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Short liquid bridges are stable under the action of surface ten-
sion. In applications like electronic packaging, food engineering,
and additive manufacturing, this poses challenges to the clean
and fast dispensing of viscoelastic fluids. Here, we investigate
how viscoelastic liquid bridges can be destabilized by torsion.
By combining high-speed imaging and numerical simulation, we
show that concave surfaces of liquid bridges can localize shear, in
turn localizing normal stresses and making the surface more con-
cave. Such positive feedback creates an indent, which propagates
toward the center and leads to breakup of the liquid bridge. The
indent formation mechanism closely resembles edge fracture, an
often undesired viscoelastic flow instability characterized by the
sudden indentation of the fluid’s free surface when the fluid is
subjected to shear. By applying torsion, even short, capillary sta-
ble liquid bridges can be broken in the order of 1 s. This may lead
to the development of dispensing protocols that reduce substrate
contamination by the satellite droplets and long capillary tails
formed by capillary retraction, which is the current mainstream
industrial method for destabilizing viscoelastic liquid bridges.
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Industries such as electronic packaging, food engineering, and
additive manufacturing require high-speed and precision dis-

pensing of functional fluids, which are usually viscoelastic (1–6),
i.e., with properties between viscous fluids and elastic solids. Dur-
ing the dispensing process, a liquid bridge connecting the nozzle
and substrate is formed (schematics in Fig. 1A). With nozzle
radius Rn, liquid bridge volume V , height H , density ρ, sur-
face tension σ, and gravitational acceleration g , the liquid bridge
stability depends on the dimensionless volume V =V /πR2

nH ,
aspect ratio Λ =H /2Rn, and Bond number Bon = ρgR2

n/σ
(ratio of gravitational to capillary stresses). The stability region
of {V, Λ} shrinks as Bon increases. As an example, for a liq-
uid bridge with 0.5 < V < 1 and Bon = 5, the nozzle must be
retracted above a critical height Hc≈Rn such that the liquid
bridge becomes unstable (7).

Once the viscoelastic liquid bridge becomes unstable, its
thinning dynamics can be characterized by four dimensionless
parameters. With the nozzle radius Rn replaced by the liq-
uid bridge’s neck radius R, we have the Bond number Bo =
ρgR2/σ. With U the characteristic velocity and η0 the zero-shear
viscosity of the viscoelastic fluid, the Reynolds number Re =
ρUR/η0 characterizes the relative importance of inertial and vis-
cous stresses. With λ the characteristic relaxation time of the
viscoelastic fluid, the Weissenberg number Wi =λU /R charac-
terizes the relative importance of elastic and viscous stresses.
Finally, the capillary number Ca = η0U /σ characterizes the rela-
tive importance of viscous and capillary stresses (1). For H close
to Hc where Bo > 1, thinning of the liquid bridge is dominated
by slow gravitational drainage (8). To speed up the process, the
mainstream industrial approach is to retract the nozzle to a dis-
tance H �Hc (9) such that the liquid bridge thins with an initial
radius R�Rn (Fig. 1B). As the Bond number Bo � 1, a New-
tonian liquid bridge will enter the visco-capillary regime and thin

linearly in time with a speed proportional to the capillary veloc-
ity vcap≡σ/η0 (10). For a typical η0 = 60 Pa·s, σ= 20 mN/m,
and R = 0.5 mm, the liquid bridge breakup takes O(10 s).
On the other hand, a viscoelastic liquid bridge will enter the
elasto-capillary regime. Elastic stresses induced as the bridge
thins can retard the thinning process, causing the liquid bridge
radius to decay exponentially with time constant (3λ)−1 and a
front factor that depends on the elasto-capillary number Ec ≡
Wi/Ca = λσ/η0R (11).

Nozzle retraction can speed up the dispensing process; how-
ever, it also reduces the precision as the satellite droplets (4) and
long capillary tails (12) formed after pinch-off may fall randomly
and contaminate the substrate (Fig. 1C). This speed–precision
trade-off problem motivates seeking alternative methods to
destabilize viscoelastic liquid bridges and decrease the time to
pinch-off. While many studies have considered how extension
can destabilize liquid bridges due to its applications in rheol-
ogy (1) and printing (13), none of them have considered torsion,
i.e., steadily rotating one end of the liquid bridge while keeping
the other end fixed (Fig. 1D). Here, we explore how torsion may
destabilize viscoelastic liquid bridges and decrease the time to
pinch-off. We show that even viscoelastic bridges with H <Hc,
which would never break under the action of gravity and cap-
illarity alone, can be broken in O(1 s) by applying torsion.
By high-speed video analysis and viscoelastic flow simulation,
we identify that the mechanism behind such effective breakup
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Fig. 1. A typical dispensing process. (A) A liquid bridge of height H con-
necting the nozzle of radius Rn and the substrate. (B) Retracting the nozzle
to a height H�Hc above the critical height Hc destabilizes the liquid bridge
and causes it to thin under surface tension (7, 8). (C) For viscoelastic liquid
bridges, nozzle retraction creates satellite droplets and a long capillary tail,
which may contaminate the substrate. (D) By applying torsion to a stable
viscoelastic liquid bridge, an indent propagates toward the bridge center,
leading to breakup even at H<Hc.

is edge fracture, a viscoelastic flow instability characterized
by the sudden indentation of the fluid’s free surface above
a critical shear rate (14–20). Edge fracture causes the radius
evolution in time R(t) of viscoelastic bridges to undergo power-
law decay. With Ω the angular speed of the steady rotation
applied on one end of the liquid bridge, such power-law decay
is solely governed the dimensionless Tanner number Tn ≡
WiCa =λη0RΩ

2/σ, introduced in this work, which characterizes
the relative importance of normal and capillary stresses.

