
we get
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I2ðPμ; P̃μÞ ¼
1

4π2ImA2

¼ 1

4π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPμPμÞðP̃μP̃μÞ − ðPμP̃μÞ2

q : ð139Þ

At any rate, we see that simply taking a lightlike limit does
not allow for a direct comparison between the lightlike and
nonlightlike inversion formulas. However, we can make a
less direct comparison, which will serve as a strong
consistency check on this section’s results. Let us evaluate
the nonlightlike inversion formula (128) at t ¼ 0:

eiP̃·x=x
2

x4
¼
Z

d4PI2ðPμ; P̃μÞeiP·x; ð140Þ

and compare this with the t derivative of the lightlike
formula (127), also at t ¼ 0:

ijp̃jeip̃·x=x2
x4

¼ i
2

Z
d3pI1ðp; p̃Þeip·x: ð141Þ

Here, we assumed positive p̃t, i.e., p̃t ¼ þjp̃j, without loss
of generality. Comparing Eqs. (140) and (141), we con-
clude that the two inversion kernels must be related by

Z
dPtI2ðPμ; P̃μÞ ¼

I1ðP; P̃Þ
2jP̃j ð142Þ

for any choice of time component P̃t on the lhs. Without
loss of generality, let us choose P̃t > 0. Then, for P̃t > jP̃j,
the integral in (142) probes the timelike regime (130), and
ranges over Pt ∈ ðjPj;∞Þ. For P̃t < jP̃j, the integral probes
instead the spacelike regime (131), where we encounter two
possible situations. If P̃t < P̃ · P=jPj, then the integral
captures only region III of (131), with integration limits
Pt ∈ ðE−; EþÞ given by

E� ¼ 1

P̃2

�
P · P̃P̃t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP̃2 − ðP̃tÞ2ÞðP2P̃2 − ðP · P̃Þ2Þ

q �
:

ð143Þ

If, on the other hand, P̃t > P̃ · P=jPj, then in addition to
this range in region III, we also have the range Pt ∈
ðEþ; jPjÞ that lies in region II of (131).
For all these different cases, we verified that the con-

sistency relation (142) holds, via numerical integration with
various choices of the parameters. In the near-lightlike limit
discussed above, we were also able to perform this check
analytically. In the spacelike case, this requires taking into
account both the region II contribution, where the integrand
is given by (137), and the region III contribution, where the
integrand is given by (139). In the latter, the very small

integration range and the very large integrand combine into
a finite contribution.

V. PUTTING TOGETHER THE STATIC-PATCH
SCATTERING RESULT

We now return to de Sitter space and to our scattering
formulas (32), (44), where both the Poincare-patch evolu-
tion function M̂2 and the inversion kernels I1;2 are now
known. For convenience, let us reproduce here the relevant
formulas:

aHðkμÞ ¼
Z

k̃2¼0
k·k̃<0

d3k̃

2jk̃j I1ðkμ; k̃μÞãH̃ðk̃μÞ

þ
Z
p̃2¼0

d3p̃
2jp̃j

Z
q̃2¼0

d3q̃
2jq̃j S2ðkμ; p̃μ þ q̃μÞ

× ãH̃ðp̃μÞãH̃ðq̃μÞ; ð144Þ

S2ðkμ; P̃μÞ ¼ −I1ðkμ; k̃μÞM̂2ðk̃μ; P̃μÞjk̃μ¼ðsignðktÞjP̃j;P̃Þ

þ
Z

dPtI2ðPμ; P̃μÞM̂2ðkμ;PμÞjP¼k; ð145Þ

M̂2ðkμ;PμÞ¼ iαsignðktÞ
�
1

ε
− lnjPt−ktjþ

πi
2
signðPt−ktÞ

�
:

ð146Þ

Now, let us consider the fate of the three terms in
the Poincare-patch evolution (146), paying attention to
antipodal symmetry t → −t, i.e., to parity under the
flipping of energy signs. The first term is divergent. As
already discussed, we remove it by restricting to even
incoming data, aH̃ð−jp̃j; p̃Þ ¼ −aH̃ðjp̃j; p̃Þ≡ i

