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Abstract

Using the BRST approach to higher spin field theories we develop a generic technique for constructing 
the cubic interaction vertices for N = 1 supersymmetric massless higher spin fields on four, six and ten 
dimensional flat backgrounds. Such an approach allows formulation of the equations for cubic vertices 
including bosonic and fermionic higher spin fields, and the problem of finding the vertices is reduced 
to finding the consistent solutions to these equations. As a realization of this procedure, we present the 
particular solutions for the vertices where the fields obey some off-shell constraints. It is shown that the 
supersymmetry imposes additional constraints on the vertices and singles out a particular subclass of the 
solutions. As a concrete application of the generic scheme, we consider supersymmetric Yang-Mills-like 
systems in four, six and ten dimensions where the higher spin fields transform under some internal symmetry 
group, as well as supergravity-like systems in the same dimensions.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The problem of constructing interactions for higher spin fields has attracted much attention 
for many years. Interest in this problem is due to certain possibilities for the development of 
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new principles for constructing unified models of fundamental interactions, including quantum 
gravity, and phenomenological applications that are opening up in elementary particle physics 
and cosmology. Another fundamental principle that apparently should underlie the unified theory 
is related to supersymmetry. Therefore, the construction of a supersymmetric theory of higher-
spin fields seems to be quite natural and relevant.

Until now supersymmetric higher spin theories have been studied mainly in three and four 
dimensional flat and AdS backgrounds (see [1–5] for earlier papers on the subject and [6–9] for 
recent reviews), whereas considerations in higher dimensions have been relatively rare [10]–[11]. 
Nevertheless, higher dimensional supersymmetric higher spin theories are interesting for several 
reasons. Firstly, they might prove to be helpful for further investigations of a connection between 
higher spin and string theories, since the latter also lives in higher dimensions. Secondly, higher 
dimensional higher spin theories can open some new possibilities for building lower dimensional 
supersymmetric models, as in supergravity, where the lower dimensional models can be obtained 
from relatively simpler higher dimensional ones via various kinds of compactifications and di-
mensional reductions.

Recently a particular class of free Lagrangians for N = 1 supersymmetric massless higher 
spin fields was obtained [11], [12] for D = 3, 4, 6 and 10 dimensional flat backgrounds. Al-
though this construction bears a certain similarity with the supersymmetric open string field 
theory [13], it turns out that for massless higher spin fields one can build finite dimensional su-
permultiplets with the supersymmetry algebra being closed on-shell both in the bosonic (NS) 
and in the fermionic (R) sectors. To be more specific, the model obtained in [11] is a supersym-
metrization of free Lagrangians for certain reducible representations of the Poincaré group and 
the specific structure of these representations is singled out by the requirement of N = 1 super-
symmetry. The fermionic sector (so-called “triplet” [14]–[15]) contains physical and auxiliary 
fields, which are totally symmetric with respect to their indices.1 The physical field and a part of 
the auxiliary fields in the bosonic sector have indices of two types: n indices of one type and one 
index of another type. The indices of the first type are totally symmetric among each other, while 
there is no symmetry between them and the index of the second type. The other auxiliary fields 
are totally symmetric, i.e., they have indices only of the first type. This is the simplest example 
of so–called generalized triplets [17] which describes reducible representations of the Poincaré 
group for fields with mixed symmetries. In both the fermionic and bosonic sectors the auxiliary 
fields are eliminated via their own equations of motion and/or after the complete gauge fixing so 
the system describes on-shell only physical polarizations. To summarize, in the fermionic sector 
the physical fields are described by the rank n spin tensor which contains the fields with spins 
n + 1/2, n − 1/2, ..., 1/2 The bosonic sector contains the physical fields described by Young 
tableaux with two rows. These Young tableaux are of the type (n, 1) and (n + 1, 0).

As mentioned above, the triplets are reducible representations of the Poincaré group and un-
like the so-called Fronsdal fields [18]–[19], each triplet contains more than one physical field. 
These fields correspond to single, double, etc. traces of the tensor/spin-tensor field of rank n. On 
the other hand, the question of whether the corresponding supermultiplets are reducible or not 
in the sense of representations of SUSY algebra has different answers depending on the space-
time dimensions, as they can be either reducible or irreducible. This can be easily seen for the 
example of the lower spin fields. The lowest spin case which corresponds to n = 0, describes the 
N = 1 supersymmetric Maxwell theory in D = 4, 6 and 10 and is in some sense degenerate. The 

1 A frame-like formulation of triplets was obtained in [16].
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next simplest case, with n = 1 corresponds to linearized N = 1 supergravity theories. The La-
grangians of [11] describe irreducible supermultiplets for D = 10 and reducible supermultiplets 
for D = 4 and D = 6. Proceeding further, one can show that the situation for the higher spin 
fields is the same as for the case of linearized supergravity multiplets.

It is a natural next step to study a possibility for cubic interactions for the free systems de-
scribed above. The problem of construction and of the further study of cubic vertices for massless 
and massive higher spin fields has been attracting considerable interest [20–31] (see also [32–34]
for earlier work and [35–39] for supersymmetric and non-supersymmetric cubic interactions on 
AdS backgrounds in the frame–like approach). Although these studies were mainly devoted to 
non-supersymmetric theories, several interesting results appeared recently for supersymmetric 
cubic vertices in four dimensions. In particular, in [40]– [41] cubic vertices for N = 1 super-
fields and for extended N were obtained in the light-cone approach. In the papers [42–48] the 
interactions between conserved higher spin supercurrents and chiral superfields, as well as in-
teractions between supersymmetric sigma-models and higher spin superfields on flat and AdS

backgrounds were constructed. The cubic interactions for supersymmetric systems were also 
recently constructed in [49]– [50].

In the present paper we extend, at least partially, the results of [11] by including cubic in-
teraction vertices into consideration. By “partially” we mean the following: for the purpose of 
simplifying the computations, we shall partially gauge fix the free Lagrangians, so the fields 
contain only physical transverse components. As the second step we perform nonlinear defor-
mations of these Lagrangians by including cubic interaction vertices. It turns out however, that 
because of this gauge fixing, a further requirement of the invariance under N = 1 supersymme-
try transformations puts the fields completely on shell. These completely on-shell vertices can be 
promoted back to the off-shell ones by including all auxiliary fields into the free and interacting 
Lagrangians i.e., by considering the system given in [11] without gauge fixing and then repeating 
the procedure described above.2 The “physical” part of these vertices, which does not contain any 
auxiliary fields will coincide with the ones obtained in the present paper. Here we shall present 
the defining equations for these vertices and leave the detailed analysis for a separate publication.

The paper is organized as follows:
In section 2 we give a brief description of the free supersymmetric systems for which we are 

going to build cubic interactions. To this end, we use the BRST approach.3 which yields the free 
Lagrangians given in [11] with no off-shell constraints neither on the fields under consideration 
nor on the parameter of gauge transformations. We then gauge fix the Lagrangians, so that they 
contain only physical components, and the fields and parameters of gauge transformations obey 
certain off–shell constraints4

Section 3, where we describe the cubic interactions, contains two subsections. In subsection 
3.1 we collect the expressions for the vertices for three bosonic higher spin fields both in an un-
constrained and in a gauge fixed form [26], [22]. These vertices correspond to the purely bosonic 

2 Usually in the context of supersymmetric theories the words “on-shell” and “off-shell” indicate whether the super-
symmetry algebra is closed after taking into account the equations of motion or not (see e.g. [51]). The N = 1 systems 
constructed in [11] are formulated in terms of component fields, i.e., they are “on-shell”. Here “completely on-shell” 
means that we use the field equations in order to have the cubic vertices transformed into each other under the supersym-
metry transformations.

3 Originally used for a description of totally symmetric massless and massive reducible representations of the Poincaré 
group [52]–[53], this approach was then generalized for description of Poincaré and AdSD groups, see e.g. [54–63].

4 This is called a constrained formulation in [64] whereas the formulation where no off-shell constraints are imposed 
is called unconstrained one [65].
3
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part of cubic interactions of the systems under consideration. The equations that determine cubic 
vertices for two fermionic and one bosonic higher spin fields are given in subsection 3.2.