Preliminaries
The dynamics of viscoelastic liquid bridges under torsion depend
on the complex interaction between inertial, elastic, capillary,
and gravitational stresses (1, 21), which involves four dimen-
sionless parameters: the Reynolds number Re, the Weissenberg
number Wi, the capillary number Ca, and the Bond number Bo.
To simplify the problem, we consider an axisymmetric model
system consisting of a liquid bridge contained by surface ten-
sion between two coaxial circular plates with radius Rp = 2.85
mm (Fig. 2A). The upper plate can rotate unidirectionally and
the lower plate can be translated vertically. A droplet of vol-
ume 40 µL is injected between the two plates with an initial
separation H0 = 2.5 mm and then stretched to a final separa-
tion H ≤ 7 mm at a rate of 0.67 mm/s. When H is reached, the
upper plate is angularly accelerated to a rotational rate f (or
angular speed Ω= 2πf ) within a timespan tf ≈ 1 s, high-speed
video is captured, and the neck radius R of the liquid bridge
is tracked over time t . To investigate inertial and elastic effects
separately, two types of fluids are used. The first type is a New-
tonian fluid (Infineum S1054), which is a low-molecular-weight
polyisobutylene commonly used as a Newtonian solvent due to
its nonvolatile nature and high viscosity (4, 22–25). Infineum
S1054 has density ρ= 888 kg/m3, surface tension σ= 31.5 mN/m,
and viscosity η≡ η0 = 27 Pa·s. The second type is a viscoelastic
fluid (silicone oil) with density ρ= 970 kg/m3 and surface ten-
sion σ= 20.6 mN/m. Its rheology can be fitted by the Giesekus
model (Fig. 2 B–D), which is able to describe shear thinning,
variable first- and second-normal stress differences N1 and N2,
and nonlinear time effects (26–28). The Giesekus model has
been successfully used to model wormlike micellar solutions
(29–32) and polymer fluids (33) and has been used extensively
for numerical simulations of viscoelastic flows (24, 34–37). A
single-mode Giesekus model contains two linear parameters
(η0, λ) and a nonlinear mobility parameter α, which represents
the anisotropy of hydrodynamic drag on a polymer molecule.
The value of α affects the magnitude of N2 and the degree

of shear thinning (38). For α= 0, neither N2 nor shear thin-
ning is present. Superposing several single-mode models gives
the multimode Giesekus model (24), which for polymer melts
takes the form

τ =
∑N

i=1
τ i , [1]

λi

(
∂tτ i + v ·∇τ i −∇vT · τ i − τ i ·∇v

)
+ τ i

+
αiλi

ηi
τ 2

i = 2ηiD,
[2]

with v the velocity vector; τ the viscoelastic stress tensor; D =
1
2
(∇v +∇vT) the deformation rate tensor; N the number of

modes; and τ i , ηi , λi , and αi the viscoelastic stress tensor, poly-
mer viscosity, relaxation time, and mobility parameter of the
i th mode, respectively. A three-mode Giesekus model with ηi =
38, 8, 12.6 Pa·s, λi = 5, 0.8, 0.3 ms, and a single αi =α= 0.49 led
to the best fit of the measured rheological data. The zero-shear
viscosity is η0 =

∑
iηi = 58.6 Pa·s. An average relaxation time λ̄

(24) is defined as λ̄=
∑

iηiλi/η0 = 3.42 ms. Fig. 2B shows that
the three-mode Giesekus model fit (line) agrees well with the
small-amplitude oscillatory shear (SAOS) measurement results
(symbols) of the silicone oil. Fig. 2 C and D further shows that the
normal stress differences predicted by the three-mode Giesekus
model (lines) agree well with the steady-shear measurement
results (symbols). Dividing the first- and second-normal stress
differences N1 and N2 by γ̇2 gives the normal stress coeffi-
cients Ψ1(γ̇) and Ψ2(γ̇). For γ̇ < 100 s−1 where N1,N2∝ γ̇2, the
zero-shear normal stress coefficients are Ψ1,0 = 0.42 Pa·s2 and
Ψ2,0 = 0.1 Pa·s2.

To further simplify the problem, we use dimensional analysis
to identify which balance of stresses dominates the liquid bridge
thinning process. For the model system (Fig. 2A), the charac-
teristic velocity is U =RΩ. The Reynolds number, Weissenberg
number, capillary number, and Bond number can be expressed
as Re = ρR2Ω/η0, Wi = λ̄Ω, Ca = η0RΩ/σ, and Bo = ρgR2/σ.
For the Newtonian Infineum S1054 fluid, thinning of the

Fig. 2. (A) The experimental setup that consists of a liquid bridge between
two concentric plates of radius Rp = 2.85 mm. The upper plate can uni-
directionally rotate at a rate of f to apply torsion on the liquid bridge
and the lower plate can move vertically. (B) Storage and loss modulus G′

and G
′′

. (C) First normal stress difference N1. (D) Difference between the
first- and second-normal stress differences N1−N2, of the viscoelastic liquid
bridge material. Symbols denote experimental measurements; lines denote
predictions of the three-mode Giesekus model.
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liquid bridge is characterized by Re, Ca, and Bo. With a typi-
cal radius R = 1 mm and rotational rate f = 30 Hz, one obtains
Re ∈O(10−2), Bo ∈O(10−1), and Ca ∈O(102). The number
of parameters can be reduced by introducing the Weber number
We ≡ ReCa = ρR3Ω2/σ and the inverse-squared Ohnesorge
number Oh−2 ≡ Re/Ca = ρσR/η20 . The Weber number We

characterizes the relative importance of centrifugal and cap-
illary stresses. The inverse-squared Ohnesorge number Oh−2

characterizes the combined importance of inertial and capil-
lary stresses compared to viscous stress. Essentially, the pair
{We, Oh−2} contains the same information as {Re, Ca}.
However, since Oh−2 ∈O(10−5) is much smaller than both

Fig. 3. Experiment and simulation of liquid bridge breakup dynamics of the Newtonian Infineum S1054 fluid. (A) A liquid bridge of H = 4.5 mm breaking
up under capillary action and gravity only. Upper row shows the experimental images; Lower row shows the simulated radial and axial velocity fields vr

(left-hand side [L.H.S.]) and vz (right-hand side [R.H.S.]). (Scale bar: 1 mm.) (B) A liquid bridge of H = 4.5 mm breaking up with a rotational rate f = 35.3 Hz.
Upper row shows a combination of experimental images (L.H.S.) and simulated azimuthal velocity field vθ (R.H.S.). Lower row shows the simulated radial
and axial velocity fields vr (L.H.S.) and vz (R.H.S.). Inset dotted box shows that shear stress τzθ is localized around the liquid bridge’s neck and has a maximum
value of around 4 kPa. (C) Experimental image of a liquid bridge of H = 3.5 mm breaking up with a rotational rate f = 35.3 Hz, whose upper portion is
spinning off of the plate. (Scale bar: 1 mm.) See Movies S1–S3 for videos that correspond to A–C. (D) Radius evolution R(t) of liquid bridges of different
plate separations H with no rotation applied. (E) Radius evolution R(t) of liquid bridges of H = 4.5 mm under different rotational rates f . Symbols denote
experimental measurements; solid lines denote numerical predictions by the Newtonian model. P. S. denotes the Papageorgiou similarity solution.
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Bo ∈O(10−1) and We ∈O(1), the contribution from Oh−2 to
the liquid bridge thinning can be neglected. Hence, the number
of dimensionless parameters needed to characterize thinning of
the Newtonian liquid bridge is effectively reduced from three to
two. Also, unlike {Re, Ca} where both parameters depend on
the rotational rate f , only We depends on f for {We, Oh−2}.
Using {We, Oh−2} instead of {Re, Ca} thus allows us to inter-
pret the effect of varying f more easily and in a physically more
meaningful way. Following a similar logic, for the viscoelastic sil-
icone oil, thinning of the liquid bridge is characterized by Re,
Wi, Ca, and Bo. For R = 1 mm and f = 30 Hz, the effect of