2
cH̃ðp̃Þ. We

then decompose the final data aHðkμÞ into odd and even
parts bHðkÞ; cHðkÞ. The second term in (146) will con-
tribute only to the even part, while the third term will
contribute only to the odd part. Furthermore, this latter
contribution to the odd part actually vanishes, due to a
cancellation between the two terms in (145). Indeed, inside
the Pt integral in (145), signðPt − ktÞ is always a constant,
and the cancellation then follows from the identity (142).
This leaves us only with even final data cHðkÞ, coming
from the second term in (146). Thus, our final result
consists of scattering from even data on the initial horizon
to even data on the final horizon:

cHðkÞ¼
Z

d3k̃

2jk̃j I1ðk; k̃Þc̃H̃ðk̃Þ

þ
Z

d3p̃
2jp̃j

Z
d3q̃
2jq̃jSevenðk; p̃; q̃Þc̃H̃ðp̃Þc̃H̃ðq̃Þ; ð147Þ

where the scattering kernel is given by
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Sevenðk; p̃; q̃Þ ¼
α

2

�
I1ðk; p̃þ q̃Þ ln ðjp̃j þ jq̃j þ jp̃þ q̃jÞðjp̃j þ jq̃j − jp̃þ q̃jÞ

ð−jp̃j þ jq̃j þ jp̃þ q̃jÞðjp̃j − jq̃j þ jp̃þ q̃jÞ

−
Z

∞

jkj
dPt lnðP2

t − k2ÞI2ðPμ; P̃μÞ
����
P¼k;P̃¼p̃þq̃;P̃t¼jp̃jþjq̃j

þ
Z jkj

−jkj
dPt lnðk2 − P2

t ÞI2ðPμ; P̃μÞ
����
P¼k;P̃¼p̃þq̃;P̃t¼jp̃j−jq̃j

�
: ð148Þ

Here, the second line carries the contribution to (144) from
p̃μ; q̃μ of the same energy sign, such that P̃μ ¼ p̃μ þ q̃μ is
timelike, while the third line carries the contribution from
p̃μ; q̃μ of opposite energy signs, such that P̃μ ¼ p̃μ þ q̃μ is
spacelike. The limits of the Pt integrals and the corre-
sponding regimes of I2ðPμ; P̃μÞ are the same as in the
paragraph following (142), except that we now allow
P̃t < 0 in the spacelike case. In particular, the second line
of (148) is probing the timelike regime (130), while the
third line is probing the spacelike regime (131). The
integration limits in the third line are governed by E�
from (143); in the range Pt ∈ ðE−; EþÞ, the integral probes
region III of (131); if k2ðjp̃j − jq̃jÞ2 > ðk · ðp̃þ q̃ÞÞ2, then
region II of (131) is probed as well in the range Pt ∈
ðEþ; jkjÞ if P̃t ¼ jp̃j − jq̃j is positive, or Pt ∈ ð−jkj; E−Þ if
it is negative. The remainder of the ð−jkj; jkjÞ integration
range in (148) probes region I of (131), where I2 vanishes.
Let us briefly comment on the behavior of our answer

(148) under 3D dilatations, i.e., under time translations
in the static patch. The Poincare-patch evolution (146)
contains a logarithm, which transforms inhomogeneously
under dilatations via an additive constant. This is a
symptom of the divergence contained in the 1=ε term.
Having canceled the divergence by restricting to even
initial data, we should find that the inhomogeneous trans-
formations of the logarithms in (148) cancel as well. In the
first line of (148), the cancellation is manifest, since
the logarithm there is of a dimensionless ratio. This is
not the case in the second and third lines. However, it is
easy to see that the inhomogeneous transformations of the
second and third lines cancel each other, as a result of the
consistency relation (142).