In section 4 we describe the higher spin generalization of the N = 1 super Yang-Mills theory. 
First we derive the corresponding cubic vertices and the Lagrangians, which describe the cubic 
interactions between reducible massless representations of the Poincaré group. These vertices 
are a covariant form of the analogous vertices obtained in the light-front formalism in [22]. Then 
we present the N = 1 supersymmetry transformation for these systems. As mentioned above, 
the requirement of the supersymmetry puts the fields on shell, because of the form of the gauge 
fixing. A somewhat degenerate case of N = 1 super Yang-Mills theory which illustrates how the 
whole system can be promoted to an off-shell description is given separately.

An analogous consideration for the higher spin generalization of the four dimensional N = 1
supergravity is given in section 5.

The last section contains our conclusions and the summary of results.
Some lengthy equations and useful identities for gamma matrices and for linearized gravity 

are collected in the appendices.

2. Free Lagrangians

In this section we shall briefly describe free Lagrangians for bosonic and fermionic massless 
higher spin fields, whose cubic deformations and supersymmetrizations we are going to consider.

As we mentioned in the introduction, in the fermionic F sector we have n totally symmetric 
spin-tensor fields, both physical and auxiliary. In the bosonic sector B the physical field contains 
n indices which are symmetric among each other and one index which has no symmetry with the 
other ones. The auxiliary fields in the bosonic sector are either totally symmetric or have mixed 
symmetry.

In order to derive the corresponding Lagrangians, we introduce commuting oscillators αμ,±
m , 

anticommuting ghosts c±
m, c0 and antighosts b±

m, b0, where m = 1, 2 in the B sector and m = 1
in the F sector. These oscillators obey the following (anti)commutation relations

[αμ
m,αν,+

n ] = ημνδmn, {c+
m,bn} = {cm, b+

n } = δmn , {c0, b0} = 1. (2.1)

The ghost number of c±
m and c0 is +1, the ghost number of b±

m and b0 is consequently −1 and 
the ghost number of αμ,±

m is zero.
The Fock vacua in the B and in F sectors are defined as, respectively

αμ
m|0B〉 = cm|0B〉 = bm|0B〉 = b0|0B〉 = 0, m = 1,2. (2.2)

α
μ
1 |0F 〉 = c1|0F 〉 = b1|0F 〉 = b0|0F 〉 = 0. (2.3)

Higher spin functionals either in the B or F sector, are expanded in terms of the creation opera-
tors and the components of this expansion are higher spin fields (physical and auxiliary).

Let us now introduce differential operators. In the B sector we have

l0 = p · p, lm = p · αm, l+m = p · α+
m, (2.4)

where pμ = −i∂μ when acting to the right. The symbol ‘dot’ means A · B = ημνA
μBν and 

∂A denotes a symmetrized derivative. For example if A is a vector, then ∂A ≡ ∂μAν + ∂νAμ. 
Obviously l0 is the d’Alembertian, lm being divergence operators with respect to the indices con-
tracted with αμ,+

m oscillators and l+ being derivatives symmetrized with the indices contracted 
m

4



I.L. Buchbinder, V.A. Krykhtin, M. Tsulaia et al. Nuclear Physics B 967 (2021) 115427
with αμ,+
m oscillators. Alternatively, one can work in a momentum representation, without real-

izing pμ as a differential operator.
In the F sector we have

l1 = p · α1, l+1 = p · α+
1 , g0 = p · γ, (2.5)

where γμ are gamma-matrices and the operator g0 being the Dirac operator.
Having defined all necessary operators we can write a free Lagrangian for bosonic fields as

LB,free =
∫

dc0〈�B |QB |�B〉, (2.6)

with the corresponding nilpotent BRST charge

QB = c0 l0 + Q̃B − MB b0 , (2.7)

where

Q̃B =
∑

m=1,2

(c+
m lm + cm l+m), MB =

∑
m=1,2

c+
m cm. (2.8)

The Lagrangian (2.6) is invariant under the gauge transformations

δ|�B〉 = QB |	B〉 (2.9)

due to the nilpotency of the BRST charge (2.7) in any space-time dimension D. The ghost num-
ber of the field |�B〉 is fixed to be zero and consequently the ghost number of the parameter of 
gauge transformations |	B〉 is equal to −1.

Further, in order to establish N = 1 supersymmetry, one requires that the component of the 
higher spin functional |�B〉, which does not depend on ghosts/antighosts and describes the phys-
ical field, depends on the oscillator α+ν

2 only linearly. The explicit form of |�B〉 and |	B〉 can 
be completely fixed and is given in [11].

In the following we shall work with the gauge fixed form of the Lagrangian (2.6) by imposing 
off-shell conditions |�B〉

lm|�B〉 = 0, m = 1,2. (2.10)

As a result the higher spin functional contains only a physical field

|�B〉 ≡ |φ〉 = 1

n! φμ1μ2...μn,ν(x)αν+
2 α

μ1+
1 α

μ2+
1 . . . α

μn+
1 |0B〉, (2.11)

all ghost dependence being gauged away. The physical field obeys off-shell transversality condi-
tions, i.e., we are essentially dealing with only physical components.

The Lagrangian (2.6) and the gauge fixing conditions (2.10) are still invariant under the gauge 
transformations (2.9) with the parameter of gauge transformations

|	B〉 = b+
1 |λ〉 + b+

2 |ρ〉 = (2.12)

= ib+
1

(n − 1)!λν,μ1μ2 ...μn−1(x)αν+
2 α

μ1+
1 α

μ2+
1 ... α

μn−1+
1 |0B〉 +

+ ib+
2

n! ρμ1μ2 ...μn(x)α
μ1+
1 α

μ2+
1 .. α

μn+
1 |0B〉
5
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being restricted as

l0|	B〉 = lm|	B〉 = 0, m = 1,2 (2.13)

The free Lagrangian for the fermionic triplet is

LF,free = 1√
2

a〈�F,1|(g0)
a
b|�F,1〉b + a〈�F,2|Q̃F |�F,1〉a + (2.14)

+ a〈�F,1|Q̃F |�F,2〉a + √
2 a〈�F,2|MF (g0)

a
b|�F,2〉b ,

where

Q̃F = c+
1 l1 + c1 l+1 , MF = c+

1 c1. (2.15)

The Lagrangian contains two fields, each of them being a series of expansion in terms of the 
creation operators αν,+

1 , c+
1 , and b+

1 . The field |�F,1〉b contains physical and auxiliary fields, 
while the field |�F,2〉a is purely auxiliary. The Lagrangian (2.14) is invariant under the gauge 
transformations

δ |�F,1〉a = Q̃F |	F,1〉a + √
2MF (g0)

a
b |	F,2〉b ,

δ |�F,2〉a = − 1√
2
(g0)

a
b |	F,1〉b − Q̃F |	F,2〉a (2.16)

with unconstrained parameters |	F,1〉a and |	F,2〉a . The fields |�F,1〉a and |�F,2〉a have ghost 
numbers 0 and −1 respectively. The parameters of gauge transformations |	F,1〉a and |	F,2〉a
have ghost numbers −1 and −2 respectively. Similarly to the bosonic sector, one can consider 
only a physical field

|�F 〉a ≡ |
〉a = 1

n! 
a
μ1μ2 ...μn

(x)α
μ1+
1 α

μ2+
1 ... α

μn+
1 |0F 〉. (2.17)

In this gauge the field |�F 〉a does not depend on ghost/antighost variables and obeys the off-shell 
transversality condition

l1|�F 〉a = 0. (2.18)

The free Lagrangian in the fermionic sector is therefore

LF.f ree = a〈�F |(g0)
a
b|�f 〉b. (2.19)

The off-shell constraints (2.18) and the Lagrangian (2.19) are invariant under the transformations

δ |�F 〉a = Q̃F |	F 〉a (2.20)

provided the parameter of gauge transformations

|	F 〉a = b+
1 |λ̃〉a = ib+

1

(n − 1)! λ̃a
μ1μ2...μn−1

(x)α
+μ1
1 α

+μ2
1 ...α

+μn−1
1 |0F 〉 , (2.21)

is constrained as

(g0)
a
b|	F 〉b = l1|	F 〉a = 0. (2.22)

Finally, let us note that all representations of the Poincaré group that we discussed in this section 
are reducible since no (gamma)tracelesness condition has been imposed at any stage.
6
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3. Cubic interactions

3.1. Three bosons

Below we shall follow the approach of [21] for the construction of off-shell cubic interaction 
vertices between three bosonic higher spin fields. This method is a modification of the construc-
tion developed in open string field theory [66] – [67] to the case of higher spin fields and it can 
be applied for either massless or massive fields, both on flat and (A)dSD backgrounds.

