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Abstract
We display the entire structure R2 coding Σ1- and Σ2-elementarity on the ordinals. This will enable the
analysis of pure Σ3-elementary substructures.

1 Introduction
Intriguing theorems that demonstratively serve as examples for mathematical incompleteness have been a subject
of great interest ever since Gödel established his incompleteness theorems [23], showing that Hilbert’s programme
(see [25], and for a recent account [62]) could not be executed as originally expected. Some of the most appealing
such theorems exemplifying incompleteness are the Paris-Harrington theorem [33], Goodstein sequences [24, 28,
53], Kruskal’s theorem [29, 42], its extension by Friedman [47], the graph minor theorem by Robertson and
Seymour, see [21] and, for a general reference on so-called concrete mathematical incompleteness, Friedman’s
book [20]. The term concrete incompleteness refers to natural mathematical theorems independent of significantly
strong fragments of ZFC, Zermelo-Fraenkel set theory with the axiom of choice. Technique and theorems on phase
transition from provability to unprovability that bear on methods and results from analytic number theory were
developed by Weiermann [50, 51] in order to further understand phenomena of mathematical independence, with
interesting contributions from others, e.g. Lee [30]. A natural generalization of Kruskal’s theorem was shown by
Carlson [13], using elementary patterns of resemblance [11] as basic structures of nested trees. The embeddability
of tree structures into one another plays a central role in the area of well-quasi orderings, cf. [13], maximal order
types of which can be measured using ordinal notation systems from proof theory, cf. [44] and the introduction
to [52].

Elementary patterns of resemblance (in short: patterns) of order n are finite structures of orderings (≤i)i≤n
where ≤0 is a linear ordering and ≤1, . . . ,≤n are forests such that 1) ≤i+1⊆≤i and 2) a ≤i+1 b whenever
a ≤i b ≤i c and a ≤i+1 c for all i < n and all a, b, c in the universe of the pattern. Patterns that do not
contain further non-trivial functions or relations are called pure patterns. Kruskal’s theorem establishes that the
collection of finite trees is well-quasi ordered with respect to inf-preserving embeddings [29]. When it comes to
patterns, the natural embeddings are coverings, i.e. ≤0-embeddings that maintain the relations ≤i for i = 1, . . . , n.
Carlson’s theorem [13] states that pure patterns of order 2 are well-quasi ordered with respect to coverings. This
is provable in the extension of the base theory of reverse mathematics, RCA0, of recursive comprehension, by the
uniform Π1

1-reflection principle for KP`0, a subsystem of set theory axiomatizing a mathematical universe that
is a limit of admissible sets, see [3, 13]. In [60] we give a proof, which is independent of [14], of the fact that
Carlson’s theorem is unprovable in KP`0, or equivalently, Π1

1-CA0. This latter subsystem of second order number
theory, where induction is restricted to range over sets and set comprehension is restricted to Π1

1-formulae, plays
a prominent role in reverse mathematics, see Simpson [48] for the relevance of these theories in mathematics.
Pohlers [35] provides an extensive exposition of various subsystems of set theory and second order number theory,
equivalences and comparisons in strength, and their proof-theoretic ordinals. Note that in [35] KP`0 goes by the
name KP`r.
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Discovery of patterns, the structure R1, and Cantor normal form
Patterns were discovered by Carlson [10] during model construction that verifies the consistency of epistemic
arithmetic with the statement I know I am a Turing machine, thereby proving a conjecture by Reinhardt, see
Section 21.2 of [61] for a short summary. The consistency proof uncovers, through a demand for Σ1-elementary
substructures via a well-known finite set criterion, see Proposition 1.2 of [9], here part 1 of Proposition 1.6, a
structure R1 = (Ord;≤,≤1) of ordinals, where ≤ is the standard linear ordering on the ordinals and the relation
≤1 is defined recursively in β by

α ≤1 β :⇔ (α;≤,≤1) �Σ1 (β;≤,≤1).

We therefore have α ≤1 β if and only if (α;≤,≤1) and (β;≤,≤1) satisfy the same Σ1-sentences over the language
(≤,≤1) with parameters from α = {γ | γ < α}, where Σ1-formulas are quantifier-free formulas preceded by finitely
many existential quantifiers. R1 was analyzed in [9] and shown to be recursive and periodic in multiples of the
ordinal ε0, the proof-theoretic ordinal of Peano arithmetic (PA). Pure patterns of order 1 comprise the finite
isomorphism types of R1 and provide ordinal notations that denote their unique pointwise minimal coverings
within R1, an observation Carlson elaborated in [11]. In R1 the relation ≤1 can still be described by a relatively
simple recursion formula, see Proposition 1.1 below, given in terms of Cantor normal form notation, as was carried
out in [9].

Ordinal notations in Cantor normal form, indicated by the notation =CNF, are built up from 0,+, and ω-
exponentiation, where ω denotes the least infinite ordinal, see [36, 45] for reference. We write α =CNF ω

α1+. . .+ωαn

if α satisfies the equation with α1 ≥ . . . ≥ αn. If α is represented as a sum of weakly decreasing additive principal
numbers (i.e. powers of ω) ρ1 ≥ . . . ≥ ρm, we also write α =ANF ρ1 + . . .+ ρm, where we allow m = 0 to cover the
case α = 0. ε0 is the least fixed point of ω-exponentiation, as in general the class function α 7→ εα enumerates
the class E := {ξ | ξ = ωξ} of epsilon numbers. Note that Cantor normal form notations with parameters from
an initial segment, say τ + 1, of the ordinals provide notations for the segment of ordinals below the least epsilon
number greater than τ .

Defining lh(α), the length of α, to be the greatest β such that α ≤1 β, if such β exists, and lh(α) := ∞
otherwise, the recursion formula for R1 reads as follows:

Proposition 1.1 ([9]) For α =CNF ω
α1 + . . .+ ωαn < ε0, where n > 0 and αn =ANF ρ1 + . . .+ ρm, we have

lh(α) = α+ lh(ρ1) + . . .+ lh(ρm).

While, as shown in [9], the structure R1 becomes periodic in multiples of ε0, with the proper multiples of ε0

characterizing those ordinals α which satisfy lh(α) = ∞, in R2 this isomorphic repetition of the interval [1, ε0]
with respect to additive translation holds only up to the ordinal ε0 · (ω + 1), since the pointwise least <2-pair is
ε0 · ω <2 ε0 · (ω + 1) and hence lh(ε0 · (ω + 1)) = ε0 · (ω + 1), as was shown in [17].

Gödel’s program and patterns of embeddings
Gödel’s program to solve incompleteness progressively by the introduction of large cardinal axioms, see [18,
27], together with the heuristic correspondence between large cardinals and ordinal notations through reflection
properties and embeddings, motivated Carlson to view patterns as a programmatic approach to ordinal notations,
as we pointed out earlier in [60] and [61]. According to his view, the concept of patterns of resemblance, in which
binary relations code the property of elementary substructure, can be generalized to patterns of embeddings
that involve codings of embeddings, and would ultimately tie in with inner model theory in form of an ultra-fine
structure. It seems plausible thatRn-patterns (n < ω) just suffice to analyze set-theoretic systems of Πm-reflection
(m < ω), see [40, 37].

Additive patters of order 1 and the structure R+
1

The extension of R1 to a relational structure R+
1 = (Ord; 0,+;≤,≤1), containing the graphs of 0 and ordinal

addition, gives rise to additive patterns of order 1 and is the central object of study in [11, 54, 55, 56, 57, 16, 1].
Such extensions are of interest when it comes to applications of patterns to ordinal analysis. Following Carlson’s
recommendation in [11], [54] gives a sense of the relation ≤1 in R+

1 , moreover, an easily accessible characterization
of the Bachmann-Howard structure in terms of Σ1-elementarity is given in full detail. The Bachmann-Howard
ordinal characterizes the segment of ordinals below the proof-theoretic ordinal of Kripke-Platek set theory with
infinity, KPω, which axiomatizes the notion of (infinite) admissible set, cf. Barwise [3], or equivalently ID1, the
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theory of non-iterated positive inductive definitions, cf. [36]. A benefit from such characterizations, as pointed
out in the introduction to [58], is an illustrative semantics for Skolem hull notations, cf. [34], the type of ordinal
notations that have been most-useful in ordinal analysis so far, by the description of ordinals given in hull-notation
as least solutions to Σ1-sentences over the language (0,+,≤,≤1). The pattern approach to ordinal notations, on
the other hand, is explained in terms of ordinal arithmetic in the style of [42].

[57] presents an ordinal assignment producing pointwise minimal instantiations of R+
1 -patterns in the ordinals.

In turn, pattern-characterizations are assigned to ordinals given in classical notation. In [16] normal forms are
considered, also from the viewpoint of [11]. The elementary recursive isomorphism between Skolem-hull notations
and pattern notations for additive patterns of order 1, established in [55, 56, 57], was of considerable interest to
proof-theorists, as it explained the new concept of patterns in a language familiar to proof-theorists. It was shown
in [56, 57] that notations in terms of R+

1 -patterns characterize the proof-theoretic ordinal of Π1
1-CA0. By simply

incorporating (the graph of) ordinal addition into the pattern’s language, patterns of order one considerably
increase in strength. A similar phenomenon for classical notations is observed in the opposite direction in [46]
when withdrawing basic functions like addition from a notation system, as doing so causes a collapse, in case of a
system for Π1

1-CA0 down to ε0. On the other hand, the analysis of additive patterns of order 1 is easily modified
when adding (the graphs of) other basic arithmetic functions for expressive convenience, as we pointed out in
earlier work. Such a procedure does not increase the order type of the resulting notation system any further, cf.
Section 9 of [11].

Skolem-hull based ordinal notations and arithmetic
The analysis of R+

1 in [56] and the assignment of minimal ordinal solutions to additive patterns of order 1 in
[57] and [16] rely on a toolkit of ordinal arithmetic based on relativized Skolem hull-based notation systems Tτ

and was introduced in [55]. The parameter τ is intended to be either 1 or an arbitrary epsilon number, which
we often denote as τ ∈ E1 = E ∪ {1}. This type of ordinal notation system builds upon contributions over
many decades mainly by Bachmann, Aczel, Feferman, Bridge, Schütte, Buchholz, Rathjen, and Weiermann (see
[2, 4, 5, 6, 38, 42], and the introduction of [55]). Preparatory variants of systems Tτ that can be extended to
stronger ordinal notation systems and arithmetic were provided in [52], starting with work by Buchholz and
Schütte in [8]. The so far most powerful notation systems of this classical type were introduced by Rathjen,
resulting in a notation system for Π1

2-CA0 [41], and have quite recently been elaborated more completely for an
analysis of the provably recursive functions of reflection by Pohlers and Stegert [37].

We now go into more detail regarding ordinal arithmetic sufficiently expressive to display pattern notations on
the basis of order 1 (additive) or order 2 (pure). Let Ω>τ be the least regular cardinal greater than Card(τ)∪ℵ0.
We also simply write Ω for Ω>τ when the dependence of Ω on τ ∈ E1 is easily understood from the context. For
convenience we set T0 := T1 = T for the original notation system that provides notations for the ordinals below
the proof theoretic ordinal of theories such as Π1

1-CA0, KP`0, and ID<ω, the latter being the theory of finitely
times-iterated inductive definitions, cf. e.g. [35]. In the presence of constants for all ordinals less than τ and ordinal
addition, stepwise collapsing, total, injective, unary functions (ϑi)i<ω, where ϑ0 = ϑτ is relativized to τ , give rise
to unique terms for all ordinals in the notation system Tτ . The relativized systems Tτ we are referring to were
carefully introduced in Section 3 of [55], including complete proofs, but for the reader’s convenience we provide
a review of ordinal arithmetic in terms of the systems Tτ in the next section, including the formal definition of
ϑ-functions. However, for now, descriptions given here should suffice to understand the larger picture.

The Veblen function [49] is a binary function in which the first argument indicates a lower bound of the fixed
point level. While ϕ(0, ·) enumerates the additive principal numbers, i.e. the class of ordinals greater than 0 that
are closed under ordinal addition, which we often denote as P, ϕ(1, ·) enumerates ε-numbers starting with ε0. In
general, α 7→ ϕ(ξ + 1, α) enumerates the fixed points of ϕ(ξ, ·), and ϕ(λ, ·) enumerates the common fixed points
of all ϕ(ξ, ·), ξ < λ, where λ is a limit ordinal. The fixed-point free variant ϕ̄ of the Veblen function omits fixed-
points, meaning that ϕ̄(0, ·) enumerates those additive principal numbers that are not epsilon numbers, ϕ̄(1, ·)
enumerates all epsilon numbers α such that α < εα, and so on. Therefore, the first argument of the function ϕ̄
denotes the exact fixed-point level.

Now, the fixed point-level of Γ-numbers, i.e. ordinals α such that α = ϕ(α, 0), cannot be expressed unless we
introduce a ternary Veblen function. In the context of Tτ -systems this problem of finding names for increasing
fixed-point levels is resolved by arithmetization through higher ϑj-functions, relying on the regularity properties
of the Ωi, in that they cannot be reached by enumeration functions from below.

With ordinal addition being part of the set of functions over which Skolem hulling is performed, the function
ξ 7→ ϑτ (ξ), where ξ < Ω, enumerates all additive principal numbers in the interval [τ,Ω) that are not epsilon
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numbers greater than τ , for the sake of uniqueness of notation. Fixed points of increasing level, in the sense
explained above in the context of the Veblen function, are in the range of ϑτ , however, as enumerations starting
from multiples of Ω. For example, ξ 7→ ϑτ (Ω + ξ), where ξ < Ω, enumerates the ordinals {εα | τ, α < εα < Ω}.

At each multiple of Ω in the domain of ϑτ the enumeration of ordinals below Ω of next higher fixed point level
begins, again in fixed point omitting manner, which means that ξ < ϑτ (∆ + ξ) whenever ∆ is such a multiple of
Ω and ξ < Ω. Letting Ω0 := τ , Ω1 := Ω>τ , and generally Ωi+1 to be the least (infinite) regular cardinal greater
than Ωi for i < ω, this algorithm of denoting ordinals allows for a powerful mechanism extending the fixed-point
free variant of the Veblen function. Generalizing from ϑτ = ϑ0, the function ϑi enumerates additive principal
numbers starting with Ωi in fixed-point free manner:

Lemma 1.2 (cf. 4.2 of [55]) Let i < ω.

a) ϑi(0) = Ωi.

b) For any α < Ωi+1 we have ϑi(1 + α) = ω̄Ωi+α,

where ξ 7→ ω̄ξ denotes the enumeration function of the additive principal numbers that are not epsilon numbers.

Consequently, fixed-points of increasing level are enumerated by ϑi with arguments starting from multiples of
Ωi+1, which in turn are (additively) composed of values of the function ϑi+1. Note that we have ϑi = ϑΩi for
i < ω, where the right hand side ϑ-function is a ϑ0-function that is relativized to Ωi.

Examples. Assuming τ = 1, we give a few instructive examples of values of ϑ-functions: ϑ0(0) = 1 = ω0 =
ϕ(0, 0), ϑ0(1) = ω = ϕ(0, 1), ϑ0(ε0) = ωε0+1, ϑ0(ϑ1(0)) = ϑ0(Ω) = ε0 = ϕ(1, 0), ϑ0(Ω + ε0) = εε0 , ϑ0(Ω + Ω) =
ϕ(2, 0), ϑ0(Ω2) = Γ0 where Ω = ℵ1 and Ω2 = ϑ1(ϑ1(0)), and ϑ0(ϑ1(ϑ2(0))) = ϑ0(εΩ+1) denoting the Bachmann-
Howard ordinal. The proof-theoretic ordinal of the theory of n-times iterated inductive definitions IDn, 0 < n < ω,
is |IDn| = ϑ0(ϑ1(. . . (ϑn+1(0)) . . .)). For n < ω the ordinal ϑ0(ϑ1(. . . (ϑn+1(0)) . . .)) is equal to the least ≤1-
predecessor of the pointwise minimal <2-chain of (n + 2)-many ordinals, as was first shown in [17]. Finally,
sup{ϑ0(. . . ϑn(0) . . .) | n < ω} is the proof-theoretic ordinal of ID<ω, KP`0, and Π1

1-CA0, and is the limit of
expressibility of ordinals in terms of pure patterns of order 2, see [60].

Taking the functions ϑi for granted for now, we can formally define Tτ and state a rough lemma on the
collapsing nature of the functions ϑi.

Definition 1.3 (Inductive Definition of Tτ , cf. 3.22 of [55])

• τ ⊆ Tτ

• ξ, η ∈ Tτ ⇒ ξ + η ∈ Tτ

• ξ ∈ Tτ ∩ Ωi+2 ⇒ ϑi(ξ) ∈ Tτ for all i < ω.

Lemma 1.4 (cf. 3.30 of [55]) For every i < ω the function ϑi �Tτ∩Ωi+2
is 1-1 and has values in P∩ [Ωi,Ωi+1).

Thus every ordinal in Tτ can be identified with a unique term built up from parameters below τ using +
and the functions ϑi (i < ω), if we assume that additive compositions are given in additive normal form. The
intersection Tτ ∩ Ω turns out to be an initial segment of ordinals, which for τ = 1 is the proof-theoretic ordinal
of Π1

1-CA0. The essential reason for Tτ ∩ Ω to be an ordinal is that all proper components η ∈ Tτ ∩ Ω used to
compose the unique notation of some ξ ∈ Tτ ∩Ω satisfy η < ξ, see Lemma 2.11 and Theorem 2.13 (3.12 and 3.14
of [55]). For a term of shape α := ϑτ (∆ + ξ) ∈ Tτ , where ∆ is a multiple of Ω and ξ < Ω, as was mentioned
earlier, this means that besides ξ < α we also have η < α for every subterm η of ∆ such that η < Ω.

The choice of regular cardinals for the Ωi is just convenient for short proofs. One can choose recursively regular
ordinals instead (see [39]), at the cost of more involved proofs to demonstrate recursiveness (see [43]). The usage
of regular cardinals causes gaps in notation systems constructed in a similar fashion as the systems Tτ , where
the first such gap is [Tτ ∩ Ω,Ω). Patterns arise in a more dynamic manner from local reflection properties. This
is one major reason that explains why, despite the elegance and brevity of their definition, their calculation is
quite involved. Another, intrinsically connected, major reason explaining the subtleties in pattern calculation is
the necessity to calculate or analyze in terms of the connectivity components of the relations ≤i. We will return
to the discussion of connectivity components later.

As explained above, we developed an expressive ordinal arithmetic in [55] on the basis of Skolem hull term
systems for initial segments τ∞ := Tτ ∩ Ω>τ of Ord, that was further extended in [16], [17], and [60]. The
following definition transfinitely iterates the closure under τ 7→ τ∞ = Tτ ∩ Ω>τ continuously through all of Ord.
Note that we have chosen the Greek lowercase letter υ (upsilon) in order to avoid ambiguity of notation.
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Definition 1.5 (modified 9.1 of [55]) Let (υι)ι∈Ord be the sequence defined by

1. υ0 := 0,

2. υξ+1 := υ∞ξ = Tυξ ∩ Ω>υξ ,

3. υλ := sup{υι | ι < λ} for λ ∈ Lim, i.e. λ a limit ordinal.

In Corollary 5.10 of [56] we have shown that the maximal <1-chain in R+
1 is Im(υ) \ {0}. The results from

[56], [57], and from Sections 5 and 6 of [16] were applied in a case study for an ordinal analysis of ID<ω, [32],
following Buchholz’ style of operator-controlled derivations [7]. Proof-theoretic analysis based on patterns as
originally intended by Carlson uses β-logic [15]. As we pointed out in [61], the intrinsic semantic content via
the notion of elementary substructure directly on the ordinals in connection with their immediate combinatorial
characterization and the concise elegance of their definition on the one hand, and the remarkable intricacies in
their calculation, revealing mathematical depth not yet fully understood, on the other hand, create the impression
that patterns contribute to the quest for natural well-orderings, cf. [19].

The structure R2 and its core, notes on R+
2 and R3

Returning to the discussion of pure patterns of order 2, let

R2 = (Ord;≤,≤1,≤2)

be the structure of ordinals with standard linear ordering ≤ and partial orderings ≤1 and ≤2, simultaneously
defined by induction on β in

α ≤i β :⇔ (α;≤,≤1,≤2) �Σi (β;≤,≤1,≤2)

where �Σi is the usual notion of Σi-elementary substructure (without bounded quantification), as analyzed
thoroughly below the ordinal υ1 = 1∞ of KP`0 in [17, 59, 60].
≤i-relationships between ordinals considered as members of structures of patterns can be verified using finite-

set criteria. The following criterion can be extended successively to provide criteria for relations ≤i, i < ω, see
e.g. Proposition 3.9 of [61].

Proposition 1.6 (cf. 7.4 of [17]) Let α, β be such that α < β and X, Ỹ , Y be finite sets of ordinals such that
X, Ỹ ⊆ α and Y ⊆ [α, β). Consider the following properties:

1. X < Ỹ < α and there exists an isomorphism h : X ∪ Ỹ
∼=−→ X ∪ Y .

2. For all finite Ỹ +, where Ỹ ⊆ Ỹ + ⊆ α, h can be extended to an isomorphism h+ such that

h+ : X ∪ Ỹ + ∼=−→ X ∪ Y +

for a suitable superset Y + ⊆ β of Y .

If for all such X and Y there exists a set Ỹ that satisfies property 1, then we have α <1 β. If Ỹ can be chosen so
that additionally property 2 holds, then we even have α <2 β.

Proof. A proof is given in Section 7 of [17] and in greater detail in [61] (Propositions 3.1 and 3.6). 2

Note that for any α ∈ Ord the class {β | α ≤i β} is closed (under limits) for i = 1, 2 and a closed interval
for i = 1. The criterion for ≤1 can be applied to see that in R2 we have α ≤1 α + 1 if and only if α ∈ Lim
and for every <2-predecessor β of α the ordinal α is a proper supremum of <2-successors of β, see Lemma 3.2.
Another basic observation is that whenever α <2 β, α must be the proper supremum of an infinite <1-chain,
i.e. the order type of the set of <1-predecessors of α must be a limit ordinal, see Lemma 3.1. Another useful
elementary observation proved in [17] and in [61] (Lemma 3.7) is the following

Lemma 1.7 (7.6 of [17]) Suppose α <2 β, X ⊆fin α, and ∅ 6= Y ⊆fin [α, β).

1. There exist cofinally many Ỹ ⊆ β such that X ∪ Ỹ ∼= X ∪Y . More generally, for any Z ⊆fin α with X < Z,
if α |= ∀x∃Z̃ (x < Z̃ ∧ “X ∪ Z ∼= X ∪ Z̃”) then this also holds in β.
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2. Cofinally in α, copies Ỹ ⊆ α of Y can be chosen that besides satisfying X < Ỹ and X ∪ Ỹ ∼= X ∪ Y also
maintain ≤1-connections to β: For any y ∈ Y such that y <1 β the corresponding ỹ satisfies ỹ <1 α. 2

Core(R2), the core of R2, i.e. the union of pointwise minimal instantiations of all finite isomorphism types of
R2, was analyzed in [60] and shown to coincide (in domain) with the initial segment of the ordinals below 1∞.
Note that any (finite) subset of R2 gives rise to a substructure of R2; hence, it represents a (finite) isomorphism
type of R2. It was shown in [60] that collections of pure patterns of order 2 as defined above and of finite
isomorphism types of R2 coincide, and that each pure pattern of order 2 has a unique isominimal representative
P ⊂ R2, where a finite substructure Q ⊂ R2 is isominimal if and only if Q ≤pw R for every R ⊂ R2 such that
Q ∼= R. Q ≤pw R means that Q is pointwise less than or equal to R with respect to increasing enumerations.
The notions core and isominimality where introduced by Carlson in [11]. In the case of patterns of order 1 the
increased strength resulting from basic arithmetic functions such as addition, is matched by pure patterns of order
2, as we have shown in [17] that any pure pattern of order 2 has a covering below 1∞, the least such ordinal.
According to a conjecture by Carlson, this phenomenon of compensation holds generally for all orders.

Despite the fact that the cores of R+
1 and R2 cover the same initial segment of the ordinals, their structures

differ considerably. While, as pointed out in [61], the core of R+
1 shows a great deal of uniformity, reminding

one of Girard’s notion of dilator, cf. [22], and giving rise to Montalbán’s Question 27 in [31], the core of R2 is a
structure, the regularity of which is far less obvious, due to the absence of uniformity provided by ordinal addition.
In this context the ordinal 1∞ is obtained as a collapse when weakening additive pattern notations of order 2 on
the basis of the structure R+

2 = (Ord; 0,+;≤,≤1,≤2) to pure patterns of order 2 arising in R2. We claim, as in
[61], that the segment of countable ordinals denoted by the Skolem-hull notation system derived from the first
ω-many weakly inaccessible cardinals covers (the domain of) Core(R+

2 ). Note that the notation system based on
the first weakly inaccessible cardinal matches the proof-theoretic ordinal of the set theory KPI, which axiomatizes
an admissible universe that is a limit of admissible sets, and which is equivalent to the system ∆1

2-CA + BI of
second order number theory, first analyzed by Jäger and Pohlers in [26], cf. also [35]. See Buchholz’ seminal work
[7] for an analysis of KPI via operator controlled derivations. The analysis of R+

2 is a topic of future work and
requires a generalization of ordinal arithmetical methods, the beginning of which is outlined in [52]. Note that
[12] discusses patterns of order 2 in a general way over Ehrenfeucht-Mostowski structures; however, on the basis
of modified relations ≤1, ≤2, see Section 5 of [12].

In this article, we generalize the approach taken in [17, 59, 60], which in turn naturally extends the arithmetical
analysis of pure Σ1-elementarity given by Carlson in [9], to arithmetically characterize the relations ≤1 and ≤2

in all of R2, not just its core. Define

I := {ι ∈ Ord | ι > 1 and not of a form ι = λ+ 1 where λ ∈ Lim}

and let the expression ι−· 1 for ι ∈ Ord denote ι0 if ι = ι0 + 1 for some ι0, and simply ι otherwise. The following
theorem is an immediate corollary of Theorem 4.2 of the present article.

Theorem 1.8 (Maximal <2-chain in R2)

1. The sequence (υι)ι>0 is a <1-chain through the ordinals, supporting the maximal <2-chain through the
ordinals, which is (υι)ι∈I . Here maximality means that for any ι ∈ I (actually for any ordinal ι), the
enumeration of all <2-predecessors of υι is given by (υξ)ξ∈I∩ι.

2. For ι ∈ Ord \ I the ordinal υι is υι−· 1-≤1-minimal, i.e. there does not exist any α ∈ (υι−· 1, υι) such that
α <1 υι, and does not have any <2-successor.

3. For every ι ∈ I the ordinal υι is a <2-predecessor of every proper multiple of υι−· 1 greater than υι. The
ordinals of the form υλ where λ ∈ Lim comprise the set of suprema of <2-chains of limit order type. 2

We give a simple illustration of Theorem 1.8 below, where λ stands for any λ ∈ Lim. All indicated ordinals
are ≤1-connected, blue edges except for the connection υλ <2 υλ+1 indicate the maximal <2-chain of part 1 of
the theorem. The least <2-successor of, for instance, υ2 is υ2 +υ1, which in turn does not have any <2-successors
itself. The least <2-successor of υ3 is υ3 + υ2, and so forth, while the least <2-successor of υλ is υλ · 2 and the
least <2-successor of υλ+2 is υλ+2 + υλ+1, etc. Note that according to the theorem, υ1 and υλ+1 do not have any
<2-successors. The ordinal υ1 is ≤1-minimal, and the greatest <1-predecessor of υλ+1 is υλ.
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<2 <2 <2 <2 <2<2 <2<2

<2

υ1 υ2 υ3 υ4 · · · υλ υλ+1 υλ+2 υλ+3 υλ+4 · · ·

Theorem 4.2 also shows that the gap [υ1, υ2) contains a <1-chain of order type υ2 that is <1-connected to υ2,
and the gap [υλ+1, υλ+2) contains a <1-chain of order type υλ+2 that is <1-connected to υλ+2, as in general for
any successor ordinal ι the interval [υι, υι+1) contains a <1-chain of order type υι+1 that is <1-connected to υι+1.

Theorem 1.8 provides overview and general structure of R2, and follows from a detailed arithmetical character-
ization of the relations ≤1 and ≤2 in all of R2, shown here through a generalization of Theorem 7.9 and Corollary
7.13 of [17] from the initial segment 1∞ = υ1 to all of Ord, by Theorem 4.2, which for i = 1, 2 explicitly describes
the ≤i-predecessors, and Corollary 4.6, which describes the ≤i-successors of a given ordinal. As a byproduct,
a flaw in the proof of Theorem 7.9 of [17] is corrected here in the generalized version, see also the paragraph
preceding Theorem 4.2. It is worth mentioning that Theorem 1.8 corrects the claim made in the first paragraph
of Section 8 of [17], where the role of the ordinals {υλ+1 | λ ∈ Lim} was overlooked. The exact description of
<i-predecessors and ≤i-successors for i = 1, 2 (in particular the greatest one whenever such exists) of an ordinal
α relies on its tracking chain tc(α) and the notion of maximal extension (me) of tracking chains. These notions
are carefully elaborated in Section 3 in the generalized form needed for an analysis of the entire structure R2, and
can be derived from the term decomposition of α in Skolem hull notation. Tracking chains and their (maximal)
extensions essentially make the surrounding (nested) ≤i-connectivity components visible, in which α is located.

Incomplete fragments of the general big picture of R2 described above, repeat in a cofinal manner of growing
complexity throughout all of R2, with the union of pointwise minimal isomorphic copies of all finite patterns
comprising Core(R2), the universe of which is υ1 as shown in [60]. The ≤i-relationships claimed to hold in
Theorem 4.2 are verified using Proposition 1.6 by transfinite induction through the ordinals. Conversely, starting
from the backbone Im(υ) provided by Theorem 1.8 and applying reflection properties given by Lemma 1.7 and the
converse of Proposition 1.6 in a transfinitely iterated manner, we may eventually arrive back at (an isomorphic
copy of) R2, cf. [11, 12] for an elaboration of such an approach. As a consequence of Theorem 4.2 the converse
of Propostion 1.6 holds in R2.

The results established here enable us to show in [61] that on the initial segment υω2+2 the structures R2 and
R3 agree, where R3 = (Ord;≤,≤1,≤2,≤3) and

α ≤i β :⇔ (α;≤,≤1,≤2,≤3) �Σi (β;≤,≤1,≤2,≤3)

simultaneously for i = 1, 2, 3 and recursively in β, while

υω2 <3 υω2+2

is the least occurrence of a <3-pair in R3. A detailed arithmetical analysis of the structure R3, using extended
arithmetical means as for the analysis of R+

2 , is the subject of ongoing work that will also be based on the present
article.

Organization of this article, stand-alone readability

The present article generalizes [17], with several improvements and corrections, and provides the necessary prepa-
ration for the result in [61] (Section 21.4) and for future work on R3. [61] starts out from an earlier, slightly longer,
version of this introduction and reviews basic insights around patterns along with an outline of how they were
discovered. The interested reader not yet familiar with patterns will find Sections 21.2 and 21.3 of [61] helpful
before reading the present article in detail. However, previous knowledge of [61] is not required for understanding
this article, which is intended to be readable as stand-alone text. Clearly, for proofs and more details the reader
is ultimately referred to the cited previous work on the subject, however, we have decided to renew several proofs
in order to increase accessibility of the work.

Section 2 provides a review of Skolem-hull based ordinal arithmetic developed for the analysis of patterns.
Section 3 introduces the reader to the generalized concepts of tracking sequences and chains. These provide the

necessary machinery to describe the nested structure of ≤1- and ≤2-connectivity components of R2. Besides the
required generalization as compared to [17], the exposition contains considerably more explanations, examples,
and motivations, as well as renewed and simplified proofs. The conceptual and technical improvement and
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simplification of Section 4 of [17] in particular was first published in [59], used in [60], and is reviewed and
extended for application in the present article.

Section 4 contains the complete description of R2. The proof of the main theorem, Theorem 4.2, begins with
an overview called proof map and contains simple examples for the various cases that need to be discussed.

2 Preliminaries
Here we give a review of ordinal notational and arithmetical tools developed in [55], Section 5 of [16], and [17].
For a reference to basic ordinal arithmetic we recommend Pohlers’ book on proof theory, [36].

