
 

Entanglement Quantification in Atomic Ensembles

Matteo Fadel ,1,* Ayaka Usui ,2 Marcus Huber ,3,4 Nicolai Friis ,4,3 and Giuseppe Vitagliano 4

1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan

3Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
4Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences,

Boltzmanngasse 3, 1090 Vienna, Austria

(Received 30 March 2021; accepted 2 June 2021; published 29 June 2021)

Entanglement measures quantify nonclassical correlations present in a quantum system, but can be
extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider
broad families of entanglement criteria that are based on variances of arbitrary operators and analytically
derive the lower bounds these criteria provide for two relevant entanglement measures: the best separable
approximation and the generalized robustness. This yields a practical method for quantifying entanglement
in realistic experimental situations, in particular, when only few measurements of simple observables
are available. As a concrete application of this method, we quantify bipartite and multipartite entanglement
in spin-squeezed Bose-Einstein condensates of ∼500 atoms, by lower bounding the best separable
approximation and the generalized robustness only from measurements of first and second moments of the
collective spin operator.
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Introduction.—Entanglement is a form of quantum cor-
relations that constitutes an essential resource for a number
of quantum information tasks [1]. Formally, it is defined as
the impossibility of expressing the state of a composite
system as the (convex combination of) product of subsys-
tems’ states. While this formal definition captures an
essential difference between classical and quantum systems,
deciding whether a given experimental quantum system
exhibits entanglement is not an easy task. Nevertheless, a
method for entanglement detection that is often successful
employs entanglement witnesses [2,3]. These are observ-
ables represented by Hermitian operators W such that
Tr½Wσ� ≥ 0 for all separable states σ. Therefore, observing
Tr½Wρ� < 0 implies that ρ is entangled.
While entanglement witnesses allow us to certify that a

state is entangled, and even to characterize its separability
structure, they do not provide any direct information on
the “strength” of these correlations, for example, in terms
of robustness to noise. In other words, observing, e.g.,
0>Tr½Wρ1�>Tr½Wρ2�, or that ρ2 involves more entangled
particles than ρ1, does not necessarily imply that ρ2 is
“more entangled” than ρ1. To reach this conclusion, a
correct quantification of the nonclassical resources present
in the states is required.
Here, we consider entanglement measures to be non-

negative real functions EðρÞ such that [4,5]: (i) EðσÞ ¼ 0 for
all separable states σ; and (ii) EðρÞ does not increase on
average under local operations and classical communica-
tion (LOCC) [6]. Many inequivalent measures can be

defined, which result in different orderings of the entangled
states. For this reason, it is usually favorable to consider
measures that are associated with questions of practical
relevance, such that they inherit a concrete meaning.
In the bipartite case, typically adopted measures are

entropies, Schmidt rank, concurrence, or entanglement
of formation or distillation [3,5]. In the multipartite case,
however, even more possibilities arise, reflecting the
complexity of multipartite LOCC classification and the
lack of a unique maximally entangled state [7,8]. These
measures are often operationally related to communication
tasks, where entanglement is seen as a resource for
transcending the limitations of LOCC for distant parties.
For many-body systems, however, other features are
typically more relevant. One measure that is important in
this context is the best separable approximation (BSA)
[9,10], which captures to what extent the state ρ of a many-
body system can be approximated by a separable quantum
state. Formally, the EBSA is defined as the minimum real
number t ∈ ½0; 1� such that ρ can be decomposed as

ρ ¼ ð1 − tÞσ þ tδρ; ð1Þ

for some separable density matrix σ and some remainder
density matrix δρ. Another measure relevant in the context
of many-body experiments is the generalized robustness
(GR) [11], which quantifies the minimal amount of noise
(represented by a general state) that needs to be mixed with
ρ in order to make it separable.
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Formally, EGR is defined as the minimum real number
s ∈ ½0;∞Þ such that