Let us take three copies of the Fock spaces introduced in section 2. All oscillators get an extra 
index i = 1, 2, 3 and the nonzero commutation relations are only between oscillators, which 
belong to the same Fock space

[α(i)
μ,m,α

(j),+
ν,n ] = δij δmnημν, (3.1)

{c(i),+
m ,b

(j)
n } = {c(i)

m , b
(j),+
n } = {c(i)

0,m, b
(j)
0,n} = δij δmn . (3.2)

The operator p(i)
μ corresponds to the momentum in the i-th Fock space. In a coordinate repre-

sentation the expression p(i)
μ = −i∂

(i)
μ is a derivative acting on the fields in i-th Fock space. The 

momentum operators obey the constraint

p(1)
μ + p(2)

μ + p(3)
μ = 0. (3.3)

Finally, we also allow the higher spin functionals to carry some internal symmetry indices de-
noted as A, B, C.

Next, we consider the Lagrangian

LB,int =
3∑

i=1

∫
dc

(i)
0

A〈�(i)
B |Q(i)

B |�(i)
B 〉A + (3.4)

+ g

(∫
dc

(1)
0 dc

(2)
0 dc

(3)
0

A〈�(1)
B |B〈�(2)

B |C〈�(3)
B ||V 〉ABC + h.c.

)

and modified gauge transformations

δ|�(1)
B 〉A = Q

(1)
B |	(1)

B 〉A − (3.5)

− g

∫
dc

(2)
0 dc

(3)
0

(
(B〈�(2)

B |C〈	(3)
B | + C〈�(3)

B |B〈	(2)
B |)|V 〉ABC

)

where g is a coupling constant. The transformations for the fields |�(2)
B 〉A and |�(3)

B 〉A are ob-
tained from (3.5) via cyclic permutations.

Below, we will consider two types of vertices. In one type of vertices, to which we refer as 
“gravity-like” vertices, the internal indices are absent. The other type of vertices, referred to as 
“Yang-Mills-like”, has the form

|V 〉ABC = fABC |V 〉 (3.6)

for some totally antisymmetric structure constants fABC .
In both cases the invariance of the Lagrangian (3.4) under the transformations (3.5) in the 

zeroth order in g is maintained due to the nilpotency of the BRST charges in each Fock space

(Q
(1)

)2 = (Q
(2)

)2 = (Q
(3)

)2 = 0. (3.7)
B B B

7
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The invariance at the first order in g implies that the cubic vertex is BRST invariant

(Q
(1)
B + Q

(2)
B + Q

(3)
B )|V 〉 = 0 (3.8)

The condition (3.8) also guarantees that the group structure of the gauge transformations is pre-
served at the first order in g.

The cubic vertex has a general structure

|V 〉 = V c
(1)
0 c

(2)
0 c

(3)
0 |0(1)

B 〉 ⊗ |0(2)
B 〉 ⊗ |0(3)

B 〉 (3.9)

where an unknown function V can depend on p(i)
μ , α(i),+

μ , c(i),+, b(i),+, b(i)+
0 . Apart from the 

condition of BRST invariance (3.8), the function V is required to be Lorentz invariant and to 
have zero ghost number.

It can be verified by direct computations [26], [29] that the following expressions are BRST 
invariant and therefore any function of them is a solution of (3.8)

K(i)
m = (p(i+1) − p(i+2)) · α(i),+

m + (b
(i+1)
0 − b

(i+2)
0 ) c(i),+

m , (3.10)

O(i,i)
mn = α(i),+

m · α(i),+
n + c(i),+

m b(i),+
n + c(i),+

n b(i),+
m , (3.11)

Zmnp = Q(1,2)
mn K(3)

p +Q(2,3)
np K(1)

m +Q(3,1)
pm K(2)

n , (3.12)

where5

Q(i,i+1)
mn = α(i),+

m · α(i+1),+
n + 1

2
b(i),+
m c(i+1),+

n + 1

2
b(i+1),+
n c(i),+

m . (3.13)

After the gauge fixing described in section 2 the Lagrangian (3.4) simplifies to

Lint =
∑

i=1,2,3

A〈φ(i)|l(i)0 |φ(3)
B 〉A +

(
C〈φ(1)| A〈φ(2)| B〈φ(3)||V 〉ABC + h.c

)
(3.14)

and describes cubic interactions between three massless higher spin fields without their auxiliary 
components. As we shall see below, further requirement of N = 1 supersymmetry will single out 
some particular subclasses of the cubic vertices.

3.2. Two fermions and one boson

Cubic interactions between two fermionic and one bosonic higher spin fields can be treated in 
the BRST approach in a similar way. However, there is one important difference, which makes the 
present case technically more complicated. This difference shows up already at the level of the 
free Lagrangians: because of the absence of the ghost c0 (see section 2 and [11], [17] for details) 
the free Lagrangian for the fermionic triplets contains two different operators: the Dirac operator 
g0 and operator (2.15), instead of only one BRST charge (2.7) present in the Lagrangians for free 
bosonic triplets.

Making a cubic deformation of the free Lagrangian we get

Lint =
∑
i=1,2

(
1√
2

A
a 〈�(i)

F,1|(g(i)
0 )ab|�(i)

F,1〉bA + A
a 〈�(i)

F,2|Q̃(i)
F |�(i)

F,1〉aA + (3.15)

5 Some solutions of (3.8) can be obtained from the free Lagrangian by the field redefinitions. Such vertices have 
the form |V 〉 = ∑

i=1,2,3 Q
(i)
B

|W(i)〉. Trivial vertices generically contain powers of l(i)0 and l(i)m (defined in (2.4)) and 
therefore can be eliminated [21].
8
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+ A
a 〈�(i)

F,1|Q̃(i)
F |�(i)

F,2〉aA + √
2 A

a 〈�(i)
F,2|M(i)

F (g
(i)
0 )ab|�(i)

F,2〉bA)

+
∫

dc
(3)
0

A〈�(3)
B |Q(3)

B |�(3)
B 〉A +

+ g
∑

m,n=1,2

∫
dc

(3)
0

(
C〈�(3)

B | A
a 〈�(1)

F,m| B
b 〈�(2)

F,n||Vmn〉ab
ABC + h.c

)
.

The structure of the cubic vertex

|V〉ab
ABC = Vab

ABC |0(1)
F 〉 ⊗ |0(2)

F 〉 ⊗ c
(3)
0 |0(3)

B 〉, (3.16)

and the fact that the Lagrangian and the higher spin functionals have the ghost number zero, 
implies that the unknown function Vab

ABC has ghost number zero as well. The requirement of the 
invariance of the Lagrangian (3.15) under the nonlinear gauge transformations

δ|�(3)
B 〉C = Q

(3)
B |	(3)

B 〉C + (3.17)

+ g
∑

m,n=1,2

(Aa 〈�(1)
F,m| B

b 〈	F,n
(2)||W1,2

3,mn〉ab
ABC +

+ A
a 〈�(2)

F,m| B
b 〈	(1)

F,n| |W2,1
3,mn〉ab

ABC)

δ|�(i)
F,1〉aC = Q̃

(i)
F |	F,1

(i)〉aC + √
2M

(i)
F (g

(i)
0 )ab |	(i)

F,2〉bC (3.18)

+ g
∑

m=1,2

∫
dc

(3)
0 (Ab 〈�(3−i)

F,m | B〈	(3)
B ||W3−i,3

i,1m 〉ab
ABC +

+ A〈�(3)
B | B

b 〈	(3−i)

F,m
||W3,3−i

i,1m 〉ab
ABC)

δ|�(i)
F,2〉aC = − 1√

2
(g

(i)
0 )ab |	(i)

F,1〉bC − Q̃
(i)
F |	(i)

F,2〉aC (3.19)

+ g
∑

m=1,2

∫
dc

(3)
0 (Ab 〈�(3−i)

F,m | B〈	(3)
B ||W3−i,3

i,2m 〉ab
ABC +

+ A〈�(3)
B | B

b 〈	(3−i)

F,m
||W3,3−i

i,2m 〉ab
ABC)

leads to equations for unknown vertices |Vmn〉ab
ABC and |W ij

k,mn〉ab
ABC which are given in 

(B.1)–(B.12).
One can however consider a simpler problem, where the higher spin functionals are gauge 

fixed, as was discussed in section 2. At the cubic level this simply means considering only phys-
ical (ghost independent) components in (3.15) and integrating out of the ghost zero mode. Then 
the corresponding cubic Lagrangian has the form

Lint =
2∑

i=1

A
a 〈
(i)|(g(i)

0 )ab|
(a)〉bA + A〈φ(3)|l(3)
0 |φ(3)〉A + (3.20)

+g
(

C〈φ(3)| A
a 〈
(1)| B

b 〈
(2)||V〉ab
ABC + h.c

)
.