Let Lim0 denote the class {0} ∪Lim where Lim is the class of limit ordinals. Generally, for a set or class X of
ordinals we define Lim(X) to be the set of all α ∈ X that are proper suprema of subsets of X. By P we denote
the class of additive principal numbers, i.e. the image of the ω-exponentiation function {ωη | η ∈ Ord}, and we
write P0 := {0} ∪ P for the class of all ordinals that are closed under ordinal addition. By L we denote the class
{ωη | η ∈ Lim} = Lim(P). By M we denote the class of multiplicative principal numbers, i.e. nonzero ordinals
closed under ordinal multiplication. Note that M ⊆ P since

M = {1} ∪ {ωω
η

| η ∈ Ord}.

As in the introduction, let E = {η | η = ωη} denote the class of all epsilon numbers, i.e. fixed points of ω-
exponentiation, and E1 := {1} ∪ E. By E>δ we denote the class of epsilon numbers that are greater than δ.
Similarly, P≤η denotes the set of additive principal numbers that are less than or equal to η, etc.

Representations in normal form are sometimes explicitly marked, such as additive normal form (ANF, weakly
decreasing additive principal summands) or multiplicative normal form of ordinals α ∈ P (MNF, weakly decreasing
multiplicative principal factors), or Cantor normal form (CNF) itself, i.e. α =CNF ωα1 + . . . + ωαn such that
α1 ≥ . . . ≥ αn, n ≥ 0. Here n = 0 covers the case α = 0. For α =ANF α1 + . . . + αn we define end(α) := αn and
set end(0) := 0, while mc(α) denotes the greatest additive component of α, i.e. α1 if n > 0 and 0 otherwise. For
an ordinal α =ANF α1 + . . .+ αn the notation α =NF β + γ is a shorthand for β =ANF α1 + . . .+ αn−1 and γ = αn
if n > 0, and β = γ = 0 otherwise, for completenss. This notation implies that γ = end(α). For α ∈ P such
that α =MNF α1 · . . . · αn the notation α =NF β · γ indicates that β =MNF α1 · . . . · αn−1 and γ = αn if n > 1, and
β = 1, γ = α otherwise, for completeness. This has the effect that the last multiplicative principal factor in the
multiplicative normal form of α (also written as lf(α)) is equal to γ.

We define the ordinal α−· β as usual, namely in case of α ≤ β to be 0, while in case of α > β to be the least
γ s.t. α = γ + β if such γ exists, and α otherwise. If α ≤ β then we write −α + β for the unique γ such that
α + γ = β. By (1/γ) · α we denote the least ordinal δ such that α = γ · δ, whenever such an ordinal exists. We
write α | β if β is a (possibly zero) multiple of α, i.e. ∃ξ (β = α · ξ). i.e. α1 if α > 0 and 0 otherwise. logend(α) is
defined to be 0 if α = 0 and αn if α =CNF ω

α1 + . . .+ ωαn . For α ∈ P0 we also write log(α) instead of logend(α).
For a function f and a subset X of its domain we denote the image of X under f by f [X] = {f(x) | x ∈ X}.

Inequalities like X < Y or α < X where X,Y are sets of ordinals mean the conjunction of all inequalities taking
each element of the concerning sets. For sets X and Y we denote the set {x | x ∈ X & x 6∈ Y } by X \ Y . Intervals
of ordinals are often written in the following way: (α, β) = {γ | α < γ < β}, [α, β] = {γ | α ≤ γ ≤ β}, and mixed
forms (α, β] and [α, β) are defined analogously. Clearly, we also simply have α = {γ | γ < α}.

Sequences of ordinals (also called ordinal vectors) are often written as α = (α1, . . . , αn), and appending an
ordinal α is written as α_α = (α, α1, . . . , αn), α_α = (α1, . . . , αn, α). Concatenation of α with β = (β1, . . . , βm)
is writen as α_β = (α1, . . . , αn, β1, . . . , βm). Similar notation is used for sequences of ordinal vectors.

2.1 Stepwise collapsing functions (ϑi)i∈ω

[54] can be seen as an introduction to the kind of ordinal arithmetic which is reviewed here, however, with
ordinal addition and ω-exponentiation as basic functions over which Skolem hulling is performed, and with only
one collapsing function ϑ instead of a family (ϑi)i∈ω of stepwise collapsing functions. [54] therefore only covers
notations for ordinals below the Bachmann-Howard ordinal, but provides an elementary and quickly accessible
treatise of the Bachmann-Howard structure both in terms of hull notations and additive patterns of order one.
However, we do not assume knowledge of [54] for the understanding of this article. The main reference for this
subsection is Section 3 of [55], which contains detailed proofs. Here we give an outline of the construction of
systems Tτ , which along the lines of the introduction reduces to the formal definition of the system (ϑi)i∈Ω of
collapsing functions. The construction can be seen as a straightforward direct limit construction, since Tτ and
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(ϑi)i∈Ω are obtained from increasing initial segments, i.e. through a limit of end-extensions. Once established, the
usefulness of these relativized notations becomes apparent through algebraic exactness and the absence of normal
conditions that would have to be permanently verified as is the case when one works with non-injective collapsing
functions. The usage of functions ϑi for increasing i will allow us to arithmetically characterize pure patterns of
an increasing maximal number of nestings of ≤2, as indicated in the examples following Lemma 1.2.

Let us fix the general setting for the definition of relativized hull notations as in the introduction: Let τ ∈ E1,
set Ω0 := τ , suppose that Ω1 is an uncountable regular cardinal number greater than τ , and let Ωi+1 for i ∈ (0, ω)
be the regular cardinal successor of Ωi.

2.1.1 The notation systems Tnm

The following definition taken from [55] is fundamental for the construction of systems Tτ . It provides the
necessary support framework for the definition of ϑnm-functions, which in turn yield the desired ϑi-functions via
successive end-extension for n→ ω. We finally obtain Tτ as a direct limit of systems (Tn0 )n<ω. Apart from their
role as auxiliary systems, for τ = 1 the system T1

0 provides a notation system suited for an analysis of Peano
arithmetic (PA), as T1

0 ∩ Ω = ε0, and Tn+1
0 provides a notation system for the theory IDn of n-times iterated

inductive definitions, for n ∈ (0, ω).

Definition 2.1 (3.1 of [55]) Let n ∈ (0, ω). Descending from m = n − 1 down to m = 0 we define sets of
ordinals Cnm(α, β) where β < Ωm+1 and ordinals ϑnm(α) by simultaneous recursion on α < Ωm+2.
For each β < Ωm+1 the set Cnm(α, β) is defined inductively by

• Ωm ∪ β ⊆ Cnm(α, β)

• ξ, η ∈ Cnm(α, β) ⇒ ξ + η ∈ Cnm(α, β)

• ξ ∈ Cnm(α, β) ∩ Ωk+2 ⇒ ϑnk (ξ) ∈ Cnm(α, β) for m < k < n

• ξ ∈ Cnm(α, β) ∩ α ⇒ ϑnm(ξ) ∈ Cnm(α, β).

Having defined ϑnm(ξ) for all ξ < α and Cnm(α, β) for every β < Ωm+1 we set

ϑnm(α) := min({ξ < Ωm+1 | Cnm(α, ξ) ∩ Ωm+1 ⊆ ξ ∧ α ∈ Cnm(α, ξ)} ∪ {Ωm+1}).

Note that we have ϑnm(0) = Ωm for m < n. The function ϑnn−1 is not a proper collapsing function simply
because Ωn 6∈ Cnm(α, β) which will become clear in the sequel. The next two lemmas follow immediately from the
above definition.

Lemma 2.2 (3.2 of [55]) Let α, α1, α2, γ < Ωm+2 and β, β1, β2, δ < Ωm+1.

a) If δ ⊆ Cnm(α, β) then Cnm(α, δ) ⊆ Cnm(α, β).

b) For α1 ≤ α2 and β1 ≤ β2 we have Cnm(α1, β1) ⊆ Cnm(α2, β2).

c) We have Cnm(α, β) =
⋃
γ<α Cnm(γ, β) for α ∈ Lim and similarly we have Cnm(α, β) =

⋃
δ<β Cnm(α, δ) for

β ∈ Lim.

d) Card(Cnm(α, β)) < Ωm+1.

In the following we write Cnm(Ωm+2, β) for
⋃
α<Ωm+2

Cnm(α, β) and Cnm(α,Ωm+1) for
⋃
β<Ωm+1

Cnm(α, β).

Lemma 2.3 (3.3 of [55]) Let α < Ωm+2 and β < Ωm+1.

a) ϑnm(α) = Cnm(α, ϑnm(α)) ∩ Ωm+1.

b) ϑnm(α) ∈ P ∩ [Ωm,Ωm+1].

c) Let ξ =ANF ξ1 + . . .+ ξl. Then ξ ∈ Cnm(α, β) iff ξ1, . . . , ξl ∈ Cnm(α, β).

As in Lemma 1.2 additive principal numbers which are not epsilon numbers can be characterized as follows.
Recall that the function ω̄· enumerates the non-epsilon additive principal numbers.
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Lemma 2.4 (3.5 of [55]) Let m < n. For every α < Ωm+1 we have

ϑnm(1 + α) = ω̄Ωm+α.

Definition 2.5 (3.6 of [55]) For m < n we define

Tnm := Cnm(Ωm+2, 0)

and set Tnn := Ωn for convenience.

Lemma 2.6 (3.7 of [55]) For m < n the set Tnm is inductively characterized as follows:

• Ωm ⊆ Tnm

• ξ, η ∈ Tnm ⇒ ξ + η ∈ Tnm

• ξ ∈ Tnm ∩ Ωk+2 ⇒ ϑnk (ξ) ∈ Tnm for m ≤ k < n.

The next lemma the most important claim of which is that the ϑ-functions are collapsing functions depends
on the regularity of the cardinals Ωn where 0 < n < ω. In [54] we showed that the ϑ-function defined there is a
total collapsing function on the segment εΩ+1, the least epsilon number greater than Ω. The analogy here is that
ϑnm is a total collapsing function on the set Cnm(0,Ωm+1) ∩ Ωm+2 (for m < n− 1). The latter set is actually the
largest segment of ordinals having notations in Tnm+1.

Lemma 2.7 (3.8 of [55]) Let m < n. For all α ∈ Cnm(0,Ωm+1) ∩ Ωm+2 we have

ϑnm(α) < Ωm+1 and ϑnm(α) 6∈ Cnm(α, ϑnm(α)).

Corollary 2.8 (3.9 of [55]) For m < n we have

Tnm ⊆ Tnm+1 = Cnm(0,Ωm+1) = Cnm(Ωm+2,Ωm+1).

In order to compare ϑnm-terms we need to detect the additive principal parts of ordinals in Tnm+1. This is done
by the following definition. The symbol ⊆fin indicates a finite subset.

Definition 2.9 (3.10 of [55]) Let m < n. By recursion on the definition of Tnm+1 we define Pnm(ξ) ⊆fin Ωm+1

for every ξ ∈ Tnm+1.

• Pnm(ξ) := {ξ1, . . . , ξr}, if ξ =ANF ξ1 + . . .+ ξr < Ωm+1

• Pnm(ξ) := Pnm(ξ1) ∪ Pnm(ξ2), if ξ1, ξ2 ∈ Tnm+1 and ξ =NF ξ1 + ξ2 > Ωm+1

• Pnm(ξ) := Pnm(η), if ξ = ϑnk (η), η ∈ Tnm+1 ∩ Ωk+2, m < k < n.

We define ξ∗
n
m := max((Pnm(ξ) \ Ωm) ∪ {0}) for ξ ∈ Tnm+1.

According to the next lemma, by this definition Pnm(ξ) is uniquely determined for every ξ ∈ Tnm+1. The lemma
provides a criterion for the comparison of ordinals within Tnm which is elementary recursive in Ωm.

Lemma 2.10 (3.11 of [55]) For n > 0 and m ∈ {0, . . . , n− 1} we have

a) Pnm is well defined.

b) Let α < Ωm+2 and β < Ωm+1. For every ξ ∈ Tnm+1 we have

ξ ∈ Cnm(α, β)⇔ Pnm(ξ) ⊆ Cnm(α, β).

c) α∗
n
m < ϑnm(α) for all α ∈ Tnm+1 ∩ Ωm+2.

d) The restriction of ϑnm to Tnm+1 ∩ Ωm+2 is 1-1. We have

ϑnm(α) < ϑnm(γ)⇔
(
α < γ & α∗

n
m < ϑnm(γ)

)
∨ ϑnm(α) ≤ γ∗

n
m

for all α, γ ∈ Tnm+1 ∩ Ωm+2.
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As mentioned in the introduction, below Ωm+1 the Skolem hulls Cnm(α, β) form initial segments of ordinals.
This property is essential in their role to provide the basis for an ordinal notation system.

Lemma 2.11 (3.12 of [55]) For m < n we have

a) Cnm(α, α∗
n
m + 1) = Cnm(α, ϑnm(α)) for all α ∈ Tnm+1 ∩ Ωm+2.

b) Cnm(α, β) ∩ Ωm+1 ∈ Ord for all α < Ωm+2 and all β < Ωm+1.

For m < n and k ∈ {m, . . . , n−1} the ordinal θnk defined below is the supremum of all ordinals in the segment
[Ωk,Ωk+1) that have a notation within Tnm. Moreover, according to the theorem below, θnm is the maximal segment
of ordinals having a notation in Tnm.

Definition 2.12 (3.13 of [55]) Let n > 0. For k < ω we define

Θn
n−1(k) := ϑnn−1

(k)(0) and θnn−1 := sup
k<ω

Θn
n−1(k)

where ϑnn−1
(k)(0) denotes the k-fold application of ϑnn−1 to 0. Descending from m = n − 2 down to m = 0 we

define
Θn
m(k) := ϑnm(Θn

m+1(k)) and θnm := sup
k<ω

Θn
m(k).

For convenience of notation we set Θn
n(k) := Θn

n−1(k) for k < ω, θnn := θnn−1 (since the ϑnn−1-function is not a
collapsing function), and θnn+1 := 0.

Theorem 2.13 (3.14 of [55]) For m < n we have

Tnm ∩ Ωm+1 = θnm.

Corollary 2.14 (3.15 of [55]) Let m < n, α < Ωm+2, and β < Ωm+1. Then all terms of a shape ϑnk (η) in
Cnm(α, β) satisfy η < θnk+1.

2.1.2 The notation system Tτ

The following lemma is central to see that we can obtain Tτ as a direct limit of the Tn0 .

Lemma 2.15 (3.20 of [55]) For all m ≤ n we have θnm < θn+1
m , and for m < n

Cnm(α, β) ∩ θnm+1 = Cn+1
m (α, β) ∩ θnm+1 & ϑnm(α) = ϑn+1

m (α)

for all α < θnm+1 and all β < Ωm+1.

Corollary 2.16 (3.21 of [55]) Let m < n. Tnm ⊆ Tn+1
m and for k such that m ≤ k < n the functions ϑnk and

ϑn+1
k agree on Tnm ∩ Ωk+2.

Definition 2.17 (ϑm and Tm, 3.22 of [55], cf. Def. 1.3) For m < ω we set

θm := sup
n>m

θnm,

and we define a function ϑm : θm+1 → Ωm+1 by

ϑm(α) := ϑnm(α)

for α < θm+1 where n > m is large enough to satisfy α < θnm+1. Tm is defined inductively as follows:

• Ωm ⊆ Tm

• ξ, η ∈ Tm ⇒ ξ + η ∈ Tm

• ξ ∈ Tm ∩ Ωk+2 ⇒ ϑk(ξ) ∈ Tm for k ≥ m.
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It is immediate from the previous lemma that the functions ϑm are well defined. The well-definedness of Tm,
which means that sup(Tm ∩Ωk+2) ≤ θk+1 where m ≤ k, follows from the next theorem. This theorem establishes
the systems of relativized ordinal notations based on Skolem hull operators we aim for.

Theorem 2.18 (3.23 of [55]) For m < ω we have Tm =
⋃
n>m Tnm and

Tm ∩ Ωm+1 = θm = sup
n≥m

ϑm(· · · (ϑn(0)) · · · ).

Corollary 2.19 (3.24 of [55]) For every k ≥ m we have sup(Tm ∩ Ωk+2) = θk+1. For m < n we have

Tnm ∩ Ωm+1 = θnm = ϑm(· · · (ϑn(0)) · · · ).

Notice that by the end-extension property shown in the previous lemma and theorem it follows that each Tm
again gives rise to a notation system with parameters from Ωm that provides a unique term for every ordinal
which is element of some Tnm where n > m (refining the clause for ordinal addition with a normal form condition
as mentioned in the introduction). The comparison of ϑ-terms in Tm can be done within a sufficiently large
fragment Tnm where n > m. The notation system Tm as well as the criterion for the comparison of its elements
are now easily seen to be elementary recursive in Ωm. From now on we will only need to consider the notation
system T0.

Convention 2.20 (cf. 3.25 of [55]) In our setting the ordinal notations are relativized to τ . Later on we will
indicate this explicitly in writing ϑτ and Tτ instead of ϑ0 and T0. As already defined in the introduction, we have

τ∞ := Tτ ∩ Ω = θ0.

The notion of term height in the following sense is often useful in inductive proofs. It recovers the least
fragment in which to find the given notation (modulo the trivial embedding of a system Tnm into Tm).

Definition 2.21 (3.26 of [55]) We define a function htτ : Tτ → ω as follows:

htτ (α) :=

{
m+ 1 if m = max{k | there is a subterm of α of shape ϑk(η)}
0 if such m does not exist.

Lemma 2.22 (3.27 of [55]) For α < Tτ ∩ Ω1

htτ (α) = min{n | α < ϑ0(· · · (ϑn(0)) · · · )}.

htτ is weakly increasing successively as the indices of occurring ϑ-functions increase.

The following notion of subterm is crucial for the comparison of ϑ-terms. Subterms of lower cardinality
become parameters when comparing ϑ-terms of higher cardinality, a natural property if we take into account that
ϑ-functions are collapsing functions.

Definition 2.23 (3.28 of [55]) We define sets of subterms Subτm(α) for m < ω and notations α in Tτ by
recursion on the build up of Tτ :

• Subτm(α) := {α} for parameters α < τ

• Subτm(α) := {α} ∪ Subτm(ξ) ∪ Subτm(η) for ξ, η ∈ Tτ s.t. α =NF ξ + η > τ

• Subτm(α) :=

{
{α} ∪ Subτm(ξ) if k ≥ m

{α} if k < m
for α = ϑk(ξ) where ξ ∈ Tτ ∩ Ωk+2.

We define the additive principal parts of level m of α ∈ Tτ by

Pm(α) := Subτm(α) ∩ P ∩ [Ωm,Ωm+1) and α∗m := max (Pm(α) ∪ {0}) .

The set of parameters < τ used in the unique term denoting some α ∈ Tτ is denoted by

Parτ (α) := Subτ0(α) ∩ τ.
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Convention 2.24 (3.29 of [55]) In order to make the setting of relativization explicit we write Pτm for Pm and
∗τm for ∗m . We write Pτ for Pτ0 , and instead of ∗0 we will also write ∗

τ

.

Remark 2.25 (Remarks following 3.29 of [55])

1. Subτm(α) consists of the subterms of α where parameters below τ as well as subterms of a shape ϑk(η) with
k < m are considered atomic.

2. Pm consists of the ϑm-subterms of α which are not in the scope of a ϑk-function with k < m.

3. By lemma 2.10 part c) and the end extension properties shown above it follows that the notion ∗m is consistent
with the notion ∗

n
m where m < n on the common domain. It also follows that

α∗m = max
(
Subτm+1(α) ∩ P ∩ [Ωm,Ωm+1) ∪ {0}

)
.

4. The notion Pm takes more subterms into consideration than Pnm since Subτm also decomposes ϑm-subterms.
However, Pm+1 is consistent with Pnm on the common domain.

5. In order to clarify the definition of Parτ consider the following examples: Parε0(ω + 1) = {ω + 1} and
Parε0(ε0 + ω + 1) = {1, ω}.

The following lemma concerning ϑ-terms within Tτ and their comparison will be used frequently without
further mention.

Lemma 2.26 (3.30 of [55]) For m < ω the function ϑm �Tτ∩Ωm+2
is 1-1 and has values in P∩ [Ωm,Ωm+1). Let

α, γ ∈ Tτ ∩ Ωm+2. Then α∗m < ϑm(α) and

ϑm(α) < ϑm(γ) ⇔ (α < γ ∧ α∗m < ϑm(γ)) ∨ ϑm(α) ≤ γ∗m .

Remark 2.27 Note that in particular we have

1. Pτ (α) is the set of all subterms of α of a form ϑτ (ξ) for some ξ.

2. α∗
τ

= max(Pτ (α) ∪ {0}).

3. α = α∗
τ

whenever α = ϑτ (ξ) for some ξ.

4. Parτ (α) is the set of parameters < τ used in the unique term denoting α.

Note that the ordinal defined by a ϑ-term, say ϑ(ξ), is characterized as the least θ > ξ? that is closed under
parameters and basic functions such that ϑ(ζ) < θ for all ζ < ξ satisfying ζ? < θ, cf. Lemma 4.10 of [54].

2.2 Localization
The notion of localization introduced in Section 4 of [55] and refined in [16] is to be understood in terms of closure
properties or fixed point levels in the sense discussed in the introduction. As an example, given an ordinal α 6∈ E
we ask for the greatest epsilon number β < α, if such exists. The ordinal β is of higher fixed point level and has
stronger closure properties than α, as β is closed under ω-exponentiation. The refinement also considers degrees
of limit point thinning, i.e. (transfinitely) iterated applications of the operation Lim(·).

We now formally fix a notation already used in the introduction, and define α+ for given α = ϑτ (∆ + η),
which is the least ordinal greater than α that is of the same fixed point level as α, as becomes clear shortly. All
ordinals mentioned are assumed to be represented in Tτ .

Convention 2.28 (cf. 4.1 of [55]) α = ϑτ (∆ + η) automatically means that Ω1 | ∆ and η < Ω1. In a situation
where some α = ϑτ (∆ + η) is fixed, we will write α+ for ϑτ (∆ + η + 1).

We will apply this notation frequently and use Greek capital letters to indicate that part of the argument
which is a (possibly zero) multiple of Ω1. Note that for ∆, to be a proper multiple of Ω means to be a sum
of ϑ1-terms. η can be additively composed of ϑτ -terms and parameters below τ . Recall Lemma 1.2 from the
introduction, which characterizes additive principal numbers that are not epsilon numbers in the interval (τ, τ∞).
Epsilon numbers in the interval (τ, τ∞) are characterized as follows.
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Lemma 2.29 (4.3 of [55]) For α = ϑτ (∆ + η) ∈ Tτ we have α ∈ E>τ if and only if ∆ > 0.

The (informal) notion of fixed point level is justified by the following lemma. We sometimes also call ∆ the
fixed point level of an ordinal ϑτ (∆ + η).

Lemma 2.30 (4.4 of [55]) For α = ϑτ (∆ + η) ∈ Tτ we have η = supσ<η ϑ
τ (∆ +σ) if and only if η = ϑτ (Γ +ρ)

with Γ > ∆ and η > ∆∗
τ

.

An immediate consequence of Lemma 2.26 shows that for any α of the form ϑτ (∆ + η) the interval (α, α+)
does not contain ordinals of fixed point level greater than or equal to ∆.

Lemma 2.31 (4.5 of [55]) For α = ϑτ (∆ + η) ∈ Tτ and ϑτ (Γ + ρ) ∈ (α, α+) we have Γ < ∆.

Recalling part 3 of Remark 2.27, we are now prepared to make sense of the notion of localization.

Definition 2.32 (4.6 of [55]) Let α = ϑτ (∆ + η) ∈ Tτ . We define a finite sequence of ordinals as follows: Set
α0 := τ . Suppose αn is already defined and αn < α. Let αn+1 := ϑτ (ξ) ∈ Pτ (α) \ (αn + 1) where ξ is maximal.
This yields a finite sequence τ = α0 < . . . < αn = α for some n < ω which we call the τ -localization of α.

For example, let α = ϑ0(ϑ1(ϑ2(0))) be the Bachmann-Howard ordinal, β be the least Γ-number greater than
α, i.e β = Γα+1 = ϑα(Ω2) = ϑ0(ϑ1(ϑ1(0)) + α), and γ = εβ+1 = ϑβ(ϑ1(0)) = ϑ0(ϑ1(0) + β) be the least epsilon
number greater than β. Then the 1-localization of γ is (1, α, β, γ), the α-localization of γ is (α, β, γ), whereas the
β-localization of γ is just (β, γ) and the γ-localization of γ is simply (γ), the trivial localization.

Note that α1, . . . , αn, in case of n ≥ 2, forms by definition a sequence of ϑτ -terms of strictly decreasing
arguments. The following lemma summarizes properties of localization starting from this observation.

Lemma 2.33 (4.7, 4.8, and 4.9 of [55]) Let α = ϑτ (∆ + η) ∈ Tτ , α > τ and (τ = α0, . . . , αn = α) be the
τ -localization of α where αi = ϑτ (∆i + ηi) for i = 1, . . . , n. Then

a) For i < n and any β = ϑτ (Γ + ρ) ∈ (αi, αi+1) we have Γ + ρ < ∆i+1 + ηi+1.

b) (∆i)1≤i≤n forms a strictly descending sequence of multiples of Ω1.

c) For i < n the sequence (α0, . . . , αi) is the τ -localization of αi.

The guiding picture for localizations is

τ < α1 < . . . < αn = α < α+ = α+
n < . . . < α+

1 .

The notion of fine localization is obtained by iterated application of the operator α 7→ ᾱ from [55], defined
there in the proof of Lemma 8.2, and extended in Section 5 of [16] as follows. While the predecessor in the
τ -localization of an ordinal α ∈ (τ, τ∞) is the greatest ordinal below α that has a (strictly) greater fixed point
level than α, if such ordinal exists, and τ = α0 otherwise, the predecessor ᾱ of α in the τ -fine-localization of α is
the greatest ordinal below α that is of the same fixed point level and of a degree of limit point thinning greater
than or equal to that of α, if such ordinal exists, and the predecessor of α in its τ -localization of α otherwise.
According to Corollary 6.3 of [16] a pattern notation (of least cardinality) for an ordinal α ∈ Core(R+

1 ), i.e.
α < 1∞, is obtained by closure of the set {0, α} under additive decomposition, the function lh for R+

1 , and the
operator ·̄. Closure under additive decomposition means that for any ordinal β =ANF β1 + . . .+βn in the set, also
the ordinals βi, β1 + . . .+ βi for i = 1, . . . , n are in the set.

Definition 2.34 (5.1 of [16]) Let α = ϑτ (∆ + η) ∈ Tτ , α > τ , and τ = α0, . . . , αn = α be its τ -localization.
ᾱ ∈ [τ, α) is defined as follows.

• Suppose η is of the form η′ + η0 where η0 ∈ P and either η′ = 0 or η =NF η
′ + η0. Then if either η0 = 1 or

η′ < supσ<η′ ϑ
τ (∆ + σ) we set ᾱ := ϑτ (∆ + η′).

• In all remaining cases we let ᾱ := αn−1.

In case of α ∈ L, i.e. for α a limit of additive principal numbers, the above definition is consistent with the
definition given in [55]. For α ∈ P \ L, that is, for α of a shape α = ωα

′+1 the above definition yields ᾱ = ωα
′
.

For further clarification, consider the following examples, in which we assume that ϑ0 = ϑτ for τ = 1:
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1. ε0 · ω = ε0, where ε0 · ω = ϑ0(ϑ0(ϑ1(0))),

2. εω+ω = εω, where εω+ω = ϑ0(ϑ1(0) + ω + ω) and ω = ϑ0(ϑ0(0)),

3. εω2 = 1, where εω2 = ϑ0(ϑ1(0) + ω2) and ω2 = ϑ0(ϑ0(0) + ϑ0(0)),

4. εΓ0+1 = Γ0 = εΓ0+ω, where εΓ0+1[+ω] = ϑ0(ϑ1(0) + ϑ0(ϑ1(ϑ1(0)))[+ω]),

5. εΓ0+2 = εΓ0+1, where εΓ0+2 = ϑ0(ϑ1(0) + ϑ0(ϑ1(ϑ1(0))) + ϑ0(0)),

6. Γωω+ω2 = Γωω , where Γωω[+ω2] = ϑ0(ϑ1(ϑ1(0)) + ϑ0(ϑ0(ϑ0(0)))[+ω2]).

See also Lemma 2.51 for a more general statement about ordinals α ∈ P \M.
As pointed out in [16], the iterated application of ·̄ to α leads to αn−1 after finitely many steps, from there to

αn−2 and finally to τ . This follows from the lemmas concerning τ -localization cited below.

Lemma 2.35 (5.2 of [16]) Let α, β ∈ (τ, τ∞) ∩ P with α < β. For their τ -localizations τ = α0, . . . , αn = α and
τ = β0, . . . , βm = β we have

α := (α1, . . . , αn) <lex (β1, . . . , βm) =: β.

Lemma 2.36 (5.3 of [16]) Let α = ϑτ (ξ) ∈ Tτ with τ -localization α := (α0, . . . , αn) and β ∈ Pτ (ξ). If there is
αi ∈ Pτ (β) where 0 ≤ i ≤ n then (α0, . . . , αi) is an initial sequence of the τ -localization of any γ ∈ [β, α].

Lemma 2.37 (5.4 of [16]) Let α ∈ (τ, τ∞) ∩ P with τ -localization (α0, . . . , αn). Then the τ -localization of ᾱ
is (α0, . . . , αn−1 = ᾱ) if ᾱ ∈ Pτ (α) or (α0, . . . , αn−1, ᾱ) otherwise. In the latter case for α = ϑτ (∆ + η) and
ᾱ = ϑτ (Γ + ρ) we have

(∆ + η)∗
τ

= (Γ + ρ)∗
τ

.

Definition 2.38 (5.5 of [16]) The τ -fine-localization of α ∈ (τ, τ∞)∩P is defined to be either (τ, α) if ᾱ = τ
or the τ -fine-localization of ᾱ concatenated with α.

Lemma 2.39 (5.6 of [16]) The τ -localization of α is a subsequence of the τ -fine-localization of α.

Lemma 2.40 (5.9 of [16]) Let α, β ∈ [τ, τ∞)∩P with τ -fine-localizations α = (α0, . . . , αn) and β = (β0, . . . , βm)
be given. Then α < β if and only if α <lex β.

In order to obtain a formal notion of limit point thinning in the context of Tτ , we first characterize the function
log introduced earlier in terms of Tτ . The indicated correction corrects for an unintended flaw in the original
formulation.

Lemma 2.41 (corrected 4.10 of [55]) For α = ϑτ (∆ + η) ∈ Tτ we have

log(α) =

 α if ∆ > 0
η + 1 if ∆ = 0 and η = δ + n such that δ ∈ E>τ , n < ω
(−1 + τ) + η otherwise.

We now define an operator ζ that given a setting of relativization τ and an ordinal α in the image of the
enumeration function η 7→ ϑτ (∆ + η), η < τ∞, outputs the degree of limit point thinning of α, written as ζτα.

Definition 2.42 (4.11 of [55]) For α = ϑτ (∆ + η) ∈ Tτ we define

ζτα :=

{
logend(η) if η < supσ<η ϑ

τ (∆ + σ)
0 otherwise.

The connection between the operators ·̄ and ζ cannot be stated yet. We first need to introduce the notions of
base transformation, cofinality operator, and translation.
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2.3 Base transformation, cofinality operators, and translation
Here we still cite results from [55, 16], but we summarize as in Subsection 2.3 of [57].

Base transformation, as introduced and treated in detail in Section 5 of [55], is the crucial notion which
allows us to express essential uniformity properties in both the development of a strong ordinal arithmetic and
the formulation of characteristic properties of elementary substructure on the ordinals. It enables a precise
comparison of ordinals modulo their relativizations.

Definition 2.43 (Tτ [σ], πσ,τ ) Let τ ∈ E and σ ∈ {1} ∪ E ∩ τ .
• Tτ [σ] := {α ∈ Tτ | Parτ (α) ⊆ σ}.

• The base transformation πσ,τ : Tτ [σ] → Tσ maps α ∈ Tτ [σ] to the ordinal one obtains from the term
representation of α in Tτ by substituting every occurring function ϑτ by ϑσ, i.e. πσ,τ (α) := α[ϑτ/ϑσ].

Lemma 2.44 (5.3, 5.5, and 5.6 of [55]) πσ,τ is a (<,+)-isomorphism, and base transformation commutes
with the process of localization as well as with the degree of limit point thinning (i.e. πσ,τ (ζτα) = ζσπσ,τ (α)). For
α ∈ Tτ [σ] we have Parτ (α) = Parσ(πσ,τ (α)).