1

1þ s
ρþ s

1þ s
ρ0 is separable; ð2Þ

where ρ0 is any (not necessarily separable) density matrix.
Besides quantifying the robustness to noise of an entangled
state, the GR is of interest as it also has direct connections
to the maximum fidelity of teleportation and other entan-
glement measures (e.g., entropic monotones, geometric
distances) [12–14].
Evaluating an entanglement measure EðρÞ is—in such

cases where this is even possible at all—a demanding task,
as it requires the full knowledge of ρ. To circumvent this
requirement, which in most experimental situations is just
impossible to fulfill, methods have been developed to at
least lower bound interesting measures from limited infor-
mation on ρ [15–27]. Although some of these have been
applied with extraordinary success in optical experiments
(see Ref. [3] for a recent review), finding an approach
suitable to platforms where the number of accessible
observables is particularly limited (e.g., collective proper-
ties) remains extremely challenging.
In the case of atomic ensembles, entanglement between

particles is routinely detected and characterized through
criteria based on low moments of collective spin observables
[28–32]. Moreover, bipartite entanglement has also been
demonstrated between spatially separated atomic ensembles
[33–36]. In these systems, however, entanglement quantifi-
cation has so far been limited to theoretical investigations
[37–40], or to experiments with spinless bosons in optical
lattices that assumed superselection rule or purity of the state
[41,42], i.e., highly idealized situations.
In this work we leverage the strength of simple many-

body entanglement witnesses to quantitatively lower-bound
relevant measures of entanglement for such systems. In
particular, we focus on broad classes of variance-based
criteria, from which we derive analytical lower bounds to
the BSA and the GR. We then use these results to quantify
bipartite and multipartite entanglement in nonclassical spin
states of atomic ensembles.
In the experiments we consider, spin-squeezed Bose-

Einstein condensates (BECs) of approximately 500 atoms
were prepared, and measurements of the collective spin,
or of local spin observables were performed after spatially
distributing the atoms. Despite the limited amount of
information on the state accessible by such coarse-grained
measurements, we show that nontrivial lower bounds on the
BSA and the GR can be provided in this case.
Our results constitute a practical method to lower-bound

entanglement measures for a variety of physical systems.
When applied to atomic ensembles in nonclassical states,
this allows one to quantify their usefulness for quantum
information tasks beyond metrology, such as quantum
teleportation and remote state preparation [43–45].

Preliminaries.—Classes of entanglement measures can
be defined as the optimization problem [12]

EMðρÞ ≔ maxf0;− min
W∈M

Tr½Wρ�g; ð3Þ

whereM is a subset of entanglement witnesses. The specific
choice of this subset results in measures with different
interpretations. To give concrete examples, if W is the set
of all entanglement witnesses, choosing MBSA ¼ fW ∈
Wj1þW ≥ 0g yields the BSA EMðρÞ ¼ EBSAðρÞ, while
choosing MGR ¼ fW ∈ Wj1 −W ≥ 0g results in the gen-
eralized robustness of entanglement EMðρÞ¼EGRðρÞ [12].
The idea behind Eq. (3) can be generalized even further,

to allow for the definition of entanglement measures that
are monotones (i.e., cannot increase) only under a subset of
LOCC operations. Indeed, we have that
Lemma 1.—Given an operator K, the set M� ¼ fW ∈

WjK �W ≥ 0g defines via Eq. (3) an entanglement mono-
tone under LOCC operations commuting with K.
Proof.—We follow similar arguments as in Refs. [12,41].

Consider some LOCC operation in terms of its Kraus
operators fAkgk, with

P
k A

†
kAk ≤ 1. This transforms the

state ρ into
P

k pkρ
0
k, with pk≔Tr½AkρA

†
k� and ρ0k ≔

AkρA
†
k=pk. Calling W the witness attaining the minimum

in Eq. (3), we now compute

X

k

pkEMðρ0kÞ ¼
X

k

pk maxf0;−Tr½Wρ0k�g

¼ −
X

i

Tr½WAiρA
†
i � ¼ −

X

i

Tr½A†
i WAiρ�

¼ −Tr½W0ρ� ≤ EMðρÞ; ð4Þ

where the index i runs only over terms Tr½WAiρA
†
i � < 0,

W0 ≔
P

i A
†
i WAi, and we used the fact that, if ½Ak; K� ¼ 0,

then 0 ≤
P

i A
†
i ðK �WÞAi ≤ K �P

i A
†
i WAi ¼ K �W0,

which implies W0 ∈ M�.
Equation (4) implies that EM does not increase on

average under the action of LOCC operations commuting
with K, meaning that it is an entanglement monotone for
this subset of LOCC. ▪
For example, for K ¼ 1, the resulting measure is a

monotone under the full set of LOCC operations, while for
K ¼ N̂ (the particle number operator) one obtains a mono-
tone under LOCC operations that respect certain super-
selection rules [41,46]. In a concrete situation, however,
even if the number of particles fluctuates there always exists
an upper bound hN̂i < N. Therefore, using the fact that
N̂≤N1, monotones under the full set of LOCCcan always be
derived, albeit these might result in reduced lower bounds.
At this point, let us note that (i) any bounded witness