The invariance under nonlinear gauge transformations

δ|φ(3)〉C = Q̃
(3)
B |	(3)

B 〉C + (3.21)

+ g(Aa 〈
(1)| B〈	F
(2)||W1,2〉ab + A

a 〈
(2)| B〈	(1)| |W2,1〉ab ),
b 3 ABC b F 3 ABC

9
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δ|
(1)〉aC = Q̃
(1)
F |	F

(1)〉aC + (3.22)

+ g(Ab 〈
(2)| B〈	(3)
B ||W2,3

1 〉ab
ABC + A〈φ(3)| B

b 〈	(2)

F ||W3,2
1 〉ab

ABC),

δ|
(2)〉aC = Q̃
(2)
F |	F

(2)〉aC + (3.23)

+ g(A〈φ(3)| B
b 〈	(1)

F ||W3,1
2 〉ab

ABC + A
b 〈
(1)| B〈	(3)

B ||W1,3
2 〉ab

ABC),

implies the following conditions on the vertices

B〈	(3)
B |Ca 〈
(1)|Ac 〈
(2)|

(
(g

(1)
0 )ab|W2,3

1 〉bc
ABC − (g

(2)
0 )cb|W1,3

2 〉ba
CBA + Q̃

(3)
B |V〉ac

CAB

)
= 0

(3.24)

C〈φ(3)|Aa 〈
(1)|Bc 〈	(2)
F |

(
(g

(1)
0 )ab|W3,2

1 〉bc
CBA + l

(3)
0 |W1,2

3 〉ac
ABC + Q̃

(2)
F |V〉ac

ABC

)
= 0 (3.25)

C〈φ(3)|Bc 〈	(1)
F |Aa 〈
(2)|

(
(g

(2)
0 )ab|W3,1

2 〉bc
CBA + l

(3)
0 |W2,1

3 〉ac
ABC − Q̃

(1)
F |V〉caBAC

)
= 0 (3.26)

where |
(i)〉, |φ(3)〉, |	(i)
B 〉, and |	(3)

F 〉 are constrained as described in section 2.
Furthermore, for the preservation of the group structure of the gauge transformations up to 

the first order in the coupling constant g there must exist some functions |Xi〉 such that

A
b 〈	(2)

F |B〈	(3)
B |

(
Q̃

(2)
F |W2,3

1 〉ab
ABC + Q̃

(3)
B |W3,2

1 〉ab
BAC − Q̃

(1)
F |X1〉ab

ABC

)
= 0 (3.27)

B〈	(3)
B |Ab 〈	(1)

F |
(

Q̃
(1)
F |W1,3

2 〉ab
ABC + Q̃

(3)
B |W3,1

2 〉ab
BAC − Q̃

(2)
F |X2〉ab

ABC

)
= 0 (3.28)

A
a 〈	(1)

F |Bb 〈	(2)
F |

(
Q̃

(1)
F |W1,2

3 〉ab
ABC − Q̃

(2)
F |W2,1

3 〉ba
BAC − Q̃

(3)
B |X3〉ab

ABC

)
= 0 (3.29)

Since both the Lagrangian and the higher spin functionals have ghost number zero, it follows that 
the vertex |V〉 has the ghost number 0 and the |W〉 and |X 〉– vertices have ghost number +1.

Let us note, that the Lagrangian (3.20) is symmetric under the exchange of |
(1)〉 and |
(2)〉, 
provided the vertex obeys the symmetry

1 ↔ 2, |V〉ab
ABC → −|V〉ba

BAC (3.30)

The gauge transformation rules (3.21)-(3.23) are symmetric under the exchange of labels 1 and 
2 as well. Similarly, the transformation (3.30) leaves the equation (3.24) invariant, and takes the 
equation (3.25) to (3.26) and vice versa.

To summarize, the vertex |V〉ab describes the Lagrangian cubic interactions and the 
|W〉ab–vertices describe nonlinear deformations of the linear gauge transformations. The defin-
ing equations are (3.24)–(3.26), whereas the equations (3.27)–(3.29) are in a sense the consis-
tency conditions for the vertices.

4. Super Yang-Mills-like systems

4.1. Vertices

Let us consider a vertex

(V)ab = fABC(γ · α+)abF(K(i)
,Z111) (4.1)
ABC 2 1

10
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for cubic interactions between two fermions and one boson. The function F is an arbitrary 
function of Z111 and K(i)

1 , as defined in (3.10) and (3.12). We can solve explicitly equations 
(3.24)-(3.29) for any F , with the solutions given in appendix C.

To simplify the following and aid in establishing supersymmetry we impose a cyclic symmetry 
on the vertex, by choosing F such that

∂F
∂K(1)

1

= ∂F
∂K(2)

1

= ∂F
∂K(3)

1

≡ ∂F
∂K1

(4.2)

In order to consider N = 1 supersymmetry we shall choose the following cubic vertex for 
three bosonic higher spin fields

C〈φ(1)| A〈φ(2)| B〈φ(3)|Z222F(K1,Z111)|0(1)
B 〉 ⊗ |0(2)

B 〉 ⊗ |0(3)
B 〉fABC (4.3)

The interaction between two fermions and one boson is described by the cubic vertex (4.1). 
However, for the purpose of finding supersymmetry transformations, we take three Fock spaces 
in the fermionic sector as well and consider the interactions between two fermions and one boson 
as

C〈φ(3)| A
a 〈
(1)| B

b 〈
(2)|(γ · α(3),+
2 )abF(K1,Z111)|0(1)

F 〉 ⊗ |0(2)
F 〉 ⊗ |0(3)

B 〉fABC + cyclic

(4.4)

Given the symmetry of exchanging the Fock space labels (3.30) in the definition of the vertices, 
the function F has to be even, in the sense that

F(−K1,−Z111) = F(K1,Z111) (4.5)

This implies that the total number of α+
1 oscillators in F is even, and the total number of oscilla-

tors in the vertices is odd.
Naturally, in order to establish supersymmetry for the nonlinear systems under consideration, 

one starts with the transformations that connect the free Lagrangians for fermionic and bosonic 
(generalized) triplets [11]

δ|φ(i)〉A = ε̄a (α
(i),+
2 · γ )ab|
(i)〉bA, (4.6)

δ|
(i)〉aA = −2(p(i) · γ )ab (α
(i)
2 · γ )bc εc |φ(i)〉A (4.7)

and then considers their nonlinear deformations by the terms which are compatible with the in-
teractions.6 One can see, however, that the off-shell transversality conditions (2.10) and (2.18)
combined with supersymmetry transformations (4.6)–(4.7) put the fields completely on shell. On 
the other hand, it is a matter of direct computations to check that the supersymmetry transfor-
mations given above transform the vertex (4.3) into (4.4) and vice versa, provided the fields are 
transversal and obey the massless Klein-Gordon and Dirac equations. This invariance can be ex-
plained as follows: in the case of free triplets [11] supersymmetry transformations are generated 
by the oscillator α(i),+

2 , see (4.6)–(4.7). Since the fields are on shell, these transformations stay 
the same also for cubic interactions. Further, both vertices (4.3) and (4.4) have the form of an 
unknown function which depends only on the oscillators α(i),+

1 , times prefactors which contain 

6 From these supersymmetry transformations one can see that the fields φν;μ1 ,...,μn
(x) and 
μ1,...,μn

(x) form an 
N = 1 supermultiplet, see [11] for details.
11
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only the oscillators α(i),+
2 . Therefore, it is sufficient to check how these prefactors transform into 

each other under the supersymmetry transformations. As one can see, this check repeats exactly 
the proof for the invariance of cubic interactions in the standard N = 1 Super Yang-Mills theory.