The cofinality operators ιτ,α and λτ , introduced in Section 7 of [55], allow for the exact classification of the
cofinality properties of additive principal numbers in Tτ ∩Ω1 which are also crucial in the analysis of ≤1 and ≤2.
It will become clear in lemma 2.49 what is meant by cofinality properties of ordinals.

Definition 2.45 (Tτ�α , ιτ,α, λ
τ
α) Let α = ϑτ (∆ + η) ∈ Tτ .

• The restriction of Tτ to α is defined by Tτ�α := {β ∈ Tτ | β∗τ < α}.

• If ∆ > 0 we define ιτ,α : Tτ�α → Tα by recursion on the definition of Tτ by transforming every Tτ -term for
an ordinal ξ < α into the parameter ξ, defining ιτ,α(ξ) for any non-principal ξ > α homomorphically, and
substituting every ϑk+1-function by ϑk (where ϑ0 = ϑα). 1

• If α > τ we define

λτα :=

{
ιτ,α(∆) + ζτα if α ∈ E
ζτα otherwise.

As can be seen from the above definition, the operator λ measures not only the fixed point level, but also the
degree of limit point thinning. Easy examples are λε0 = ε0, λε1 = ε1, while λεω = εω + 1 and λεω2 = εω2 + 2,
where we have omitted the superscript τ = 1 and used the enumeration function α 7→ εα of the epsilon numbers.

For completeness we summarize basic properties of the ι-operator that also justify proofs by induction on htτ
and htα, respectively, as given in Definition 2.21, and provide an important upper bound.

Lemma 2.46 (7.2 and 7.3 of [55]) Let α = ϑτ (∆ + η) ∈ Tτ where ∆ > 0.

a) ιτ,α is a (<,+)-isomorphism of Tτ�α and Tα, and we have ιτ,α(∆) < α+.

b) Suppose ξ ∈ Tτ�α , ξ > α. Then htα(ιτ,α(ξ)) < htα(ξ).

c) ξ ∈ Tα ⇒ htτ (ι−1
τ,α(ξ)) ≤ max{htτ (α),htα(ξ) + 1}.

The interplay between base transformation and the operator ιτ,α is described as follows.

Lemma 2.47 (7.8 of [55]) Let γ, α ∈ Tτ ∩ Ω1 be epsilon numbers such that τ < γ < α. We have

ιτ,γ = πγ,α ◦ ιτ,α �Tτ�γ
,

i.e. the following diagram is commutative:

Tτ�γ Tγ

Tα[γ]

-ιτ,γ

@
@@R

ιτ,α �
�
��
πγ,α

In particular, the image of ιτ,α �Tτ�γ
is Tα[γ].

1Note that Tτ�α does not contain any ϑτ -terms which are greater than or equal to α.
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The notion of term translation was introduced in Section 6 of [55]. For given epsilon number α = ϑτ (∆+η) ∈ Tτ

(where ∆ > 0) it is possible to define (relativized elementary recursive) partial translation procedures tτα : Tτ → Tα

and tατ : Tα → Tτ between the systems Tτ and Tα, see Definition 6.2 of [55]. According to Lemma 6.3 of [55],
tτα and tατ are correct on Tτ�α+

and Tα�α+
, respectively. These two restrictions contain the same ordinals, and

α+ = ϑτ (∆ + η + 1) = ϑα(∆). The details are quite technical and can be taken for granted here as we only use
translation implicitly in a straightforward manner.

The translation procedure tατ allows us to consider the ordinal λτα as Tτ -term since ιτ,α(∆) < α+. We will
omit translation superscripts since their application can easily be understood from the context.

Lemma 2.48 (7.6, 7.7, and 7.10 of [55]) Suppose α = ϑτ (∆ + η) ∈ Tτ , α > τ .

a) We have λτα = 0 if and only if α 6∈ L.

b) λτα < α+.

c) htα(λτα) < htτ (α) in case of ∆ > 0.

d) If ∆ > 0, i.e. α ∈ E, and β = ϑτ (Γ + ρ) ∈ (α, α+). Then we have

λτβ = λα
βtτα

= λαβ .

e) If τ ∈ E and σ ∈ E ∩ τ such that α ∈ Tτ [σ] then

λτα ∈ Tτ [σ] and πσ,τ (λτα) = λσπσ,τ (α),

i.e. the following diagram is commutative:

Tτ [σ] ∩ (τ, τ∞) ∩ P Tτ [σ]

Tσ ∩ (σ, σ∞) ∩ P Tσ

-λ
τ

?
πσ,τ

?

πσ,τ

-
λσ

The characterization of the (intuitive notion of) cofinality properties of an ordinal can now be stated precisely.
The next two lemmas settle that the cofinality properties of an additive principal number α ∈ Tτ are exactly
classified by λτα. First of all, note that immediately by definition λτα = 0 if and only if α is not a limit of additive
principal numbers.

Lemma 2.49 (8.1 of [55]) Let α = ϑτ (∆ + η) ∈ Tτ , α > τ , be given. Then for every λ < λτα we have

α =

{
sup{γ ∈ (τ, α) ∩ E | π−1

γ,α(λτγ) ≥ λ} if α ∈ Lim(E)

sup{γ ∈ (τ, α) ∩ P | λτγ ≥ λ} otherwise.

Fine-localization commutes with base transformation and in the sense of the following lemma with translation.
Part 1 of the following lemma, which slightly generalizes Lemma 8.2 of [55], gives a characterization of ᾱ in terms
of cofinality properties of α. The lemma also justifies that the operator ·̄ does not carry a superscript τ : For
β ∈ (α, α∞) ⊆ (τ, τ∞), α ∈ Tτ ∩ E<Ω, the ordinal β̄ is invariant of the term representation of β, whether given
in Tτ or in Tα.

Lemma 2.50 (5.7 of [16]) Let α = ϑτ (∆ + η) ∈ Tτ , α > τ .

1. We have

ᾱ =

{
max

(
{γ ∈ (τ, α) ∩ E | π−1

γ,α(λτγ) ≥ λτα} ∪ {τ}
)

if α ∈ E
max

(
{γ ∈ (τ, α) ∩ P | λτγ ≥ λτα} ∪ {τ}

)
otherwise.
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2. The operator ·̄ commutes with base transformation, i.e. the following diagram is commutative:

Tτ [σ] ∩ (τ, τ∞) ∩ P Tτ [σ] ∩ [τ, τ∞) ∩ P

Tσ ∩ (σ, σ∞) ∩ P Tσ ∩ [σ, σ∞) ∩ P

-·̄ in Tτ

?
πσ,τ

?
πσ,τ

-
·̄ in Tσ

That is to say, for α ∈ Tτ [σ] ∩ (τ, τ∞) ∩ P we have

ᾱ ∈ Tτ [σ] and πσ,τ (α) = πσ,τ (ᾱ).

3. For α ∈ E the operator ·̄ commutes with the translation mappings tτα and tατ :

Tτ ∩ (α, α+) ∩ P Tα ∩ (α, α+) ∩ P Tτ ∩ (α, α+) ∩ P

Tτ ∩ [α, α+) ∩ P Tα ∩ [α, α+) ∩ P Tτ ∩ [α, α+) ∩ P

-
tτα

?

·̄ in Tτ

-
tατ

?

·̄ in Tα

?

·̄ in Tτ

-
tτα

-
tατ

4. If α ∈ E with τ -fine-localization (α0, . . . , αn) and β ∈ (α, α+) with α-fine-localization (β0, . . . , βm), then

τ = α0, . . . , αn = α = β
tατ
0 , . . . , β

tατ
m = βtατ

is the τ -fine-localization of β.

For more details regarding term representations with respect to (fine) localization, closure and cofinality
properties, and invariance with respect to base transformation and translation, see [55, 16]. In particular Lemma
5.8 of both [55] and [16] is informative, and Lemma 5.10 of [16] characterizes ω-exponentiation in Tτ ∩ (τ, τ∞),
also with respect to τ -fine-localization and base transformation. Here we only need a simplified version of this
latter lemma.

Lemma 2.51 (cf. 5.10 of [16]) Let ζ < α = ωζ ∈ (τ, τ∞). We have

α = ϑτ (1 + (−τ + ζ)−· eζ)

where eζ :=

{
1 if ζ = ε+ n for some ε ∈ E and n < ω
0 otherwise.

For any σ ∈ E ∩ τ such that ζ ∈ Tτ [σ] we have

πσ,τ (α) = ϑσ (1 + (−σ + πσ,τ (ζ))−· eζ) = ωπσ,τ (ζ).

Suppose ζ =CNF ω
ζ1 + . . .+ ωζk with k > 1. We have

ζτα = ζk and ᾱ = ωζ
′

where ζ ′ = ωζ1 + . . .+ ωζk−1 .

This shows that for α ∈ P\M the operator ·̄ cancels the last factor in the multiplicative normal form of α, and
the degree of limit point thinning of α is indeed ζk, which for α ∈ P\L is 0. In other words, for α =NF η ·ξ ∈ P−M
we have ᾱ = η and ζτα = log(log(ξ)) = logend(log(α)) for any τ ∈ E1 such that α ∈ (τ, τ∞).
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3 Generalized Tracking Sequences and Chains

In this section we establish connections with earlier work on the structure R2, in particular [17], [59], and [60],
and generalize notions originally developed there to be applicable to the entire ordinal structure R2. In order
to make this article more accessible we review quite extensively the relevant notions and results from [17] with
improvements from the book chapter [59] and to some extent from [60].

The notions of tracking sequences and chains, which were introduced in [17], are motivated easily, despite the
relatively involved technical preparations and definitions required to formulate them. The approach is natural
when analyzing well-partial orderings and was already chosen by Carlson to calculate the structure R1 in [9]: one
considers enumeration functions of connectivity components. In the case of R1, there is only one such function,
called κ, the domain of which is ε0 + 1, since the ε0-th component of R1 was shown in [9] to be [ε0,∞), i.e.
κε0 = ε0 <1 α for all α > ε0, which is sometimes written as ε0 <1 ∞. Within connectivity components one can
consider components relative to the root of the component. In R1 this is again very easy: [ε0 + 1, ε0 · 2) ∼= [0, ε0)
as in general Ord ∼= [α + 1,∞) for all α. Considering the nesting of connectivity components now allows us to
locate any ordinal in the segment ε0 · ω by a finite sequence of κ-indices. This means that we can track down
an ordinal in terms of nested connectivity components. The ordinal ε0 · ω is the least supremum of an infinite
<1-chain, and it is therefore not surprising that the least <2-pair of R2 is ε0 · ω <2 ε0 · (ω + 1), see [17] and
Theorem 3.8 of [61] for a direct proof. Note that therefore, R1 and R2 agree on the initial segment ε0 · (ω + 1).

In R+
1 , as compared to R1, the situation is dynamized, and the role of nonzero multiples of ε0 is taken by

Im(υ) \ {0} with υ as in Definition 1.5, as was shown in [56]. There, the enumeration function κ is therefore
relativized to κα, so that κα enumerates the α-≤1-minimal ordinals, ordinals greater than or equal to α that
do not have <1-predecessors strictly greater than α. The index of the maximum α-≤1-minimal component that
is ≤1-connected to α is defined to be λα, and thereby the domain of κα is λα + 1. As was shown in [56], if
α ∈ Tτ ∩P∩ (τ, τ∞) for some τ ∈ E1, then λα = λτα, i.e. the index λα of the largest α-relativized ≤1-connectivity
component that is ≤1-connected to α is equal to the cofinality of α given by the cofinality operator defined in
2.45, namely λτα. In short, α ≤1 κ

α
λτα

, and the problem of finding the largest β such that α ≤1 β, called lh(α), the
length of α, is reduced to the calculation of lh(καλτα). For a summary of the results of [56] see Subsection 2.4 of
[57].

In R2 any additive principal number α < υω is the maximum of a maximal finite chain

α0 <1 α1 <2 · · · <2 αn = α, (1)

for suitable n < ω, such that αi−1 is the greatest <2-predecessor of αi for i = 2, . . . , n, and α0 is ≤1-minimal.
Note that if n > 0, α0 is therefore the least <1-predecessor of α1, and according to Lemma 3.1 we indeed have
α0 6<2 α1. Note further that for every i < n, the ordinal αi+1 is αi-≤2-minimal, i.e. β ≤ αi for any β such that
β <2 αi+1. The existence of such sequences was shown in [17] for α ≤ 1∞ = υ1. The tracking sequence for such α
characterizes the sequence α0, . . . , αn in terms of nested connectivity components by providing their indices. In
order to track down additively decomposable ordinals also, the process is iterated, leading to a tracking chain:
a finite sequence of tracking sequences. For additively decomposable ordinals the iterated descent along greatest
<2-predecessors does not in general suffice to locate the ordinal in terms of nested ≤i-components, i = 1, 2.
Analyzing R-structures in terms of enumerations of connectivity components lays bare their internal structure
and reveals their regularity. An evaluation function o, for ordinal, is defined in order to recover the actual ordinal
from its description by indices.

3.1 Ordinal operators for R2

While the λ-operator, which was first introduced in [55], could be motivated independently as a cofinality operator,
as we did in the previous section, the µ-operator, first introduced in [17], is specifically tailored for index calculation
in R2. The (τ -relativized) ordinal operator α 7→ λτα returning the index of the largest (relative) ≤1-connectivity
component in the context of R+

1 is recovered in R2 in an analogue way, see part a) of Lemma 3.14; however, the
nesting of ≤2-connectivity components within a ≤1-component has to be considered as well. Each ordinal α such
that α <2 β for some β is the supremum of an infinite <1-chain, along which ≤2-connectivity components can
occur:

Lemma 3.1 (7.5 of [17]) If α <2 β then α is the sup of an infinite <1-chain.
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Proof. For any ρ < α we have β |= ∃x ∀y > x (ρ < x <1 y). Hence the same holds true in α. We obtain
ρ1 <1 ρ2 <1 ρ3 <1 . . . <1 α. 2

The (τ -relativized) ordinal operator α 7→ µτα and an enumeration function ξ 7→ ναξ where ξ ≤ µτα are defined
so as to keep track of such infinite <1-chains accommodating ≤2-connectivity components. µτα characterizes the
order type of the <1-chain leading to the greatest newly arising <2-component with the refinement that this
<1-chain is subject to a notion of relativized ≤2-minimality. This means that να does not enumerate ordinals
within the newly arising <2-components apart from their roots. To clarify this latter statement, call such root β,
which (apart from a possible additve offset to place it into a surrounding component) is equal to ναξ for some ξ and
its greatest ≤2-successor γ. Then the enumeration function να omits all ordinals in the interval (β, γ] and in case
of ξ < µτα continues with the least ordinal δ that is ≤1-connected to the greatest newly arising ≤2-component,
which is indexed by µτα.

It should further be noted that any non-trivial ≤2-component is itself supremum of an infinite <1-chain, which
has the consequence that the function ν also enumerates those ordinals on such <1-(sub-)chains that do not have
any <2-successor themselves but lead to the next non-trivial <2-component. This entails that the image of µτ
consists of additive principal numbers.

Easy examples, again in the setting τ = 1 omitted as superscript, are µε0 = ω, which is the order type of
the <1-chain leading to the ordinal ε0 · ω, which is the least ordinal that has a <2-successor. While we still have
µεω = ω (but lh(εω) = εω ·(ω+1)+1), the index µϕ(2,0) = ω2 leads to the least ordinal that has two <2-successors,
namely ϕ(2, 0) · ω2 <2 ϕ(2, 0) · (ω2 + i), i = 1, 2. The index µϕ(ω,0) = ωω governs the chain

ϕ(ω, 0) <1 . . . <1 ϕ(ω, 0) · ωω <2 ϕ(ω, 0) · (ωω + ω) <1 ϕ(ω, 0) · (ωω + ω) + 1 = lh(ϕ(ω, 0)),

where along the infinite <1-chain of order type ωω we find ordinals α such that α <2 α+ϕ(ω, 0)·n for every n < ω,
nested in a cofinally increasing manner. This provides an example for the following elementary observation, a
complete proof of which is also given in [61] (Lemma 3.3):

Lemma 3.2 (7.2 of [17]) 1. In R1 we have (see [9])

α ≤1 α+ 1 ⇔ α ∈ Lim.

2. In R2 we have

α ≤1 α+ 1 ⇔ α ∈ Lim & ∀β(β <2 α⇒ α = sup{γ < α | β ≤2 γ}).

The ordinal α := ϕ(ε0, 0) gives rise to an infinite <1-chain leading to its largest ≤2-component at β := ναµα =
α · ε0, where µα = ε0 and superscript τ = 1 is suppressed. This ≤2-component is

β <2 β + β =: γ <1 γ + ε0 · ω =: δ <2 δ + ε0

and contains an infinite <1-chain below δ. The ≤2-component δ <2 δ + ε0 is not new, as the interval (γ, δ + ε0]
is isomorphic to the initial segment ε0 · (ω + 1) + 1.

Values of the µ-operator look very canonical so far, but a subtlety arises for the first time when we consider the
prominent ordinal Γ0 = min{α | α = ϕ(α, 0)} = ϑ0(ϑ1(ϑ1(0))). While ϕ(ω, 0) · ωω was the least example for an
ordinal α such that there exist ordinals β and γ satisfying α <2 β <1 γ, the ordinal Γ0 is the least <1-predecessor
of the least ordinal α such there exist β, γ such that α <2 β <1 γ and α <2 γ. We find α = Γ2

0 ·ω, β = Γ2
0 · (ω+1),

and γ = Γ2
0 · (ω + 1) + Γ0. The index µΓ0

leading to α is Γ0 · ω. α = νµΓ0
is the supremum of the first infinite

chain in R2 of a form
α1 <2 β1 <1 α2 <2 β2 <1 α3 <2 β3 <1 . . .

of alternating <1- and <2-connections. Here α1 = νΓ0
= Γ2

0 is the root of a ≤2-component that contains an
element (β1) apart from the root that is <1-connected to the greater ≤2-components rooted in the ordinals
α2, α3, . . . , α. The ordinals α1, α2, α3, . . . are the least witnesses of such a phenomenon in R2. It turns out that
there is a simple criterion for indices of the ν-function of whether this phenomenon occurs or not. If we call the
set of ordinals {γ | Γ0 ≤1 γ ≤1 α} the main line (here for the ≤1-connectivity component rooted in Γ0), then we
can say that the ≤2-components rooting in the αi fall back onto the main line, namely at the ordinals βi. This
way of expressing this characteristic phenomenon in general in R2 has been used sometimes in earlier work. [17]
starts with the so-called indicator function χ, indicating the occurrence of the just described phenomenon. For
the reader’s convenience we review definition and key properties of χ.
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Definition 3.3 (3.1 of [17]) For τ ∈ E the indicator function χτ : Tτ → {0, 1} is defined by

• χτ (ξ) := 0 for parameters ξ < τ

• χτ (τ) := 1

• χτ (η + ξ) := χτ (ξ) if η + ξ > τ is in normal form

• Let i < ω and ξ = ∆ + η ∈ dom(ϑi) where η < Ωi+1 | ∆ with ξ > 0 in case of i = 0.

• χτ (ϑi(ξ)) := χτ (∆) if η = supσ<η ϑi(∆ + σ) or logend(η) = 0

• χτ (ϑi(ξ)) := χτ (ξ) otherwise.

Let χ̌τ : Tτ → {0, 1} be the dual indicator function, i.e. χ̌τ := 1− χτ .

Lemma 3.4 (3.2 of [17]) Let σ, τ ∈ E, σ < τ , and α ∈ Tτ [σ]. Then χσ(πσ,τ (α)) = χτ (α), i.e. the following
diagram is commutative:

Tτ [σ] {0, 1}

Tσ

-χτ

@
@
@R

πσ,τ
�
���
χσ

The analogue statement holds for χ̌τ .

Lemma 3.5 (3.3 of [17]) Let τ ∈ E and α = ϑτ (∆ + η) > τ .

a) χτ (α) is equal to each of the following: χτ (β + α) for all β < τ∞, χτ (logend(α)), χτ (ωα), χτ (β · α) for all
β ∈ (0, τ∞), χτ ((1/β) · α) for all β ∈ P<α, and χτ (λτα).

b) If α ∈ E then for all ξ ∈ Tτ�α such that χα(ιτ,α(ξ)) = 1 we have χτ (ξ) = 0.

In order to complete our list of instructive examples of values of the ordinal operator µ, consider the Bachmann-
Howard ordinal α := ϑ0(ϑ1(ϑ2(0))), which is the least <1-predecessor of the least <2-chain of the form β <2 γ <2 δ
in R2 (in fact, any Rn for n > 1). α has fixed point level εΩ+1 = ϑ1(ϑ2(0)), and setting τ := 1 we have

µτα = ιτ,α(εΩ+1) = εα+1, β = ναεα+1
= εα+1, γ = εα+1 · ω, and δ = εα+1 · (ω + 1).

With this preparation we can now review the precise definition of µ:

Definition 3.6 (3.4 of [17]) Let τ ∈ E1 and α ∈ (τ, τ∞) ∩ E, say α = ϑτ (∆ + η) where ∆ = Ω1 · (λ + k) such
that λ ∈ Lim0 and k < ω. We define

µτα := ωιτ,α(λ)+χα(ιτ,α(λ))+k.

The next lemma justifies inductive proofs along htτ . The more refined estimation is useful when dealing with
localizations. The subsequent algebraic lemmas concerning the notions of translation and base transformation
will later be used without explicit mention.

Lemma 3.7 (3.5 of [17]) htα(µτα) ≤ htα(λτα) < htτ (α) and µτα, (µτα)+ < α+.

Lemma 3.8 (3.6 of [17]) Let α = ϑτ (∆ + η) ∈ E>τ . For every β = ϑτ (Γ + ρ) ∈ (α, α+) ∩ E we have

µτβ = µα
βtτα

= µαβ .

Lemma 3.9 (3.7 of [17]) Let σ, τ ∈ E, σ < τ , and α = ϑτ (∆ + η) ∈ Tτ [σ] ∩ (τ, τ∞) ∩ E. Then

µτα ∈ Tτ [σ] and πσ,τ (µτα) = µσπσ,τ (α),

i.e. the following diagram is commutative:

Tτ [σ] ∩ (τ, τ∞) ∩ E Tτ [σ]

Tσ ∩ (σ, σ∞) ∩ E Tσ

-µ
τ

?
πσ,τ

?

πσ,τ

-
µσ
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Lemma 3.10 (3.8 of [17]) Let τ ∈ E1 and α ∈ E ∩ (τ, τ∞) and γ ∈ E ∩ (ᾱ, α). Then we have

π−1
γ,α(µτγ) ≤ µτα.

With τ and α as in the above definition of µτα, the ordinal operator %αξ , where ξ ≤ µτα, denotes the index of
that ναξ -relativized ≤1-connectivity component which contains the largest ≤2-successor of ναξ , where ν

α
ξ is the

ξ-th such newly arising ≤2-component in the α-th component, assuming that there is no surrounding component
causing an additive offset. This latter phenomenon is taken care of by the notion of tracking chain, i.e. nesting of
tracking sequences, and will be discussed later.

Definition 3.11 (3.9 of[17]) Let τ ∈ E and α < τ∞ where logend(α) = λ + k such that λ ∈ Lim0 and k < ω.
We define

%τα := τ · (λ+ k −· χτ (λ)).

Lemma 3.12 (3.10 of[17]) %τα ≤ τ · logend(α) and htτ (%τα) ≤ max{1,htτ (α)}.

Lemma 3.13 (3.11 of[17]) Let σ, τ ∈ E, σ < τ , and α ∈ Tτ [σ] ∩ τ∞. Then we have

%τα ∈ Tτ [σ] and πσ,τ (%τα) = %σπσ,τ (α),

i.e. the following diagram is commutative:

Tτ [σ] ∩ τ∞ Tτ [σ]

Tσ ∩ σ∞ Tσ

-%τ

?
πσ,τ

?
πσ,τ

-
%σ

The lemma below shows the interrelations between the operators from the previous section ([55]) and the new
ones ([17]). Note in particular part a), where the new index operators µ and % fall into place with ι.

Lemma 3.14 (3.12 of[17], corrected in [59]) Let τ ∈ E1 and α = ϑτ (∆ + η) ∈ (τ, τ∞) ∩ E. Then we have

a) ιτ,α(∆) = %αµτα and hence λτα = %αµτα + ζτα.

b) %αβ ≤ λτα for every β ≤ µτα. For β < µτα such that 2 χα(β) = 0 we even have %αβ + α ≤ λτα.

c) If µτα < α we have α ≤ λτα < α2, while otherwise

max
(
E≤µ

τ
α

)
= max

(
E≤λ

τ
α

)
.

d) If λτα ∈ E>α, we have µτα = λτα · ω in case of χα(λτα) = 1, and µτα = λτα otherwise.

Note that whenever µτα ∈ E>α, we have µτα = ιτ,α(∆) = mc(λτα), where mc denotes the largest additive
component as introduced in the previous section. An easy example already mentioned earlier might be helpful
to illustrate part a): The ordinal εω is the εω-th ≤1-minimal ordinal in R2, κεω = εω, µεω = ω, νεωω = εω · ω,
%εωω = εω, ζεω = 1, and λεω = εω + 1.

Extending the domain of ordinal operators

Note that for τ ∈ E1 we have τ∞ ∈ Im(υ) and (τ, τ∞) ∩ Im(υ) = ∅. Recall Definitions 2.45, 3.6, 3.11, and 3.3 of
the ordinal operators λ, µ, %, and χ, respectively. The (partial) extension of their domain to Im(υ) is motivated
by Theorem 1.8.

Definition 3.15 For τ ∈ E1 we extend the definitions of the ordinal operators λ, µ, %, and χ as follows.

µττ∞ := (τ∞)∞ =: λττ∞ .

%ττ∞ := τ∞ and χτ (τ∞) := 0.

For λ ∈ Lim we set
λυλ := υλ+1.

We thus obtain
µυλ+k

= υλ+k+1 = λυλ+k

for λ ∈ Lim0 and k ∈ (0, ω). Note that the expressions λ0 and µυλ for λ ∈ Lim0 remain undefined.
2This condition is missing in [17]. However, that inequality was only applied under this condition, cf. Def. 5.1 and L. 5.7 of [17].
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3.2 Tracking sequences relative to limit υ-segments

As mentioned earlier, by definition the κ-function enumerates ≤1-minimal ordinals in R1 as well as in R2, and
the ν-functions essentially enumerate ≤2-components relative to the component they occur in. Precise definitions
will be given later. Returning to the chain (1) of ordinals below any additive principal number (less than υω), α0

is therefore an element in the image of κ, while αi for i = 1, . . . , n is an element of the image of that ν-function
which relates to the context given by α0, . . . , αi−1. This context dependence is indicated by a superscript να
where the vector α stands for the sequence of indices of the ordinals α0, . . . , αi−1. For arbitrary ordinals we will
also need context dependent enumeration functions κα of relativized ≤1-components, so that κ() becomes another
notation for simply κ.

So, given an ordinal α in R2, we want to calculate the indices of the nested ≤i-components it occurs in. For
additive principal α this will be a sequence, called a tracking sequence, or ts(α), and for arbitrary α it will be a
tracking chain, or tc(α), a sequence of tracking sequences, where the first element of each tracking sequence is a
κ-index (relativized from the second tracking sequence in the chain on), and the later indices in each sequence
are ν-indices.

It turns out that tracking sequences can easily be characterized using the µ-operator, and we denote the
independently defined set (or class) of sequences by TS, in relativized form by TSτ . We cite the following
definition of TSτ from [17], thereby correcting a flaw in the original formulation that caused a deviation from the
intended meaning.

Definition 3.16 (corrected 4.2 of [17]) Let τ ∈ E1. A nonempty sequence (α1, . . . , αn) of ordinals below τ∞

is called a τ -tracking sequence if

1. (α1, . . . , αn−1) is either empty or α1, . . . , αn−1 ∈ E and is such that τ < α1 < . . . < αn−1.

2. αn ∈ P and is such that αn ≥ τ if n = 1 and αn > 1 if n > 1.

3. αi+1 ≤ µταi for every i ∈ {1, . . . , n− 1}.

By TSτ we denote the set of all τ -tracking sequences. For convenience we set TS0 := TS1.

According to Lemma 3.7 the length of a tracking sequence is bounded in terms of the largest index of ϑ-
functions in the term representation of the first element of the sequence.

Definition 3.17 (cf. 4.3 of [17]) The set of sequences obtained from TSτ by erasing the last entry in each
sequence, is denoted by RSτ and called the set of τ -reference sequences.

Note that (τ -)reference sequences are, apart from the empty sequence, sequences (α1, . . . , αn) of strictly
increasing epsilon numbers greater than τ that are µ-covered, that is αi+1 ≤ µ

αi−1
αi for i = 1, . . . , n − 1, setting

α0 := τ . Note that µαi−1
αi = µταi via translation, see Lemma 3.8. We therefore sometimes omit the superscript

when a suitable relativization parameter can be understood from the context. µ-coverings were first explicitly
discussed in Subsection 3.1 of [59]; we will return to this notion shortly. Reference sequences α characterize the
contexts of relativization needed for the definition of κα and να, where ν requires α not to be the empty sequence.

We now modify the definitions of TS, which was defined to be just TS1 in ealier work, and RS, which used
to be defined as RS1, to apply to all of Ord. Since υω is the supremum of the first infinite <2-chain in R2, an
additional parameter λ ∈ Lim0 comes into the picture as we now need to relate to the interval [υλ, υλ+ω) that we
want to consider tracking sequences in. The initial sequence (υλ+1, . . . , υλ+m) for tracking sequences leading into
the interval [υλ+m, υλ+m+1), which might appear redundant at first sight, is needed if m > 0, since υλ+1 is the
κ-index (relative to υλ if λ ∈ Lim) that specifies the ≤1-component (relative to υλ if λ ∈ Lim) in which nested
≤2-components are specified by the tracking sequence, cf. Theorem 1.8.

Definition 3.18 (λ -RS and λ -TS) For λ ∈ Lim0 we define

1. α ∈ λ -RS if and only if α is of a form3 (υλ+1, . . . , υλ+m)_(α1, . . . , αn) where m < ω and either n = 0
or n > 0 and α1, . . . , αn ∈ E such that α1 < . . . < αn, where α1 ∈ (υλ+m, υλ+m+1), and αi+1 ≤ µαi for
i = 1, . . . , n− 1.

3For the sake of notational simplicity, we deviate from the usual convention that a vector α has components α1, . . . , αn where n
is the length of α, whenever an explicit redefinition is given.
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2. α_β ∈ λ -TS if and only if either α = () and β ∈ P ∩ [υλ, υλ+1] or () 6= α = (α1, . . . , αn) ∈ λ -RS and
β ∈ P ∩ (1, µαn ].

We define the extended class RS (respectively TS) as the union of all λ -RS (λ -TS, respectively).

Note that the above definition accords with the already defined RS and TS: RS comprises the sequences in
0-RS with elements below υ1 = 1∞ and TS comprises the sequences below υ1 in 0-TS. For λ ∈ Lim we have
(υλ) ∈ λ -TS \λ -RS. While the parameter λ in λ -RS and λ -TS explicitly mentions the interval [υλ, υλ+ω) in
which the sequences reside, λ can always be recovered from the first element in the sequence. The empty sequence
() ∈ λ -RS clearly does not cause any problem.

Tracking sequences for additive principal numbers were first introduced in Definition 3.13 of [17]. Here we
first state the assignment of the proper tracking sequence of a multiplicative principal number, which is based on
the notion of localization reviewed in Subsection 2.2.

Definition 3.19 (cf. 3.5 of [59]) Let τ ∈ E1 and α ∈ M ∩ (τ, τ∞) with τ -localization τ = α0, . . . , αn = α. The
tracking sequence of α above τ , tsτ (α), is defined as follows. If there exists the largest index i ∈ {1, . . . , n− 1}
such that α ≤ µταi , then

tsτ (α) := tsτ (αi)
_(α),

otherwise tsτ (α) := (α). We extend the definition of tsτ to

tsτ (τ∞) := (τ∞).

We will apply tsτ to ordinals in M in particular when defining the evaluation function o. The extension of the
assignment tsτ to all additive principal numbers in (τ, τ∞) is somewhat more involved.

Definition 3.20 (3.15 of [59]) Let τ ∈ E1 and α ∈ [τ, τ∞) ∩ P. The tracking sequence of α above τ , tsτ (α), is
defined as in Definition 3.19 if α ∈ M>τ , and otherwise recursively in the multiplicative decomposition of α as
follows.