Re ∈O(10−3) is negligible compared to that of Wi ∈O(10−1),
Bo ∈O(10−1), and Ca ∈O(102). The number of parameters
can be further reduced by introducing the Tanner number Tn
≡ WiCa =λ̄η0RΩ

2/σ and the elasto-capillary number Ec ≡
Wi/Ca =λ̄σ/η0R. The Tanner number Tn characterizes the
relative importance of normal stresses (as Ψ1,0, Ψ2,0∝ λ̄η0)
and capillary stress. The elasto-capillary number Ec char-
acterizes the combined importance of elastic and capillary
stresses compared to viscous stress. As Ec ∈O(10−3) is much
smaller than both Tn ∈O(102) and Bo ∈O(10−1), the effect
of Ec can be neglected. Thus, the number of dimensionless

Fig. 4. Experiment and simulation of liquid bridge breakup dynamics of the viscoelastic silicone oil. (A) A liquid bridge of H = 2.5 mm breaking up with
a rotational rate f = 35.3 Hz. Top row shows a combination of experimental images (L.H.S.) and simulated azimuthal velocity field vθ (R.H.S.). Upper
Middle row shows the simulated radial and axial velocity fields vr (L.H.S.) and vz (R.H.S.). Lower Middle row shows the simulated shear stress fields τzθ

(L.H.S.) and τrθ (R.H.S.). Bottom row shows the simulated distributions of the first-normal stress difference N1 = τθθ − τzz (L.H.S.) and second-normal
stress difference N2 = τzz − τrr (R.H.S.). In the breakup process, an indentation of size a forms and propagates toward the axis of rotation. (Scale bar:
1 mm.) See Movie S4 for the corresponding video to A. (B) A flowchart explaining the observations in A. (C) Radius evolution R(t) of liquid bridges of
H = 2.5 mm under different rotational rates f . Symbols denote experimental measurements; solid lines denote numerical predictions by the three-mode
Giesekus model.
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parameters needed to characterize thinning of the viscoelas-
tic liquid bridge is reduced from four to two. As a side
note, if the normal stress component that governs the liquid
bridge thinning process is known a priori, the term λ̄η0 in
Tn may be replaced by either Ψ1,0 or Ψ2,0. However, since
the governing normal stress component is presently unknown,
we shall stick to the current definition of Tn throughout
this paper.

Results
Newtonian Liquid Bridges under Torsion. Having the dominant bal-
ance of stresses identified, we now consider how Newtonian
liquid bridges behave under torsion. Fig. 3 A and B shows the
experimental liquid bridge configurations and the corresponding
simulated azimuthal, radial, and vertical velocities (vθ, vr , vz ) of
the Infineum S1054 fluid at different times t with a fixed plate
separation H = 4.5 mm. Without plate rotation (Fig. 3A and
Movie S1), gravity induces a region of negative axial velocity
vz around the liquid bridge’s neck. This transfers fluid down-
ward as shown by the negative radial velocity vr at the top plate
and leads to the subsequent breakup at tb = 59.8 s. Meanwhile,
with a rotational rate of f = 35.3 Hz (Fig. 3B and Movie S2),
the centrifugal force associated with the azimuthal velocity vθ
spreads fluid outward in the radial direction, rendering vr pos-
itive near the top plate and flattening the upper portion of the
liquid bridge into a pancake shape. This transfers fluid upward
as shown by the positive vz around the liquid bridge’s neck and
leads to breakup at tb = 8.9 s. During the thinning process, as the
liquid bridge surface is concave, vθ concentrates around the rim
of the upper rotating plate. The magnitude of vθ decreases lin-
early toward the axis of rotation, meaning that the upper portion
of the liquid bridge is rotating like a solid body. On the other
hand, the lower portion of the liquid bridge is almost station-
ary. Such speed difference between the upper and lower portions
localizes shear around the liquid bridge’s neck (Fig. 3 B, Inset
dashed box). Hence, we can conclude that localized shear is pos-
sible even for a Newtonian fluid as long as the free surface of
the liquid bridge is concave. Decreasing the plate separation to
H = 3.5 mm renders the liquid bridge stable to capillarity and
gravity. Applying a rotational rate of f = 35.3 Hz, the induced
centrifugal force would cause fluids to spin off the upper plate
radially outward prior to pinch-off (Fig. 3C and Movie S3). In
Fig. 3 D and E, we plot the neck radius R as a function of time t
at different plate separations H and rotational rates f . Without
plate rotation (Fig. 3D), the breakup time decreases for increas-
ing H . With a fixed plate separation H = 4.5 mm (Fig. 3E), the
breakup time decreases for increasing f . In both cases, the thin-
ning speed Ṙ approaches the Papageorgiou similarity solution
ṘPS =−0.0709σ/η0 (10) for R< 0.3 mm (blue lines in Fig. 3 D
and E), which corresponds to a Weber number We < 0.04 (for
f ≤ 35.3 Hz) and a Bond number Bo < 0.025. This signifies that
when R is small enough, the thinning dynamics of a Newtonian
liquid bridge is governed solely by a balance of the capillary and
viscous forces.

Viscoelastic Liquid Bridges under Torsion. With the effect of tor-
sion to Newtonian liquid bridges investigated, we can identify
the elastic effect by comparing data obtained from a viscoelastic
fluid to those from a Newtonian fluid. Fig. 4A shows the experi-
mental liquid bridge configurations; simulated azimuthal, radial,
and vertical velocities (vθ , vr , vz ); first- and second-normal stress
differences (N1 = τθθ − τzz , N2 = τzz − τrr ); and two of the shear
stress components (τzθ , τrθ) of the viscoelastic silicone oil sub-
jected to a f = 35.3-Hz plate rotation at different times t with
a fixed plate separation H = 2.5 mm. Under such small separa-
tion, the liquid bridge is stable to the action of surface tension
and gravity; it never undergoes breakup without plate rotation.
Once rotation is applied, as in the Newtonian case, the concave

surface of the liquid bridge renders the upper portion rotating
like a solid body and the lower portion rather stationary, localiz-
ing shear around the liquid bridge’s neck (SI Appendix, Fig. S1).
However, unlike Newtonian fluids, viscoelastic fluids can gen-
erate normal stresses when subjected to shear as described by
the Giesekus model (26–28). Thus, a localized region of posi-
tive first-normal stress difference N1 and negative second-normal
stress difference N2 is induced, which in turn curves the sur-
face and localizes shear even further. Such feedback results in
the formation of an indent of size 2a ≈ 0.2 mm (Fig. 4A and
Movie S4) at the neck, which propagates toward the axis of rota-
tion, leading to breakup at tb = 1.1 s. The aforementioned indent
propagation mechanism is summarized into a flowchart as shown
in Fig. 4B. We note that the indent size 2a is an order of mag-
nitude smaller than the capillary length lcap =

√
σ/ρg ≈ 1.5 mm.