4.2. An example: N = 1 super Yang-Mills theory

Cubic vertices for N = 1 super Yang-Mills theory in D = 4, 6 and 10 dimensions are the 
simplest examples of the ones considered in the previous subsection. We shall consider them in 
detail also for the purpose of showing how the requirement imposed by supersymmetry for the 
fields being completely on shell can be lifted by including auxiliary fields, thus promoting the 
system to an off-shell one.

For the case of super Yang-Mills theory we take at most only one set of oscillators 
α

μ,+
2 , c+

2 , b+
2 in each Fock space, thus making the nonlinear deformation of the Super-Maxwell 

system considered in [11].
To obtain the Yang-Mills cubic vertex we take the higher spin functional in the form

|φ(i)〉A = Aμ,A(x)α
μ(i),+
2 |0(i)

B 〉 (4.8)

and then use (4.3) with the unknown function F being replaced by a constant

|V 〉ABC = − ig

12
fABCZ222|0(1)

B 〉 ⊗ |0(2)
B 〉 ⊗ |0(3)

B 〉 (4.9)

In this way one obtains the cubic interaction vertex of Yang-Mills theory

V = gfABC(∂μAν
A)Aμ,BAν,C (4.10)

Similarly, we take the higher spin functional in the fermionic sector as

|
(i)〉aA = 
a
A(x)|0(i)

F 〉 (4.11)

Then, from the vertex (4.4), with constant F

|V〉ab
ABC = ig

3
fABC(α

(3),+
2 · γ )ab |0(1)〉F ⊗ |0(2)〉F ⊗ |0(3)〉B + cyclic (4.12)

we get for the cubic interaction between two fermions and the gauge field

V = igfABC
a,Aγ
μ
ab


b,BAC
μ (4.13)

The only nonzero parameter of gauge transformations is

|	(i)
B 〉A = ib

(i),+
2 λA(x)|0(i)

B 〉. (4.14)

From the equations (C.11) and (C.12) with constant F we get for the nonzero components of W
vertices

|W2,3
1 〉ab

ABC = |W1,3
2 〉ab

ABC = fABCc+
2 Cab|0(1)

F 〉 ⊗ |0(2)
F 〉 ⊗ |0(3)

B 〉, (4.15)

which generate the standard gauge transformations for spin 1/2 fermions in the adjoint represen-
tation

δ
a
A = gfABC
a

BλC (4.16)

Then using (4.6)–(4.7) we get the linear part of the standard supersymmetry transformations for 
the Yang-Mills supermultiplet
12
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δAμ,A = i
a
A(γμ)abε

b, δ
a
A = i(γ ν)ab(γ

μ)bc εc∂νAμ,A. (4.17)

The equation above describes on-shell vertices. To promote this system off-shell, instead of im-
posing an off-shell transversality constraint, we introduce an auxiliary EA(x) field. That means, 
that in the bosonic sector we consider a higher spin functional of the form

|�(i)
B 〉A = (AA

μ(x)α
μ(i),+
2 − iEA(x)c

(i),+
0 b

(i),+
2 )|0(i)

B 〉. (4.18)

The expression for the interaction vertex between two fermions and the boson remains un-
changed, while the interaction vertex between three bosons we now write as

|V 〉ABC = − ig
12fABC[(α(1),+

2 · α(2),+
2 )((p(1) − p(2)) · α(3),+

2 + (b
(1)
0 − b

(2)
0 ) c

(3),+
2 )] ×

×c
(1)
0 c

(2)
0 c

(3)
0 |0(1)

B 〉 ⊗ |0(2)
B 〉 ⊗ |0(3)

B 〉 + cyclic (4.19)

The full interacting cubic Lagrangian is a sum of (3.14) and of

Lint =
3∑

i=1

A〈
(i)|g(i)
0 |
(i)〉A + g

(
A〈
(1)

F |B〈
(2)|C〈�(3)
B ||V〉ABC + cyclic

)
(4.20)

Using the explicit form of the higher spin functionals in the bosonic (4.18) and fermionic (4.11)
sectors, one can see that the auxiliary field EA(x) is contained only in the free part of the bosonic 
Lagrangian. After eliminating it via its own equations of motion one obtains the standard La-
grangian for super Yang-Mills up to the cubic order.

Let us note that the vertex (4.19) generates both the Lagrangian interactions and the nonlinear 
part of the gauge transformations

δAμ,A = ∂μλA + gfABCAμ,BλC. (4.21)

The supersymmetry transformations will be deformed with nonlinear terms

δ|φ(i)〉A = ε̄a (α
(i),+
2 · γ )ab|
(i)〉bA, (4.22)

δ|
(i)〉aA = −2(p(i) · γ )ab (γ μ)bc α
(i)
2,μ εc |φ(i)〉A + (4.23)

+g B〈φ(i+1)|C〈φ(i+2)|fABC(γ μν)abα
(i+1),+
2,μ α

(i+2),+
2,ν εb |0(i+1)

B 〉 ⊗ |0(i+2)
B 〉 ⊗ |0(i)

F 〉
being the standard supersymmetry transformations for the N = 1 Yang-Mills supermultiplet.

The consideration of the Super Yang-Mills theory suggests a very interesting possibility to lift 
the supersymmetry to an off-shell Lagrangian level, by considering the gauge fixing condition 
(2.10) only for m = 1. In other words, after imposing transversality only with respect to the first 
set of the indices, the supersymmetry no longer requires the higher spin fields to be on-shell, 
and since they contain only one α(i),+

2 oscillator (like the Yang-Mills vector field), the nonlinear 
part of the supersymmetry transformations will be the same as in (4.22). Exactly the same ar-
guments can be applied to the supergravity-like systems considered below, with nonlinear parts 
of supersymmetry transformations being determined by the corresponding N = 1 supergravity 
transformations.

5. Supergravity-like systems

5.1. Vertices

As the second type of the vertices we consider the case where the internal indices are ab-
sent. The systems obtained in this way lead to the higher spin generalization of D = 4 N = 1
supergravity, as we shall see below.
13
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The defining equations and consistency conditions for the supegravity-like vertices are again 
(3.24)–(3.26) and (3.27)–(3.29). One can see that the corresponding solutions for W vertices can 
be obtained from the ones for the vertex (4.1) by simply flipping the signs of (W3,2

1 )ab , (W1,3
2 )ab

and (W2,1
3 )ab , since now we do not have to account for the antisymmetry of the structure con-

stants.
We consider the following interaction vertex between two fermionic and one bosonic fields

〈φ(3)| a〈
(1)| b〈
(2)|Z111(γ ·α(3),+
2 )abF(K(i)

1 ,Z111)|0(1)
F 〉⊗|0(2)

F 〉⊗|0(3)
B 〉+ cyclic (5.1)

The cubic vertex for three bosonic fields is

〈φ(1)| 〈φ(2)| 〈φ(3)|Z111Z222F(K(i)
1 ,Z111)|0(1)

B 〉 ⊗ |0(2)
B 〉 ⊗ |0(3)

B 〉. (5.2)

Apart from the absence of internal indices the difference from the super Yang-Mills-like vertex 
is the inclusion of Z111 in the prefactor. As before, the undetermined arbitrary function in the 
vertices can depend on K(i)

1 and Z111, but we impose cyclicity using condition (4.2).
The consideration of N = 1 supersymmetry closely resembles the one for the Super Yang-

Mills -like systems. The supersymmetry transformations are (4.6)–(4.7) without internal symme-
try indices. They take the vertices (5.1) and (5.2) to each other, with the proof being completely 
analogous to the one used in Super Yang-Mills. Again the transversality constraint puts the fields 
completely on-shell.