can be rescaled such that 1�W ≥ 0; (ii) the definition in
Eq. (3) implies that any witness belonging to M delivers a
lower bound on EMðρÞ. Therefore, many known witnesses
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will in general be useful to provide nontrivial lower bounds
on entanglement measures.
In the following, we investigate broad families of

entanglement criteria that are experimentally practical
and useful, and derive the associated witness operators
W. This allows us to analytically compute the lower bounds
they provide on EBSA and EGR, and to apply our approach to
experiments with atomic ensembles.
Bounding entanglement measures from variance-based

entanglement criteria.—Let us focus here on classes of
entanglement criteria involving variances of operators, and
thus involving only measurements of their first and second
moments. Because of their simplicity, criteria of this form
have been widely investigated in the literature for both
bipartite [47–51] and multipartite [52–59] scenarios, and
they are routinely used experimentally [30].
First, let us consider inequalities that are expressed in

terms of linear combinations of variances, namely,

SðρÞ ≔
X

k

Δ2ðOkÞ − hBi ≥ 0; ð5Þ

with Δ2ðOkÞ ¼ hO2
ki − hOki2, that hold for all separable

states for some self-adjoint operators Ok and B [60].
For the sake of simplifying the following discussion, we

focus on bounded operators with discrete spectra, such that
n� ≤ SðρÞ ≤ m� for all quantum states. In general, we have

−n� ≤ n ≔ λmaxðBÞ; ð6Þ

m� ≤ m ≔
X

k

λmaxðOkÞ2 − λminðBÞ; ð7Þ

where λminðmaxÞðAÞ denoting the minimal (maximal)
eigenvalue of A. We show here that
Lemma 2.—Every entanglement criterion that can be

written in the form of Eq. (5) provides a lower bound on the
best separable approximation EBSA ≥ −SðρÞ=n, and to the
generalized robustness EGR ≥ −SðρÞ=m.
Proof.—For a given state ρ, the variance of Ok can be

expressed as Δ2ðOkÞ ¼ minskhðOk − sk1Þ2i, where sk is a
real number and the minimum is attained for sk ¼ hOki.
From this observation, it follows that any criterion in the
form of Eq. (5) can be interpreted as SðρÞ ¼ minshWðsÞi,
which is a minimization over s ¼ fs1; ; s2…g of the family
of entanglement witness operators

WðsÞ ≔
X

k

ðOk − sk1Þ2 − B: ð8Þ

From this definition, it is clear that WðsÞ=n ∈ MBSA and
therefore, using Eq. (3), that EBSA ≥ −minshWðsÞ=ni ¼
−SðρÞ=n. Similarly, to bound the generalized robustness,
one notices that the inequality Δ2ðOkÞ ≤ λmaxðOkÞ2
holds. Therefore, WðsÞ=m∈MGR, which implies
EGR ≥ −SðρÞ=m. ▪

As a second relevant class of criteria, we consider
inequalities written in the form of modified uncertainty
relations, and thus based on the product of two variances.
These can be written as

U2ðρÞ ≔ Δ2ðO1ÞΔ2ðO2Þ
hBi2 ≥ 1 ð9Þ

for all separable states. We now show that
Lemma 3.—Every entanglement criterion that can be

written in the form of Eq. (9) provides a lower bound on the
best separable approximation EBSA ≥ ðhBi=nÞ½1 − UðρÞ�,
and to the generalized robustness.
Proof.—First, note that Eq. (9) implies that for all

separable states

PðρÞ ≔ Δ2ðO1ÞΔ2ðO2Þ − hBi2 ≥ 0: ð10Þ

This nonlinear inequality can be seen as the result of an
optimization over a family of linear inequalities [48]

Δ2ðO1Þ ≥ 4sup
t∈R

½jtjhBi − t2Δ2ðO2Þ�

¼ −4inf
t∈R

½t2Δ2ðO2Þ − jtjhBi�; ð11Þ

where t is a real parameter. Geometrically, Eq. (10) can be
understood as a hyperbola, while Eq. (11) are all its tangents.
Note that this procedure is more general than using, e.g., the
triangle inequality x2 þ y2 ≥ 2xy. To summarize, Eq. (11)
implies that for any t ∈ R, all separable states satisfy
the inequality StðρÞ≔Δ2ðO1Þþ4t2Δ2ðO2Þ−4jtjhBi≥0,
which takes the form of Eq. (5) with O2 ↦ 2tO2 and
B ↦ 4jtjB. The associated entanglement witness operator is