Hence, gravity can be neglected, implying that the thinning of
the viscoelastic liquid bridge by torsion is governed solely by the
Tanner number Tn = λ̄η0RΩ

2/σ. We also note that the breakup
time tb is comparable to the time tf ≈ 1 s for the upper plate
to reach f = 35.3 Hz. Therefore, during indent propagation the
rotational rate is not constant but increases monotonically with
time. Fig. 4C shows the radius evolution R(t) of the liquid bridge
subjected to different rotational rates f . Without plate rotation
(f = 0 Hz), the radius R(t) is a constant as the liquid bridge is sta-
ble. When rotation is applied, the radius shows power-law decay
R∝ t−β . The power-index β increases with increasing f . For
f ≤ 20.6 Hz, such power-law decay occurs for t > tf ≈ 1 s. Also,
for f = 35.3 Hz, decreasing tf in the simulation, such power-law
decay can still be observed (SI Appendix, Fig. S2). Hence, it is
not a mere coincidence caused by the finite tf but an intrin-
sic feature of the indent propagation process. If we assume the
silicone oil to be Newtonian in the simulation, applying rotation
essentially has no effect on the liquid bridge during the times-
pan considered; R(t) is constant in Fig. 4C just like the f = 0-Hz
case. This provides further evidence that the indent propagation
observed in this work is a normal stress effect.

Edge Fracture. Knowing that the indentation observed is a nor-
mal stress effect, next we ask which normal stress difference is
governing the process. In fact, the indentation process and flow
patterns that we have described for the viscoelastic liquid bridges
closely resemble edge fracture. Edge fracture is a flow instability
often observed when a viscoelastic fluid is sheared at above a crit-
ical shear rate in a cone-plate or parallel-plate rheometer fixture.
The instability is characterized by the formation of an indent on
the fluid’s free surface (14–20), which can localize shear around
its tip and induce apparent shear bands that invade into the fluid
bulk (16, 19). In an insightful early study (14), by assuming a semi-
circular indent of radius a on the free surface of a second-order
fluid sheared between two semi-infinite parallel plates separated
by a distanceH � a , Tanner and Keentok (14) derived a criterion
|N2|> 2σ/3a for edge fracture. When the criterion is satisfied, the
second-normal stress difference at the indent tipN2,tip overcomes
the Laplace pressure pL =σ/a and leads to indent formation. Lee
et al. (17) then performed a series of experiments using fluids
with different normal stress ratios −N2/N1. Their results con-
firmed Tanner and Keentok’s (14) proposition that edge fracture
is controlled by N2 but not by N1. Subsequently, Huilgol et al.
(18) deduced that the stress normal to the semicircular indent sur-
face assumed by Tanner and Keentok (14) is tensile, which will
tend to deepen the indent. They also argued that as the indent
propagates and its surface becomes parallel to the propagation
direction, an outward normal stress will act on the indent’s upper
and lower flat surfaces. Such outward normal stress is compres-
sive to the indent; hence, it will tend to close the indent and may
prevent the indent from propagating further. Then, by assuming
a rectangular indent of width 2a and depth c, Keentok and Xue
(15) simulated the shearing viscoelastic flow between two parallel
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Fig. 5. Effect of the mobility parameter α on the breakup dynamics of viscoelastic liquid bridges with H = 2.5 mm and subjected to a plate rotational
rate of f = 27 Hz. (A) Simulated distributions of the first-normal stress difference N1 = τθθ − τzz (L.H.S.) and second-normal stress difference N2 = τzz − τrr

(R.H.S.) of liquid bridges with α= 0.15, 0.25, and 0.49. (Scale bar: 1 mm.) (B) Simulated radius evolution R(t) of liquid bridges with different α. (C) Time
evolution of the Laplace pressure pL and normal stress differences N1,tip and N2,tip at the indent tip with differentα. Here, N1,tip and N2,tip are both normalized
by pL. (D) Simulated distributions of the total stress tensor components Trr =−p + τrr (Top), Tzz =−p + τzz (Middle), and Trz = τrz (Bottom) of liquid bridges
with α= 0.15 and 0.49 at t = 0.6 s. Red arrows indicate direction of the stress acting on the surface. For clarity, only the arrows for α= 0.49 are shown.
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Fig. 6. Experimentally measured best-fit power-law index β of the radius evolution R(t)∝ t−β of different viscoelastic silicone oil liquid bridges with H =

2.5 mm and surface tension σ= 20.6 mN/m. Each color represents one of the four silicone oils with different viscosities η′0 and average relaxation times λ̄′.
(A) The power-law index β as a function of the plate rotational rate f . (B) The power-law index β as a function of the Tanner number TnR=Rp = λ̄′η′0RpΩ

2/σ.
The dotted line β= 0.78 ln(Tn)− 2 is a visual guidance for showing the data collapse.

plates using the Phan–Thien–Tanner model (39). Although the
meniscus of the fluid was not modeled as a free surface, their
obtained normal stress distributions around the indent surface
agreed with the analysis of Huilgol et al. (18). More recently,
Hemingway and Fielding (16) performed a linear stability analysis
using both the Johnson–Segalman model (40) and the Giesekus
model (26, 27). They derived an onset criterion for edge fracture,
which extended the Tanner–Keentok criterion. In particular, they
provided insight that shear stress may also contribute to edge frac-
ture by counteracting the effects of N2. Later, they showed that
precursors to edge fracture can induce quasi-bulk shear banding,
which can also induce edge fracture (19).