The generalizing function has to be even

F(−K1,−Z111) = F(K1,Z111) (5.3)

otherwise the vertex evaluates to zero because of the symmetry of changing the Fock space labels. 
This means that the total number of oscillators in the supergravity-like vertices is even.

5.2. An example: D = 4, N = 1 supergravity

In this section we shall demonstrate how the present approach works for the case of the lin-
earized D = 4, N = 1 supergravity.

Following [11], let us take the higher spin functional to contain two oscillators in the bosonic 
sector

|φ(i)〉 = φμ,ν(x)α
μ(i),+
1 α

ν(i),+
2 |0(i)

B 〉 (5.4)

with no symmetry between the two indices, and one oscillator in the fermionic sector

|
(i)〉a = 
a
μ(x)α

μ(i),+
1 |0(i)

F 〉 (5.5)

Decomposing the fields into irreducible representations of the Poincaré group as

φμ,ν =
(

φ(μ,ν) − ημν

1

D
φρ

ρ

)
+ φ[μ,ν] + ημν

1

D
φρ

ρ ≡ hμν + Bμν + 1

D
ημνϕ (5.6)

and

ψa
μ = 
a

μ + 1

D
(γ μ)ab(γ ν)bc


c
ν ≡ 
a

μ + 1

D
(γ μ)ab�b (5.7)

one can see, that this field content corresponds to the D = 4 N = 1 supergravity supermultiplet 
and a chiral supermultiplet [68].
14
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The interaction vertices are given by (5.1) and (5.2) with the function F being a constant. 
Taking the cubic interaction vertex between three bosons as

V = 1

6
aZ111Z222, (5.8)

where the expressions for Zmnp are given in (3.12), one obtains the Lagrangian

LB = −φμ,ν�φμ,ν − 4a(∂ρ∂τφμ,ν)φ
μ,νφρ,τ + 8a(∂ρ∂τφμ,ν)φ

μ,τ φρ,ν (5.9)

The vertex describing interactions between two fermionic and one bosonic fields is

f

3

(
〈φ(3)|a〈
(1)|b〈
(2)|(γμ)abα

μ(3),+
2 Z111|0(1)

F 〉 ⊗ |0(2)
F 〉 ⊗ |0(3)

B 〉 + cyclic
)

(5.10)

From these vertices we obtain the Lagrangian for the fermions

LF = −1

2

̄μγ ν∂ν
μ + 4if φμ,ν
̄αγν∂α
μ − 2if φμ,ν
̄αγν∂μ
α (5.11)

One can expand (5.9) and (5.11) and write the Lagrangian in terms of the irreducible components.
In order to consider N = 1 supersymmetry, we restrict the fields to be completely on-shell, 

as we have done for the Yang-Mills like systems. A choice of the constants as a = −4f allows 
one to match the relative coefficients between the cubic vertices to the one of the linearized pure 
D = 4 N = 1 supergravity (see Appendix D for some equations for linearized supergravity). 
Then one can check that the transformations (4.6)–(4.7) transform the cubic vertices (5.8) and 
(5.10) into each other. The supersymmetry transformations for irreducible components can be 
read from (4.6)–(4.7) and correspond to supersymmetry trasnformations of the linearized D = 4
N = 1 Supergravity [11].

Let us note that the field content (5.6)–(5.7) corresponds also to the irreducible N = 1 super-
gravity supermultiplet in ten dimensions [69]–[70] and to N = (1, 0) gravitational supermultiplet 
together with N = (1, 0) tensor supermultiplets7 in six dimensions [71]. However, although the 
invariance under supersymmetry transformations works exactly in the same way as for four di-
mensions, a promotion of these higher dimensional models to off-shell ones for higher spin fields 
might prove problematic. The reason for this is that it does not seem possible to find a consis-
tent higher spin generalization of the vertices which describe the coupling of the Bμν field to 
the fermions in the D = 10, N = 1 supergravity [69]–[70] given in equation (D.8). Therefore, 
an off-shell higher spin extension of higher dimensional supergravity-like models still poses an 
interesting open problem.

6. Conclusions

In this paper we have constructed the cubic interaction vertices for the massless higher spin 
supersymmetric theories in four, six and ten dimensions. Our analysis is based on use of the 
BRST approach to higher spin field theories which works perfectly both for finding the free 
Lagrangians and the vertices. As a concrete application we have studied the vertices for Yang-
Mills-like higher spin theories which are characterized by Lie algebra structure, and for N = 1
supegravities in D = 4, 6 and 10.

7 The six-dimensional N = (1, 0) gravitational supermultiplet (hμν , B+
μν, ψμ) contains a graviton, the self-dual part 

of the Bμν field and a chiral gravitino. The six-dimensional N = (1, 0) tensor supermultiplet (φ, B−
μν, �) contains a 

scalar, the anti-self-dual part of the Bμν field and an anti-chiral fermion.
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The present paper is a step towards off-shell Lagrangian formulation of supersymmetric 
higher spin gauge theories in various dimensions. Since computations for the off-shell uncon-
strained Lagrangians are quite tedious, here we restricted ourselves with the consideration of 
maximally simplified models. In particular, we started with unconstrained free Lagrangians for 
massless reducible representations of the Poincaré group and gauge fixed them to contain only 
d’Alembertian and Dirac operators, while keeping the transversality conditions off-shell. As a 
second step, we considered the cubic interactions for such Lagrangians. Finally, we showed that 
supersymmetry transformations, under which the obtained system is invariant, put the fields com-
pletely on-shell. All these steps, however, can be generalized to an unconstrained off-shell form 
via straightforward computations, which we leave to a separate publication. It is interesting to 
note that in four dimensions the most convenient way to develop the unconstrained formulation 
is one in terms of two-component totally symmetric spin tensors where the trace conditions are 
automatically fulfilled (see e.g. [75]–[76]).

It would be interesting to consider massive higher spin supermultiplets in higher dimensions, 
a topic which to the best of our knowledge has not been yet explored. Further inclusion of cubic 
interactions into these systems is not only interesting in its own right, but hopefully might shed 
some new light on the role played by massive higher spin modes in superstring theories (see [77]
for a recent study in this direction).

A possible deformation of the models presented in the present paper to curved backgrounds 
is yet another interesting problem. For this purpose AdSD space is a natural choice, since it 
is generically compatible with supersymmetry, unlike de Sitter spaces (see [74] for a recent 
discussion on higher spin theories on dS4). Again, despite the recent progress in studies of 
supersymmetric higher spin models on AdS backgrounds [72]–[73], the higher dimensional gen-
eralizations are not known.

Most importantly, it is interesting to find if there is a possibility for building supersymmet-
ric models which have consistent higher order classical, and possibly quantum, interactions. It 
is well known that real difficulties in higher spin theories start when considering higher order 
interactions, even at the classical level.8 It would be very interesting, therefore, to explore the 
possibility of the existence of supersymmetric theories with massive and/or massless higher spin 
fields with consistent higher order classical and quantum interactions.
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Appendix A. Conventions

We mainly follow the notations of [86], where some more useful identities for spinors and for 
gamma matrices can be found.

Throughout the paper “(, )” denotes symmetrization and “[, ]” denotes antisymmetrization 
with weight one. The Latin letters a, b . . . label spinorial indices. The Greek letters μ, ν, . . . label 
flat space-time vector indices and Greek letters with “hat” μ̂, ν̂, . . . label vector indices in curved 
space-time.

We choose a real representation for Majorana spinors

(λa)� = λa, λ̄a = λbCba (A.1)

The spinor indices can be raised and lowered by anti-symmetric charge conjugation matrices Cab

and Cab as

λa = Cabλb, λa = λbCba, CabCbc = −δa
c . (A.2)

The γ –matrices satisfy the following anti-commutation relations

(γ μ)ac(γ
ν)cb + (γ ν)ac(γ

μ)cb = 2ημνδa
b . (A.3)

In D = 4 the matrices γμ and γμν with both spinorial indices up (down) are symmetric and the 
matrices C, γ5 and γ5γμ are antisymmetric. In D = 10 the matrices γμ and γμ1,...,μ5 with both 
spinorial indices up (down) are symmetric, and the matrices γμ1μ2μ3 are antisymmetric.