1. If α ≤ τω then tsτ (α) := (α).

2. Otherwise. Then ᾱ ∈ [τ, α) and α =NF ᾱ · β for some β ∈M>1. Let tsτ (ᾱ) = (α1, . . . , αn) and set α0 := τ .4

2.1. If αn ∈ E>αn−1 and β ≤ µταn then tsτ (α) := (α1, . . . , αn, β).

2.2. Otherwise. For i ∈ {1, . . . , n} let (βi1, . . . , β
i
mi) be tsαi(β) provided β > αi, and set mi := 1, βi1 := αi ·β

if β ≤ αi. We first set the insertion index

i0 := max
(
{1} ∪ {j ∈ {2, . . . , n} | βj1 ≤ µταj−1

}
)
,

then define tsτ (α) := (α1, . . . , αi0−1, β
i0
1 , . . . , β

i0
mi0

).

For technical convenience we set ts0 := ts1, and instead of ts1 we also simply write ts.

The following lemma shows that the above definition is sound, that the image of tsτ is contained in TSτ , and
states basic properties of tsτ . Its proof proceeds by straightforward induction along the definition of tsτ , i.e. the
length of τ -localization of multiplicative principal numbers and the number of factors in the multiplicative normal
form of additive principal numbers.

Lemma 3.21 (3.14 of [17]) Let τ ∈ E1 and α ∈ [τ, τ∞) ∩ P. Let further (α1, . . . , αn) be tsτ (α), the tracking
sequence of α above τ .

1. If α ∈M then αn = α and tsτ (αi) = (α1, . . . , αi) for i = 1, . . . , n.

2. If α =NF η · ξ 6∈M then αn ∈ P ∩ [ξ, α] and αn =NF αn · ξ.

3. (α1, . . . , αn−1) is either empty or a strictly increasing sequence of epsilon numbers in the interval (τ, α).

4As verified in parts 1 and 2 of Lemma 3.21 we have β ≤ αn.
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4. For 1 ≤ i ≤ n − 1 we have αi+1 ≤ µταi , and if αi < αi+1 then (α1, . . . , αi+1) is a subsequence of the
τ -localization of αi+1.

We therefore have tsτ (α) ∈ TSτ .

The following lemma is part of showing (in Theorems 3.19 and 3.20 of [59]) that ts is a (≤,≤lex)-isomorphism
between υ1 ∩ P and TS. We will generalize this isomorphism to all of P. However, we will need to define the
evaluation function o for additive principal numbers first, which will be shown to be the inverse of ts.

Lemma 3.22 (3.15 of [17]) Let τ ∈ E1 and α, γ ∈ [τ, τ∞) ∩ P, α < γ. Then we have

tsτ (α) <lex tsτ (γ).

Note that the proof of the above lemma given in [17] is in fact an induction along the inductive definition of
tsτ (γ) with a subsidiary induction along the inductive definition of tsτ (α).

The function υ gives rise to a segmentation of the ordinals into intervals [υι, υι+1), which we will use for a
generalization of the notion of tracking sequence.

Definition 3.23 (υseg) For α ∈ Ord let (λ,m) ∈ Lim0 × ω be <lex-minimal such that α < υλ+m+1 and define
υseg(α) := (λ,m), the υ-segment of α.

Note that for τ ∈ E1 we have τ∞ = υλ+m+1 where (λ,m) := υseg(τ). Recall that by (1/γ) · α we denote the
least ordinal δ such that α = γ · δ, whenever such an ordinal exists. Note that in the extension of the function ts
to all of P below, the original definition of ts is referred to as ts0.

The technical appearance of the following definition is owed to the fact that ordinal notations cover in each
relativized instance at most an interval of the form [υα, υα+1). Note that in the case where γ < α < γω we need
to explicitly cancel the lead factor γ, which is the one but last element of the tracking sequence, resulting in the
final ν-index (1/γ) · α.

Definition 3.24 (Extended domain ts) For α ∈ P let (λ,m) := υseg(α) be the υ-segment of α. For better
readability we set γ := (υλ+1, . . . , υλ+m) and γ := υλ+m. We define

ts(α) :=



tsυλ(α) if m = 0, otherwise:

γ if α = γ,

γ_(1/γ) · α if γ < α < γω,

γ_tsγ(α) if α ≥ γω.

Having defined the assignment function ts of tracking sequences on P, we need to calculate the evaluation
function o on TS. The evaluation function o was first given in [17], but redefined in [59], which led to a substantial
disentanglement that allowed to directly see elementary recursiveness. For the verification proof that these
functions are inverses of each other, we need to establish a definition of o that provides expressions in multiplicative
normal forms accompanied with the tracking sequences of the initial products of such normal forms. Along the
way we will characterize the fixed points of o, i.e. all α_β ∈ TS such that o(α_β) = β. Clearly, fixed points
are pivotal in the proof of order-isomorphism between P and TS, and decomposition into multiplicative normal
form carries the proof on. More specifically, given a sequence in α_β ∈ TS with evaluation γ =NF η · ξ 6∈ M, we
want to determine the tracking sequence of η. It turns out that ξ = lf(β), i.e. either β itself or its last factor.
The latter can occur if β =MNF β1 · . . . · βk with k > 1, β1 ∈ E>αn , and β2 ≤ µβ1 , where α = (α1, . . . , αn). The
tracking sequence of η is determined by an auxiliary function h, which in turn uses two functions sk (for skimmed
sequence) and mts (for minimal tracking sequence). The former sequence, say skβ(γ), extends a given point on
a local main line (i.e. starting from a ν-index γ and extending along nested ν-indices through the ≤2-component
rooted in the start point indexed by γ) as far as possible without obtaining evaluating last factors below β. The
latter, say mtsα(β), produces a minimal µ-covering from α to β, obtaining large evaluating factors as quickly
as possible. For the reader’s convenience we include all relevant (slightly modified) definitions, starting with
µ-coverings. Correcting definitions in [59] technically, we need to allow (α) to be a µ-covering of α itself and let
a µ-covering from α to β start with α.
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Definition 3.25 (cf. 3.2 of [59]) Let τ ∈ E1, α ∈ E ∩ (τ, τ∞), and β ∈ P ∩ [α, α∞). A sequence (α0, . . . , αn)
where α0 = α, αn = β, such that (α1, . . . , αn) ∈ TSα and α < α1 ≤ µτα if n > 0, is called a µ-covering from α
to β.

Lemma 3.26 (3.3 of [59]) Any µ-covering from α to β is a subsequence of the α-localization of β.

Definition 3.27 (3.4 of [59]) Let τ ∈ E1.

1. For α ∈ P∩(τ, τ∞) we define max-covτ (α) to be the longest subsequence (α1, . . . , αn+1) of the τ -localization of
α which satisfies τ < α1, αn+1 = α, and which is µ-covered, i.e. which satisfies αi+1 ≤ µταi for i = 1, . . . , n.

2. For α ∈ E ∩ (τ, τ∞) and β ∈ P ∩ [α, α∞) we denote the shortest subsequence (β0, β1, . . . , βn) of the α-
localization of β which is a µ-covering from α to β by min-covα(β), if such sequence exists.

Definition 3.28 (cf. 3.6 of [59]) Let τ ∈ E1, α ∈ E ∩ (τ, τ∞), β ∈ P ∩ [α, α∞), and let α = α0, . . . , αn = β be
the α-localization of β. If there exists the least index i ∈ {0, . . . , n− 1} such that αi < β ≤ µταi , then

mtsα(β) := mtsα(αi)
_(β),

otherwise mtsα(β) := (α).

Note that mtsα(β) reaches β if and only if it is a µ-covering from α to β. We will see a criterion for this to
hold in Lemma 3.32.

Lemma 3.29 (3.7 of [59]) Fix τ ∈ E1.

1. For α ∈ P ∩ (τ, τ∞) let max-covτ (α) = (α1, . . . , αn+1) = α. If α1 < α then α is a µ-covering from α1 to α
and mtsα1(α) ⊆ α.

2. If α ∈M ∩ (τ, τ∞) then max-covτ (α) = tsτ (α).

3. Let α ∈ E ∩ (τ, τ∞) and β ∈ P ∩ [α, α∞). Then min-covα(α) exists if and only if mtsα(β) is a µ-covering
from α to β, in which case these sequences are equal, characterizing the lexicographically maximal µ-covering
from α to β.

The following ordinal operator provides a useful upper bound when calculating the reach of connectivity
components. The subsequent Lemma 3.32 justifies the definition further.

Definition 3.30 (cf. 3.16 of [17]) Let τ ∈ E1 and α ∈ (τ, τ∞) ∩ E. We define

α̂ := min{γ ∈M>α | tsα(γ) = (γ) & µτα < γ}.

For α = υξ, ξ > 0, we set
α̂ := υξ+1.

Note that in the above context we have α̂ ≤ α+ if α 6∈ Im(υ). As is the case with α+ we suppress the base τ
in the notation α̂ assuming that it will always be well understood from the respective context.

Lemma 3.31 (3.17 of [17]) Let τ, α be as in the above definition, α 6∈ Im(υ). Then

β̂ ≤ α̂ for any β ∈ Tα ∩ E ∩ (α, µτα].

We further have λτα < α̂.

Lemma 3.32 (cf. 3.8 of [59]) Let τ ∈ E1, α ∈ E∩ (τ, τ∞), and β ∈M∩ [α, α∞). Then mtsα(β) is a µ-covering
from α to β if and only if β < α̂. This holds if and only if either β = α or for tsα(β) = (β1, . . . , βm) we have
β1 ≤ µτα.

Definition 3.33 (cf. 4.9 of [17]) For β ∈M>1 and γ ∈ E \ Im(υ) let skβ(γ) be the maximal sequence δ1, . . . , δl
such that (setting δ0 := 1)

• δ1 = γ and
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• if i ∈ {1, . . . , l − 1}& δi ∈ E>δi−1 & β ≤ µδi , then δi+1 = µδi · β.

Note that equivalently, one obtains the ordinal µδi · β in the above definition by skipping the factors strictly
below β from the multiplicative normal form of µδi . Lemma 3.7 guarantees that the above definition terminates.
We have (δ1, . . . , δl−1) ∈ RS and (δ1, . . . , δl) ∈ TS. Notice that β ≤ δi for i = 2, . . . , l. Note that if β = ω, the
sequence γ = δ1, . . . , δl is maximal such that δi+1 = µδi , i = 1, . . . , l − 1.

After the above preparations we can now assemble the auxiliary sequence hγ(α_β) that plays a key role in
the definition of the evaluation function o.

Definition 3.34 (cf. 3.11 of [59]) Let α_γ ∈ λ -RS, where γ 6∈ Im(υ), and β ∈ M ∩ (1, γ̂). If β > γ let
mtsγ(β) = η_(ε, β).

hβ(α_γ) :=


α_η_ skβ(ε) if γ < β < γ̂

α_ skβ(γ) if β ≤ γ and β ≤ µγ
α_γ if β ≤ γ and β > µγ .

We are now going to extend Definition 3.14 of [59] (2.3 of [60]) to the extended class TS as the union over
all λ -TS. If α_β ∈ λ -TS is of the form (υλ+1, . . . , υλ+m) where m < ω or α_β = (1 + υλ), we will have
o(α_β) = β, extending the class of fixed points of o. As mentioned earlier, the evaluation function o enables a
smooth definition of the component enumerating functions κ and ν in the next subsection.

Definition 3.35 (cf. 3.14 of [59]) Let α_β ∈ λ -TS, where α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) ∈ λ -RS for
the maximal such m < ω and β =MNF β1 · . . . · βk. Let β′ := 1 if k = 1 and β′ := β2 · . . . · βk otherwise. We set
α0 := 1 + υλ+m, αn+1 := β, h := htα0

(α1) + 1, and γi := tsαi−1(αi) for i = 1, . . . , n, while

γn+1 :=


(β) if β ≤ αn
tsαn(β1)_β2 if k > 1, β1 ∈ E>αn & β2 ≤ µβ1

tsαn(β1) otherwise,

and write γi = (γi,1, . . . , γi,mi), i = 1, . . . , n+ 1. We then define

lSeq(α_β) := (m1, . . . ,mn+1) ∈ [h]≤h

where [h]≤h is the set of sequences of natural numbers ≤ h of length at most h, ordered lexicographically. We may
now define o(α_β) recursively in lSeq(α_β), as well as auxiliary parameters n0(α_β) and γ(α_β), which are
set to 0 where not defined explicitly.

1. If α = () and β = 1 + υλ, then o((β)) := β.

2. If α 6= ()5 and β1 ≤ αn, then o(α_β) :=NF o(α) · β.

3. If β1 ∈ E>αn , k > 1, and β2 ≤ µβ1
, then set n0(α_β) := n+ 1, γ(α_β) := β1, and define

o(α_β) :=NF o(hβ2(α_β1)) · β′.

4. Otherwise. Then setting

n0 := n0(α_β) := max ({i ∈ {1, . . . , n+ 1} | mi > 1} ∪ {0}) ,

define

o(α_β) :=NF

{
β if n0 = 0

o(hβ1(α�n0−1
_γ)) · β if n0 > 0,

where γ := γ(α_β) := γn0,mn0
−1.

The just defined extension of the evaluation function o to TS is easily seen to have the following desired properties.
5The corresponding condition of part 2 of Definition 2.3 in [60] should read n ≥ 1, not n > 1.
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Theorem 3.36 (cf. 3.19, 3.20, and 3.21 of [59]) The (class) function ts : P → TS is a (<,<lex)-order iso-
morphism with inverse o:

1. For α ∈ P we have
o(ts(α)) = α.

2. For α_β ∈ TS we have
ts(o(α_β)) = α_β.

3. o is strictly increasing with respect to the lexicographic ordering on TS and continuous in the last vector
component.

For proofs and further details see Section 3 of [59]. Note that part 1 of the above theorem is proved by
induction along the definition of ts(α), while part 2 is proved by induction on lSeq(α_β) along the ordering
(lSeq, <lex).

3.3 Connectivity components of R2

We can now define the complete system of enumeration functions of (relativized) connectivity components, using
the evaluation function o. To this end we define κ = κ() on all of Ord, which will be conceptually justified in
Remark 3.38, and define functions κα and να for () 6= α ∈ λ -RS where λ ∈ Lim0, extending Definition 4.1 of [59]
(Definition 2.4 of [60]) to λ -RS. We first define these functions on the additive principal numbers.

Definition 3.37 (cf. 2.4 of [60]) Let α ∈ λ -RS where λ ∈ Lim0, α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) for the
maximal such m < ω, and set α0 := 1 + υλ+m. If α 6= (), we define for β such that α_β ∈ λ -TS

ναβ := o(α_β).

Now let β ∈ P such that β ≤ λαn if that exists (i.e. λ+m > 0 if n = 0) and β ≤ υ1 otherwise. Let β =MNF β1 ·. . .·βk
and set β′ := (1/β1) · β. We first define an auxiliary sequence γ ∈ ξ -RS for some ξ ∈ Lim0, ξ ≤ λ.

Case 1: β ≤ αn. Here we consider two subcases:

Subcase 1.1: n > 0 and there exists the maximal i ∈ [0, . . . , n− 1] such that αi < β. Then we set

γ := (υλ+1, . . . , υλ+m)_(α1, . . . , αi).

Subcase 1.2: Otherwise. Then we have β ≤ α0. Let (ξ, l) ∈ Lim0 × ω be ≤lex-minimal such that β ≤ υξ+l+1, so
that (ξ, l) ≤lex (λ,m), and set

γ := (υξ+1, . . . , υξ+l).

Case 2: β > αn. Then γ := α.

Writing γ = (γ1, . . . , γr) we now define

καβ :=

{
o(γ) · β′ if r > 0, β1 = γr, and k > 1

o(γ_β) otherwise.

For arbitrary β ∈ P let (λ,m) ∈ Lim0 × ω be ≤lex-minimal such that β ≤ υλ+m+1 and set α := (υλ+1, . . . , υλ+m).
Writing κβ instead of κ()

β , we define
κβ := καβ ,

and call κ the global κ-function of R2.

Remark 3.38 We still need to define the κ- and ν-functions for arguments that are additively decomposable. For
orientation and clarification we make some statements about the global κ-function that follow from our results in
Section 4. Recall that an ordinal β ≥ α is called α-≤i-minimal if γ ≤ α for any γ such that γ <i β.

• The restriction of the global κ-function of R2 to the initial segment 1∞ = υ1 enumerates all ≤1-minimal
ordinals, the largest one being υ1.
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• For any λ ∈ Lim the υλ-≤1-minimal ordinals are enumerated by β 7→ υλ+κβ for β ≤ υλ+1, and the greatest
<1-predecessor of υλ+1 is υλ.

• And for any ξ ∈ Lim0, m < ω, the υξ+m+1-≤1-minimal ordinals are enumerated by β 7→ υξ+m+1 + κβ for
β ≤ υξ+m+1. We have υξ+m+1 · 2 <1 ∞.

Note that κ as defined here acts as the identity on Im(υ). The global κ-function can therefore equally be defined
using Definition 3.23, since for β ∈ P and (ξ,m) := υseg(β), we have κβ = καβ , where α := (υξ+1, . . . , υξ+m), as
καβ = κα

′

β for β = υξ+m+1 and α′ = α_β.
Defining κ on all of Ord despite the fact that we have υ1 <1 ∞, wherefore the largest ≤1-connectivity component

in R2 is [υ1,∞), is justified by the uniformity of κ through all υ-segments in that it simply end-extends continously.

In order to extend the above definition to non-principal indices β, we need some preparation. We introduce a
term measure on terms that use finitely many parameters from Im(υ). Suppose λ ∈ Lim0, m < ω, and α ∈ Tυλ+m .
This term representation uses finitely many parameters below υλ+m, each of which, in turn, can be represented
in a system Tυι for some ι < λ+m with parameters below υι. Resolving hereditarily (using transfinite recursion)
all parameters results in a term representation of α that makes use of finitely many relativized ϑ0-functions ϑτ
where τ ∈ (1 + υι1 , . . . , υιl) for an increasing sequence of indices 0 ≤ ι1, . . . , ιl = λ + m. A term measure can
therefore be defined elementary recursively relative to such resolved term representation for any ordinal α. We
adapt this motivation to the setting of λ -RS as follows. For λ = m = 0 we obtain a parameter-free representation
for notations below υ1 as in [60]. We begin with a useful auxiliary notion. Note that we can in general assume
that parameters of terms in Tτ can itself be represented as terms of some suitable Tσ where σ, τ ∈ E1, σ < τ .

Definition 3.39 Let τ = (τ1, . . . , τn+1) be a strictly increasing sequence of ordinals in E1 and τ := τn+1. We
say that α ∈ Tτ is given in Tτ -representation with parameter set Parτ (α) if either n = 0 and Parτ (α) = Parτ (α)
or n > 0 and each parameter term β ∈ Parτ (α) is given in Tσ-representation where σ = (τ1, . . . , τn) and

Parτ (α) =
⋃

β∈Parτ (α)

Parσ(β).

For clarification, in the case n = 0, where τ = τ1, we trivially have T(τ) = Tτ and Par(τ)(α) = Parτ (α). For
n > 0 we have Parτ (α) ⊆ τ1, which contains but in general can be much larger than Parτ (α) ∩ τ1. Note that
terms α in Tτ -representation as above can have ϑτi-subterms for i = 1, . . . , n + 1, but for i, j ∈ {1, . . . , n + 1},
i < j, while a ϑτj -subterms can itself have ϑτi-subterms, this cannot happen the other way around.

Definition 3.40 Setting α0 := 1 + υλ where λ ∈ Lim0, let α ∈ λ -RS be of a form α = (α1, . . . , αm+n) where
m,n < ω, α1 = υλ+1, . . . , αm = υλ+m, and αm+1 ∈ (υλ+m, υλ+m+1) if n > 0. The term system λ -Tα is
obtained from Tαm+n by successive substitution of parameters from (αi, αi+1) by their Tαi-representations, for
i = m+n−1, . . . , 0. The parameters αi are represented by the terms ϑαi(0), 0 ≤ i ≤ m+n. Remaining unresolved
parameters are below α0. More formally, we proceed as follows.

• α ∈ Tαm+n is a T(αm+n)-term. Par(αm+n)(α) := Parαm+n(α).

• Let α be a T(αm+n−i,...,αm+n)-term, 0 ≤ i ≤ m + n − 1. Replace those parameters of α that are in the set
Par(αm+n−i,...,αm+n)(α) ∩ [αm+n−i−1, αm+n−i) by Tαm+n−i−1-terms. The resulting representation of α is a
T(αm+n−i−1,...,αm+n)-term, and the set of parameters Par(αm+n−i−1,...,αm+n)(α) is the set of remaining (and
new) parameters in the new representation of α after replacement. All parameters are now below αm+n−i−1.

• We also call the Tα0
_α-representation of α the λ -Tα-term representation of α and the corresponding pa-

rameter set λ-Parα(α). We have λ-Parα(α) ⊆ α0.

For α ∈ Tαm+n in λ -Tα-representation, let ι := (1 + υι1 , . . . , υιl) be the uniquely defined, (possibly empty)
finite increasing sequence below υλ needed to resolve all parameters of α. This results in a Tτ -representation of
α, where τ = ι_α0

_α, that uses relativized ϑ0-functions ϑτi for i = 1, . . . , l + m + n + 1. More formally, we
proceed as follows.

• Suppose that α is given in Tσ-representation with parameter set Parσ(α) still containing nonzero elements.
Let (ξ, k), where ξ ∈ Lim0 and k < ω, be <lex-minimal such that Parσ(α) ⊆ υξ+k+1, and set σ := 1 + υξ+k.
Replace all parameters in α that are in the interval [σ, σ∞) by Tσ-terms (using ϑσ-terms) to obtain α
in Tσ

_σ-representation with parameter set Parσ
_σ(α) consisting of the remaining (and new) parameters,

which are now below σ.
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• Starting from the λ -Tα-representation of α, i.e. starting with σ = α0
_α, after finitely many steps all

nonzero parameters in α are resolved, and we call the resulting sequence τ the resolving sequence for α.

Definition 3.41 (cf. 4.3 of [59] (2.6 of [60])) For α ∈ Tαm+n in λ -Tα-representation, where λ ∈ Lim0, α =
(α1, . . . , αm+n) ∈ λ -RS, and α0 := 1 + υλ, let τ = (τ1, . . . , τr) be a sequence of strictly increasing ordinals in E1

containing the resolving sequence for α as defined above. The length lτ (α) of the representation of α as Tτ -term
α is defined by induction on the build-up of α as follows.

1. lτ (0) := 0,

2. lτ (β) := lτ (γ) + lτ (δ) if β =NF γ + δ, and

3. lτ (ϑ(η)) :=

{
1 if η = 0,
lτ (η) + 4 if η > 0,

where ϑ ∈ {ϑτi | 1 ≤ i ≤ r} ∪ {ϑi+1 | i ∈ N}.

Note that in the above defintion the term α ∈ Tαm+n in λ -Tα-representation determines uniquely, which
relativized ϑτ -terms occur in its resolved term notation. If τ is or contains the resolving sequence for α, then for
each such ϑτ -term, τ is an element of τ . For λ = m = 0 the above definition is compatible with Definition 4.3 of
[59] and Definition 2.6 of [60]. In this case the sequence 1_α is resolving for α, so the 0-Tα-term representation
is completely resolved and directly corresponds to the notion of Tτ -representation in [59, 60].

Lemma 3.42 (cf. Subsection 2.1 of [60]) For α ∈ Tαm+n in λ -Tα-representation, where λ ∈ Lim0, α =
(α1, . . . , αm+n) ∈ λ -RS, and α0 := 1 + υλ, let τ = (τ1, . . . , τr) be a sequence of strictly increasing ordinals in E1

containing the resolving sequence for α as defined above.

1. Setting τ := αm+n, if α = ϑτ (∆ + η) ∈ E such that α ≤ µτ , then we have

lτ (∆) = lτ
_α(ιτ,α(∆)) < lτ (α).

2. If α ∈ Tτ ∩ P>1 ∩ Ω1 let τ ∈ {τ0, . . . , τr} (where τ0 := 1) be maximal such that τ < α. we have

lτ (ᾱ) < lτ (α),

and
lτ (ζτα) < lτ (α).

In case of α 6∈ E we have
lτ (log(α)), lτ (log((1/τ) · α)) < lτ (α),

and for α ∈ E we have
lτ
_α(λτα) < lτ (α).

Proof. The inequalities follow directly from the term representations for the ordinal operations applied, see
Lemma 2.41 and Definitions 2.34, 2.42, and 2.45. 2

Preparations are complete now to extend Definition 3.37 by the following two definitions. In order to do so,
we need to define the function dpα, simultaneously with defining κα. The depth function dp was first introduced
in [9] for the analysis of R1. dp satisfies the equation κα+1 = κα + dp(α) + 1 for α < υ1, i.e. lh(κα) = κα + dp(α),
where we let dp operate on indices. Clause 5 of the following definition applies when recovering and generalizing
the recursion formula for R1 in the context of R2. However, our extension of dp to dpα for all of R2 does not
any longer characterize the ≤1-reach of an ordinal. In case that the relativized ≤1-component that dpα is applied
to falls back onto a surrounding main line (recall the informal outline given before Definition 3.3), dpα leads us
only to the point where that happens, as required for understanding the internal structure of local components,
cf. clause 2 of Definition 3.44, rather than leading us to the ≤1-reach of the component it is applied to. For an
explanation in different words and some greater detail, see [17] before Definition 4.4.
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Definition 3.43 (cf. 4.4 of [17]) Let α ∈ λ -RS where α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) and α0 := 1+υλ+m,
where α1 ∈ (υλ+m, υλ+m+1) if n > 0. We define global functions κ,dp : Ord → Ord, omitting superscripts ()
for ease of notation, as well as, for α 6= (), local functions κα,dpα where dom(κα) = [0, λαn ] and dom(dpα) =
dom(κα) if n > 0 while dom(dpα) = υλ+m+1 if n = 0, simultaneously by recursion on lτ (β), where τ is the
resolving sequence for β in λ -Tα-representation, extending Definition 3.37. The clauses extending the definition
of κα are as follows.

1. κα0 := 0,

2. καβ := καγ + dpα(γ) + καδ for β =NF γ + δ.

dpα is defined as follows, using ν as already defined on λ -TS.

1. dp(υξ) := 0 for all ξ ∈ Ord.

2. dpα(0) := 0, dpα(1) := 0, and dpα(αn) := 0 in case of α 6= (),

3. dpα(β) := dpα(δ) if β =NF γ + δ,

4. dpα(β) := dpα′(β) if α 6= () for β ∈ P ∩ (1, αn) where α = α′
_
αn,

5. for β ∈ P>αn \ E let γ := (1/αn) · β and log(γ) =ANF γ1 + . . .+ γm and set

dpα(β) := καγ1
+ dpα(γ1) + . . .+ καγm + dpα(γm),

6. for β ∈ E>αn let γ := (υλ+1, . . . , υλ+m)_(α1, . . . , αn, β), and define

dpα(β) := νγ
µαnβ

+ κγ
λαnβ

+ dpγ(λαnβ ).

Definition 3.44 (cf. 4.4 of [17]) Let α ∈ λ -RS be of the form α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) 6= () and
set α0 := 1 + υλ+m. We define the local function να on [0, µαn ], extending Definition 3.37 and setting α := o(α),
by

1. να0 := α,

2. ναβ := ναγ + κα
%αnγ

+ dpα(%αnγ ) + χ̌αn(γ) · α if β = γ + 1,

3. ναβ := ναγ + κα
%αnγ

+ dpα(%αnγ ) + ναδ if β =NF γ + δ ∈ Lim.

Remark 3.45 In Corollary 3.81 we will see that the image of να indeed consists of multiples of α and that
infinite additive principal numbers in its domain are mapped to additive principal numbers greater than α. It is
not obvious, but a crucial property of the indicator function χ, that clause 2 of the above definition also yields a
multiple of α if χαn(γ) = 1.

It is easy to see that the properties of κ-, dp-, and ν-functions established in Section 4 of both [17] and [59]
extend as expected to the functions defined above. We essentially only need estimates of components in the
interior of υ-segments. Of particular importance are monotonicity and continuity of κ- and ν-functions (Corollary
3.47) and the verification of agreement on the common domain with the definitions given in [17] (Theorem 3.48).

Lemma 3.46 (cf. 4.6 of [59]) Let α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) ∈ λ -RS for the maximal such m < ω,
and set α0 := 1 + υλ+m.

1. Let γ ∈ dom(κα) ∩ P, γ 6∈ Im(υ). If γ =MNF γ1 · . . . · γk ≥ αn, setting γ′ := (1/γ1) · γ, we have

(καγ + dpα(γ)) · ω =

{
o(α) · γ′ · ω if γ1 = αn

o(α_γ · ω) otherwise.

If γ < αn we have (καγ + dpα(γ)) · ω < o(α).

2. For γ ∈ dom(κα)− (E ∪ {0}) we have
dpα(γ) < καγ .
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3. For γ ∈ dom(dpα) ∩ E>αn such that µγ < γ we have

dpα(γ) < o(α_γ) · µγ · ω.

4. For γ ∈ dom(κα) ∩ E>αn , γ 6∈ Im(υ), we have

καγ · ω ≤ dpα(γ) and dpα(γ) · ω =NF o(hω(α_γ)) · ω.

5. Let γ ∈ dom(να) ∩ P, γ =MNF γ1 · . . . · γk 6∈ Im(υ). We have

(ναγ + κα%αnγ + dpα(%αnγ )) · ω =


o(α) · γ · ω if γ1 ≤ αn
o(hω(α_γ)) · ω if γ ∈ E>αn

o(α_γ) · ω otherwise.

Proof. The lemma is shown by simultaneous induction on lτ (γ), where τ is the resolving sequence for γ, over all
parts. For a detailed proof see [59]. 2

Corollary 3.47 (cf. 4.7 of [59]) Let α ∈ RS. We have

1. καγ·ω = (καγ + dpα(γ)) · ω for γ ∈ P such that γ · ω ∈ dom(κα).

2. ναγ·ω = (ναγ + κα
%αnγ

+ dpα(%αnγ )) · ω for γ ∈ P such that γ · ω ∈ dom(να).

κα and for α 6= () also να are strictly monotonically increasing and continuous.

Theorem 3.48 (cf. 4.8 of [59]) Let α = (υλ+1, . . . , υλ+m)_(α1, . . . , αn) ∈ λ -RS for the maximal such m < ω,
and set α0 := 1 + υλ+m. For β ∈ P let δ := (1/β̄) · β, so that β =NF β̄ · δ if β 6∈M.

1. For all β ∈ dom(κα) ∩ P>αn , β 6∈ Im(υ), we have

καβ = καβ̄+1 · δ.

2. If α 6= (), then for all β ∈ dom(να) ∩ P>αn , β 6∈ Im(υ), we have

ναβ = ναβ̄+1 · δ.

The definitions of κ, ν, and dp extend the definitions given in [17] and [59].

For the following estimates recall Definition 3.30. Note that these estimates confirm that our relativized
systems Tτ just suffice to contain relative connectivity components that occur between elements of Im(υ).

Lemma 3.49 (cf. 4.9 of [59]) Let α = (α1, . . . , αn) ∈ RS, n > 0.

1. For all β such that α_β ∈ TS and β 6∈ Im(υ) we have

o(α_β) < o(α) · α̂n.

2. For all γ such that α_γ ∈ RS and γ 6∈ Im(υ) we have

o(hω(α_γ)) < o(α_γ) · γ̂.

Corollary 3.50 (cf. 4.10 of [59]) For all α_γ ∈ RS such that γ 6∈ Im(υ) the ordinal o(α_γ) · γ̂ is a strict
upper bound of

Im(κα
_γ), Im(να

_γ), dpα(γ), and να
_γ

µγ + κα
_γ

λγ
+ dpα_γ(λγ).
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Proof. This directly follows from Lemmas 3.46 and 3.49. 2

In order to formulate the assignment of tracking chains to ordinals in Subsection 3.5 we need to introduce a
suitable notion of tracking sequence relative to a given context, as we did in [17]. We first introduce an evaluation
function for relativized tracking sequences.

Definition 3.51 (cf. 4.13 of [17]) Let α = (α1, . . . , αn) ∈ RS where n > 0. We define

TSα := {γ ∈ TSαn | γ1 ≤ λαn−1
αn }

and for γ_β ∈ TSα

oα (γ_β) :=

{
καβ if γ = ()

να
_γ

β otherwise.

For convenience we identify TS() with TS and o() with o.