If the indentation process that we have observed is indeed
caused by edge fracture, it should demonstrate three defining
characteristics. First, based on the analysis of Tanner and Keen-
tok (14), the indent formation process should be driven by N2 but
not by N1. Second, based on the analysis of Huilgol et al. (18),
there should be a tensile normal stress that acts on the indent
tip and a compressive normal stress that acts on the indent’s
flat surfaces. Third, based on the analysis of Hemingway and
Fielding (16), the shear stress (τrz in our case) should counter-
act the effects of N2. To test these, we systematically vary the
mobility parameter α in the simulation and see how it affects
the thinning dynamics of the viscoelastic liquid bridge subjected
to a rotational rate of f = 27 Hz. Fig. 5A shows the simulated
liquid bridge configurations for α= 0.15, 0.25, and 0.49. Dis-
tributions of the first- and second-normal stress differences N1

and N2 are also shown (left-hand side [L.H.S.] and right-hand
side [R.H.S.], respectively). For a lower value of α, the indent
is sharper. It also propagates more slowly, although the effect is
minor. For instance, at t = 0.3 and 0.6 s, the indent of α= 0.49
precedes that of α= 0.15 and 0.25, which catch up at t = 0.9 s.
For a lower value of α, the magnitude of N1 is seen to be larger
at the indent tip at all times. At t = 0.3 s when the indent just
starts to form, the magnitude of the negative N2 is seen to be
smaller at the indent tip; while at t = 0.6 s when the indent is
formed, it is larger on the whole indent surface. For all values
of α, N1 is concentrated only around the indent tip and N2 is
distributed on the whole indent surface. Hence, N2 is the only
possible normal stress difference that can act on the indent sur-
face away from the tip and hence shape the indent. Fig. 5B shows

the radius evolution R(t) of the liquid bridges for different val-
ues of α. For lower values of α, breakup time of the liquid bridge
is longer. This indicates a lower magnitude of normal stress dif-
ference, which governs the indent formation process. Fig. 5C
further shows the time evolution of the Laplace pressure pL and
normal stress differences N1,tip, N2,tip at the indent tip for dif-
ferent α. For t ≤ 0.3 s, when the indent just starts to form, the
curves of pL for different α overlap. This signifies that the liq-
uid bridges with different α have similar shapes and thus similar
shear rate at the indent tip for t ≤ 0.3 s. Therefore, we can com-
pare the magnitudes of N1,tip and N2,tip for different α. Here, a
lower value of α leads to a higher magnitude of N1,tip/pL and a
lower magnitude of N2,tip/pL. Hence, the indent formation pro-
cess is governed by the second-normal stress difference N2. With
p the pressure in the liquid bridge, Fig. 5D shows the radial, verti-
cal, and shear components Trr =−p + τrr , Tzz =−p + τzz , and
Trz = τrz of the total stress tensor for α= 0.15 and 0.49 at t =
0.6 s. For both values of α, the indent is surrounded by a pos-
itive Trr , which indicates that the radial normal stress acting
on the indent tip is indeed tensile. Such tensile stress pulls the
indent radially inward toward the liquid bridge center and prop-
agates the indent. The indent is also surrounded by a positive
Tzz except at the indent tip. This indicates that Tzz is compres-
sive to the indent; it pulls the upper and lower surfaces of the
indent toward each other. As the upper and lower surfaces both
become flat, the Laplace pressure there will essentially be zero.
This leads us to question which stress is keeping the surfaces
flat and stopping Tzz from further compressing the indent. The
only stress that can do so is the shear stress Trz . Away from the
indent tip close to the flat surfaces, Trz is positive in the upper
portion and negative in the lower portion of the liquid bridge.
If there is any area on the indent surface that is not horizontal,
then there will be a vertical component of Trz induced, which
tends to make the surface horizontal. Depending on the hori-
zontalness of the surface, Trz can counteract Tzz . This explains
why all indents observed tend to have horizontal flat surfaces
while propagating. Close to the indent tip, Trz is negative above
and positive below the tip. As the surface of the indent tip is
curved, there is a vertical component of Trz that compresses
the indent just like Tzz ; also, there is a horizontal component
that counteracts the tensile Trr . Our analysis of Fig. 5 above
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shows that the indentation process we observe in the vis-
coelastic liquid bridges actually demonstrates the three defin-
ing characteristics of edge fracture. This provides strong evi-
dence to conclude that the indentation process is indeed
caused by edge fracture. It also suggests that the nor-
mal stress effect that the Tanner number Tn characterizes
is N2.

Dynamic Similarity of Edge Fracture. To verify that the indent
propagation is solely governed by the Tanner number
Tn = λ̄η0RΩ

2/σ, we now show that the power-law decay
of R(t) has the same slope as long as Tn is the same. As
the first step, we analyze high-speed videos obtained from
liquid bridges of three additional silicone oils. These silicone
oils have the same surface tension σ′=σ= 20.6 mN/m

Fig. 7. Simulation of liquid bridge breakup dynamics of fluids with different viscosities η′0 and surface tensions σ′. (A and B) Radius evolution R(t) of liquid
bridges of H = 2.5 mm under rotational rates of f = 27 and 35 Hz. Each color represents one of the four capillary velocities vcap =σ′/η′0. (C and D) Liquid
bridges with (η′0,σ′) = (η0, 2σ) and (0.5η0,σ) of H = 2.5 mm breaking up with a rotational rate f = 27 Hz. (Scale bar: 1mm.) (E and F) Second-normal stress
difference N2,tip, normal stresses τzz,tip, τrr,tip, and Laplace pressure pL at the indent tip of the liquid bridges in C and D.

8 of 12 | PNAS
https://doi.org/10.1073/pnas.2104790118

Chan et al.
Torsional fracture of viscoelastic liquid bridges

https://doi.org/10.1073/pnas.2104790118


EN
G

IN
EE

RI
N

G

but different viscosities η′0 and average relaxation times λ̄′.
Fig. 6A shows the best-fit power-law index β of the radius
evolution R(t)∝ t−β as a function of the plate rotational
frequency f . The power-law index β increases as f increases.
However, the data points are dispersed. Fig. 6B shows β as
a function of the Tanner number TnR=Rp = λ̄′η′0RpΩ

2/σ,
defined using the plate radius Rp = 2.85 mm. The power-law
index β increases with Tn. Also, the data points are seen to
collapse onto a single line β= 0.78 ln(Tn)−2 (dotted line in Fig.
6B), suggesting that for the same Tanner number TnR=Rp , the
power-law index β of the indent propagation is the same for all
four silicone oils used in the liquid bridge experiments.