For checking the on-shell closure of the supersymmetry algebra and of the supersymmetry of 
the vertices we have used the following gamma-matrix identities

(γ ν)ab(γν)cd + (γ ν)ac(γν)db + (γ ν)ad(γν)bc = 0, (A.4)

γ μγ ν1,ν2,...νr γμ = (−1)r (D − 2r)γ ν1,ν2,...νr . (A.5)

For a product of gamma matrices we have

γ ν1,...,νi γμ1,...,μj
=

k=min(i,j)∑
k=0

i!j !
(i − k)!(j − k)!k!γ

[ν1,...,νi−k [μk+1,...,μj
δνi
μ1

δ
νi−1
μ2 ...δ

νn−k+1]
μk]

(A.6)

and in particular

γμνρ = γμνγρ − 2ηρ[νγμ]. (A.7)

Appendix B. Equations for W vertices

The equations which express the W vertices in terms of the V vertices present in the La-
grangian (3.15) are

∫
dc

(3)
0

(
Q(3)|V11〉ab

ABC − 1√
2
(g

(1)
0 )ac|W2,3

1,11〉cbBCA + 1√
2
(g

(2)
0 )bc|W1,3

2,11〉caACB +

− Q̃(1)|W2,3
1,21〉ab

BCA + Q̃(2)|W1,3
2,21〉ba

ACB

)
= 0 (B.1)
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∫
dc

(3)
0

(
Q(3)|V22〉ab

ABC + √
2M

(1)
F (g

(1)
0 )ac|W2,3

1,22〉cbACB + √
2M

(2)
F (g

(2)
0 )bc|W1,3

2,22〉caBCA +

+ Q̃(1)|W2,3
1,12〉ab

BCA + Q̃(2)|W1,3
2,12〉ba

ACB

)
= 0 (B.2)

∫
dc

(3)
0

(
Q(3)|V12〉ab

ABC + 1√
2
(g

(1)
0 )ac|W2,3

1,12〉cbBCA − √
2M

(2)
F (g

(2)
0 )bc|W1,3

2,21〉caACB +

− Q̃(1)|W2,3
1,22〉ab

BCA + Q̃(2)|W1,3
2,11〉ba

ACB

)
= 0 (B.3)

∫
dc

(3)
0

(
Q(3)|V21〉ab

ABC + 1√
2
(g

(2)
0 )bc|W1,3

2,12〉caACB − √
2M

(1)
F (g

(1)
0 )ac|W2,3

1,21〉cbBCA +

+ Q̃(1)|W2,3
1,11〉ab

BCA − Q̃(2)|W1,3
2,22〉ba

ACB

)
= 0 (B.4)

∫
dc

(3)
0

(
Q̃

(1)
F |V11〉ab

ABC + 1√
2
(g

(1)
0 )ac|V21〉cbABC + Q

(3)
B |W2,1

3,11〉ba
BAC +

+ 1√
2
(g

(2)
0 )bc|W3,1

2,11〉caCAB − Q̃
(2)
F |W3,1

2,21〉ba
CAB

)
= 0 (B.5)

∫
dc

(3)
0

(
Q̃

(1)
F |V12〉ab

ABC − 1√
2
(g

(1)
0 )ac|V22〉cbABC + Q

(3)
B |W2,1

3,21〉ba
BAC +

+ √
2M

(2)
F (g

(2)
0 )bc|W3,1

2,21〉caCAB − Q̃
(2)
F |W3,1

2,11〉ba
CAB

)
= 0 (B.6)

∫
dc

(3)
0

(
Q̃

(1)
F |V21〉ab

ABC + √
2M

(1)
F (g

(1)
0 )ac|V11〉cbABC + Q

(3)
B |W2,1

3,12〉ba
BAC +

+ 1√
2
(g

(2)
0 )bc|W3,1

2,12〉caCAB + Q̃
(2)
F |W3,1

2,22〉ba
CAB

)
= 0 (B.7)

∫
dc

(3)
0

(
Q̃

(1)
F |V22〉ab

ABC − √
2M

(1)
F (g

(1)
0 )ac|V12〉cbABC + Q

(3)
B |W2,1

3,22〉ba
BAC +

− √
2M

(2)
F (g

(2)
0 )bc|W3,1

2,22〉caCAB − Q̃
(2)
F |W3,1

2,12〉ba
CAB

)
= 0 (B.8)

∫
dc

(3)
0

(
Q̃

(2)
F |V11〉ab

ABC − 1√
2
(g

(2)
0 )bc|V12〉ac

ABC − Q
(3)
B |W1,2

3,11〉ab
ABC +

− 1√
2
(g

(1)
0 )ac|W3,2

1,11〉cbCBA + Q̃
(1)
F |W3,2

1,21〉ab
CBA

)
= 0 (B.9)

∫
dc

(3)
0

(
Q̃

(2)
F |V21〉ab

ABC − 1√
2
(g

(2)
0 )bc|V22〉ac

ABC + Q
(3)
B |W1,2

3,21〉ab
ABC +

+ √
2M

(1)
F (g

(1)
0 )ac|W3,2

1,21〉cbCBA − Q̃
(1)
F |W3,2

1,11〉ab
CBA

)
= 0 (B.10)

∫
dc

(3)
0

(
Q̃

(2)
F |V12〉ab

ABC − √
2M

(2)
F (g

(2)
0 )bc|V11〉ac

ABC + Q
(3)
B |W1,2

3,12〉ab
ABC +

+ 1√ (g
(1)
0 )bc|W3,2

1,12〉cbCBA + Q̃
(1)
F |W3,2

1,22〉ab
CBA

)
= 0 (B.11)
2
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∫
dc

(3)
0

(
Q̃

(2)
F |V22〉ab

ABC − √
2M

(2)
F (g

(2)
0 )bc|V12〉ac

ABC + Q
(3)
B |W1,2

3,22〉ab
ABC +

− √
2M

(1)
F (g

(1)
0 )ac|W3,2

1,22〉cbCBA − Q̃
(1)
F |W3,2

1,12〉ab
CBA

)
= 0 (B.12)

The ghost numbers for each vertex and of each parameter of the gauge transformations can 
be easily deduced, using the following counting: the ghost number of the BRST charges is equal 
to +1, integration over the ghost zero mode c(3)

0 carries the ghost number −1, the Lagrangian 

has the ghost number zero. Then, the free part of (3.15) implies that the fields |�(i)
F,1〉bA and 

|�(i)
B 〉A have ghost number zero and the field |�(i)

F,2〉bA has ghost number −1. Similarly, the gauge 
transformation rules (3.17)–(3.19) and the cubic part of the Lagrangian (3.15) determine the 
ghost numbers of the parameters of gauge transformations and of the vertices.

Of the above twelve equations, seven have a unique form. The remaining five are related to 
the others by utilizing the symmetry exchanging the Hilbert space labels for the fermions |�(1)

F 〉
and |�(2)

F 〉, together with the appropriate transformation of the vertex:

1 ↔ 2 , |Vmn〉ab
ABC → (−1)mn|Vnm〉ba

BAC. (B.13)

This operation will take the equation (B.3) to the equation (B.4) and, respectively, the equations 
(B.5)-(B.8) to the equations (B.9)-(B.12).

The system of equations is reduced to their gauge fixed form of equations (3.24)-(3.26) by 
taking

|V11〉 = c
(3)
0 |V〉, (B.14)

|Wj,3
i,11〉 = √

2c
(3)
0 |Wj,3

i 〉, |W3,j
i,11〉 = √

2c
(3)
0 |W3,j

i 〉, |W i,j
3,11〉 = |W i,j

3 〉 (B.15)

and putting the remaining terms equal to zero.

Appendix C. Expressions for W and X vertices for super Yang-Mills-like systems

In this appendix we present the solutions for W and X vertices for super Yang-Mills-like 
systems. Analogous solutions for supergravity-like systems can be obtained from the present 
ones by using the symmetry properties of the defining equations and of the ansatz of the vertex, 
as explained in section 5.