Remark. Note that this is well-defined thanks to part c) of Lemma 3.14. Notice also that TSα is a <lex-initial
segment of TSαn and that in the case αn ∈ Im(υ) the sets TSα and TSαn coincide, since γ ∈ TSαn implies that
γ1 < α∞n . If αn ∈ Im(υ), the evaluation functions oα and o agree. We have the following

Lemma 3.52 (cf. 4.14 of [17]) Let α = (α1, . . . , αn) ∈ RS where n > 0 and αn 6∈ Im(υ). Let λ1 := mc(λαn),
and whenever λi is defined and λi ∈ E>λi−1 (setting λ0 := αn), let λi+1 := µλi . If we denote the resulting vector
by (λ1, . . . , λk) =: λ then TSα is the initial segment of TSαn with <lex-maximum λ. We have

oα(λ) = mc(καλαn + dpα(λαn)).

Proof. The proof is by evaluation of mc(καλαn + dpα(λαn)) using Lemmas 3.46, 3.49, and Corollary 3.50. 2

The analogue to Lemma 3.36 is as follows. Notice that we have to be careful regarding multiples of indices
versus their evaluations.

Lemma 3.53 (cf. 4.15 of [17]) Let α and γ_β ∈ TSα be as in the above definition and set α := o(α).

1. We have
tsαn(αn · ((1/α) · oα(γ_β))) = γ_β.

2. For δ ∈ P ∩ [αn, α
∞
n ) such that tsαn(δ) ∈ TSα we have

oα(tsαn(δ)) = α · ((1/αn) · δ).

3. If αn 6∈ Im(υ), setting λ := αn · ((1/α) ·mc(καλαn + dpα(λαn))) we have

tsαn(λ) = λ ∈ TSα

for λ as defined in Lemma 3.52, and the mapping tsαn is a <-<lex-order isomorphism of

{δ ∈ P ∩ [αn, α
∞
n ) | tsαn(δ) ∈ TSα} = [αn, λ] ∩ P

with TSα.

4. If αn ∈ Im(υ), the mapping tsαn is a <-<lex-order isomorphism of P ∩ [αn, α
∞
n ) with TSα.

Proof. Once the first claim of the lemma is shown by induction along <lex on TSα, the remaining claims follow
using Lemmas 3.22 and 3.52. In proving the first claim for γ_β ∈ TSα, say γ = (γ1, . . . , γm) where m ≥ 0, we
proceed in analogy with the course of proof of Lemma 3.36 (Theorem 3.20 of [59]), replacing α with α_γ, αn
with γm (setting γ0 := αn), and α with γ := αn · ((1/α) · o(γ)) in the case m > 0, where by the i.h. we have
tsαn(γ) = γ. 2
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3.4 Extending the concept of tracking chains

Every additive principal number α inR2 can be described uniquely by a tracking sequence in the way we explained
at the beginning of this Section, cf. (1). Tracking chains, introduced first in Section 5 of [17], are sequeces of
tracking sequences in the sense that each of these sequences starts with a κ-index and then possibly continues
with ν-indices. However, these κ- and ν-indices do not need to be (infinite) additive principal numbers as is
the case with tracking sequences. From the second sequence on the κ-indices may have to be relativized to the
local connectivity component specified by the preceding sequences. κ-indices specify the (relativized local) ≤1-
component, while ν-indices of suitably relativized ν-functions describe the selection of the nested ≤2-components.
Extending the address space from the set of tracking sequences to the set of tracking chains allows us to describe
all ordinals uniquely in terms of indices of nested ≤i-components. Characterizing this general address space for
ordinals in terms of conditions on the indices of nested ≤i-components is unfortunately more complicated than
expected.

Before providing the formal definitions determining the class TC of tracking chains for R2, we mention two
simple examples for tracking chains. First, as mentioned above, the tracking chain of an additive principal number
α is (α), where α := ts(α) is the tracking sequence of α. Second, for an ordinal β = κβ1 + . . .+ κβn for suitable
indices β1 > . . . > βn has the tracking chain ((β1), . . . , (βn)). For β below ε0 the conditions on the βi are simply
β1 < ε0 and 0 < βi+1 ≤ logend(βi) for i = 1, . . . , n− 1, as shown in [9].

Strictly speaking, ordinals greater than υ1 drop out of the usual 2-dimensional format of tracking chains for
ordinals below 1∞ = υ1 as introduced in [17]. While a suitable address space for Rω would require a bookkeeping
formalism handling ω × ω-matrices of ordinals all but finitely many entries of which are left blank and in which
addresses for ordinals below υ1 would be represented in an equivalent but different way, as long as we stay in R2,
we can extend the address space TC of tracking chains without too many complications.

As we will see, ordinals υλ where λ ∈ Lim have υλ+1-many υλ-≤1-minimal successors. We will denote the
ordinal υλ by the chain ((υλ)), its least <2-successor υλ · 2 by ((υλ · 2)), and the largest υλ-≤1-minimal ordinal
υλ+1 by ((υλ+1)). The least <2-successor of υ2 above υλ is denoted by ((υλ + υ2)). We will denote the ordinal
υω2+2, which we considered in the introduction in the context of R3, simply by ((υω2+1, υω2+2)).

Note that we lose a nice property of the original tracking chains: Namely that tracking chains of all <2-
predecessors of an ordinal occur as initial chains of its tracking chain. However, in the presence of infinite
<2-chains this property cannot be kept anyway.

We are now going to extend Definition 5.1 of [17] to a system of tracking chains for all of R2. The first sequence
of a generalized tracking chain α will determine the υ-segment in which the ordinal with address α is located.
This will be called υseg(α), the υ-segment of α. For better accessiblity we are going to split up the definition of
the class TC of tracking chains for all of R2 into several steps, as compared to the orginal definition in [17]. We
begin with templates for tracking chains, which we call index chains, and some useful general terminology.

Definition 3.54 (Index chains, their domains, associated and initial chains)

1. An index chain is a sequence α = (α1, . . . ,αn), n ∈ (0, ω), of ordinal vectors αi = (αi,1, . . . , αi,mi) with
mi ∈ (0, ω) for 1 ≤ i ≤ n.

2. We define dom(α) to be the set of all index pairs of α, that is

dom(α) := {(i, j) | 1 ≤ i ≤ n& 1 ≤ j ≤ mi}.

3. The vector τ = (τ 1, . . . , τn) defined by τi,j := end(αi,j) for (i, j) ∈ dom(α) (that is, τi,j is the least additive
component of αi,j) is called the chain associated with α.

4. The initial chains α�i,j of α, where (i, j) ∈ dom(α), are

α�i,j := ((α1,1, . . . , α1,m1
), . . . , (αi−1,1, . . . , αi−1,mi−1

), (αi,1, . . . , αi,j)).

By α�i we abbreviate α�i,mi. For convenience we set α�i,0 := () for i = 0, 1 and α�i+1,0 := α�i,mi−1 for
1 ≤ i < n. Initial chains of τ are defined in the same way.

Next we impose conditions familiar from tracking sequences, cf. definitions 3.16, 3.17, and 3.18, in order to
introduce a notion of regularity with respect to ν-indices.
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Definition 3.55 Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be an index chain with
associated chain τ . We call α a ν-regular index chain if for every i ∈ {1, . . . , n} such that mi > 1

τi,1 < . . . < τi,mi−1

where τi,j ∈ E and
αi,j+1 ≤ µτi,j

for j = 1, . . . ,mi − 1.

For ν-regular index chains the following definition becomes meaningful, which allows us to introduce a notion
of υ-segmentation of such index chains.

Definition 3.56 (cf. Definition 3.23) For a ν-regular index chain α = (α1, . . . ,αn) let λ ∈ Lim0 be maximal
such that υλ ≤ α1,1 and t < ω be maximal such that α1 is of the form

α1 = (υλ+1, . . . , υλ+t, γ1, . . . , γl),

hence γ1 < υλ+t+1 if l > 0. Then (λ, t) indicates the υ-segment of α, υseg(α) := (λ, t).

Definition 3.57 Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be a ν-regular index chain
with associated chain τ and set (λ, t) := υseg(α). We say that α is υ-segmented if the following two conditions
hold.

1. α1,1 ∈ [υλ, υλ+1], where
α1,1 = υλ implies n = mn = 1,

and unless α = ((0)), all indices αi,j are nonzero.

2. The sequences
(υseg(αi,1))2≤i≤n and (υseg(τi,1))2≤i≤n

are ≤lex-weakly decreasing with upper bound (λ, t).

Definition 3.58 Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be an υ-segmented ν-regular
index chain with associated chain τ and set (λ, t) := υseg(α). Let s1 ∈ {1, . . . , n} be minimal such that

τs1,1 < υλ

if that exists, in which case we further let s1 < . . . < sp ≤ n indicate all indices i ≥ s1 where υseg(τi,1) strictly
decreases, hence

υseg(τsj−1,1) >lex υseg(τsj ,1)

for j = 2, . . . , p, otherwise we set p := 0 and s0 := 1. Let

(λj , tj) := υseg(τsj ,1)

for j = 1, . . . , p indicate the corresponding υ-segments and set for convenience (λ0, t0) := (λ, t). We call

1. p the segmentation depth,

2. (s1, . . . , sp) the segmentation signature, and

3. (λi, ti)0≤i≤p the sequence of υ-segments

of α.

Note that it is very well possible to have p > 0 and s1 = 1, a situation that occurs when α1,1 > υλ while
τ1,1 < υλ where λ ∈ Lim.

The notion of unit defined next allows us to trace back the greatest <2-predecessor of an ordinal with tracking
chain an initial chain α�i,1, 1 ≤ i ≤ n, of α. It determines the setting of relativization (reference sequence) of the
relativized κ-function applicable in the ≤2-component rooted in that greatest <2-predecessor of the ordinal with
tracking chain α�i,1.
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Definition 3.59 (Units) Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be an υ-segmented
ν-regular index chain with associated chain τ , segmentation depth p, segmentation signature (s1, . . . , sp), and
sequence of υ-segments (λi, ti)0≤i≤p. The i-th unit τ?i of α and its index pair i? for 1 ≤ i ≤ n is defined as
follows.

i?, τ?i :=


(l, j), τl,j if <lex-max. (l, j) ∈ dom(α) exists s.t. (l, j) <lex (i, 1), j < ml and τl,j ≤ τi,1
(sj , 0), 1 + υλj+tj if otherwise max. j ∈ {1, . . . , p} exists s.t. sj ≤ i

(1, 0), 1 + υλ otherwise.

For technical convenience we set τi,0 := τ?i for i = 1, . . . , n.

Note that the definition of τi,0 deviates from Definition 5.1 of [17] but is conceptually more appropriate.
Clearly, for j = 1, . . . , p we have (sj)

? = (sj , 0) by definition. Note further that, unless α1,1 = 0, for i = 1, . . . , n,
by definition we have

i? <lex (i, 1), τ?i ≤ τi,1, and υseg(τi,1) = υseg(τ?i ).

For α = ((1)), i.e. α1,1 = 1, we have τ?1 = 1, and for α = ((υλ)) where λ ∈ Lim we have τ?1 = υλ.
The more general notion of base also considers greatest <2-predecessors of ordinals with tracking chain α�i,j

where j ≥ 1 of a tracking chain α. In the case j > 1 the base is given by τi,j−1, so the next definition simply
introduces a more convenient terminology to name bases.

Definition 3.60 (Bases) Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be an υ-segmented
ν-regular index chain with associated chain τ . For (i, j) ∈ dom(α) we define the index pair (i, j)′ by i? if j = 1
and by (i, j − 1) otherwise. The base τ ′i,j of τi,j in α is defined by

τ ′i,j :=

{
τ?i if j = 1

τi,j−1 if j > 1.

For 1 ≤ i ≤ n we define the i-th maximal base τ ′
i of α by

τ ′i := τ ′i,mi .

With the above preparations we can determine how many α-≤1-minimal <1-successors an ordinal α represented
by tracking chain α = (α1, . . . ,αn) has. This type of condition also applies to the initial chains α�i,1, 1 ≤ i ≤ n.
We call these upper bounds on the number of immediate <1-successors the i-th critical indices. The formal
definition is as follows.

Definition 3.61 (Critical κ-indices) Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be
an υ-segmented ν-regular index chain with associated chain τ . We define the i-th critical index of α, written
as ρi(α), in short as ρi if no confusion is likely, by

ρi :=



log ((1/τ?i ) · τi,1) + 1 if mi = 1

%
τ ′i
τi,mi

+ τ ′i if mi > 1 & τi,mi < µτ ′i & χτ
′
i (τi,mi) = 0

%
τ ′i
τi,mi

+ 1 if mi > 1 & τi,mi < µτ ′i & χτ
′
i (τi,mi) = 1

λτ ′i + 1 otherwise.

Note that α < ρi implies that α ≤ τi,1 if mi = 1, and α ≤ λτi,mi−1
if mi > 1, since according to part b) of

Lemma 3.14 we have ρi ≤ λτ ′i + 1 where τ ′i = τi,mi−1. Note that the second clause is not a successor ordinal
since we are approaching an ordinal that should be indexed by a ν-index and therefore need to avoid ambiguity.
This preference of ν-indices over κ-indices whenever possible also motivates the second part of part 2 in the
following definition, whereas part 1 is a necessity: If τ?i = τi,1 then we must have mi = 1 since there do not exist
<1-sucessors of successor-<2-successors (and hence we also must have i = n), cf. Lemma 3.2.

Definition 3.62 (κ-regularity) Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be an
υ-segmented ν-regular index chain with associated chain τ . α is called κ-regular if the following conditions hold.
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1. For all i ∈ {1, . . . , n} such that mi > 1

τ?i < τi,1.

2. For any i ∈ {1, . . . , n− 1}
αi+1,1 < ρi,

and in case of τ ′i < τi,mi ∈ E
αi+1,1 6= τi,mi .

In short, such α is called a κνυ-regular index chain.

Note that the class of κνυ-regular index chains is closed under non-empty initial chains. The following lemma
is technical, but an important property of κνυ-regular index chains. Essentially, this was shown in part b) of
Lemma 5.8 (using Lemma 5.7) of [17], but we provide a new proof to enhance clarity.

Lemma 3.63 (cf. 5.7 and 5.8 of [17]) Let α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n, be
a κνυ-regular index chain with associated chain τ . For every i, 1 ≤ i ≤ n, we have

τi,1 ≤ λτ?i ,

provided that τ?i > 1.

Proof. We may assume that i = n and mn = 1 since otherwise we can simply truncate α to α�i,1. Suppose
that τ?n > 1. We consider cases according to Definition 3.59. Let p, s1, . . . , sp, and (λl + tl)0≤l≤p be according to
Definition 3.58.

Case 1: n? = (j, k) ∈ dom(α). Then we have j < n and k < mj .
Subcase 1.1: k + 1 < mj . Then τn,1 < τj,k+1 ≤ µτj,k and τj,k+1 ∈ E>τj,k . By part c) of Lemma 3.14 we have

τj,k+1 ≤ λτj,k .

Subcase 1.2: k + 1 = mj . We have τj+1,1 < ρj , and since ρj ≤ λτj,k + 1 by part b) of Lemma 3.14, we have

τj+1,1 ≤ λτj,k .

Subcase 1.2.1: min{l ∈ (j, n) | ml > 1} exists. Then we have

τn,1 < τl,1 ≤ . . . ≤ τj+1,1 ≤ λτj,k .

Subcase 1.2.2: Otherwise. Then we have

τn,1 ≤ . . . ≤ τj+1,1 ≤ λτj,k .

Case 2: τ?n = υλp+tp where p > 0 and λp + tp > 0 and n? = (sp, 0). Then according to the definition we have

τn,1 ∈ [υλp+tp , υλp+tp+1).

Case 3: τ?n = υλ where n? = (1, 0) and λ ∈ Lim. Then according to the definition we have

τn,1 ∈ [υλ, υλ+1).

Regarding cases 2 and 3, note that λυι = υι+1 for all ι > 0. 2

Next we consider stepwise (maximal) extension of κνυ-regular index chains and show that the class of such
index chains is closed under maximal extension. Index chains of the form ((υλ+1, . . . , υλ+m)), which in principle
could be maximally extended infinitely many times, are excluded from this extension procedure as they do not
play any role in the upcoming definition of tracking chains. For clarification, this notion of maximal extension does
not change the local ≤i-component it originates from. In particular, it does not jump from a local ≤2-component
indexed by a submaximal ν-index to another ≤2-component indexed by a larger ν-index in the same domain.
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Definition 3.64 (cf. 5.2 of [17]) Let α be a κνυ-regular index chain with components αi = (αi,1, . . . , αi,mi)
for 1 ≤ i ≤ n and associated chain τ . The extension index for α is defined via the following cases, setting
τ := τn,mn and τ ′ := τ ′n:

0. τ ′ < τ ∈ Im(υ): Then an extension index for α is not defined.

1. mn = 1: We consider three subcases:

1.1. τ ′ = τ : Then α is already maximal. An extension index for α does not exist.

1.2. τ ′ < τ ∈ E: Then the extension index for α is αn,2 := µτ .

1.3. Otherwise: Then the extension index for α is αn+1,1 := log ((1/τ ′) · τ).

2. mn > 1: We consider three subcases.

2.1. τ = 1: Then α is already maximal. An extension index for α does not exist.

2.2. τ ′ < τ ∈ E: Here we consider another two subcases.

2.2.1. τ = µτ ′ < λτ ′ : Then the extension index for α is αn+1,1 := λτ ′ .
2.2.2. Otherwise: Then the extension index for α is αn,mn+1 := µτ .

2.3. Otherwise: We consider again two subcases.

2.3.1. τ < µτ ′ : Then the extension index for α is αn+1,1 := %τ
′

τ .
2.3.2. Otherwise: Then the extension index for α is αn+1,1 := λτ ′ .

If the extension index for α is defined, we denote the extension of α by this index by ec(α) and call this extended
chain the maximal 1-step extension of α. If the iteration of maximal 1-step extensions terminates after finitely
many steps, we call the resulting index chain the maxplus extension of α and denote it by me+(α).

Remark 3.65 In [17] we called the extension of α by the extension index the extension candidate for α since
it might fail to be a tracking chain. Here we keep definitions essentially compatible with earlier work but avoid
the notion of tracking chain since it has not been defined yet. In earlier work we called ec(α) the maximal 1-step
extension only if it was a tracking chain. The maxplus extension of the index chain α, me+(α), might fail to be
a tracking chain, cf. condition 2 of Definition 3.69.

Regarding the formulation of the new clause 0, note that the extension index of the chain α = ((υ1, υ1)) is
α2,1 = υ2

1 in the same way as Γ2
0 is the extension index of the chain ((Γ0,Γ0)), by an application of clause 2.3.1.

Lemma 3.66 The class of κνυ-regular index chains is closed under maximal 1-step extensions.

Proof. This immediately follows from the definitions. 2

The following lemma settles that maximal extension is a finite process. For an alternative, more general proof
of termination regarding arbitrary 1-step extensions, see Definition 5.3 and Lemma 5.4 of [17].

Lemma 3.67 The process of iterated maximal 1-step extensions always terminates, hence me+(α) always exists.

Proof. The lτ -measure applied from the second extension index on strictly decreases if we omit those applications
of the µ-operator (cases 1.2 and 2.2.2) that are directly followed by an application of the λ-operator (cases 2.2.1
and 2.3.2). Note that clause 2.3.1 can only be applied at the beginning of the process of maximal extension since
all ν-indices occurring as maximally extending indices are maximal, i.e. obtained by application of the µ-operator.
If the µ-operator is applied twice in a row during maximal extension, say first extending by µτ and next by µµτ ,
then according to the definition we have µτ = λτ . Otherwise the next maximally extending index after µτ is the
κ-index λτ . 2

Definition 3.68 Let α be a κνυ-regular index chain with components αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n and
associated chain τ . The <lex-greatest index pair (i, j) of α after which the elements of α fall onto the main line
starting at αi,j is called the critical main line index pair of α. The formal definition is as follows:

If there exists the <lex-maximal (i, j) ∈ dom(α) such that j < mi and αi,j+1 < µτi,j , and if (i, j) satisfies the
following conditions:
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1. χτi,j (τi,j+1) = 1 and

2. α is reached by maximal 1-step extensions starting from α�i,j+1,

then (i, j) is called the critical main line index pair of α, written as cml(α). Otherwise α does not possess a
critical main line index pair.

Definition 3.69 (cf. 5.1 of [17]) Let α be a κνυ-regular index chain with components αi = (αi,1, . . . , αi,mi)
for 1 ≤ i ≤ n and associated chain τ . α is called a tracking chain if the following conditions hold.

1. All non-empty proper initial chains α�i,j of α are tracking chains.

2. If mn = 1 and if α possesses a critical main line index pair cml(α) = (i, j), then

τn,1 6= τi,j .

By TC we denote the class of all tracking chains. For a tracking chain α with υseg(α) = (λ, t) we also write
α ∈ (λ, t) -TC or α ∈ λ -TC.

Useful notation:

1. By (i, j)+ we denote the immediate <lex-successor of (i, j) in dom(α) if that exists and (n+ 1, 1) otherwise.
For convenience we set (0, 0)+ := (1, 1) and (i, 0)+ := (i, 1) for i = 1, . . . , n.

2. Due to frequent future occurrences, we introduce the following notation for the modification of a tracking
chain’s last ordinal.

α[ξ] :=

 α�n−1
_(αn,1, . . . , αn,mn−1, ξ) if ξ > 0 or (n,mn) = (1, 1)

α�n−1
_(αn,1, . . . , αn,mn−1) if ξ = 0 and mn > 1

α�n−1 if ξ = 0, n > 1, and mn = 1.

Remark 3.70 Note that α[ξ] might not be a tracking chain. This has to be verified when this notation is used.
In the case ξ ∈ (0, αn,mn) the second part of condition 2 of Definition 3.62 has to be checked.

Definition 3.71 (Extension of tracking chains, me(α)) An extension of a tracking chain α is a tracking
chain of which α is an initial chain. A 1-step extension is an extension by exactly one additional index. The
maximal extension of α is denoted by me(α) and is the tracking chain obtained from α after the maximum
possible number of maximal 1-step extensions according to Definition 3.64.

Remark 3.72 Note that me+(α) and me(α), where α ∈ TC, either coincide or differ by one index extending
me(α) to me+(α) that does not satisfy condition 2 of Definition 3.69.

The following key lemma and proof cover Lemma 5.5 and Corollary 5.6 of [17]. For details see the alternative
formulation and proof of Lemma 5.5 of [17], however, the proof given below should suffice.

Lemma 3.73 (5.5 and 5.6 of [17]) Let α ∈ TC be maximal, i.e. α = me(α), with maximal index pair (n,mn)
and associated chain τ . Suppose that cml(α) =: (i, j) exists.

1. We have (i, j + 1) <lex (n,mn), ec(α) = me+(α) exists, and the extending index with index pair (n + 1, 1)
is a successor multiple of τi,j with (n+ 1)? = (i, j).

2. For (k, l) ∈ dom(α) such that (i, j+1) <lex (k, l) and l < mk if mk > 1 we have τi,j < τk,l and χτi,j (τk,l) = 1.

Proof. We explain first, why ec(α�i,j+1) always exists and always is a tracking chain (see the beginning of the
proof of Lemma 5.5 of [17]). If τi,j < τi,j+1 ∈ E, then case 2.2.2 of Definition 3.64 applies, and the extension is
clearly a tracking chain, otherwise case 2.3.1 applies. In this latter case α is extended by αi+1,1 = %

τi,j
τi,j+1 = τi,j ·λ

where λ := log(τi,j+1) is a limit ordinal, since τi,j+1 ∈ L≥τi,j due to the assumption χτi,j (τi,j+1) = 1. Hence
τi+1,1 > τi,j = τ ′i+1,1, implying that ec(α) ∈ TC. According to Lemma 3.5 we have χτi,j (τi,j+1) = χτi,j (λ) =
χτi,j (end(λ)) = 1 and hence also χτi,j (τi+1,1) = 1.

Now consider the subset J0 of dom(α) ∪ {(n+ 1, 1)} of (index pairs of) maximally extending indices starting
with the extending index of α�i,j+1, which is obtained from an application of either case 2.2.2 or case 2.3.1 as
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mentioned before. Observe that the process of maximal extension, shown to always terminate in Lemma 3.67,
can only end with a κ-index. We reduce J0 to the set J cancelling those (index pairs of) indices obtained
from applications of cases 1.2 and 2.2.2 that are immediately followed by applications of cases 2.2.1 or 2.3.2, i.e.
applications of the µ-operator immediately before application of the λ-operator, cf. the proof of Lemma 3.67. The
index pairs specified in part 2 then comprise the set J \ {(n+ 1, 1)}.

According to Lemma 3.5, part a), we have

χτi,j (τk,l) = χτi,j (τi,j+1) = 1

for every (k, l) ∈ J , cf. the proof of Lemma 5.5 of [17] and an alternative argumentation 6 in Subsection 2.2 of [60].
Note that in particular τi,j ≤ τk,l for all (k, l) ∈ J , where equality holds if and only if (k, l) = (n + 1, 1), which
settles part 2. Due to Lemma 3.5, part b), early termination, i.e. τ ′k,l = τk,l for (k, l) ∈ J \ {(n + 1, 1)}, is not
possible. For the index αn+1,1 maximally extending α to ec(α) = me+(α) we have end(αn+1,1) = τn+1,1 = τi,j ,
completing the proof of the lemma. 2

In the following definition we will provide a notion of reference sequence that will replace the notion of
characteristic sequence in Definition 5.3 of [17] and allow us to see the analogues of Lemmas 5.7, 5.8, and 5.10 of
[17] without reiterating similar arguments given in the respective proofs.

Definition 3.74 (cf. 5.1, 5.3 of [17]) Let α = (α1, . . . ,αn) ∈ TC, where αi = (αi,1, . . . , αi,mi), with associ-
ated chain τ , segmentation depth p, segmentation signature (s1, . . . , sp), and sequence of υ-segments (λi, ti)0≤i≤p
as in Definition 3.58.

1. For i ∈ {1, . . . , n} and j ∈ {0, . . . ,mi} the reference sequence rsi,j(α) of α at (i, j) is defined by

rsi,j(α) :=


rsi?(α)_σ if i? ∈ dom(α)

(υλl+1, . . . , υλl+tl)
_σ if i? = (sl, 0) for some l ∈ {1, . . . , p}

σ otherwise,

where σ := (τi,1, . . . , τi,j).

2. For (i, j) ∈ dom(α) the reference index pair refi,j(α) of α at (i, j) is

refi,j(α) :=

{
(i, j − 1) if (i, j − 1) ∈ dom(α) ∪ {(1, 0)}

refi−1,mi−1
(α) otherwise.

3. Setting (i0, j0) := refi,j(α), the evaluation reference sequence ersi,j(α) of α at (i, j) ∈ dom(α) is

ersi,j(α) :=

{
() if (i0, j0) = (1, 0)

rsi0,j0(α) otherwise.

For convenience we also define ers1,0(α) := ().

Lemma 3.75 (cf. 5.8 of [17]) In the situation of the above definition the following statements hold.

1. For all (i, j) ∈ dom(α) we have
rsi,j(α) = rsi?(α)_(τi,1, . . . , τi,j),

and if j > 1 we have rsi,j(α) = rsi,j−1(α)_τi,j.

2. For all i ∈ {1, . . . , n} and j ∈ {0, . . . ,mi − 1} we have

rsi,j(α) ∈ RS.

6Corrections to be made on p. 60 of [60]: α+ := me+(α′) = me+(α) in line 8, and in line -11 after defining bs′l+1, add: bsk+1 is

then defined to be bs′k+1
_σk+1 if σk+1 ∈ E>σ

′
k+1 , otherwise bsk+1 := bs′k+1.
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3. For (i, j) ∈ dom(α) let γ := rsi,j−1(α). Then we have

τi,j ∈
{

dom(κγ) if j = 1
dom(νγ) if j > 1.

4. For (i, j) ∈ dom(α) we have
ersi,j(α) ∈ RS.

Proof. Part 1 follows directly from the definition. Note that if i? = (j, 0) for some j, then j? = (j, 0).
According to Lemma 3.63 we have τi,1 ≤ λτ?i whenever τ?i > 1. If τ?i > 1 and τi,1 ∈ E>τ?i , part c) of Lemma

3.14 yields τi,1 ≤ µτ?i as well. If 1 ≤ j < mi we have τi,1 ∈ E>τ?i , so proceeding from i = 1 up to i = n we obtain
part 2.

Parts 3 and 4 then readily follow. 2

The evaluation reference sequence γ := ersi,j(α) for (i, j) ∈ dom(α) is defined to be the sequence in RS that
matches the correct setting of relativization needed to evaluate the index αi,j in terms of κγ (if j = 1) or νγ
(if j > 1), as intended in the definition of tracking chains. In order to have the index αi,j in the domain of the
corresponding κ- or ν-function, we have defined the notion of reference index pair refi,j(α). Note that we will
make use of the global κ-function where possible, cf. Definition 3.37. The well-definedness of τ̃i,j and α̃i,j in part
1 of the following definition is warranted by κ- and ν-regularity, see Definitions 3.61, 3.62, and 3.55.

Definition 3.76 (cf. 5.9 of [17]) Let α = (α1, . . . ,αn) ∈ TC, where αi = (αi,1, . . . , αi,mi), with associated
chain τ .

1. The evaluations τ̃i,j and α̃i,j for (i, j) ∈ dom(α) are defined as follows, setting ς := ersi,j(α).

τ̃i,1 := κςτi,1 , α̃i,1 := κςαi,1 if j = 1,

τ̃i,j := νςτi,j , α̃i,j := νςαi,j if j > 1.

For i ∈ {1, . . . , n}, setting i? =: (k, l) we define τ̃k,l := τ?i in case of l = 0. For convenience we define
τ̃i,0 := τ̃i? for i = 1, . . . , n.

2. The initial values {oi,j(α)|(i, j) ∈ dom(α)} of α are defined, setting for convenience m0 := 0, o0,0(α) := 0,
and o1,0(α) := 0, for i = 1, . . . , n by

oi,1(α) := oi−1,mi−1(α) + α̃i,1

and
oi,j+1(α) := oi,j(α) + (−τ̃i,j + α̃i,j+1) for 1 ≤ j < mi.

We define the value of α by o(α) := on,mn(α) which is the terminal initial value of α. For α ∈ Ord and
α ∈ TC such that α = o(α) we call α a tracking chain for α.

Remark 3.77 ([17]) The correction −τ̃i,j in the above definition avoids double summation: Consider the easy
example of the chain ((ε0, 1)) which codes ε0 · 2. Notice that −τ̃i,j + α̃i,j+1 is always a non-zero multiple of τ̃i,j.
We clearly have oi,j(α) = o(α�(i,j)).

The sequences given by rsi,j(α) directly provide the (possibly pruned) tracking sequences required when
evaluating indices of the associated chain τ in their proper setting of relativization, as specified in the following
lemma.

Lemma 3.78 (cf. Lemma 5.10 of [17]) In the situation of Definition 3.76,

1. τ̃i,1 = κς
?

τi,1 where ς? := rsi?(α),

2. ts(τ̃i,j) = rsi,j(α) for (i, j) ∈ dom(α) such that τi,1 ∈ E>τ?i (if τ?i > 1) and τi,j > 1 (if j > 1), and

3. (i, j) = (k, l) for (i, j), (k, l) ∈ dom(α) such that ts(τ̃i,j) = ts(τ̃k,l), τi,1 ∈ E>τ?i , τk,1 ∈ E>τ?k & τi,j , τk,l > 1.
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Proof. Part 1: Let us assume that α 6= ((0)), which is the only possibility for the trivial case τi,1 = 0 (where
i = 1). Lemma 3.63 warrants (in the nontrivial case where τ?i > 1) that τi,1 ∈ dom(κς

?

). Observe that in the
case i? = (j, 0) for some j we have κς

?

τi,1 = κτi,1 according to the definition of the global κ-function, Definition
3.37, and the fact that

κβ
_β

β = κββ whenver β_β ∈ RS.

Case 1: ersi,1(α) = (). This implies that i? ∈ dom(α) is impossible. Hence τ̃i,1 = κτi,1 , as observed above.

Case 2: ς := ersi,1(α) = rsk,l(α) where (k, l) = refi,1(α) ∈ dom(α).

Subcase 2.1: (r, s) := i? ∈ dom(α). Then we have (r, s) ≤lex (k, l) and are done if equality holds. Otherwise we
have τr,s ≤ τi,1 < τk,l and rsr,s(α) is a proper initial sequence of rsk,l(α), because (r, s) is <lex-maximal candidate
of a τu,v ≤ τi,1 where (u, v) ∈ dom(α), (u, v) <lex (i, 1), and v < mu. By definition we obtain τ̃i,1 = κςτi,1 = κς

?