Next, in the simulation we keep the relaxation times λi and
mobility parameter α fixed. We vary the surface tension from σ
to σ′. We also vary the polymer viscosities from ηi to η′i (shifting
the curves in Fig. 2 B–D vertically), which scales the viscos-
ity from η to η′ and normal stress coefficients from Ψ1, Ψ2 to
Ψ′1, Ψ′2 by the same factor. Fig. 7A shows radius evolution R(t)
of the liquid bridges for f = 27 Hz. Fig. 7A contains nine sets
of {η′0,σ′}, which can be divided into four groups with capillary
velocities vcap≡σ′/η′0 = 4σ/η0, 2σ/η0, σ/η0, and σ/2η0. With
vcap =σ/η0 fixed (Fig. 7A, green curves), the radius evolution
R(t) is independent of the numerical values of {η′0,σ′} until
R becomes small enough. The green curves overlap and fol-
low power-law decay until the Tanner number Tn =λ̄η′0RΩ

2/σ′

decreases below a critical value Tnc≈ 13.6. For Tn < Tnc, capil-
lary stress dominates normal stress; curves with higher numerical
values of σ′ decay slower. Increasing vcap to 2σ/η0 (Fig. 7A,
orange curves) magnifies the capillary effect, which decreases the
slope of R(t) and slows down indent propagation. For Tn< Tnc,
the curves of vcap = 2σ/η0 diverge more than the previous case
of vcap =σ/η0. An obvious example is {η′0,σ′}= {η0, 2σ} (Fig.
7A, orange solid curve). Here, the curve plateaus when Tn <
Tnc, signifying that the capillary effect is strong enough to com-
pletely arrest indent propagation. For the extreme case of vcap =
4σ/η0 (Fig. 7A, black solid curve), the capillary effect becomes
even stronger. Hence, indent propagation becomes even slower
and halts even sooner. For another extreme where vcap =σ/2η0
(Fig. 7A, blue curves), the capillary effect is weaker and thus
divergence of curves is much less obvious than in all other cases.
Fig. 7B shows R(t) of the liquid bridges subjected to a higher
rotational rate f = 35 Hz for the same nine sets of {η′0,σ′}. Sim-
ilar to Fig. 7A, the green and orange curves also diverge for
Tn < Tnc≈ 13.6. However, for larger f , magnitudes of the nor-
mal stresses are increased and hence the opposing effect of
surface tension becomes relatively smaller. As a result, the curves
diverge less and no plateaus of the radius can be observed com-
pared to the previous cases for f = 27 Hz. To show that the
indent propagation is independent of the elasto-capillary num-
ber Ec =λ̄σ/η0R, we vary the relaxation times from λi to λ′i . The
variation is done such that the term λ̄′η′0Ω

2/σ′ in Tn is a constant
and only λ̄′σ′/η′0 in Ec varies. For Tn > Tnc≈ 13.6, increas-
ing λ̄′σ′/η′0 shifts R(t) horizontally leftward and leaves the
slope of R(t) constant (SI Appendix, Fig. S3). Hence, the indent
propagation process is indeed independent of Ec and is solely
governed by Tn.

Such sole dependence of the indent propagation on the Tan-
ner number Tn signifies certain similarities in the indentation
shapes and stress fields for liquid bridges having the same cap-
illary velocity vcap. Fig. 7 C and D shows the time evolution of the
indentation shapes and second-normal stress differences N2 of
two liquid bridges with {η′0,σ′}= {η0, 2σ} and {0.5η0,σ}. Both
of the liquid bridges have vcap = 2σ/η0 and are subjected to a
plate rotation of f = 27 Hz. The two cases correspond to two of
the orange curves in Fig. 7A; the former one labeled C reaches
a plateau radius and the latter one labeled D approaches zero.
For t = 0.3, 0.6, and 0.9 s at which Tn > Tnc, both the indent
shapes and N2 distributions appear to be the same for the two

cases, except that the maximum and minimum N2 values in Fig.
7C are scaled by a factor of 2 from those in Fig. 7D. As the two
cases have the same plate sizes and rotational speeds, we can
further infer that the indent propagation is driven by a local bal-
ance between the surface tension and normal stresses around the
indent tip. Zoomed-in versions of the indentation shapes over
time can be found in SI Appendix, Fig. S4. For t = 1.2 s at which
Tn > Tnc, indent shapes and N2 distributions of the two cases
start to differ. For instance, as shown in Fig. 7 C and D, Insets, the
indent size for the case of {η′0,σ′}= {η0, 2σ} becomes smaller
than that of {η′0,σ′}= {0.5η0,σ}; as a consequence, shear is
more localized and magnitude of the negative N2 is larger around
the indent tip.

The Tanner–Keentok criterion informs us that N2 and pL
are critical to interpret what we have observed in Fig. 7 A–D.
Fig. 7 E and F shows for the cases of {η′0,σ′}= {η0, 2σ} and
{0.5η0,σ} the second-normal stress difference N2,tip (red solid
curves) and the Laplace pressure pL (blue solid curves) at the
indent tip as functions of time t . The normal stresses τzz ,tip
and τrr ,tip (red dotted curves) and the Tanner–Keentok criterion
(blue dotted curves) are also shown here to be compared with
N2,tip. For 0.5 s < t < 1 s when Tn > Tnc (Fig. 7 E and F,
gray area), N2,tip and pL show the same trend in both cases and
differ only by a factor of 2 in terms of their magnitudes. At
t ≈ 0.5 s, the liquid bridge radius R≈ 1 mm and height H =
2.5 mm are both at least an order of magnitude larger than
the radius of curvature a ≈ 0.07 mm of the indent tip, which
matches the assumptions of the Tanner–Keentok criterion
(note that those assumptions become less and less adequate
as R decreases). The Tanner–Keentok criterion |N2|> 2pL/3≈
2σ/3a is satisfied, providing further evidence that for Tn > Tnc
the indent formation is driven by edge fracture. For 0.5 s < t <
0.8 s, the Laplace pressure pL appears constant since the radius
of curvature a of the indent tip does not change much during this
timespan (Fig. 7 C and D and SI Appendix, Fig. S4). As the liq-
uid bridge radius R decreases, the effective shear rate RΩ/2a at
the indent tip also decreases, making magnitudes of the normal
stress components τzz ,tip and τrr ,tip decrease with time. However,
the difference τzz ,tip− τrr ,tip remains approximately a constant
for 0.5 s < t < 0.8 s. Therefore, the second-normal stress dif-
ference N2,tip remains constant during this timespan just like
the Laplace pressure pL. For t > 1.1 s when Tn < Tnc (Fig. 7
E and F, white area), the trends of N2,tip and pL in Fig. 7 E
and F start to differ. In this region, as the liquid bridge radius
R becomes comparable with the indent radius of curvature a ,
the Tanner–Keentok criterion is no longer applicable. We need
to consider capillary effects to explain the difference between
Fig. 7E and 7F. For the {η′0,σ′}= {η0, 2σ} case (Fig. 7E) N2,tip
and pL diverge from each other and reach their plateau at t ≈
1.5 s. Here, the Laplace pressure pL =σ(1/a − 1/R) never
changes sign, implying that the liquid bridge radius R never
reaches a . Instead, as the lower portion of the liquid bridge
reconfigures to a hemispherical shape by surface tension, the
indent radius of curvature a decreases over time, which causes
pL to increase over time. The decrease of a also makes shear
around the indent tip more concentrated, which decreases N2,tip
over time. On the other hand, the {η′0,σ′}= {0.5η0,σ} case (Fig.
7F) has a lower surface tension and thus capillary reconfiguration
is slower. Both N2,tip and pL change sign at t ≈ 1.5 s, signify-
ing that the second-normal stress difference becomes stabilizing
and the surface tension becomes destabilizing as R becomes
smaller than a .