Wðs; tÞ ≔ ðO1 − s11Þ2 þ 4t2ðO2 − s21Þ2 − 4jtjB; ð12Þ

and Eq. (10) can thus be interpreted as PðρÞ ¼
mins;thWðs; tÞi. Because Wðs; tÞ=4jtjn ∈ MBSA, its mini-
mization gives a lower bound on EBSA. This is achieved
for t2BSA ¼ Δ2ðO1Þ=4Δ2ðO2Þ, for which we obtain the
bound EBSA≥−hWðs;tBSAÞ=4jtBSAjni¼ðhBi=nÞ½1−UðρÞ�.
Similarly, for the generalized robustness we first note that
St≤mt≔λmaxðO1Þ2þ4t2λmaxðO2Þ2−4tλminðBÞ. Therefore,
Wðs; tÞ=mt ∈ MGR and its minimization gives a lower
bound on EGR. This can also be carried out analytically,
but since the resulting expressions for t2GR and for
hWðs; tGRÞ=mtGRi are cumbersome, we will not include
them here. ▪
In what follows we apply these results to two exper-

imental scenarios that are of broad interest, and analyze the
data presented in Refs. [34,61].
Entanglement quantification in spin-squeezed states.—

As a first application, we quantify multipartite entangle-
ment in a system composed of N spin-1=2 particles.
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An entanglement criterion commonly used in the context
of atomic ensembles is based on the Wineland spin-
squeezing parameter ξ2 ≔ NΔ2ðJzÞ=hJxi2 [62], which only
requires measurements of the collective spin operator
J ¼ P

i σ
ðiÞ=2, where σðiÞ is the vector of Pauli matrices

for the ith particle. Since ξ2 ≥ 1 holds for all separable
states, observing ξ2 < 1 certifies entanglement [52]. This
inequality takes the form of Eq. (9) if the constant N in the
definition of ξ2 is interpreted as the variance of an operator.
Following Lemma 3, we obtain the bound

EBSA ≥ Cð1 −
ffiffiffiffiffi
ξ2

p
Þ; ð13Þ

for the BSA, where we have introduced the contrast
C ≔ hJxi=ðN=2Þ. The exact bound on the GR can also
be calculated analytically, and to first order (in 1=N) it
scales as

EGR ≥
C2

N
ð1 − ξ2Þ þOðN−2Þ: ð14Þ

In Fig. 1 we show the resulting bounds on EBSA and EGR
obtained for different particle numbers N, and levels of
squeezing ξ2.
We now use these tools to quantify entanglement in spin-

squeezed BECs of N ¼ 476� 21 Rb87Rb atoms, magneti-
cally trapped on an atom chip [61]. The two hyperfine
states jF ¼ 1; mF ¼ −1i≡ j1i and jF ¼ 2; mF ¼ 1i≡ j2i
are identified with a pseudospin 1=2, such that the
entire BEC can be described by a collective spin with
Jz ¼ ðN1 − N2Þ=2, i.e., half the population difference
between the two states. Nontrivial correlations in the
system are prepared by controlling atomic collisions with
a state-dependent potential [63]; this give rise to a J2z term

in the Hamiltonian that results in squeezing of the collective
spin state. Atom counting in the two states performed
via absorption imaging gives access to a measurement of
Jz, while measurements along other spin directions are
realized by appropriate Rabi rotations before imaging.
We obtain Δ2ðJzÞ ¼ 32ð4Þ and C ¼ 0.980ð2Þ, for which
ξ2 ¼ −5.5ð6Þ dB. The resulting bounds on EBSA and EGR
are shown as red circles in Fig. 1.
Entanglement quantification in split spin-squeezed

states.—As a second application, we quantify bipartite
entanglement between two systems, A and B. An entan-
glement criterion suitable to this scenario is the one derived
by Giovannetti et al. in Ref. [48], stating that all separable
states of two collective spins satisfy

G2 ≔
Δ2ðgzJAz þ JBz ÞΔ2ðgyJAy þ JBy Þ
ðjgzgyjjhJAx ij þ jhJBx ijÞ2=4

≥ 1 ð15Þ

for gz, gy ∈ R. The latter variables parametrize a family of
inequalities of the form of Eq. (9), and hence Lemma 3
applies. The largest lower bound on EBSA and EGR arises
from a minimization of Eq. (15) over gz and gy.
We now use these tools to quantify entanglement

between two partitions of a spin-squeezed BEC. For this,
atoms are spatially distributed before performing high-
resolution absorption imaging. Then, we define spatially
separated regions on the images, and associate them to a
local spin that is measured by counting the local population
difference in the two hyperfine states [34]; see Fig. 2
(right). We consider BECs of N ¼ 590� 30 atoms, show-
ing a squeezing of ξ2 ¼ −3.8ð2Þ dB, and investigate differ-
ent bipartitions by splitting the images horizontally into two
parts. In Fig. 2 (left) we plot the lower bounds on EBSA and
EGR obtained from Eq. (15).