τi,1 .

Subcase 2.2: i? = (j, 0) for some j. Then as observed above κς
?

τi,1 = κτi,1 .

2.2.1: j ≤ k. Then rsi?(α) is a proper initial sequence of rsk,l(α), say rsk,l(α) = rsi?(α)_(β1, . . . , βr) where
βr = τk,l and τi,1 < β1. As in case 2.1 it follows that τ̃i,1 = κςτi,1 = κς

?

τi,1 , which is equal to κτi,1 .

2.2.2: k < j. Then all components of ς are strictly greater than τi,1, and we obtain τ̃i,1 = κςτi,1 = κτi,1 . This
concludes the proof of part 1.

Part 2 follows for j = 1 from part 1 since in the case ς? := rsi?(α) 6= (), due to the assumption τi,1 ∈ E>τ?i ,
we have

κς
?

τi,1 = νς
?

τi,1 ,

so that according to Theorem 3.36 ts(τ̃i,1) = ς?_τi,1 = rsi,1(α). In the case j > 1, setting ς := ersi,j(α), which
is equal to rsi,j−1(α), we have τ̃i,j = νςτi,j , so that again according to Theorem 3.36 ts(τ̃i,j) = ς_τi,j = rsi,j(α).
Note that for τi,j = 1 we have τ̃i,j = o(ς) · 2, which is not in the domain of ts.

Part 3 is seen by induction on the length of ts(τ̃i,j), using part 2, according to which the assumption implies
that rsi,j(α) = rsk,l(α). Let (λq, tq)0≤q≤p be the sequence of υ-segments of α according to Definition 3.58, (λ0, t0)
being the υ-segment and p the segmentation depth of α. We consider the following cases.

Case 1: 1 < j ≤ mi and 1 < l ≤ mk. Then the i.h. yields (i, j − 1) = (k, l − 1) and we are done.

Case 2: 1 < j ≤ mi and l = 1. We show that this contradicts the assumption and is therefore impossible.

Subcase 2.1: k? ∈ dom(α). Then we have rsi,j−1(α) = rsk?(α), and the i.h. yields (i, j − 1) = k?. On the other
hand, by assumption we have τi,j = τk,1, which implies that (i, j) ≤lex k

?. Contradiction.

Subcase 2.2: k? 6∈ dom(α). In this situation k? = (1, 0) is not possible since according to the assumption, rsi,j(α)
and rsk,l(α) have the same lenth. Therefore, rsk,1(α) is of the form (υλr+1, . . . , υλr+tr , τk,1) where r ∈ {1, . . . , p},
λr + tr < λ0, τ?k = 1 + υλr+tr , and τk,1 ∈ E>τ?k , and hence rsi,j−1(α) = (υλr+1, . . . , υλr+tr ), which is impossible
since (i, j − 1) ∈ dom(α).

Case 3: j = 1 and 1 < l ≤ mk. We argue as in Case 2 to show that this case does not occur.

Case 4: j = 1 and l = 1. Then we have τi,1 = τk,1 and need to show that i = k.

Subcase 4.1: i?, k? ∈ dom(α). Then we have ts(τ̃i?) = ts(τ̃k?), and hence by the i.h. i? = k?. Let us assume to
the contrary that i < k. This implies (i, 1) ≤lex k

?, since due to κ-regularity of α there exists h ∈ {i, . . . , k − 1}
such that mh > 1, hence i? <lex k

? contradicting the i.h. In the same way we see that k < i cannot hold either.

Subcase 4.2: i?, k? 6∈ dom(α). In this case rsi,1(α) = rsk,1(α) is either equal to (τi,1) or of the form
(υλr+1, . . . , υλr+tr , τi,1) where r ∈ {1, . . . , p}. Assuming that i < k we would either have mi = . . . = mk−1 = 1,
which implies that τi,1 = . . . = τk,1 ∈ E>τi,1 , contradicting τi+1,1 < τi,1 by κ-regularity, or there would exist the
least h ∈ {i, . . . , k−1} such that mh > 1, so that we would obtain τk,1 = τi,1 ≥ . . . ≥ τh,1 and hence (h, 1) ≤lex k

?,
which implies k? ∈ dom(α) contradicting our assumption.

Subcase 4.3: i? ∈ dom(α) and k? 6∈ dom(α). Then k? = (1, 0) is impossible (as in Subcase 2.2), and rsi,1(α) is
of a form (υλr+1, . . . , υλr+tr , τi,1) where r ∈ {1, . . . , p}. Hence rsi?(α) = (υλr+1, . . . , υλr+tr ) while i? ∈ dom(α),
which is impossible as in Subcase 2.2.

Subcase 4.4: i? 6∈ dom(α) and k? ∈ dom(α). Then we argue as in Subcase 4.3. 2

Our intermediate goal is to establish an order isomorphism between tracking chains and their evaluations. In
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order to formulate estimates on the values of tracking chains that will allow us to reach that goal we introduce a
notion of depth of a tracking chain by application of the function dp introduced in Definition 3.43 in accordance
with the concept of tracking chains.

Definition 3.79 (cf. 5.11 of [17]) Let α = (α1, . . . ,αn) ∈ TC where αi = (αi,1, . . . , αi,mi) for i = 1, . . . , n,
with associated chain τ . dp(α) is defined as follows. Let τ := τn,mn and τ ′ := τ ′n. Let further τ̃ ′ be the evaluation
of τ ′. We set ς := rsn,mn−1(α) and define

dp(α) :=


dpς(τ) if mn = 1

κς%τ + dpς(%τ ) + χ̌τ
′
(τ) · τ̃ ′ if mn > 1 & τ < µτ ′

κςλτ′ + dpς(λτ ′) if mn > 1 & τ = µτ ′ .

Note that τ ′ is equal to τn,mn−1 if mn > 1 and τ?n if mn = 1, that τ̃ ′ is equal to τ̃n,mn−1 if mn > 1 and τ̃n? if
mn = 1, and that ς as defined above is equal to ts(τ̃ ′) unless τ?n = 1 + υλr for some r ≤ p (assuming (λi, ti)0≤i≤p
to be the sequence of υ-segments of α), in which case we have ς = (). ς is the setting of relativization for the
κ-function enumerating α-≤1-minimal ordinals, where α := o(α).

The technical Lemma 5.12 of [17] carries over for tracking chains α such that o(α) 6∈ Im(υ), which is just what
we need here. For reader’s convenience we present the content of Lemma 5.12 of [17] in a way that may be easier to
follow. Each part is formulated separately and basically contains an observation about the interplay of (maximal)
extensions of tracking chains and the auxiliary function dp that is useful in the context of order-isomorphisms of
tracking chains and ordinals, in particular in the next subsection, Lemma 3.89 and its corollary, where we provide
an assignment of tracking chains to ordinals. Basically, the consequences stated in the following lemma rest on
the strict monotonicity of κ- and ν-functions verified in Corollary 3.47.

Lemma 3.80 (cf. Lemma 5.12 of [17]) Assume the settings of Definition 3.79.

1. In case of mn > 1 and τ < µτ ′ we have

o(α) + dp(α) = o(α[αn,mn + 1]).

2. dp(α) = 0 if and only if there does not exist any proper extension of α.

3. If ec(α) exists, but ec(α) 6∈ TC, then

τn+1,1 = τcml(α) and end(dp(α)) = τ̃cml(α),

where τn+1,1 = end(αn+1,1) and ec(α) = α_(αn+1,1).

4. If α+ := ec(α) ∈ TC exists, there are the following three cases to consider.

(a) mn > 1, τ < µτ ′ , and χτ
′
(τ) = 0. Then

o(α+) + dp(α+) < o(α_(%τ + 1)) < α+ dp(α).

(b) mn > 1, τ < µτ ′ , and χτ
′
(τ) = 1. Then cml(me(α)) = (n,mn − 1), me+(α) 6∈ TC, and

o(α+) + dp(α+) = α+ dp(α).

(c) Otherwise. Then we again have

o(α+) + dp(α+) = α+ dp(α).

5. For a non-maximal 1-step extension α+ 6= ec(α) of α according to Definition 3.71, α+ is of a form either

α+ = α_(αn+1,1) or α+ = (α1, . . . ,αn−1,αn
_αn,mn+1),

and we set αn,mn+1 := 0 if α+ is of the former, and αn+1,1 := 0 if α+ is of the latter form. We define

α′ :=

{
α_(αn+1,1 + 1) if αn,mn+1 = 0

(α1, . . . ,αn−1,αn
_(αn,mn+1 + 1)) if αn+1,1 = 0,

and consider two cases.
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(a) α′ 6∈ TC: In this case we have mn > 1, τ = µτ ′ ∈ E ∩ (τ ′, λτ ′), αn,mn+1 = µτ , and

o(α+) + dp(α+) < o(α_(τ + 1)) ≤ α+ dp(α).

(b) α′ ∈ TC: Then we have

o(α+) + dp(α+) ≤ o(α′) ≤ α+ dp(α) and o(α+) + dp(α+) < α+ dp(α).

6. For any extension β of α we have

(a) o(β) + dp(β) ≤ α+ dp(α) and

(b) o(β) < α+ dp(α) if mn > 1 and τ < µτ ′ .

7. The ordinal o(me(α)) + dp(me(α)) is calculated in the following three scenarios.

(a) If mn > 1, τ < µτ ′ , and χτ
′
(τ) = 1 we have

o(me(α)) + dp(me(α)) = α+ dp(α) = o(α[αn,mn + 1]).

(b) If α does not possess a critical main line index pair cml(α) then dp(me(α)) = 0 and

o(me(α)) =


α+ dpς(τ) if mn = 1

α+ κς
%τ′τ

+ dpς(%
τ ′

τ ) if mn > 1 and τ < µτ ′

α+ κςλτ′ + dpς(λτ ′) otherwise,

which only deviates from α+ dp(α) in the case mn > 1 & τ < µτ ′ .

(c) If cml(α) =: (i, j) exists then

o(me(α)) + dp(me(α)) = α+ dp(α)

=


α+ dpς(τ) if mn = 1

α+ κς
%τ′τ

+ dpς(%
τ ′

τ ) if (n,mn) = (i, j + 1)

α+ κςλτ′ + dpς(λτ ′) otherwise

= o(α�(i,j+1)[αi,j+1 + 1]),

and
dp(me(α)) = κς

′

τi,j(ξ+1)

where, say, (r, kr) is the <lex-greatest index pair of me(α), ς ′ := rsr,kr−1(me(α)), and τi,j(ξ + 1) for
suitable ξ is the extending index of ec(me(α)).

Proof. Part 1 follows from the definition of the ν-functions. Part 2 is a direct consequence of the definitions of
tracking chain and dp. Part 3 is a consequence of Lemma 3.73, using Lemma 3.78, as carried out in detail in the
beginning of the proof of Lemma 5.12 of [17]. Part 4 follows from the definitions involved with the aid of the
monotonicity of κ- and ν-functions, and Lemma 3.73 for part 4(b). Part 5 is shown as in the proof of Lemma
5.12 of [17] using monotonicity of κ- and ν-functions. Part 6 is shown using the former parts regarding 1-step
extensions by induction on the number of 1-step extensions that β results from (rather than the induction along
<lex on cs′(α) as was stated in the proof of Lemma 5.12 of [17]). The first equality of part 7(a) follows from parts
6(a) and 4(b) and (c) where each extension step is chosen maximally. In part 7(c) the last stated equality was
already shown by part 1 of Lemma 3.73. Details of the verification of part 7 are given in the proof of Lemma 5.12
of [17]. 2

Corollary 3.81 Let α ∈ RS, α = (α1, . . . , αn) where n > 0, and α := o(α). The image of να consists of
multiples of α. For β ∈ dom(να) we have ναβ ∈ P>α if and only if β ∈ P>1.
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Proof. Part 7(c) of the above Lemma 3.80 shows that for the only case in question, that is, γ ∈ dom(να) such
that χαn(γ) = 1 the last summand of ναγ+1 is α, which is seen as follows. Let β := me((α_γ)) with <lex-greatest
index pair (r, kr) and set ς ′ := rsr,kr−1(β). The last summand of ναγ+1 is then κς

′

αn = κααn = α, since α ⊆ ς ′ by
Lemma 3.73. The second claim now readily follows. Note that να0 = α and να1 = α · 2. 2

Definition 3.82 (5.13 of [17]) We define a linear ordering <TC on TC as follows. Let α,β ∈ TC be given,
say, of the form

α = ((α1,1, . . . , α1,m1), . . . , (αn,1, . . . , αn,mn))

and
β = ((β1,1, . . . , β1,k1), . . . , (βl,1, . . . , βl,kl)).

Let (i, j) where 1 ≤ i ≤ min{n, l} and 1 ≤ j ≤ min{mi, ki} be <lex-maximal such that α�i,j = β�i,j, if that exists,
and (i, j) := (1, 0) otherwise.

α <TC β :⇔ (i, j) = (n,mn) 6= (l, kl)

∨ (j < min{mi, ki}& αi,j+1 < βi,j+1)

∨ (j = mi < ki & i < n& αi+1,1 < τi,j)

∨ (j = ki < mi & i < l & τi,j < βi+1,1)

∨ (j = ki = mi & i < min{n, l}& αi+1,1 < βi+1,1)

α ≤TC β :⇔ α <TC β ∨ α = β.

Note that in the above definition, the first disjunction term covers the case where α is a proper initial chain of
β, the second covers the situation where at (i, j + 1) the tracking chain β branches into a component with larger
ν-index, and the third, fourth, and fifth disjunction term cover the situation where β branches into a component
with larger κ-index. In this latter situation the third term applies to the scenario where the branching κ-index of
β is not given explicitly but rather by continuation with a ν-index, whereas in the fourth term the lower κ-index
of α is not given explicitly but by continuation with a ν-index.

Lemma 3.83 (5.14 of [17]) For all α,β ∈ TC we have

α <TC β ⇔ o(α) < o(β).

Proof. We first observe that (TC, <TC) is a linear ordering. The lemma then follows from the definitions of
<TC and o using the strict monotonicity of κ- and ν-functions, Corollary 3.47, and Lemma 3.80, by verifying that
o(α) < o(β) whenever α,β ∈ TC such that α <TC β. 2

Corollary 3.84 (cf. 5.15 of [17]) For any α ∈ Ord there exists at most one tracking chain for α. 2

3.5 Assignment of tracking chains to ordinals

We will obtain an order isomorphism between (Ord, <) and (TC, <TC) once we extend the inverse function tc
from Definition 6.1 of [17] to an assignment of tracking chains to all ordinals. With the following adaptation of
the notion of relative tracking sequence the extension of the assignment of tracking chains to ordinals from υ1 to
all ordinals can be formulated conveniently.

Definition 3.85 (cf. Definition 4.16 of [17]) Let τ = (τ1, . . . , τn) ∈ RS and β ∈ P, β ≤ κτλτn + dpτ (λτn) if
n > 0. Denote the υ-segment of β by (ξ, u) := υseg(β) and set τ0 := υξ+u =: τ̃0. Let k ∈ {0, . . . , n} be maximal
such that o(τ �k) ≤ β, and set τ̃k := o(τ �k) if k > 0. The tracking sequence ts[τ ](β) of β relative to the
reference sequence τ is defined by

ts[τ ](β) :=

{
tsτk(τk · (1/τ̃k) · β) if k > 0

tsτ0(β) if k = 0.



46 G. Wilken

Remark. ts[τ ] aims at a tracking sequence with starting point τ̃k instead of 0. In the above situation for ts[τ ](β)
to make sense, i.e. to be related to o(τ ), we should have β1 ≤ λ

τk−1
τk in case of k > 0, where β1 is the first element

of ts[τ ](β). It is easy to see (using Lemmas 3.14, 3.22, and 3.53) that this holds if k ∈ (0, n). However, in case of
k = n > 0 this holds if and only if β ≤ κτλτn + dpτ (λτn) as follows from Lemmas 3.52 and 3.53. Note that ts[()]
and ts are not equal.

Lemma 3.86 (cf. 4.17 of [17]) Let τ = (τ1, . . . , τn) ∈ RS and β, γ ∈ P such that β, γ ≤ κτλτn + dpτ (λτn) if
n > 0. Set τn+1 := λτn + 1 if n > 0 and τ1 := υξ+u+1 where (ξ, u) = υseg(β) otherwise.

a) With k as in the above definition we have

τk ≤ β1 < τk+1

where β1 is the first element of ts[τ ](β).

b) If β < γ then
ts[τ ](β) <lex ts[τ ](γ).

Proof. The lemma is proved by application of Lemmas 3.22 and 3.53, using part a) to show part b). 2

Recall part 4 of Lemma 3.75, according to which ersi,j(α) ∈ RS for all (i, j) ∈ dom(α) where α ∈ TC. The
assignment of tracking chains to ordinals given below is based on tracking sequences relativized to such evaluation
reference sequences.

Definition 3.87 (cf. 6.1 of [17]) For α ∈ Ord we define the tracking chain assigned to α, tc(α), by re-
cursion on the length of the additive decomposition of α. We define tc(0) := ((0)), and if α ∈ P we set
tc(α) := (ts(α)). Now suppose tc(α) = α = (α1, . . . ,αn) to be the tracking chain already assigned to some
α > 0, where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n, with associated chain τ , (λ, t) := υseg(α), and segmentation
parameters p, sl, (λl, tl) for l = 1, . . . , p as in Definition 3.58, and let β ∈ P, β ≤ end(α). For technical reasons,
we set αn+1,1 := 0 and mn+1 := 1. The definition of tc(α+ β), the tracking chain assigned to α+ β, requires the
following preparations.

• For (i, j) ∈ dom(α) let
(βi,j1 , . . . , βi,jri,j ) := ts[ersi,j(α)](β).

For the tracking chain of β (according to Definition 3.24) let

(β1, . . . , βr) := ts(β).

• Let (i0, j0), where 1 ≤ i0 ≤ n and 1 ≤ j0 < mi0 , be <lex-maximal with

αi0,j0+1 < µτi0,j0

if that exists, otherwise set (i0, j0) := (1, 0).

• Let (k0, l0) be either (1, 0) or satisfy 1 ≤ k0 ≤ n+ 1 and 1 ≤ l0 ≤ mk0
, so that (k0, l0) is <lex-minimal with

(i0, j0) ≤lex (k0, l0) and

1. for all k ∈ {k0, . . . , n} we have
αk+1,1 + βk,mk1 ≥ ρk

2. for all k ∈ {k0, . . . , n} and all l ∈ {1, . . . ,mk − 2} such that (k0, l0) <lex (k, l) we have

τk,l+1 + βk,l+1
1 > λτk,l .

Case 0: (k0, l0) = (1, 0). Then tc(α+ β) is defined by

((α1,1 + β1,1
1 , β1,1

2 , . . . , β1,1
r1,1)).

Case 1: (i0, j0) = (k0, l0) ∈ dom(α). Then we set (i, j) := (i0, j0 + 1) and consider three subcases:
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1.1: β < τ̃i0,j0 . Then tc(α+ β) is defined to be

α�i,j
_
(
%τi,j−1
τi,j + βi,j1 , βi,j2 , . . . , βi,jri,j

)
.

1.2: β = τ̃i0,j0 . Then tc(α+ β) is defined by
α�i,j[αi,j + 1].

1.3: β > τ̃i0,j0 . Then there is an r0 ∈ (0, r) such that βr0 = τi0,j0 = τi,j−1, and tc(α+ β) is defined by

α�i−1
_(αi,1, . . . , αi,j−1, αi,j + βr0+1, βr0+2, . . . , βr).

Case 2: (i0, j0) <lex (k0, l0). Then there are the following subcases:

2.1: k0 = n+ 1 and βn,mn1 = τn,mn ∈ E>τ ′n . Then β = τ̃n,mn , and tc(α+ β) is defined by

α�n−1
_(αn,1, . . . , αn,mn , 1).

2.2: k0 ≤ n, l0 ∈ {1, . . . ,mk0 − 2} and τk,l + βk,l1 ≤ λτk,l−1
for (k, l) := (k0, l0 + 1). Then we define tc(α+ β) by

α�k,l
_
(
τk,l + βk,l1 , βk,l2 , . . . , βk,lrk,l

)
,

provided this vector satisfies condition 2 of Definition 3.69, otherwise we have (i0, j0) ∈ dom(α), β = τ̃i0,j0 ,
and tc(α+ β) is defined as in case 1.2.

2.3: Otherwise. Then k0 > i0, l0 = 1, and αk+1,1 + βk,mk1 < ρk for k := k0 − 1, and tc(α+ β) is defined by

α�k
_
(
αk+1,1 + βk,mk1 , βk,mk2 , . . . , βk,mkrk,mk

)
,

provided this vector satisfies condition 2 of Definition 3.69, otherwise we have (i0, j0) ∈ dom(α), β = τ̃i0,j0 ,
and tc(α+ β) is defined as in case 1.2.

Remark 3.88 Note that compared to [17] we have changed indexing of the βi,j-sequences: βi,j here corresponds
to βi,j−1 in [17]. Regarding part 1 of the definition of (k0, l0), note that for 0 < k < n by definition of ers we
have ersk+1,1(α) = ersk,mk(α). Writing more intuitively ersk+1,1(α) instead of ersk,mk(α) would require to set
ersn+1,1(α) to ersn,mn(α).

Case 0 corresponds to the scenario in which adding β to α means to jump into a larger (υλ-)≤1-connectivity
component and used to be included in Case 1.3 in [17]. Since in our more general setting here we no longer
have τ̃1,0 = 0, as was the case in [17], we decided to cover this case separately. Note that in Case 0 we use the
tracking chain β1,1 = tsυξ+u(β) where (ξ, u) = υseg(β). Case 1.3 now solely covers the situation of jumping into
a larger (non-trivial) ≤2-connectivity component on the surrounding main line. In Case 1.3 we use ts(β) for the
assignment. Case 2.1 takes care of condition 2 of κ-regularity, Definition 3.62.

Lemma 3.89 (cf. 6.2 of [17]) Let α ∈ Ord.

a) tc(α) ∈ TC, i.e. tc(α) meets all conditions of Definition 3.69.

b) There exists exactly one tracking chain for α, namely tc(α) satisfies o(tc(α)) = α.

Proof. By adaptation of the proof of Lemma 6.2 of [17], including several corrections. Note that the proof in
[17] actually proceeds by induction on the length of the additive decomposition of α, rather than by induction on
α, as was stated there. The proof extensively utilizes Lemma 3.80 and the monotonicity of κ- and ν-functions.
The case α = 0 is trivial, and using Lemma 3.36 we see that the claims hold whenever α ∈ P. Now suppose the
claims have been shown for some α > 0 with assigned tracking chain tc(α) = α as in the definition and suppose
β ≤ end(α). We adopt the terminology of the previous definition and commence proving the inductive step for
α+ β by showing the following preparatory claims.

Claim 3.90 If (i0, j0) 6= (1, 0) and β ≤ τ̃i0,j0 then βi0,j0+1
1 ≤ τi0,j0 . Equality holds if and only if β = τ̃i0,j0 .



48 G. Wilken

In order to show the claim let us assume that (i0, j0) 6= (1, 0) and β ≤ τ̃i0,j0 . In the case βi0,j0+1
1 = τi0,j0

the assumption implies ri0,j0+1 = 1 and β = τ̃i0,j0 . On the other hand, in case of β = τ̃i0,j0 we clearly have
ts[ersi0,j0+1(α)](β) = (τi0,j0).

Now assume β < τ̃i0,j0 . Write σ = (σ1, . . . , σs) for the sequence ts(τ̃i0,j0), which is equal to the reference
sequence rsi0,j0(α), so that τ̃i0,j0 = o(σ) and τi0,j0 = σs. Let r < s be maximal such that σ̃r := o(σ�r) ≤ β. If
r > 0, setting β′ := σr · (1/σ̃r) · β, we have β′ ≤ β and, by Lemma 3.22,

βi0,j0+1 = tsσr (β′) <lex tsσr (τ̃i0,j0) = (σr+1, . . . , σs),

whence βi0,j0+1
1 < τi0,j0 . If r = 0 and hence β < σ̃1, let (ξ, u) := υseg(β), so that

βi0,j0+1 = tsυξ+u(β) <lex σ

and thus βi0,j0+1
1 < τi0,j0 , using again Lemma 3.22 if necessary. This concludes the proof of Claim 3.90. 2

Claim 3.91 If (i0, j0) 6= (1, 0) and χτi0,j0 (τi0,j0+1) = 1 then β ≤ τ̃i0,j0 implies (i0, j0) <lex (k0, l0).

For the proof of this claim assume (i0, j0) 6= (1, 0), χτi0,j0 (τi0,j0+1) = 1, β ≤ τ̃i0,j0 , and let (i, j) be the≤lex-maximal
index pair such that α�(i,j) is a common initial chain of α and γ := me(α�i0,j0+1), hence (i0, j0 + 1) ≤lex (i, j). By
Lemma 3.73 we know that ec(γ) and hence ec(α�(i,j)) exists. Note also that by part 2 of Lemma 3.73 we have
ersi0,j0+1(α) ⊆ ersi,j(α), which due to the assumption β ≤ τ̃i0,j0 entails βi,j = βi0,j0+1, and hence

βi,j1 ≤ τi0,j0

according to Claim 3.90. In order to derive a contradiction we now assume that (i0, j0) = (k0, l0) and discuss the
possible cases in the definition of ec(α�(i,j)). For convenience of notation we set τ := τi,j and τ ′ := τ ′i,j .

Case 1: j = 1. Then we havemi = 1 by the maximality of (i0, j0) and (i, j), hence i > i0 and (i0, j0+1) <lex (i, j).

Subcase 1.1: τ ′ < τ ∈ E. By part 2 of Lemma 3.73 and the assumption k0 = i0 < i we then have

τi0,j0 < τ = log((1/τ ′) · τ) < ρi ≤ αi+1,1 + βi,11 .

However, we have already seen that βi,11 ≤ τi0,j0 , and by part 2 of Definition 3.62 regarding κνυ-regularity of
tracking chains we have αi+1,1 < τ , whence αi+1,1 + βi,11 < ρi. Contradiction.

Subcase 1.2: Otherwise. Then by the maximality of (i, j) the index αi+1,1 is strictly less than log((1/τ ′) · τ),
which is the extending index of ec(α�(i,j)) and according to Lemma 3.73 a proper (non-zero) multiple of τi0,j0 . We
run into the same contradiction as in Subcase 1.1.

Case 2: j > 1. Then τ ′ = τi,j−1.

Subcase 2.1: τ ′ < τ ∈ E.

2.1.1: τ = µτ ′ < λτ ′ . Then (i0, j0 + 1) <lex (i, j), which implies (k0, l0) <lex (i, j − 1). The extending index of
ec(α�(i,j)) is then λτ ′ , a proper multiple of τi0,j0 . If j < mi we obtain the contradiction τ + βi,j1 ≤ λτ ′ , otherwise
we obtain the contradiction αi+1,1 + βi,j1 < ρi = λτ ′ + 1 in a similar fashion as in Case 1.

2.1.2: Otherwise. The extending index of ec(α�(i,j)) is then µτ , and mi = j. By part 2 of Definition 3.62, i.e.
κνυ-regularity of tracking chains, αi+1,1 6= τ . By the assumptions of this case and using Lemma 3.73 we have
τi0,j0 < τ . We first consider the case (i, j) = (i0, j0 + 1). Then αi+1,1 < τ and ρi = τ + 1. We obtain the
contradiction αi+1,1 + βi,j1 < ρi. Now assume (i0, j0 + 1) <lex (i, j). Again we have ρi = τ + 1, αi+1,1 < τ , and we
run into the same contradiction.

Subcase 2.2: Otherwise. Then again mi = j.

2.2.1: τ < µτ ′ . This can only occur if (i, j) = (i0, j0 + 1), thus τ ′ = τi0,j0 and τ = τi0,j0+1. The extending index
of ec(α�(i,j)) is (the κ-index) %τ

′

τ , a proper multiple of τi0,j0 , and ρi = %τ
′

τ + 1. We are then confronted with the
contradiction αi+1,1 + βi,j1 < ρi.

2.2.2: Otherwise, that is, τ = µτ ′ . This implies (i0, j0 + 1) <lex (i, j), and the extending index of ec(α�(i,j)) is λτ ′
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which again is a proper multiple of τi0,j0 . Thus αi+1,1 + βi,j1 ≤ λτ ′ < λτ ′ + 1 = ρi. Contradiction.

Our assumption (i0, j0) = (k0, l0) therefore cannot hold true, which concludes the proof of Claim 3.91. 2

We are now prepared to verify the lemma for each of the seven clauses of the assignment of tc(α + β) to α + β.
We check that tc(α + β) ∈ TC and make a first step to calculate its ordinal value o(tc(α + β)). However, a
uniform argument exploiting the careful choice of the index pair (k0, l0) will be given in the last part of this proof
to complete the treatment of the single clauses.

Case 0: (k0, l0) = (1, 0). Then (i0, j0) = (1, 0), hence all ν-indices of α are maximal, i.e. given by the µ-operator.
Letting (ξ, u) := υseg(β) and applying either Lemma 3.36 in the case u = 0 or Lemma 3.53 to the reference
sequence (υξ+1, . . . , υξ+u) if u > 0, according to part 7(b) of Lemma 3.80 we obtain

o(tc(α+ β)) = o(me(α�(1,1))) + β,

and will show later that this is equal to α+ β.

Case 1: (i0, j0) = (k0, l0) ∈ dom(α). Here we have αi0,j0+1 < µτi0,j0 . Let ς := ers(τi0,j0+1), which according to
Lemma 3.78 is equal to ts(τ̃i0,j0).

Subcase 1.1: β < τ̃i0,j0 . Then by Claim 3.90 βi0,j0+1
1 < τi0,j0 , and Claim 3.91 yields χτi0,j0 (τi0,j0+1) = 0, hence

tc(α+β) ∈ TC. Since αi0+1,1 +β
i0,mi0
1 ≥ ρi0 , we must have mi0 > j0 +1 and hence %τi0,j0τi0,j0+1 = τi0,j0+1. According

to part 7(b) of Lemma 3.80 and Lemmas 3.36 and 3.53 we have

o(tc(α+ β)) = o(α�(i0,j0+1)) + dpς(τi0,j0+1) + β

= o(me(α�(i0,j0+1))) + β.

It remains to be shown that this is equal to α+ β.

Subcase 1.2: β = τ̃i0,j0 . Again, by Claim 3.90 we have βi0,j0+1 = (τi0,j0), and by Claim 3.91 χτi0,j0 (τi0,j0+1) = 0.
tc(α+ β) ∈ TC is immediate. We compute similarly as above

o(tc(α+ β)) = o(α�(i0,j0+1)) + κς%τi0,j0+1
+ dpς(%τi0,j0+1

) + β

= o(me(α�(i0,j0+1))) + β,

and again it remains to be shown that this is equal to α+ β.

Subcase 1.3: β > τ̃i0,j0 . Making use of Lemma 3.80 we observe that

τ̃i0,j0 < β ≤ end(α) = end(α̃n,mn) < νςµτi0,j0
,

which, realizing that due to Lemma 3.36 ts(νςµτi0,j0
) = ς_µτi0,j0 , according to Lemma 3.22 implies

ς <lex ts(β) <lex ς
_µτi0,j0 ,

whence ς is a proper initial segment of ts(β). Thus there is an r0 ∈ (0, r) such that τi0,j0 = βr0 . We now see that
tc(α+ β) ∈ TC. We will apply Lemma 3.36 for the evaluation of ts(β), considering two cases.

1.3.1: χτi0,j0 (τi0,j0+1) = 0. Then by part 7(b) of Lemma 3.80 we have

o(tc(α+ β)) = o(me(α�(i0,j0+1))) + β.

1.3.2: χτi0,j0 (τi0,j0+1) = 1. Then by part 7(a) of Lemma 3.80 we have

o(tc(α+ β)) = o(α�(i0,j0+1)[αi0,j0+1 + 1]) + β

= o(me(α�(i0,j0+1))) + dp(me(α�(i0,j0+1))) + β.

We leave the task of showing that this is equal to α+ β for later.

Case 2: (i0, j0) <lex (k0, l0).
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Subcase 2.1: k0 = n+1 and βn,mn1 = τn,mn ∈ E>τ ′n . Since β ≤ τ̃n,mn we then have β = τ̃n,mn , and tc(α+β) ∈ TC

is clear. Since k0 = n+ 1 we have τn,mn < ρn, and realizing that −τ̃n,mn + ν
rsn,mn (α)
1 = τ̃n,mn we obtain

o(tc(α+ β)) = α+ β.