Discussion and Conclusion
Combining high-speed imaging and viscoelastic flow simulation,
we show that torsion can break viscoelastic liquid bridges effec-
tively. Using a setup consisting of two concentric circular plates,
one rotatable and one vertically translatable, we demonstrate
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that a concave surface can localize shear around the liquid
bridge’s neck even for a Newtonian fluid. For a viscoelastic fluid,
the localized shear can induce normal stresses that in turn make
the surface more concave. Such positive feedback creates an
indent of size 2a that propagates toward the center and leads
to quick breakup of the liquid bridge. The indent formation
process and its associated flow patterns resemble edge frac-
ture, a flow instability often observed when a viscoelastic fluid
is sheared in a thin gap (14–20). For capillary stable bridges,
edge fracture causes the radius R to undergo power-law decay
R∝ t−β with a power-index β that increases with increasing rota-
tional rate f . Edge fracture takes place until the Tanner number
Tn =λη0RΩ

2/σ, which characterizes the relative importance of
normal and capillary stresses, reaches a small enough critical
value Tnc≈ 13.6. For Tn < Tnc, surface tension governs how the
liquid bridge radius R evolves. For small R≈ a and high surface
tension such as σ= 41.2 mN/m, the lower portion of the liquid
bridge reconfigures to a hemispherical shape, which decreases
the indent size a and increases the Laplace pressure pL over time.
As a result, pL never changes sign and the liquid bridge radius
R never reaches a . For lower surface tension such as σ= 20.6
mN/m, capillary reconfiguration is slower. The indent propaga-
tion is quick enough such that R can reach a , which changes
the sign of pL and causes surface tension to destabilize the liquid
bridge.

Edge fracture renders rheological measurement results of vis-
coelastic fluids at high shear rate inaccurate and hard to interpret
(14–20). Because of this, experimentalists have invented differ-
ent gadgets, such as specially designed guard rings (41) and the
cone-partitioned-plate geometry (42–44), to bypass the negative
effects of edge fracture. In contrast, our study takes advan-
tage of edge fracture for potential practical applications. By
applying torsion, edge fracture occurs, creating an indent that
propagates toward the center of the viscoelastic liquid bridge.
In this way, even short, capillary stable liquid bridges can be
broken in O(1 s). For industries that require quick and clean
dispensing of viscoelastic fluids, this may prevent the substrate
from being contaminated by the satellite droplets (4) and long
capillary tails (12) formed by stretching the liquid bridge.
On the other hand, theorists have proposed different the-
ories (14–16, 18, 19) to explain how edge fracture occurs.
Essentially, those theoretical studies assumed a planar Cou-
ette flow, which corresponds to liquid bridges with R�H .
Also, they focused only on the onset of edge fracture and did
not consider its propagation process. Therefore, the param-
eter space of edge fracture explored so far has been highly
limited. Compared to the planar Couette flow, liquid bridges
considered in our study have radius R≈H . Although this made
the flow field no longer a simple shear flow, this extended
the parameter space of edge fracture research and allowed
much clearer experimental visualization of the fluid interface
that contains the most critical information (surface curvature,
indent size, radius evolution) of edge fracture. Indeed, this
is what enabled us to study the propagation of edge frac-
ture and to directly compare our experimental and simulation
results, which would otherwise be very difficult for a planar
Couette flow.

As a remark, we note that viscoelastic fluids are also known to
undergo fracture under extension (45–48). For instance, Huang
et al. (46) reported for two model entangled polymer solu-
tions that liquid bridges under uniaxial extension demonstrated
multiple-crack propagation behavior. The cracks propagate at
constant speed and their profiles can be qualitatively described
by the viscoelastic trumpet model (49) with the crack tip show-
ing brittle fracture behavior. Wagner et al. (48) subsequently
developed the entropic fracture model to explain such exten-
sional fracture behavior: thermal fluctuations lead to temporary
concentration of strain energy, which causes the polymer chain

to rupture and initiates crack propagation in the liquid bridge.
In contrast to the extensional fracture, the torsional edge frac-
ture that we have described in this work shows power-law indent
propagation behavior; thus, the viscoelastic trumpet model is not
applicable. Also, there is no rupture of polymer chains assumed
in our viscoelastic simulation, so the entropic fracture model
does not apply. Hence, the extensional fracture of viscoelastic
fluids is not related to the torsional edge fracture described in
the current study; readers should not be confused between the
two phenomena.

Future work is needed to address several remaining points
from our study. First, why does the indent caused by edge
fracture have a rather constant size throughout its propaga-
tion process? Second, the indent propagation caused by edge
fracture shows power-law behavior and depends solely on the
Tanner number Tn, which hints at the existence of a sim-
ilarity solution. An analytical form of such a solution may
help develop efficient methods to measure material properties
such as the normal stress coefficients. Does such a solution
exist? Third, so far we have considered only viscoelastic liq-
uid bridges with a relaxation time λ∈O(1 ms), which gives an
elasto-capillary number Ec � 1. What other phenomena can
be observed for fluids with a much higher λ? In addition, the
simulation results presented in Fig. 5 are not yet verified by
experiments. Identifying suitable fluids with the desired mobil-
ity parameter will be a topic of future research. Finally, edge
fracture is also known to occur in suspensions and pastes (15).
How will a finite yield stress in such fluids affect the indent
propagation process? Addressing the first four points will lead
to a better physical understanding of edge fracture. The last
point is important for practical applications, such as the dis-
pensing of functional fluids that are viscoelastic with yield stress
nature (50–52).

Materials and Methods
Experimental Protocol. The experimental model system consists of an upper
rotatable plate and a lower vertically translatable plate, both of which are
circular with radius Rp = 2.85 mm. To apply unidirectional rotation with min-
imal mechanical vibration, the upper plate was directly connected to the
shaft of a DC metal brush motor (Mabuchi Motor RE-280A). As the exper-
imental results agreed well with both the Newtonian and the viscoelastic
flow simulations, in which no vibration was imposed, slight vibration of the
motor shaft in our experiments was assumed to have a negligible effect on
the liquid bridge thinning process. The lowest accessible rotational rate of
the upper plate is 13.3 Hz. The time tf that the motor needs to achieve its
full speed was estimated to be 1 s. Such estimation was done by varying tf

in the simulation until the simulation and experimental results match quan-
titatively. To apply vertical movement, the lower plate was connected to a
computer-controlled dip coater (Nima Technology Ltd.). A single constant
vertical speed of 0.67 mm/s was applied to the bottom plate. Fluid of 40 µL
was injected between the two plates using a positive displacement pipette
(MICROMAN; Gilson). The liquid bridge was illuminated using a high-
intensity light-emitting diode (LED) light source (Fiber-Lite MI-LED; Dolan-
Jenner Industries) connected to a 52-mm telecentric backlight illuminator
(TECHSPEC; Edmund Optics). High-speed videos of the liquid bridge thinning
were captured using a high-speed camera (FASTCAM Mini AX100; Photron
USA Inc.) with a frame rate of 50 fps, a shutter speed of 10,000 Hz, and a
12× zoom, 12-mm fine focus objective lens (Navitar Inc.). To eliminate exper-
imental error due to volume variation of the liquid bridge, the same droplet
of fluid was used for each set of experiments, which consisted of sweeping
the rotational rate of the upper plate through a list of discrete values twice.
Each set of experiments was conducted in the same day. Evaporation of the
liquid bridge is negligible due to the high-molecular-weight nature of the
fluids used.