(a) (b)

FIG. 1. Entanglement quantification in spin-squeezed states. Lower bounds on the best separable approximation, panel (a), and on the
generalized robustness, panel (b), as obtained from the Wineland spin-squeezing parameter ξ2. Note that for a given number of particles
N there is a minimum for ξ2, beyond which the bounds get worse. The red circles correspond to data from measurements of a spin-
squeezed BEC with N ¼ 476 particles.
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Conclusions.—In this work we presented a practical
method to lower-bound classes of entanglement measures
from specific families of entanglement witnesses. In
particular, we give analytical lower bounds on two relevant
measures, the best separable approximation (BSA) and the
generalized robustness (GR), as a function of the observed
violation of entanglement criteria that are routinely used
experimentally. Remarkably, this approach can provide
nontrivial bounds even when a very limited amount of
information on the state is available.
To illustrate the usefulness our method, we give two

concrete applications of entanglement quantification in
atomic ensembles. In the first, we consider a spin-squeezed
BEC, and show that measurements of the collective spin
length and squeezed quadrature are sufficient to lower-
bound the BSA and GR. This allows us to relate these
measures to the Wineland spin-squeezing coefficient asso-
ciated to the metrological usefulness of a quantum state. In
the second application, we quantify the bipartite entangle-
ment observed between two atomic ensembles. By spatially
distributing a spin-squeezed BEC we are able to define two
local collective spins, each associated with a different
spatial region, whose joint state violates an entanglement
criterion. From our results, we are able to translate the value
of this violation into lower bounds on the BSA and the GR.
Our investigation opens up new possibilities to quantify

and characterize entanglement in atomic ensembles. Apart
from their fundamental interest, our results could be useful
for concrete applications in quantum technologies, in
particular with regards to entanglement-based benchmark-
ing of complex quantum systems. There, certification and
quantification of entanglement implies both appropriate
levels of coherence (hence the system’s quantum nature)

and the ability to fully control the system, thus allowing one
to test the functionality of quantum devices.

We thank Géza Tóth, Pavel Sekatski for discussions,
and Philipp Treutlein for giving access to experimental data.
M. F. was partially supported by the Research Fund of the
University of Basel for Excellent Junior Researchers. A. U.
appreciates the hospitality and support from IQOQI-Vienna
during her visit and acknowledges financial support from
OISTGraduateUniversity and fromaResearchFellowship of
JSPS for Young Scientists. M. H., N. F., and G. V. acknowl-
edge support from theAustrian Science Fund (FWF) through
projects Y879-N27 (START), P 31339-N27 (Stand-alone),
ZK 3 (Zukunftskolleg), and M 2462-N27 (Lise-Meitner).

*matteo.fadel@unibas.ch
[1] R.Horodecki, P.Horodecki,M.Horodecki, andK.Horodecki,

Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[2] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep.

474, 1 (2009).
[3] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Entangle-

ment certification from theory to experiment, Nat. Rev.
Phys. 1, 72 (2019).

[4] V. Vedral and M. B. Plenio, Entanglement measures and
purification procedures, Phys. Rev. A 57, 1619 (1998).

[5] M. B. Plenio and S. Virmani, An introduction to entangle-
ment measures, Quantum Inf. Comput. 7, 1 (2007).

[6] We note that this differs from the convention in, e.g., [5],
where such quantities are referred to as “monotones.”

[7] J. I. de Vicente, C. Spee, and B. Kraus, Maximally
Entangled Set of Multipartite Quantum States, Phys. Rev.
Lett. 111, 110502 (2013).

[8] D. Sauerwein, N. R. Wallach, G. Gour, and B. Kraus,
Transformations among Pure Multipartite Entangled States

FIG. 2. Entanglement quantification in split spin-squeezed BECs. Lower bounds on the BSA and the GR, as obtained from
Eq. (15) according to Lemma 3. Measurements are taken from a spin-squeezed BEC of N ¼ 590 atoms. The dotted lines show the
maximum amount of entanglement that could be explained by detection cross talk [34]. On the right, we show single-shot
absorption images of the atomic densities for the two internal degrees of freedom, with an example of regions A and B used to define
the collective spins JA and JB.