VI. DISCUSSION

In this paper, we calculated the evolution of a confor-
mally massless scalar field with cubic interaction from the
initial horizon to the final horizon of a dS4 static patch. To
our knowledge, this is the first such calculation of the most
natural observable in de Sitter space. The calculation
proceeded by (1) extending the field data on the half-
horizon boundaries of the static patch to antipodally even
configurations on entire horizons, (2) evolving the data
between each of the horizons and the unobservable
conformal boundary of dS4, and (3) sewing these two

evolutions together by a coordinate inversion. The main
technical difficulty was to work out the relevant inversion
formulas in momentum variables. These formulas can be
defined in terms of flat spacetime, and should be useful in a
broader context.
Our final result (148) for the static-patch scattering is not

quite given in closed form, since we have not managed to
perform analytically the energy integral

R
dPt. It would be

interesting to do so, if not in general then at least in some
limits. In any case, we stress that our ability to reduce
things to this single integral relied on the simplicity of
working with a single cubic vertex. For diagrams with
quartic vertices, or with more than one vertex, the general
procedure from Eqs. (9) and (10) will still be valid, but
it is no longer clear how to reduce the inversions to just a
single integral. Perhaps a better way forward would be to
mimic the modern flat-spacetime scattering industry (see
e.g., [7–9]) and its relatives in inflationary cosmology
(e.g., [10]), and try to reconstruct higher-point functions
from the cubic one using some general principles, instead
of resorting again to a bulk calculation.
A more straightforward next step is to repeat the cubic-

vertex calculation for massless theories with spin, i.e.,
Yang-Mills and general relativity. The techniques devel-
oped here should be applicable with some slight modifi-
cations, especially since we already relied on spinors for the
inversion calculation.
In closing, let us return to the subject of cancellations

between the two Poincare-patch evolutions in Eq. (10). As
discussed there, such a cancellation will occur whenever the
Poincare-patch evolution (or a piece thereof) has the full
SOð1; 4Þ de Sitter symmetry, i.e., the full conformal sym-
metry on the boundary. For processes with a single inter-
action vertex, this is always almost the case. This is because
the dS4 Poincare-patch calculation is very closely related to
the Euclidean AdS4 boundary correlator in Poincare coor-
dinates, which is SOð1; 4Þ invariant. The difference that can
(and does) spoil the invariance is that our static-patch
calculation requires both positive and negative Poincare-
patch energies, whereas in the Euclidean calculation the
energies all have the same sign. Flipping the energy signs
can then introduce singularities in momentum space that
were not present in the Euclidean picture, such as when
1=ðjPj þ jkjÞ turns into 1=ðjPj − jkjÞ. Applying a special
conformal generator, we then find a nonvanishing
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contribution from these singularities. However, the converse
is also true: whenever a Euclidean correlator (or a piece
thereof) does not have singularities when continued to
opposite energy signs,we should expectSOð1; 4Þ invariance
of the Poincare-patch evolution, and a cancellation in the
static-patch scattering. In the present paper, we have seen
this in the case of the third term in Eq. (146). Though we did
not describe that cancellation as a consequence of symmetry
in the main text, it is in fact reflecting the conformal
symmetry of the pure contact term δ3ðP − kÞ. For Yang-
Mills and GR, we expect similar cancellations for
static-patch scattering with ðþþþÞ and ð−−−Þ helicities,
since the Euclidean boundary correlators for these helicity
choices do not have the energy poles that are present for
helicities ðþþ−Þ and ð−−þÞ [6]. Such a cancellation would
make for a nice similarity between dS4 static-patch scatter-
ing and its more symmetric counterpart, the Minkowski S
matrix.
Another complication is that the SOð1; 4Þ symmetry may

be already broken in the Euclidean correlators, due to a
bulk IR divergence. This happened in our present case,
producing the logarithmic term in the Poincare-patch
evolution (146). In Yang-Mills theory, this issue should
not arise. For GR, the question is more subtle, as e.g., in [1]
there is a divergence that ends up canceling between

the backwards and forwards Poincare-patch evolutions.
In our setup, there will be an inversion between these two
evolutions, which may spoil the cancellation. We will then
be forced to choose, as in the present paper, an initial data in
a combination that falls off sufficiently quickly at I .
One of our long-term goals in this work is to build

towards bulk de Sitter observables (such as static-patch
scattering amplitudes) for higher-spin gravity [11,12],
and in particular for higher-spin dS=CFT [13]. It is our
hope that the study of more ordinary interacting massless
theories can provide some guidance in this direction.
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