Material Characterization. A strain-controlled rheometer (ARES-G2; TA
Instruments) was used to measure rheology of Infineum S1054 (Infineum
Japan Ltd.) and the silicone oil (Dow Corning 200; Sigma-Aldrich). For
Infineum S1054, the steady-shear test was performed with a 40-mm diame-
ter stainless steel 1◦ cone-and-plate geometry to obtain the flow curve in a
shear-rate range of 1 to 300 s−1 at 25 ◦C. For the silicone oil, the SAOS test
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was performed with a 10-mm diameter stainless-steel parallel plate geome-
try to obtain the storage modulus G′ and the loss modulus G

′′
in a frequency

range of 1 to 300 rad/s in a temperature range of −65 to 25 ◦C. The strain
amplitude was 5%, which ensures that the silicone oil being measured was
in the linear viscoelastic regime, where G′ and G

′′
are independent of

the strain amplitude (53). The rheometer was connected to a liquid nitro-
gen tank and the temperature was decreased using the liquid nitrogen
controller (TA Instruments). The data obtained at different temperatures
were used to construct a master curve at 25 ◦C (symbols in Fig. 2B) using
the time–temperature superposition principle (54). The multimode Maxwell
model (lines in Fig. 2B), which corresponds to the low-strain limit of the
multimode Giesekus model (24), was then used to fit the master curve to
get the polymer viscosities and relaxation times of the silicone oil, which
were used in the viscoelastic flow simulation. On the other hand, to verify
that the Giesekus model predicts the correct rheological behaviors of the
silicone oil, the steady-shear test was performed to obtain the first- and
second-normal stress differences (N1, N2) in a shear-rate range of 10 to
100 s−1 at 25 ◦C. A 40-mm diameter stainless-steel 1◦ cone-and-plate
geometry was used to obtain N1, while a 40-mm stainless-steel par-
allel plate geometry was used to obtain N1−N2 (55). Here, a sud-
den drop in the shear stress was measured at a shear rate of
γ̇ ≈ 60 s−1 for the cone-and-plate geometry and γ̇ ≈ 30 s−1

for the parallel plate geometry. Hence, data above those shear rates
were discarded. Nonetheless, both the N1 and N1−N2 data agreed
well with the Giesekus model prediction, both of which are shown in
Fig. 2 C and D. An optical tensiometer (Theta Attension; Biolin Scientific) was
used to measure surface tension of both Inifineum S1054 and the silicone
oil by the pendant drop method (56) at 25 ◦C. Rheology and surface ten-
sion of the three additional silicone oils described in Fig. 6 were measured
with the same protocol aforementioned. The 48.1-Pa·s sample is a mixture
of the 32.3-Pa·s sample (silicone oil viscosity 30,000 cSt; Sigma-Aldrich) and
the 58.6-Pa·s sample used in most of our studies. The 78-Pa·s sample is a
mixture of the 58.6-Pa·s sample and a 109-Pa·s sample (silicone oil viscosity
100,000 cSt; Sigma-Aldrich).

Image Analysis. The high-speed videos were analyzed using in-house devel-
oped image analysis software, using Matlab (MathWorks). The region of
interest (ROI) was cropped using the inbuilt function getrect. The cropped
image was converted into a double-precision image from RGB using the
im2double function, which scales the output from integer data types to the
range [0, 1]. Next, the image was converted to a binary image with a thresh-
old value of 0.75 using im2bw. The image defects were adjusted using the
imfill function with threshold value of 0.4. Next, a raster scan was performed
row by row on the ROI to determine the edge profile of the bridge by com-
puting the largest-intensity gradient at every pixel between the bridge and
background. The liquid bridge’s neck radius R was computed by determining
the thinnest point of the bridge profile. The process was repeated for the
entire radius evolution. Volume of the liquid bridge was determined from

the bridge profile by the solid of revolution method and was confirmed
to be 40± 0.2 µL.

Simulations. To simulate the flow, the momentum and mass balance
equations for incompressible fluids (57) were solved:

ρ (∂tv + v · ∇v) = ∇ · (−pI + 2ηsD + τ ) + ρg, [3]

∇ · v = 0. [4]

Here, p, I, and ηs are the pressure, unity tensor, and Newtonian viscosity,
respectively. Gravity was introduced as a body force g along the negative
z direction. To solve the governing equations for the Newtonian Infineum
S1054 fluid, the Newtonian viscosity was used: ηs = η and τ = 0. In the case
of the viscoelastic silicone oil, the Newtonian viscosity was used as a solvent
viscosity and the viscoelastic stress tensor was solved using the multimode
Giesekus model given in Eqs. 1 and 2. Here, the equations were discretized
using a method described in ref. 57 and solved using the stabilized finite-
element method, whose mesh method, mesh movement and projection,
time stepping, and stabilization can be found in ref. 58. Boundary conditions
of the simulation were no slip on the plate boundaries and surface tension
on the free surface of the liquid bridge. Because the experimental system
is rotationally symmetric, axisymmetric flow with swirl was assumed in the
simulation. Hence, a two-dimensional geometry was used. The unknown
fields τ , v, and p depend on r, z, and θ in the cylindrical coordinate system
and the gradients in the azimuthal direction are zero. Before the simula-
tion starts, the material was assumed to be stagnant and stress-free. In the
experiments with the Newtonian fluid (Infineum S1054), the sample was
first deposited between two concentric plates with an initial separation
H0 = 2.5 mm. The sample was then prestretched with a velocity 0.67 mm/s
to a final separation H. After that, the rotational rate of the upper plate
was increased linearly from 0 to f within a timespan tf . The same process
was reproduced in the Newtonian simulation. In the case of the viscoelas-
tic silicone oil, no prestretch was applied in the experiments. The starting
geometry used in all viscoelastic simulations was directly extracted from the
experimental images.

Data Availability. All study data are included in this article and/or
SI Appendix.
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