Subcase 2.2: k0 ≤ n, l0 ∈ {1, . . . ,mk0 − 2} and τk,l + βk,l1 ≤ λτk,l−1
for (k, l) := (k0, l0 + 1).

2.2.1: α�(k,l)
_
(
τk,l + βk,l1 , βk,l2 , . . . , βk,lrk,l

)
satisfies condition 2 of Definition 3.69 for tracking chains. Then this

vector defines tc(α+β) and is easily seen to be a tracking chain. Note that since τk,l = µτk,l−1
∈ E>τk,l−1 ∩λτk,l−1

and αk,l+1 = τk,l+1 = µτk,l we have α�k,l+1 <TC ec(α�k,l), implying that α�k,l+1 does not possess a critical main
line index pair. Part 7(b) of Lemma 3.80 therefore yields, setting ς := ersk,l+1(α),

o(me(α�k,l+1)) = o(α�k,l+1) + κςλτk,l
+ dpς(λτk,l).

Setting ς ′ := ersk,l(α), we now compute using similarly as in Case 0 either Lemma 3.36 or Lemma 3.53

o(tc(α+ β)) = o(α�k,l) + dpς′(τk,l) + β

= o(α�k,l) + νςτk,l+1
+ κςλτk,l

+ dpς(λτk,l) + β

= o(α�k,l+1) + κςλτk,l
+ dpς(λτk,l) + β

= o(me(α�k,l+1)) + β,

and leave the task of showing this to be equal to α+ β for later.

2.2.2: Otherwise. Then tc(α+β) = α�i,j[αi,j + 1] ∈ TC where (i, j) := (i0, j0 + 1). According to the assumptions
defining this case we have rk,l = 1, βk,l1 = τi0,j0 , τk,l+β

k,l
1 = λτk,l−1

, which is the extending index of ec(α�k,l) 6∈ TC,
and thus me(α�i,j) = α�k,l. Defining ς ′ and ς as in the previous subcase 2.2.1, setting ς0 := ersi,j(α), and noticing
that dpς′(λτk,l−1

) = 0, Lemmas 3.36, 3.53, and part 7(c) of Lemma 3.80 assure the computation

o(tc(α+ β)) = o(α�i,j) + κς0%τi,j
+ dpς0(%τi,j )

= o(α�k,l) + κς
′

λτk,l−1

= o(α�k,l) + dpς′(τk,l) + β

= o(α�k−1
_(αk,1, . . . , αk,l, µτk,l)) + κςλτk,l

+ dpς(λτk,l) + β

= o(me(α�k,l+1)) + β,

where the last equality holds, since the tracking chain α�k,l+1 = α�k−1
_(αk,1, . . . , αk,l, µτk,l) does not possess a

critical main line index pair, according to part 7(b) of Lemma 3.80. That this is equal to α + β will be shown
later.

Subcase 2.3: Otherwise. Then k0 > i0, l0 = 1, and αk+1,1 + βk,mk1 < ρk for k := k0 − 1.

2.3.1: The vector α�k
_
(
αk+1,1 + βk,mk1 , βk,mk2 , . . . , βk,mkrk,mk

)
satisfies condition 2 of Definition 3.69 for tracking

chains. Then tc(α + β) is defined by this vector and is easily seen to be a tracking chain, since we have already
handled Subcase 2.1. Let us first assume that k = n. Using Lemma 3.36 or 3.53 as before, we then have

o(tc(α+ β)) = α+ β.

Now we suppose k < n. We observe that α�k+1,1 does not possess a critical main line index pair since αk+1,1 <
ρk −· 1, and it is only possible to have mk > 1 and τk,mk < µτ ′k if (k,mk) = (i0, j0 + 1). Now Lemmas 3.36, 3.53,
and part 7(b) of 3.80 yield, setting ς := ersk,mk(α),

o(tc(α+ β)) = o(α�k+1,1) + dpς(τk+1,1) + β

= o(me(α�k+1,1)) + β,

which will be shown to be equal to α+ β.

2.3.2: Otherwise. Then tc(α + β) = α�i,j[αi,j + 1] ∈ TC where (i, j) := (i0, j0 + 1). In this final case we have
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rk,mk = 1, βk,mk = (τi,j−1), me(α�i,j) = α�k, and αk+1,1 + τi,j−1 = ρk−· 1 is the extending index of ec(α�k) 6∈ TC.
The assumption mk > 1 and τk,mk < µτ ′k would imply (k,mk) = (i, j), but since ec(α�k) 6∈ TC, this would
contradict Lemma 3.73, according to which ec(α�i,j) ∈ TC. We therefore either have ρk −· 1 = log((1/τ?k ) · τk,1)
with k > i in the case mk = 1, or we have ρk−· 1 = λτ ′k with τk,mk = µτ ′k in the case mk > 1. Let ς := ersk,mk(α).

αk+1,1 must be a (possibly zero in the case k = n) multiple of τi,j−1, which is seen as follows. Assume we had
0 < τk+1,1 < τi,j−1. Then k < n, and by part 6 of Lemma 3.80, since α is an extension of α�k+1,1,

o(α�k+1,1) ≤ α ≤ o(α�k+1,1) + dpς(τk+1,1)

and therefore by monotonicity of κς

τ̃k+1,1 = κςτk+1,1
≤ κςτk+1,1

+ dpς(τk+1,1) < κςτk+1,1+1 < κςτi,j−1
= τ̃i,j−1 = β,

so that either o(α�k+1,1) = α and end(α) = τ̃k+1,1 < β or o(α�k+1,1) < α and end(α) ≤ dpς(τk+1,1) < β,
contradicting the assumption β ≤ end(α).

We are now prepared for another twofold application of Lemma 3.80, first part 7(c), then part 7(b). In the
case k = n we are finished with the second equation, while otherwise we continue the computation as shown,
where again ς0 := ersi,j(α).

o(tc(α+ β)) = o(α�i,j) + κς0%τi,j
+ dpς0(%τi,j )

= o(α�k) + κςαk+1,1
+ dpς(αk+1,1) + β

= o(α�k+1,1) + dpς(τk+1,1) + β

= o(me(α�k+1,1)) + β

which in the case k < n will be shown below to be equal to α+ β.

We are going to show the equalities left open in the single cases. Notice that all cases where k0 = n + 1 are
finished already. We therefore assume k0 ≤ n from now on, whence βn,mn1 ≥ ρn. In the first step we show that

o(me(α)) + dp(me(α)) + β = α+ β. (2)

We have to consider three cases in each of which we use Lemma 3.80. Let ς := ersn,mn(α).

Case A: mn = 1. Then α ≤ o(me(α)) + dp(me(α)) = α+ dpς?(τn,1) according to part 7 of Lemma 3.80, where
ς? := rsn?(α) is equal to rsn,0(α) and hence agrees with Definition 3.79. Since ρn = log((1/τ ′n) · τn,1) + 1, we have

dpς?(τn,1) = κςlog((1/τ ′n)·τn,1) + dpς(log((1/τ ′n) · τn,1)).

By part b) of Lemma 3.86 the assumption β ≤ dpς?(τn,1) would imply βn,11 < log((1/τ ′n) · τn,1) + 1, which is not
the case.

Case B: mn > 1 and τn,mn < µτ ′n . This is only possible if (n,mn) = (i0, j0 + 1). We then have

α ≤ o(me(α)) + dp(me(α)) = α+ κς%τi0,j0+1
+ dpς(%τi0,j0+1

).

Here the assumption β ≤ κς%τi0,j0+1
+ dpς(%τi0,j0+1

) would entail the contradiction βi0,j0+1
1 < ρn.

Case C: Otherwise, i.e. mn > 1 and τn,mn = µτ ′n . Then we have

α ≤ o(me(α)) + dp(me(α)) = α+ κςλτ′n
+ dpς(λτ ′n),

and the assumption β ≤ κςλτ′n
+ dpς(λτ ′n) would lead to the contradiction βn,mn1 < λτ ′n + 1 = ρn.

This concludes the verification of (2).

We now have to show that for index pairs (i, j) ∈ dom(α)− {(n,mn)} that are lexicographically greater than or
equal to the index pair occurring in the respective case above, we have

o(me(α�(i,j))) + dp(me(α�(i,j))) + β = o(me(α�(i,j)+)) + dp(me(α�(i,j)+)) + β. (3)
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This means that regarding the equations to be proven in Cases 0 and 1 we assume (i0, j0 + 1) ≤lex (i, j), regarding
those to be shown in Case 2.2 we assume (k0, l0 +2) ≤lex (i, j), and regarding Case 2.3 we assume (k0, 1) ≤lex (i, j).

Let such an index pair (i, j) be given. We may assume that me(α�(i,j)+) <TC me(α�(i,j)), since in the case of
equality there would be nothing to show, while me(α�(i,j)) <TC me(α�(i,j)+) is not possible, for if this were the
case we would have (i, j) = (i0, j0 +1) where j0 > 0, χτi0,j0 (τi0,j0+1) = 0, ρi0 = %τi0,j0+1

+τi0,j0 , (i, j)+ = (i+1, 1),
and αi+1,1 = %i0,j0+1 + ξ for some ξ ∈ (0, τi0,j0), which by Lemma 3.80 would imply that β ≤ end(α) < τ̃i0,j0 ,
hence βi0,j0+1 = βi0,mi0 and according to Claim 3.90 βi0,j0+1

1 < τi0,j0 . Thus k0 > i0, since αi0+1 + β
i0,mi0
1 < ρi0 ,

which implies Case 2 and the condition i ≥ k0, wherefore i = i0 is not permitted. We therefore have

α�(i,j)+ <TC ec(α�(i,j)),

i.e. α�(i,j)+ is not a maximal 1-step extension of α�(i,j), and consider the two possibilities for (i, j)+:

Case I: (i, j)+ = (i+ 1, 1). We then have j = mi, set ς := ersi,mi(α), and consider three subcases.

Subcase I.1: mi = 1. Then αi+1,1 < log((1/τ ′i) · τi,1) = ρi −· 1, hence α�i+1,1 does not possess a critical main
line index pair. Setting ςi := rsi,0(α) and ςi+1 := rsi+1,0(α) (cf. Definition 3.79), by part 7(b) of Lemma 3.80 we
have

o(me(α�(i+1,1))) = o(α�(i+1,1)) + dpςi+1
(τi+1,1)

= o(α�(i,1)) + κςαi+1,1
+ dpς(τi+1,1)

< o(me(α�(i,1))) + dp(me(α�(i,1)))

= o(α�(i,1)) + dpςi(τi,1)

= o(α�(i,1)) + κςlog((1/τ ′i)·τi,1) + dpς(log((1/τ ′i) · τi,1)).

By setting δ := −αi+1,1 + log((1/τ ′i) · τi,1) and assuming β ≤ κςδ + dpς(δ) we would obtain αi+1,1 + βi,11 < ρi,
which because of i ≥ k0 is not the case. Thus equation (3) holds in the case mi = 1.

Subcase I.2: (i,mi) = (i0, j0 + 1) where j0 > 0. Then only Case 1 is possible, and it follows that αi+1,1 ≤ %τi,mi ,
as we ruled out the situation where ρi0 = %τi0,j0+1

+τi0,j0 and αi+1,1 = %τi0,j0+1
+ξ for some ξ ∈ (0, τi0,j0). Lemma

3.80 supplies us with

o(me(α�i+1,1)) = o(α�(i,mi)) + κςαi+1,1
+ dpς(αi+1,1)

< o(me(α�(i,mi)))

and
o(me(α�(i,mi))) + dp(me(α�(i,mi))) = o(α�(i,mi)) + κς%τi,mi

+ dpς(%τi,mi
).

We now see that the assumption β ≤ κςδ + dpς(δ), where δ := −αi+1,1 + %τi,mi
, would have the consequence

αi+1,1 + βi,mi1 < ρi, which (again because of i ≥ k0) is not the case. We therefore have (3) in this special case.

Subcase I.3: mi > 1 and (i0, j0 + 1) <lex (i,mi). Then αi+1,1 < λτi,mi−1
= ρi −· 1. Lemma 3.80 yields

o(me(α�(i+1,1))) = o(α�(i,mi)) + κςαi+1,1
+ dpς(αi+1,1)

< o(me(α�(i,mi))) + dp(me(α�(i,mi)))

= o(α�(i,mi)) + κςλτi,mi−1
+ dpς(λτi,mi−1),

and setting δ := −αi+1,1 + λτi,mi−1
the assumption β ≤ κςδ + dpς(δ) would again imply αi+1,1 + βi,mi1 < ρi.

Consequently, equation (3) follows also in this situation.

Case II: (i, j)+ = (i, j + 1). Then we have αi,j+1 = µτi,j , since (i0, j0) <lex (i, j). Due to the fact that α�(i,j+1)

is not a maximal 1-step extension of α�(i,j), we have j > 1, τi,j = µτi,j−1
∈ E ∩ (τi,j−1, λτi,j−1

), ec(α�(i,j)) =
α�(i,j)

_(λτi,j−1
), and (i0, j0 + 1) <lex (i, j). In particular, α�(i,j+1) does not possess a critical main line index pair.

Setting ς := ersi,j+1(α) and ς ′ := ersi,j(α), part 7(b) of Lemma 3.80 yields

o(me(α�(i,j+1))) = o(α�(i,j+1)) + κςλτi,j
+ dpς(λτi,j )

= o(α�(i,j)) + νςµτi,j
+ κςλτi,j

+ dpς(λτi,j )

= o(α�(i,j)) + dpς′(τi,j).
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Another extensive application of Lemma 3.80 provides us with

o(α�(i,j)) + dpς′(τi,j) < o(me(α�(i,j))) + dp(me(α�(i,j))) = o(α�(i,j)) + κς
′

λτi,j−1
+ dpς′(λτi,j−1).

Now setting δ := −τi,j + λτi,j−1
, the assumption β ≤ κς

′

δ + dpς′(δ) would imply, by Lemma 3.86, that βi,j1 ≤ δ

and hence τi,j + βi,j1 ≤ λτi,j−1
which is not the case: In Cases 0, 1 and 2.2 we always have (k0, l0) <lex (i, j − 1),

while Case 2.3 presupposes (w.r.t. Case 2.2) that τk0,l0+1 + βk0,l0+1
1 > λτk0,l0

, which covers the only possibility
where (k0, l0) = (i, j − 1). This concludes the proof of (3).

From the equations (2) and (3) all claimed equalities follow, noticing that only in Subcase 1.3.2 the dp-term is
non-zero. This completes the proof of Lemma 3.89. 2

Corollary 3.92 (cf. 6.5 of [17]) tc is a <-<TC-order isomorphism between Ord and TC with inverse o. We
thus have

tc(o(α)) = α

for any α ∈ TC and
α < β ⇔ tc(α) <TC tc(β)

for all α, β ∈ Ord. 2

Corollary 3.93 (corrected 6.6 of [17]) Let α ∈ Ord and α := tc(α) with associated chain τ , where α =
(α1, . . . ,αn) and αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n. Then we have

tc(α+ dp(α)) =

{
α�i,j+1

[αi,j+1 + 1] if (i, j) = cml(α) or (i, j + 1) = (n,mn) & τi,j+1 < µτi,j

me(α) otherwise.

Let β ∈ Ord. Then tc(β) is a proper extension of tc(α) if and only if

β ∈

{
(α, α+ dp(α)) if cml(α) exists or mn > 1 & τn,mn < µτn,mn−1

(α, α+ dp(α)] otherwise.

Proof. The corollary directly follows from the Definition 3.79 of dp, Lemma 3.80, and Corollary 3.92. 2

3.6 Closed sets of tracking chains
Here we introduce the notion of closed set of tracking chains. This was first done in [60] in order not just to locate
an ordinal α within the core of R2, but to collect the tracking chains of ordinals needed to specify a pattern of
minimal cardinality, the isominimal realization of which contains and therefore denotes α. The corresponding
result for R+

1 was established in [57] and completed in Sections 5 and 6 of [16]. The generalization of closedness
introduced here will be useful when verifying <3-connections elsewhere, e.g. in [61], where this topic would have
been too technical for the intended audience. However, in this article this subsection on closedness is not used
and can be skipped at first reading.

We are now going to generalize the notion of closed sets of tracking chains that was introduced in Section
3 of [60]. Closed sets are easily seen to be closed under the operation of maximal extension (me) introduced
in Definition 3.64. We will need closedness to find all parameters from Im(υ) involved in (tracking chains of)
elements of R2. These play a key role in handling all (finitely many) “global” <2-predecessors needed to locate
ordinals in R2. As we will see in the next section, ordinals of the form υλ+m, where λ + m > 0, λ ∈ Lim0, and
m ∈ N\{1}, have arbitrarily large <2-successors, namely all ordinals of the form υλ+m+υλ+m−· 1 ·(1+ξ), ξ ∈ Ord.
For illustration, consider the easy example of the ordinal υω ·υ17, the greatest <2-predecessor of which is υω, while
its ≤1-reach is lh(υω · υ17) = υω · υ17 + υ17, which in turn has the greatest <2-predecessor υ18 (note that in this
example, instead of 17, 18 any pair of natural numbers k, k + 1, k > 1 would do). Another instructive example
would be to consider the ordinal ευω+υ17+1, where closure under ·̄ (see Section 8 of [55] and Section 5 of [16])
becomes essential, which holds for closed sets of tracking chains, cf. Lemma 3.19 of [60]. The term decomposition
of components of tracking chains in a closed setM of tracking chains via the operations of additive decomposition,
logarithm, λ-, and ·̄-operator expose all bases of greatest <2-predecessors of elements in o[M ], cf. also Lemma
3.20 of [60] in a more ambitious context in order to enable base minimization, cf. Definition 3.26 of [60].
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Definition 3.94 Let τ ∈ TS. We call τ an υ-sequence if it is of the form either τ = (υλ) where λ ∈ Lim or
τ = (υλ+1, . . . , υλ+m) where λ ∈ Lim0 and m ∈ (0, ω). A tracking chain α ∈ TC is called an υ-sequence if it is
of the form (τ ) where τ ∈ TS is an υ-sequence.

Definition 3.95 (cf. 3.7, 3.16 of [60]) Let α = (α1, . . . ,αn) ∈ TC, αi = (αi,1, . . . , αi,mi), 1 ≤ i ≤ n, with
associated chain τ .

1. α is called convex if every ν-index of α is maximal, i.e. given by the µ-operator.

2. If α satisfies mn > 1 and αn,mn = µτ , where τ := τn,mn−1, then α is called a principal chain to base τ ,
and τ is called the base of α. If α ∈M , where M is some set of tracking chains, then we say that α is a
principal chain in M and that τ is a base in M .

Definition 3.96 (cf. 3.1, 3.2, 3.3, and 3.21 of [60]) Let M ⊆fin TC. M is closed if and only if M

1. is closed under initial chains: if α ∈M and (i, j) ∈ dom(α) then α�(i,j)
∈M ,

2. is ν-index closed: if α ∈M , mn > 1, αn,mn =ANF ξ1 + . . .+ ξk then

2.1. α[ξ1 + . . .+ ξl] ∈M for 1 ≤ l ≤ k and
2.2. α[µτ ′ ], unless this is a υ-sequence,

3. unfolds minor ≤2-components: if α ∈M , mn > 1, and τ < µτ ′ then:

3.1. α�n−1
_(αn,1, . . . , αn,mn , µτ ) ∈M in the case τ ∈ E>τ ′ , and

3.2. otherwise α_(%τ
′

τ ) ∈M , provided that %τ
′

τ > 0,

4. is κ-index closed: if α ∈M , mn = 1, and αn,1 =ANF ξ1 + . . .+ ξk, then:

4.1. if mn−1 > 1 and ξ1 = τn−1,mn−1
∈ E>τn−1,mn−1−1 then α�n−2

_(αn−1,1, . . . , αn−1,mn−1
, µξ1) ∈ M , else

α�n−1
_(ξ1) ∈M , and

4.2. α�n−1
_(ξ1 + . . .+ ξl) ∈M for l = 2, . . . , k,

5. maximizes me-µ-chains: if α ∈M and τ ∈ E>τ ′ , then:

5.1. if mn = 1 then α�n−1
_(αn,1, µτ ) ∈M , unless this is a υ-sequence, and

5.2. if mn > 1 and τ = µτ ′ = λτ ′ then α�n−1
_(αn,1 . . . , αn,mn , µτ ) ∈M , unless this is a υ-sequence,

6. unfolds ≤1-components: for α ∈M , if mn = 1 and τ 6∈ E≥τ ′ ∪ {1} (i.e. τ = τn,mn 6∈ E1, τ ′ = τ?n), let

log((1/τ ′) · τ) =ANF ξ1 + . . .+ ξk,

if otherwise mn > 1 and τ = µτ ′ such that τ < λτ ′ in the case τ ∈ E>τ ′ , let

λτ ′ =ANF ξ1 + . . .+ ξk.

Set ξ := ξ1 + . . .+ ξk, unless ξ > 0 and α_(ξ1 + . . .+ ξk) 6∈ TC (due to condition 2 of Definition 3.69), in
which case we set ξ := ξ1 + . . . + ξk−1. Suppose that ξ > 0. Let α+ denote the vector {α_(ξ)} if this is a
tracking chain (condition 2 of Definition 3.62), or otherwise the vector α�n−1

_(αn,1, . . . , αn,mn , µτ ). Then
the closure of {α+} under clauses 4 and 5 is contained in M .

7. supports bases: if β is a principal chain in M to base τ such that τ̄ ∈ (τ ′, τ) then β_(τ̄) ∈M .

Note that in clause 4.1, if mn−1 = 1 and τn−1,1 ∈ E>τ
?
n−1 , we have ρn−1 = τn−1,1 + 1, and hence αn,1 < τn−1,1

by condition 2 of Definition 3.62, so that the situation ξ1 = τn−1,1 does not occur. If the conditions stated in
clause 4.1 hold, the preference of ν-indices over κ-indices applies, and the chain α�n−2

_(αn−1
_µξ1), which can

not be a υ-sequence, is taken instead of either α�n−1
_(ξ1), which is not a tracking chain, or α�n−2

_(αn−1
_1),

which in this context would be redundant.

Remark 3.97 Due to the exclusion of υ-sequences from closure in clauses 2 and 5 above it is easy to see that
closure of a set M ⊆fin TC under clauses 1 – 7 results in a finite set of tracking chains. This is due to decreasing
ht- and l-measures of the terms involved, cf. Definition 3.26 of [55] and Definition 3.41. Closedness under clauses
1 – 6 only results in M being a spanning set of tracking chains, first introduced in Section 5 of [59].
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4 The Structure R2

We are now prepared to generalize Theorem 7.9 and Corollary 7.13 of [17] to all ordinal numbers. Theorem 7.9 of
[17] provides the ≤i-predecessors (i = 1, 2) of ordinals below 1∞ = υ1, in particular the greatest <i-predecessor
of an ordinal in case such exists, while Corollary 7.13 of [17] characterizes the ≤i-successors of ordinals below
1∞. The generalization carried out in this article consists of descriptions of <i-pre- and ≤i-successorship within
all of R2. For this reason we may say that we display the entire structure R2, as claimed in the abstract. For
an in-depth discussion of the initial segment of R2 below 1∞ in arithmetical terms, as secured by Theorem 7.9
and Corollary 7.13 of [17], the reader is referred to Subsection 2.3 of [60]. There we called this arithmetical
characterization C2, and in [59] we showed that it is an elementary recursive structure.

In order to proceed toward generalization of the arithmetical analysis established in [17], recall the notion of
relativized ≤i-minimality for i ∈ {1, 2}: α is β-≤i-minimal if and only if there does not exist any γ ∈ (β, α) such
that γ <i α. Hence, 0-≤i-minimality is equivalent to ≤i-minimality. As in Definition 7.7 of [17] we denote the
greatest <i-predecessor of an ordinal α by predi(α) if that exists and set predi(α) := 0 otherwise. Note that the
latter case can have two reasons: either α is ≤i-minimal or the order type of its <i-predecessors is a limit ordinal.
Predi(α) denotes the set of all <i-predecessors of α, Succi(α) denotes the class of all β such that α ≤i β, and
lhi(α) denotes the maximum of Succi(α) if that exists and ∞ otherwise, lh := lh1, where lh stands for length.
Note that lhi(α) is not defined to be the maximum β such that α ≤i α+β but rather to be the maximum β such
that α ≤i β (if such ordinal exists).

Recall Proposition 1.6 and Lemmas 3.2, 3.1, and 1.7 for basic but central properties of relations ≤1 and ≤2

in R2. For the reader’s convenience we also cite the notion of covering, which is the natural notion of embedding
for (pure) patterns, and which plays a crucial role in the proof of Theorem 4.2.

Definition 4.1 (7.8 of [17]) Given substructures X and Y of R2, a mapping h : X ↪→ Y is a covering of X
into Y , if

1. h is an injection of X into Y that is strictly increasing with respect to ≤, and

2. h maintains ≤i-connections for i = 1, 2, i.e. ∀α, β ∈ X (α ≤i β ⇒ h(α) ≤i h(β)).

We call h a covering of X if it is a covering from X into R2. We call Y a cover of X if there is a covering of X
with image Y .

As mentioned before, the following main theorem describes the structure R2 completely in terms of ≤i-
predecessorship, i = 1, 2. As compared to Theorem 7.9 of [17], which only describes the initial segment υ1 of the
structure R2 in this way, new cases arise in relation to the ordinals in Im(υ).

The proof of Theorem 4.2, of which Theorem 1.8 from the introduction is an immediate consequence, is a
modifying and generalizing rewrite of the proof of Theorem 7.9 of [17] with several corrections and notational
adjustments. We keep the proof structure and case numbering comparable to structure and numbering chosen
in the proof of Theorem 7.9 of [17], however, with a more explicit numbering of subcases and some preference to
deal with cases involving translational isomorphism before cases that in general require base transformation as
introduced in Subsection 2.3. The Special Case in Subcase 1.2, as well as Subcases 1.1.3 and 1.2.3, are new, due
to the extended claim, while other parts of the proof smoothly generalize. A correction of a part of the proof of
Theorem 7.9 of [17] is indicated. For further details see the proof map at the beginning of the proof of Theorem
4.2.

Recall the definition of tracking chain and [·]-notation, Definition 3.69, maximal extension me, Definition 3.71,
the assignment of tracking chains to ordinals tc in Definition 3.87, and of evaluation of (initial segments of)
tracking chains, oi,j(α), as well as the evaluation at indices αi,j of α and at indices τi,j of the associated chain
τ , α̃i,j and τ̃i,j , respectively, see Definition 3.76. Recall the notation for units τ?i introduced in Definition 3.59.

Theorem 4.2 (cf. 7.9 of [17]) Let α ∈ Ord and tc(α) =: α, where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n, with
associated chain τ and segmentation parameters (λ, t) := υseg(α) and p, sl, (λl, tl) for l = 1, . . . , p as in Definition
3.58.

a) We have
α is υλ-≤1-minimal ⇔ (n,mn) = (1, 1)
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and the greatest <1-predecessor of α is

pred1(α) =



υλ if (n,mn) = (1, 1) and υλ ∈ (0, α1,1) (hence λ ∈ Lim)

on−1,mn−1
(α) if mn = 1 and n > 1

o(α[ξ]) if mn > 1, αn,mn = ξ + 1, and χτn,mn−1(ξ) = 0

o (me (α[ξ])) if mn > 1, αn,mn = ξ + 1, and χτn,mn−1(ξ) = 1

0 otherwise (a greatest <1-predecessor does not exist).

The situation where the order type of Pred1(α), the set of <1-predecessors of α, is a limit ordinal is char-
acterized by the following two cases:

Pred1(α) =

{ ⋃
ξ∈(0,λ) Pred1 (υξ) if α = υλ > 0⋃
ξ<αn,mn

Pred1 (o(α[ξ])) if mn > 1 and αn,mn ∈ Lim.

b) We have
α is ≤2-minimal ⇔ mn ≤ 2 and τ?n = 1,

and in terms of pred2 to denote the greatest <2-predecessor we have

pred2(α) =



on,mn−1(α) if mn > 2, otherwise:

oi0,j0+1(α) if n? =: (i0, j0) ∈ dom(α)

υλ if n? = (1, 0) and τ?n = υλ ∈ (0, α) (hence λ ∈ Lim)

υλj if n? = (sj , 0) and τ?n = υλj for some j ∈ {1, . . . , p} where λj ∈ Lim

υλj+tj+1 if n? = (sj , 0) and τ?n = υλj+tj for some j ∈ {1, . . . , p} where tj > 0

0 otherwise (a greatest <2-predecessor does not exist).

The order type of the set of <2-predecessors of α is a limit ordinal if and only if α = υλ > 0:

α = sup+{β | β <2 α} ⇔ α = υλ > 0,

and if this is the case, we have

Pred2(α) = {υζ+k | ζ + k ∈ (0, λ) where ζ ∈ Lim0 and k ∈ N \ {1}} .

Proof. The proof is by induction on α. This means that according to the i.h. the relations ≤1 and ≤2 look
exactly as claimed by the theorem on the set of ordinals α = {β | β < α} and is the reason why the theorem is
formulated in terms of ≤i-predecessors only.

Proof map. Before getting into the proof technically and in detail, we provide an overview to facilitate better
orientation. Subcase 1.1 establishes the successor step of the proof, as its condition, namely mn = 1 and αn,1 =
ξ + 1 for some ξ, characterizes the situation where α is a successor ordinal β + 1. It contains Claim 4.3, which
implies δ-≤1-minimality of α as claimed in part a) of the theorem, where δ is as specified in the proof of Case 1,
the case which generally pertains to the situation mn = 1, and turns out to be equal to pred1(α) as claimed. It
is shown that part b) of the theorem, which deals with ≤2-predecessors of α, is trivial for successor ordinals α.
In the case δ > 0 it is shown using the criterion provided by Proposition 1.6 that δ <1 α.

In Subcase 1.2 (mn = 1 and αn,1 ∈ Lim) on the other hand, it is easy to see that part a) of the theorem imme-
diately follows from the i.h. for continuity reasons, as a limit of Σi-superstructures is again a Σi-superstructure.
Subcase 1.2, however, covers the situation where (successor-) <2-connections in R2 need to be verified as claimed,
and Subcase 1.2.1.2 particularly pertains to the situation where genuinely new <2-relations arise in R2 (along
increasing ν-indices in the appropriate setting of relativization). An application of Claim 4.3 enables us to show
that α does not have any <2-predecessor greater than γ, where γ is defined to be either the greatest <2-predecessor
of α as claimed in the theorem in case such is claimed to exist at all, or otherwise γ := 0. Provided that γ > 0,
the relation γ <2 α is verified using the criterion given by Proposition 1.6, which establishes that pred2(α) = γ
as claimed.
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Case 2, which contains Claim 4.4, covers the situation mn > 1 and most importantly needs to verify that in
Subcase 2.1 (mn > 1 and αn,mn = ξ + 1 for some ξ) we actually have

α′ = o(α[ξ]) 6<2 o(α) = α.

Subcase 2.1.1, where pred1(α) = α′, discusses the situation where the ≤2-component arising at α′ does not fall
(non-trivially) back onto the mainline, which means that, unless ξ is a successor ordinal and hence α[ξ] = me(α[ξ]),
we have

o(me(α[ξ])) 6<1 α,

and the condition for this scenario is χτ (ξ) = 0. Subcase 2.1.2 is the more involved situation using Claim 4.4
where

α′ <2 o(me(α[ξ])) = pred1(α) <1 α

(the condition for this situation is that χτ (ξ) = 1). Subcase 2.2, where αn,mn is a limit ordinal finally follows
immediately from the i.h. for continuity reasons.

Further case distinction in the proof identifies situations where argumentation relies on the application of base
transformation (see Subsection 2.3), in particular Subcases 1.1.2.2 and 1.2.2.2.2, where an important correction of
the proof of the corresponding Theorem 7.9 of [17] takes place. The argumentation in Subcases 1.1.1 and 1.2.2.1
is similar, namely by translational isomorphism as familiar from R1, as well as in Subcases 1.1.2.1 and 1.2.2.2.1
(also exploiting translation of isomorphic ordinal intervals). The more involved Subcases 1.1.2.2 and 1.2.2.2.2 are
handled similarly using base transformation. Base transformation also occurs in the proofs of Claims 4.3 (see
Case II there) and 4.4 (not mentioned explicitly, as the proof of Claim 4.3 is quite similar to the proof of Claim
4.4, in which we focus on a situation (Subcase I.2) that does not occur in the proof of Claim 4.3).