PHYSICAL REVIEW LETTERS 127, 010401 (2021)

010401-5

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1038/s42254-018-0003-5
https://doi.org/10.1038/s42254-018-0003-5
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.26421/QIC7.1-2-1
https://doi.org/10.1103/PhysRevLett.111.110502
https://doi.org/10.1103/PhysRevLett.111.110502


via Local Operations are Almost Never Possible, Phys. Rev.
X 8, 031020 (2018).

[9] M. Lewenstein and A. Sanpera, Separability and Entangle-
ment of Composite Quantum Systems, Phys. Rev. Lett. 80,
2261 (1998).

[10] S. Karnas and M. Lewenstein, Separable approximations of
density matrices of composite quantum systems, J. Phys. A
34, 6919 (2001).

[11] M. Steiner, Generalized robustness of entanglement, Phys.
Rev. A 67, 054305 (2003).

[12] F. G. S. L. Brandão, Quantifying entanglement with witness
operators, Phys. Rev. A 72, 022310 (2005).

[13] F. G. S. L. Brandão and R. O. Vianna, Witnessed entangle-
ment, Int. J. Quantum. Inform. 04, 331 (2006).

[14] D. Cavalcanti, Connecting the generalized robustness and
the geometric measure of entanglement, Phys. Rev. A 73,
044302 (2006).

[15] K. M. R. Audenaert and M. B. Plenio, When are
correlations quantum?—verification and quantification of
entanglement by simple measurements, New J. Phys. 8, 266
(2006).

[16] J. Eisert, F. G. S. L. Brandão, and K.M. R. Audenaert,
Quantitative entanglement witnesses, New J. Phys. 9, 46
(2007).

[17] O. Gühne, M. Reimpell, and R. F. Werner, Estimating
Entanglement Measures in Experiments, Phys. Rev. Lett.
98, 110502 (2007).

[18] O. Gühne, M. Reimpell, and R. F. Werner, Lower bounds on
entanglement measures from incomplete information, Phys.
Rev. A 77, 052317 (2008).

[19] O. Gittsovich and O. Gühne, Quantifying entanglement
with covariance matrices, Phys. Rev. A 81, 032333
(2010).

[20] O. Marty, M. Cramer, and M. B. Plenio, Practical Entan-
glement Estimation for Spin-System Quantum Simulators,
Phys. Rev. Lett. 116, 105301 (2016).

[21] A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F.
Fröwis, N. Brunner, M. Huber, and N. Gisin, Quantifying
Photonic High-Dimensional Entanglement, Phys. Rev. Lett.
118, 110501 (2017).

[22] P. Erker, M. Krenn, and M. Huber, Quantifying high
dimensional entanglement with two mutually unbiased
bases, Quantum 1, 22 (2017).

[23] J. Bavaresco, N. H. Valencia, C. Klöckl, M. Pivoluska, P.
Erker, N. Friis, M. Malik, and M. Huber, Measurements in
two bases are sufficient for certifying high-dimensional
entanglement, Nat. Phys. 14, 1032 (2018).

[24] J. Schneeloch and G. A. Howland, Quantifying high-
dimensional entanglement with Einstein-Podolsky-Rosen
correlations, Phys. Rev. A 97, 042338 (2018).

[25] M. Fadel, A. Aloy, and J. Tura, Bounding the fidelity of
quantum many-body states from partial information, Phys.
Rev. A 102, 020401 (2020).

[26] N. H. Valencia, V. Srivastav, M. Pivoluska, M. Huber, N.
Friis, W. McCutcheon, and M. Malik, High-dimensional
pixel entanglement: Efficient generation and certification,
Quantum 4, 376 (2020).

[27] B. Bergh and M. Gärttner, Entanglement detection in
quantum many-body systems using entropic uncertainty
relations, Phys. Rev. A 103, 052412 (2021).

[28] B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,
and C. Klempt, Detecting Multiparticle Entanglement of
Dicke States, Phys. Rev. Lett. 112, 155304 (2014).

[29] G. Vitagliano, G. Colangelo, F. M. Ciurana, M.W. Mitchell,
R. J. Sewell, and G. Tóth, Entanglement and extreme planar
spin squeezing, Phys. Rev. A 97, 020301(R) (2018).
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