The vertex we solve for is defined in equation (4.1). In the following we omit the subscript ‘1’ 
from Z111 and K(i)

1 , and we do not write explicitly the index ‘3’ for the oscillator αμ,+
2 , since it 

is present only in the third Fock space.
Omitting the structure constants, and using the relations

Q̃
(3)
B (V)ab = c+

2 (p(3) · γ )abF + (C.1)

+c
(3),+
1 (α+

2 · γ )ab((p(2))2 − (p(1))2)

(
∂F
∂Z (α

(1),+
1 · α(2),+

1 ) + ∂F
∂K(3)

)

Q̃
(1)
F (V)ab = (C.2)

= c
(1),+
1 (α+

2 · γ )ab((p(3))2 − (p(2))2)

(
∂F

(α
(2),+
1 · α(3),+

1 ) + ∂F
(1)

)

∂Z ∂K
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Q̃
(2)
F (V)ab = (C.3)

= c
(2),+
1 (α+

2 · γ )ab((p(1))2 − (p(3))2)

(
∂F
∂Z (α

(3),+
1 · α(1),+

1 ) + ∂F
∂K(2)

)

one can solve the equations

(g
(1)
0 )ab|W2,3

1 〉bc + (g
(2)
0 )cb|W1,3

2 〉ba + Q̃
(3)
B |V〉ac = 0 (C.4)

(g
(1)
0 )ab|W3,2

1 〉bc − l
(3)
0 |W1,2

3 〉ac − Q̃
(2)
F |V〉ac = 0 (C.5)

(g
(2)
0 )ab|W3,1

2 〉bc − l
(3)
0 |W2,1

3 〉ac − Q̃
(1)
F |V〉ca = 0 (C.6)

to get for W-vertices

(W1,2
3 )ab = c

(2),+
1 (γ · α+

2 )ab

(
∂F
∂Z (α

(3),+
1 · α(1),+

1 ) + ∂F
∂K(2)

)
(C.7)

(W2,1
3 )ab = −c

(1),+
1 (γ · α+

2 )ab

(
∂F
∂Z (α

(2),+
1 · α(3),+

1 ) + ∂F
∂K(1)

)
(C.8)

(W3,2
1 )ab = c

(2),+
1 (p(1) · γ )ac(γ · α+

2 )cb
(

∂F
∂Z (α

(3),+
1 · α(1),+

1 ) + ∂F
∂K(2)

)
(C.9)

(W3,1
2 )ab = −c

(1),+
1 (p(2) · γ )ac(γ · α+

2 )cb
(

∂F
∂Z (α

(2),+
1 · α(3),+

1 ) + ∂F
∂K(1)

)
(C.10)

(W2,3
1 )ab = −c+

2 CabF + (C.11)

+ c
(3),+
1 (p(1) · γ )ac(γ · α+

2 )cb
(

∂F
∂Z (α

(1),+
1 · α(2),+

1 ) + ∂F
∂K(3)

)

(W1,3
2 )ab = −c+

2 CabF − (C.12)

− c
(3),+
1 (p(2) · γ )ac(γ · α+

2 )cb
(

∂F
∂Z (α

(1),+
1 · α(2),+

1 ) + ∂F
∂K(3)

)

Similarly, from the requirement of preservation of group structure for gauge transformations 
(3.27)–(3.29) we get

Q̃
(2)
F |W2,3

1 〉ab − Q̃
(3)
B |W3,2

1 〉ab = Q̃
(1)
F |X1〉ab (C.13)

Q̃
(1)
F |W1,3

2 〉ab − Q̃
(3)
B |W3,1

2 〉ab = Q̃
(2)
F |X2〉ab (C.14)

Q̃
(1)
F |W1,2

3 〉ab + Q̃
(2)
F |W2,1

3 〉ba = Q̃
(3)
B |X3〉ab (C.15)

Using the solutions (C.7) – (C.12) one can solve for X -vertices,

X ab
1 = c

(2),+
1 c+

2 b
(1),+
1 Cab ∂F

∂Z (p(1) · α(3),+
1 ) + (C.16)

+ c
(2),+
1 c

(3),+
1 b

(1),+
1 (p(1) · γ )ac(γ · α+

2 )cb ×

× [−∂F
∂Z + ∂2F

∂Z∂K(2)
(p(1) · α(2),+

1 ) − ∂2F
∂Z∂K(3)

(p(1) · α(3),+
1 ) +

+ ∂2F
(−(α

(1)+
1 · α(2),+

1 )(p(1) · α(3),+
1 ) + (α

(3)+
1 · α(1),+

1 )(p(1) · α(2),+
1 ))]
∂Z2
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X ab
2 = −c+

2 c
(1),+
1 b

(2),+
1 Cab ∂F

∂Z (p(2) · α(3),+
1 ) − (C.17)

− c
(3),+
1 c

(1),+
1 b

(2),+
1 (p(2) · γ )ac(γ · α+

2 )cb ×

× [−∂F
∂Z + ∂2F

∂Z∂K(3)
(p(2) · α(3),+

1 ) − ∂2F
∂Z∂K(1)

(p(2) · α(1),+
1 ) +

+ ∂2F
∂Z2 (−(α

(2)+
1 · α(3),+

1 )(p(2) · α(1),+
1 ) + (α

(1)+
1 · α(2),+

1 )(p(2) · α(3),+
1 ))]

X ab
3 = c

(1),+
1 c

(2),+
1 b

(3)+
1 (γ · α+

2 )ab × (C.18)

× [−∂F
∂Z + ∂2F

∂Z∂K(1)
(p(3) · α(1),+

1 ) − ∂2F
∂Z∂K(2)

(p(3) · α(2),+
1 ) +

+ ∂2F
∂Z2 (−(α

(3)+
1 · α(1),+

1 )(p(3) · α(2),+
1 ) + (α

(3)+
1 · α(2),+

1 )(p(3) · α(1),+
1 ))]

This completes our treatment of the cubic vertices for the Super Yang-Mills like systems.

Appendix D. Some expressions for linearized gravity

In this section we collect some expressions for linearized gravity, which we use for extracting 
the cubic part from the supergravity Lagrangian.

The metric, the vierbein, the spin connection, and Christoffel symbols are

gμ̂ν̂ = ημ̂ν̂ + hμ̂ν̂ , gμ̂ν̂ = ημ̂ν̂ − hμ̂ν̂ , (D.1)

e
μ

μ̂
= δ

μ

μ̂
+ 1

2
h

μ

μ̂
, eμ̂

μ = δμ̂
μ − 1

2
hμ̂

μ, (D.2)

ωμ̂
νρ = −1

2
(∂νh

ρ

μ̂
− ∂ρhν

μ̂
), (D.3)

�
ρ̂

μ̂ν̂
= 1

2
ηρ̂λ̂(∂μ̂h

λ̂ν̂
+ ∂ν̂hλ̂μ̂

− ∂
λ̂
hμ̂ν̂ ) (D.4)

The Ricci tensor reads

Rμ̂ν̂ = −1

2
(�hμ̂ν̂ − ∂μ̂∂

λ̂
hλ̂

ν̂
− ∂ν̂∂λ̂

hλ̂
μ̂

+ ∂μ̂∂ν̂h
λ̂

λ̂
) (D.5)

In the equations above the indices are raised and lowered using the flat metric ημ̂ν̂ . The covariant 
derivative acting on vectors and spin–vectors is defined as follows

∇μ̂Aν̂ = ∂μ̂Aν̂ − �λ̂
μ̂ν̂

A
λ̂

(D.6)

∇μ̂
a
ν̂

= Dμ̂
a
ν̂
− �λ̂

μ̂ν̂

a

λ̂
, Dμ̂
a

ν̂
= ∂μ̂
a

ν̂
+ 1

4
ωμ̂

ρσ (γρσ 
ν̂)
a (D.7)

The vertices coupling the fermions to the B-field in ten dimensional N = 1 supergravity men-
tioned at the end of section 5.2 are

√
2(
̄μγ μτσλν
ν + 
̄τ γ σ 
λ)∂τBσλ − 2(
̄μγ τσλγ μ�)∂τBσλ (D.8)
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