Claims 4.3 and 4.4 are essential to confirm that certain ≤i-relations do not hold, as claimed in the theorem
and mentioned above. Finite sets X and Z are specified so that there does not exist any copy Z̃ of Z such that
X ∪ Z̃ ∼= X ∪ Z and Z̃ ⊆ max(Z). The role of the sets X is to force max(X) < min(Z̃), but X also contains all
existing greatest <2-predecessors below max(X) of elements of Z. One can think of the sets Z as sets that are
incompressible in the context or under the constraints provided by X.

The additional Subcases 1.1.3 and 1.2.3 as well as the Special Case at the beginning of Subcase 1.2 cover new
situations involving ordinals from Im(υ) due to the generalization of the theorem to all ordinals as compared to
Theorem 7.9 of [17], which covered the initial segment υ1 only.

Beginning of the formal proof. In the case α = 0, equivalently α = ((0)), there is nothing to show, so let us
assume that α > 0, whence αn,mn > 0. Defining

ς := ersn,mn(α)

in order to access the setting of relativized connectivity components in which α is located, see Definitions 3.74
and 3.76, we distinguish between cases concerning mn and whether αn,mn is a limit or a successor ordinal.

Case 1: mn = 1. We define

δ :=

{
υλ if n = 1
on−1,mn−1

(α) if n > 1

and consider cases regarding αn,1.

Subcase 1.1: αn,1 is a successor ordinal, say αn,1 = ξ + 1. Thus τn,1 = 1, τ?n = 1, α is a successor ordinal, say
α = β + 1, and clearly ≤2-minimal since we have Lemmas 3.1 and 1.7, according to which any <2-predecessor
would be supremum of an infinite <1-chain, and finite patterns, such as for instance <1-chains, below such a
<2-predecessor would reoccur cofinally below α. According to Definitions 3.37, 3.43, and 3.76 we have

β =

{
κξ + dp(ξ) if n = 1

δ + κςξ + dpς(ξ) if n > 1,

since ξ ≥ υλ if n = 1. Note that the tracking chain of any ordinal in the interval [δ, β] has the initial chain
α�n−1,mn−1, see Corollary 3.93. In the case n = 1 we have to show that α is υλ-≤1-minimal. This will be the
special case δ = υλ. Generally, for n ≥ 1 we now show that α is δ-≤1-minimal, which follows from the following
Claim 4.3, since the existence of any γ ∈ (δ, α) such that γ <1 α would allow us to take the sets X and Z from
Claim 4.3 and to ≤1-reflect the set Z2 := Z ∩ [γ, α) down to a set Z̃2 ⊆ γ ≤ β such that, setting Z1 := Z ∩ γ,
we would have X,Z1 < Z̃2 and X ∪ Z1 ∪ Z̃2

∼= X ∪ Z1 ∪ Z2, so that Z̃ := Z1 ∪ Z̃2 would satisfy X < Z̃ ⊆ β and
X ∪ Z̃ ∼= X ∪ Z, contradicting Claim 4.3.
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Claim 4.3 There exists a finite set Z ⊆ (δ, α) such that there does not exist any cover X ∪ Z̃ of X ∪ Z with
X < Z̃ and X ∪ Z̃ ⊆ β, where X is the finite set that consists of δ and all existing greatest <2-predecessors γ of
elements in Z such that γ ≤ δ.

Proof. In order to prove the claim, let us first consider the case ξ = υλ if n = 1 or ξ = 0 if n > 1. Then δ = β
and α is clearly δ-≤1-minimal. We trivially choose X := {δ} and Z := ∅.

Now let us assume that ξ =ANF ξ1 + . . . + ξr > 0 such that ξ > υλ if n = 1. Since α ∈ TC, we then have
α[ξ] ∈ TC if and only if condition 2 of Definition 3.62 holds, and accordingly set

γ :=

{
α�n−2

_(αn−1
_µτn−1,mn−1

) if n > 1 and ξ = τn−1,mn−1
∈ E>τ

′
n−1

α[ξ] otherwise.

Let tc(β) =: β, where βi = (βi,1, . . . , βi,ki) for i = 1, . . . , l, which according to part 7(b) of Lemma 3.80 is equal
to me(γ) since due to the fact that α ∈ TC, γ (and hence also β) does not possess a critical main line index pair.
Let σ be the chain associated with β and set k0 := 0. The i.h. yields δ < γ := o(γ) ≤1 β, δ <1 γ if δ > 0, and
we clearly have kl = 1 by the choice of γ and the definition of me. Hence there exists a ≤lex-minimal index pair
(e, 1) ∈ dom(β) such that both n ≤ e ≤ l and βe,1 6∈ E>σ?e . Let

η :=

{
υλ if e = 1
oe−1,ke−1

(β) if e > 1

Notice that due to the minimality of e the case ke−1 = 1 can only occur if e = n > 1, mn−1 = 1, γ = α[ξ], and
hence δ = η. Setting β′ := β�(e,1), β′ := o(β′), and setting ς ′ := erse,1(β) in general we have δ ≤ η,

γ ≤ β′ =

 κς
′

βe,1
if e = 1

η + κς
′

βe,1
if e > 1,

and β′ + dpς′(βe,1) = β. Note that according to Lemma 3.78 we have dpς′(βe,1) = dprse? (β)(σe,1). We now
consider cases regarding βe,1 in order to define in each case a finite set Zη ⊆ (η, α) such that there does not exist
any cover Xη ∪ Z̃η of Xη ∪ Zη with Xη < Z̃η and Xη ∪ Z̃η ⊆ β, where Xη is the finite set that consists of η and
all existing greatest <2-predecessors less than or equal to η of elements in Zη.

Case A below specifies the situation where β captures a (next) successor-<1-successor of η (simple example: α = υλ+2).
Case B handles the occurrence of a successor-<2-successor the greatest ≤2-predecessor of which is determined by σ?e via
the i.h. (simple example: α = ε0 · (ω+ 1) + 1, βe,1 = ε0 where e = 2. Note that in this example we have tc(α) = ((ε0 + 1))

and tc(β) = ((ε0, ω), (ε0))). Case C is where β captures the βe,1 =NF ζ + σe,1-th η-≤1-minimal component (ζ > 0),
that is, a branching of η-≤1-component occurs (simple example: α = ω · 2 + 2). Case D is the situation where the least
η-≤1-component is reached that itself <1-connects to βe+1,1-many components, namely the βe,1-th component, that is,
nesting of η-≤1-components occurs (simple example: α = ωω + ω + 2).

Case A: σe,1 = 1. Then l = e, and by the i.h. applied to β′ = β, which is of the form β = β◦ + 1, there are
X ′ ⊆fin η + 1 and Z ′ ⊆fin (η, β) according to the claim, with the property that there does not exist any cover
X ′ ∪ Z̃ ′ of X ′ ∪ Z ′ such that X ′ < Z̃ ′ and X ′ ∪ Z̃ ′ ⊆ β◦. Let

Xη := X ′ and Zη := Z ′ ∪ {β}.

Clearly, if there were a set Z̃η ⊆ (η, β) such that Xη ∪ Z̃η is a cover of Xη ∪ Zη then X ′ ∪ (Z̃η ∩max(Z̃η)) would
be a cover of X ′ ∪ Z ′ which is contained in β◦.

Case B: βe,1 = σ?e ∈ E. Then β′ is maximal, implying that l = e and β′ = β. Note that by monotonicity and
continuity, Corollary 3.47,

β = sup{o(β′[ζ]) | 0 < ζ < σ?e}.

By the i.h. we see that β is a successor-<2-successor of its greatest <2-predecessor pred2(β). Accordingly,

Xη := {pred2(β), η} and Zη := {β}

has the requested property.
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Case C: βe,1 =NF ζ+σe,1 where ζ, σe,1 > 1. Since ζ+ 1, σe,1 + 1 < βe,1 we can apply the i.h. to βζ := o(β′[ζ+ 1])
and βσ := o(β′[σe,1 + 1]), obtaining sets X1, Z1 and X2, Z2 according to the claim, respectively. We then set

Xη := X1 ∪X2 and Zη := Z1 ∪ (βζ + (−(η + 1) + Z2)) .

Then Xη and Zη have the desired property due to the fact that

βσ ∼= η + 1 ∪ [βζ , α)

which in turn follows from the i.h. Clearly, we exploit the i.h. regarding βζ and βσ in order to see that a
hypothetical cover of Xη ∪ Zη contradicting the claim would imply the existence of a cover of either X1 ∪ Z1 or
X2 ∪ Z2 contradicting the i.h.

Case D: Otherwise. Then σ?e < σe,1 = βe,1 6∈ E1, and we have ke = 1, (e+ 1, 1) ∈ dom(β), and

0 < βe+1,1 = log((1/σ?e) · σe,1) < σe,1.

Note that β′ is a supremum of η-≤1-minimal ordinals βν (exchanging the index βe,1 with ν in the definition of
β′ above) where σ?e ≤ ν < βe,1 and log((1/σ?e) · ν) < βe+1,1, that is, βe,1 is the least index of an η-≤1-relativized
component that ≤1-connects to βe+1,1-many components. The constraint σ?e ≤ ν guarantees the same greatest
≤2-predecessors connecting to the ν-th and βe,1-th components. By the i.h. applied to β◦ := o(β′[βe+1,1 + 1]) we
obtain sets X ′ and Z ′ ⊆ (η, β◦) according to the claim. Define

Xη := X ′ ∪ {pred2(β′)} \ {0} and Zη := {β′} ∪ (β′ + (−η + Z ′)) .

Arguing toward contradiction, let us assume there were a set Z̃η ⊆ (η, β) with Xη < Z̃η such that Xη ∪ Z̃η ⊆ β

is a cover of Xη ∪ Zη. Since by the i.h. β′ ≤1 β, thus β′ ≤1 Zη and hence µ := min(Z̃η) ≤1 Z̃η, we find cofinally
many copies of Z̃η below β′. We may therefore assume that Z̃η ⊆ (η, β′) and moreover for some ν ∈ (0, βe,1) such
that ν ≥ σ?e and log((1/σ?e) · ν) < βe+1,1 (clearly satisfying β′[ν] ∈ TC)

Z̃−η := Z̃η \ {µ} ⊆ (βν , βν+1)

where βν := o(β′[ν]) and βν+1 := o(β′[ν + 1]). Setting

Z̃ ′ := η + (−βν + Z̃−η )

and using that due to the i.h. we have

η + 1 ∪ (βν , βν+1) ∼= η + (−βν + βν+1)

we obtain a cover X ′ ∪ Z̃ ′ of X ′ ∪ Z ′ with X ′ < Z̃ ′ and X ′ ∪ Z̃ ′ ⊆ o(β′[βe+1,1]), which contradicts the i.h.

Now, in the case δ = η we are done, choosing X := Xη and Z := Zη. Let us therefore assume that δ < η. We
claim that for every index pair (i, j) ∈ {(0, 0)} ∪ dom(β) with (n− 1,mn−1) ≤lex (i, j) <lex (e, 1), where m0 := 0,
setting η0,0 := υλ and ηi,j := oi,j(β) for (i, j) ∈ dom(β), there is Zi,j ⊆fin (ηi,j , α) such that there does not exist
any cover Xi,j ∪ Z̃i,j of Xi,j ∪Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ β, where Xi,j consists of ηi,j and all existing
greatest <2-predecessors less than or equal to ηi,j of elements of Zi,j . This is shown by induction on the finite
number of 1-step extensions from β�(i,j) to β′. The initial step where (i, j) = (e− 1, ke−1) and ηi,j = η has been
shown above. Now assume (i, j) <lex (e − 1, ke−1) and let (u, v) := (i, j)+. Let Xu,v and Zu,v ⊆ (ηu,v, α) be
according to the i.h. The i.h. provides us with knowledge of the <i-predecessors of ηu,v (i = 1, 2), which in turn
is in ≤1-relation with every element in Zu,v. We consider cases regarding (u, v).

Returning to our simple example for Case B above, where α = ε0 · (ω + 1) + 2 and e = 2, first Case II applies with
(i, j) = (1, 1) and βu,v = β1,2 = ω, and then Case I applies with (i, j) = (0, 0) and βu,v = β1,1 = ε0. The resulting sets
are X = X0,0 = {0} and Z = Z0,0 = {ε0 · ω, ε0 · (ω + 1)}, where 0 is contained in X only for technical reasons, as X = ∅
would of course suffice. Instructive variants of this example regarding Case II are α = ε1 · (ω + 1) + 2, where ε1 = ε0, or
α = εΓ0+1 · (ω + 1) + 2, where εΓ0+1 = Γ0.

Case I: (u, v) = (i + 1, 1) where i ≥ 0. Then we have βu,v = σu,v ∈ E>σ?u (by the minimality of e) and
(u, v)+ = (i+ 1, 2) with βi+1,2 = µσu,v . We define

Zi,j := Zu,v
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and observe that, setting X ′ := Xu,v \ {ηu,v}, we have Xi,j = X ′ ∪ {ηi,j} since for any greatest <2-predecessor
ν of an element in Zi,j we have ν ≤ ηi,j . Assume there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪ Zi,j with Xi,j < Z̃i,j
and Xi,j ∪ Z̃i,j ⊆ β. We have ηu,v <1 Zu,v = Zi,j , and by the i.h. we may assume that Z̃i,j ⊆ (ηi,j , ηu,v), since if
necessary we may ≤1-reflect the elements that are greater than or equal to ηu,v down below ηu,v, into the interval
(ηi,j , ηu,v). The i.h. shows that we have the following isomorphism

ηu,v ∼= ηi,j + 1 ∪ (ηu,v, o(β�i
_(βu,v, 1))),

which shows that defining Z̃ ′i,j := ηu,v + (−ηi,j + Z̃i,j) we obtain another cover Xi,j ∪ Z̃ ′i,j of Xi,j ∪ Zi,j with the
assumed properties. We now claim that Xu,v ∪ Z̃ ′i,j is a cover of Xu,v ∪Zu,v with Xu,v < Z̃ ′i,j and Xu,v ∪ Z̃ ′i,j ⊆ β,
contradicting the i.h. Indeed, X ′ ∪ Z̃ ′i,j is a cover of X ′ ∪ Zu,v, and we have ηu,v <1 Zu,v, Z̃

′
i,j and ηu,v 6≤2 ν for

any ν ∈ Zu,v ∪ Z̃ ′i,j .

Case II: (u, v) = (i, j+1). Then (i, j) ∈ dom(β), and letting σ := σi,j and σ′ := σ′i,j we have, recalling Definition
2.34, σ′ ≤ σ̄, since σ′ < σ and, according to part 4 of Lemma 3.21, tracking sequences are subsequences of
localizations, and βi,j+1 = µσ. The i.h. applied to βσ̄ := o(β�(i,j)

_(σ̄ + 1)) yields sets Xσ̄ and Zσ̄ ⊆ (ηi,j , βσ̄)
according to the claim. Setting βσ := o(β�(u,v)

_(σ)) we now define

Zi,j := {ηu,v} ∪ (ηu,v + (−ηi,j + Zσ̄)) ∪ {βσ} ∪ Zu,v

and assume that there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ β. Notice that the
possibly redundant element βσ is the least <2-successor of ηu,v and provided explicitly for a practical reason, while
Zu,v must contain at least one <2-successor of ηu,v which, however, we do not keep track of here. Thus, the image
µ := min(Z̃i,j) of ηu,v must have a <2-successor and therefore by the i.h. have a tracking chain ending with a
limit ν-index. Setting ς ′ := ersi,j(β) and σ̃ := κς

′

σ we have tc(ηi,j + σ̃) = β�u,v[1] <1 β, and since µ ≤1 Z̃i,j , the set
Z̃i,j is contained in one component enumerated by κς

′
starting from ηi,j , so that, as we can see via <1-downward

reflection, the assumption can be fortified to assuming

Z̃i,j ⊆ [ηi,j + κς
′

ζ , ηi,j + κς
′

ζ+1) =: I

for the least ζ, which, using the i.h. and recalling that we incorporated a translation of the set Zσ̄ into Zi,j , can
easily be seen to satisfy ζ ∈ E ∩ (σ̄, σ) and (with the aid of Lemma 3.80)

µ <1 o(me(β�(i,j)
_(ζ))) = ηi,j + κς

′

ζ + dpς′(ζ) = max(Z̃i,j).

The minimality of ζ moreover allows us to assume that o(β�(i,j)
_(ζ, ν)) ≤2 µ for some index ν ≤ µζ for the

following reasons: In case of µ < o(β�(i,j)
_(ζ, µζ)) there is a least ν > 0 such that µ <1 o(β�(i,j)

_(ζ, ν + 1)),
and by the i.h. we have (making use of Lemma 3.73) o(β�(i,j)

_(ζ, ν)) ≤2 pred1(o(β�(i,j)
_(ζ, ν + 1))). If on the

other hand µ ≥ o(β�(i,j)
_(ζ, µζ)) the assumption o(β�(i,j)

_(ζ, µζ)) 6≤2 µ would imply, using the i.h. regarding
≤2-predecessors of µ, that there is a least q > i such that oq,1(me(β�(i,j)

_(ζ))) <1 µ with a corresponding κ-
index ρ at (q, 1) such that end(ρ) < ζ - contradicting the minimality of ζ. We may furthermore strengthen the
assumption o(β�(i,j)

_(ζ, ν)) ≤2 µ for some index ν ≤ µζ to actual equality

µ = o(β�(i,j)
_(ζ, ν)),

since it is easy to check that this still results in a cover of Xi,j ∪ Zi,j with the assumed properties.
Since ζ ∈ (σ̄, σ), setting ϕ := π−1

ζ,σ we have ϕ(λζ) < λσ (cf. part 1 of Lemma 2.50) and ϕ(µζ) ≤ µσ by Lemma
3.10. The vectors in the <TC-segment tc[I] of TC have a form

ι = β�(i,j)
_(ζ, ξ1, . . . , ξg)

where ζ = (ζ, ζ1, . . . , ζh) with g, h ≥ 0, cf. again Corollary 3.93. Let

ζ′ :=

{
(βi,1, . . . , βi,j , 1) if h = 0
(βi,1, . . . , βi,j , 1 + ϕ(ζ1), ϕ(ζ2), . . . , ϕ(ζh)) otherwise.

Let g0 ∈ {1, . . . , g} be minimal such that end(ξg0,1) < ζ if that exists, and g0 = g + 1 otherwise. If g0 ≤ g let
ξg0

= (ξg0,1, . . . , ξg0,k) and define ξ′ := (ϕ(ξg0,1), ξg0,2 . . . , ξg0,k). We can now define the base transformation of ι
by

t(ι) := β�i−1
_
(
ζ′, ϕ(ξ1), . . . , ϕ(ξg0−1), ξ′, ξg0+1, . . . , ξg

)
.
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In order to clarify the definition, note that t(ι) = β�i−1
_ (ζ′) in case of g = 0. The part

(
ξ′, ξg0+1, . . . , ξg

)
,

which is empty in case of g0 = g + 1 and is equal to (ξ′) if g0 = g, refers to the addition of a parameter below
o(β�(i,j)

_(ζ)) which is the reason why relevant indices are not subject to base transformation. It is easy to see
that t(ι) ∈ TC and therefore

t : tc[I]→ TC, with o[Im(t)] ⊆ [ηi,j + σ̃, β).

Using t and applying the i.h. in combination with the commutativity of ϕ with all operators acting on the indices,
as shown in Lemma 2.48 and Subsection 3.1, we obtain

ηi,j + 1 ∪ I ∼= ηi,j + 1 ∪ o[Im(t)]

since thanks to σ′ < ζ < σ it is easy to see that ηi,j + κς
′

ζ and ηi,j + σ̃ have the same greatest <2-predecessor

(which then is less than or equal to ηi,j) unless both are ≤2-minimal. The set ˜̃Zi,j := o ◦ t ◦ tc[Z̃i,j ] therefore gives
rise to another cover of Xi,j ∪ Zi,j with the assumed properties. We have

µ̃ := min( ˜̃Zi,j) = o(β�(u,v)[ϕ(ν)]),

corresponding to µ. In the case ϕ(ν) < µσ = βu,v we may first assume (using iterated ≤1-downward reflection if
necessary) that the set ˜̃Zi,j is contained in the interval

[µ̃, o(β�(u,v)[ϕ(ν) + 1])) =: J,

but then we may even assume that ˜̃Zi,j ⊆ [ηu,v, β) and µ̃ = ηu,v, since otherwise, as seen directly from the i.h.,
we could exploit the translation isomorphism

ηi,j + 1 ∪ J ∼= ηi,j + 1 ∪ (ηu,v + (−µ̃+ J))

which shifts J into the interval [ηu,v, β).
We have now transformed the originally assumed cover Xi,j∪Z̃i,j to a cover Xi,j∪ ˜̃Zi,j of Xi,j∪Zi,j which fixes

ηu,v = min( ˜̃Zi,j) and still has the assumed property Xi,j ∪ ˜̃Zi,j ⊆ β. Defining Z̃u,v to be the subset corresponding
to Zu,v in ˜̃Zi,j we obtain a cover Xu,v ∪ Z̃u,v of Xu,v ∪ Zu,v that satisfies Xu,v < Z̃u,v and Xu,v ∪ Z̃u,v ⊆ β,
contradiction. This concludes the proof of Claim 4.3. 2

Clearly, in the case δ = 0 (that is, n = 1 and λ = 0) we have verified that α is ≤1-minimal and are done.
Assuming now that in the case n = 1 we have λ > 0 and hence δ = υλ > 0, we show next that δ <1 α as
claimed in part a), using the criterion provided in Proposition 1.6. Let finite sets X ⊆ δ and Y ⊆ [δ, α) be given.
Without loss of generality, we may assume that δ ∈ Y . We are going to define a set Ỹ such that X < Ỹ < δ and
X ∪ Ỹ ∼= X ∪ Y , distinguishing between two subcases, the second of which will require base transformation in its
second part, 1.1.2.2.

A simple example for Subcase 1.1.1 below is α = ω + 1, tc(α) = ((ω), (1)), another easy but instructive example is
α = ε0 · ω2 + ε0 · (ω+ 1) + 1, tc(α) = ((ε0 · ω), (ε0 + 1)). An instructive example for Subcase 1.1.2.2 is α = εω · (ω+ 1) + 1,
tc(α) = ((εω, ω), (εω + 1)), and for the easier (non-critical) Subcase 1.1.2.1 the example α = εω · ω + ε0 · (ω + 1) + 1,
tc(α) = ((εω, ω), (ε0 + 1)) illustrates the difference between these two scenarios in Subcase 1.1.2.

Subcase 1.1.1: n > 1 and mn−1 = 1. Since

αn,1 < ρn−1 = log((1/τ?n−1) · τn−1,1) + 1

we see that αn−1,1 is a limit of ordinals η < αn−1,1 such that log((1/τ?n−1) · end(η)) ≥ ξ. Now choose such an
index η large enough so that η > αn−1,1 −· τn−1,1, τ?n−1 ≤ end(η) < τn−1,1, and X < o(α�n−1,1[η]) =: γ. Notice
that by the i.h. γ and δ have the same <i-predecessors, i = 1, 2. We will define a translation mapping t in terms
of tracking chains that results in an isomorphic copy of the interval [δ, β] starting from γ. The tracking chain
of an ordinal ζ ∈ [δ, β] has a form ι := α�(n−1,1)

_ζ where ζ = (ζ1, . . . , ζg), g ≥ 0, and ζi = (ζi,1, . . . , ζi,wi) for
1 ≤ i ≤ g. Let

ζ′ :=


((η, 1), ζ2, . . . , ζg) if g > 0 & ζ1,1 = end(η) ∈ E>τ

?
n−1 & w1 = 1

((η, 1 + ζ1,2, ζ1,3, . . . , ζ1,w1
), ζ2, . . . , ζg) if g > 0 & ζ1,1 = end(η) ∈ E>τ

?
n−1 & w1 > 1

((η), ζ1, . . . , ζg) otherwise,
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where the first two cases take care of condition 2 of Definition 3.62 since the situation end(η) ∈ E>τ
?
n−1 can

actually occur, and define
t(ι) := α�(n−2,mn−2)

_ζ′.

The mapping t gives rise to the translation mapping

o ◦ t ◦ tc : [δ, β]→ [γ, γ + κςξ + dpς(ξ)],

and by the i.h. we have
[0, γ + κςξ + dpς(ξ)]

∼= [0, γ) ∪ [δ, β].

This shows that in order to obtain X ∪ Ỹ ∼= X ∪ Y we may choose

Ỹ := γ + (−δ + Y ).

Subcase 1.1.2: n > 1 and mn−1 > 1. Let τ := τn−1,mn−1
, σ := τ ′ = τn−1,mn−1−1, σ′ := τ ′n−1,mn−1−1, and

let αn−1,mn−1
=NF η + τ with η = 0 in case of an additive principal number. If αn−1,mn−1

∈ Lim let α′ be a
successor ordinal in (η, η+τ), large enough to satisfy α? := o(α?) > X where α? := α�n−1[α′] ∈ TC, otherwise let
α′ := αn−1,mn−1−· 1 and set α? := α�n−1[α′], which is equal to α�n−1,mn−1−1 if α′ = 0, according to the [·]-notation
introduced after Definition 3.69. Notice that we have ρn−1 ≥ σ and ξ < λσ. We consider the following subcases:

1.1.2.1: ξ < σ. Here we can argue comfortably as in the treatment of Subcase 1.1.1: however, in the special case
where χσ(α′) = 1 consider γ := me(α?). Using Lemma 3.73 and part 7(c) of Lemma 3.80 we know that ec(γ)
exists and has an extending index of a form σ · (ζ + 1) for some ζ as well as that according to part 2 of Lemma
3.73 the maximal extension of α? to γ does not add epsilon bases (in the sense of Definition 3.60) between σ′ and
σ. In the cases where χσ(α′) = 0 we set γ := α?.

Clearly, as under the current assumption we have ξ < σ ∈ E>σ′ , the ordinal σ is a limit of ordinals η such that
log((1/σ′) · end(η)) = ξ+ 1, which guarantees that end(η) > σ′, and η can be chosen large enough so that setting

ν :=

 σ · ζ + η if χσ(α′) = 1
%σα′ + η if α′ ∈ Lim & χσ(α′) = 0
η otherwise

we obtain X < o(γ_(ν)) =: δ̃. Observe that by the i.h. δ̃ and δ then have the same <2-predecessors and the
same <1-predecessors below δ̃. The i.h. shows that

δ̃ + κςξ + dpς(ξ) + 1 ∼= δ̃ ∪ [δ, β]

whence choosing
Ỹ := δ̃ + (−δ + Y )

satisfies our needs.

1.1.2.2: ξ ≥ σ. Then, as ξ < λσ, we have λσ > σ, which implies σ ∈ Lim(E), and ρn−1 > ξ + 1 > σ, which
entails αn−1,mn−1

∈ Lim, hence τ > 1 and α′ is a successor ordinal. According to Lemma 2.49 σ is a limit of
ρ ∈ E with ϕ(λσ

′

ρ ) ≥ ξ where ϕ := π−1
ρ,σ. The additional requirement ρ > σ̄ yields the bounds ϕ(λρ) < λσ (cf. part

1 of Lemma 2.50) and ϕ(µρ) ≤ µσ (by Lemma 3.10).
Note that for any y ∈ Y the tracking chain tc(y) is an extension of tc(δ), see Lemma 3.83 and Corollary 3.93,

and is of a form
tc(y) = α�n−2

_(αn−1,1, . . . , αn−1,mn−1
, ζy0,1, . . . , ζ

y
0,k0(y))

_ζy

where k0(y) ≥ 0, ζy = (ζy1, . . . , ζ
y
r(y)), r(y) ≥ 0, and ζyu = (ζyu,1, . . . , ζ

y
u,ku(y)) with ku(y) ≥ 1 for u = 1, . . . , r(y).

Notice that k0(y) > 0 implies that τ ∈ E>σ and ξ ≥ τ . We now define r0(y) ∈ {1, . . . , r(y)} to be minimal such
that end(ζyr0(y),1) < σ if that exists, and r0(y) := r(y) + 1 otherwise. For convenience let ζyr(y)+1,1 := 0. Using
Lemma 2.49 we may choose an epsilon number ρ ∈ (σ̄, σ) satisfying τ, ξ ∈ Tσ [ρ] and λρ ≥ π(ξ), where π := πρ,σ,
large enough so that

ζyr0(y),1, ζ
y
u,v ∈ Tσ [ρ]

for every y ∈ Y , every u ∈ [0, r0(y)), and every v ∈ {1, . . . , ku(y)}. We set

δ̃ := α?_(ρ, π(τ)), δ̃ := o(δ̃),
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and easily verify using the i.h. that δ and δ̃ have the same <2-predecessors in Ord and the same <1-predecessors
in X. By commutativity with π the ordinal δ̃ has at least π(ξ)-many immediate ≤1-successors, i.e. ρn(δ̃) ≥ π(ξ).
Setting ς̃ := ersn,2(δ̃) let

β̃ := δ̃ + κς̃π(ξ) + dpς̃(π(ξ)).

Using ϕ we define the embedding
t : β̃ + 1 ↪→ β + 1

that fixes ordinals ≤ α? and performs base transformation from ρ to σ, thereby mapping δ̃ to δ and β̃ to β, as
follows. For any tracking chain

ζ = α?_(ζ1, . . . , ζr)

of an ordinal in the interval (α?, β̃], write ζu = (ζu,1, . . . , ζu,ku) and let r0 ∈ {1, . . . , r} be minimal such that
end(ζr0,1) < ρ if that exists and r0 := r + 1 otherwise. Then apply ϕ to every ζu,v such that u < r0 and v ≤ ku
as well as to ζr0,1 unless r0 = r + 1. By the i.h. t establishes an isomorphism between β̃ + 1 and Im(t), and by
our choice of ρ we have Y ⊆ Im(t), so that defining

Ỹ := t−1[Y ]

we obtain the desired copy of Y .

Subcase 1.1.3: n = 1 and λ > 0. We then have 0 < δ = υλ < ξ + 1 = α1,1, and it is easy to see that we can
choose an ordinal ν < λ large enough so that X ⊆ υν , all parameters occurring in (the tracking chains of) the
elements of Y are contained in υν , and all existing greatest <2-predecessors of elements in Y are less than υν . We
may then apply straightforward base transformation πυν ,υλ to produce the desired copy Ỹ .

Subcase 1.2: αn,1 ∈ Lim.

Special case: α = υλ > 0. According to the i.h. α is the supremum of the infinite <1-chain of ordinals υξ where
ξ ∈ (0, λ) and of the infinite <2-chain of ordinals υξ where ξ ∈ (1, λ) is not the successor of any limit ordinal.
This shows the claims for α in parts a) and b).

Remaining cases: α > υλ. By monotonicity and continuity in conjunction with the i.h. it follows that α is the
supremum of ordinals either ≤1-minimal as claimed for α or with the same greatest <1-predecessor as claimed
for α, whence unless δ = 0, δ is the greatest <1-predecessor of α. This shows part a).

We now turn to the proof of part b). If δ = 0, i.e. α is ≤1-minimal, we are done. We therefore assume that
δ > 0 from now on. Let γ be the ordinal claimed to be equal to pred2(α). We first show that α is γ-≤2-minimal,
meaning that we show ≤2-minimality in case of γ = 0. Arguing towards contradiction let us assume that there
exists γ? such that γ < γ? <2 α. Then clearly γ? ≤2 δ, and due to Lemma 3.1 we know that mn−1 > 1 in case of
γ? = δ and n > 1. Applying the i.h. to δ we see that ≤2-predecessors of δ either

1. have a tracking chain of the form α�i,j+1
where (i, j) ∈ dom(α), j < mi, and i < n, or

2. are of the form υλ′ where λ′ ∈ Lim, λ′ ≤ λ, or

3. are of the form υλ′+t′ where λ′ ∈ Lim0 and t′ ∈ (1, ω) such that λ′ + t′ < λ.

It follows that γ? must be of either of the forms just described. We define

τ? :=


τi,j if γ? is of the form 1

υλ′ if γ? is of the form 2

υλ′+t′−· 1 if γ? is of the form 3,

then τ? is the basis of γ?, and by the assumption γ < γ? we must have τn,1 ∈ [τ?n, τ
?). Let ζ be defined by oi,j(α),

if γ? is of the form 1, by υν for the least ν ∈ (1, λ′) such that τn,1 < υν , if γ? is of the form 2, and defined by
υλ′+t′−· 1, if γ? is of the form 3.

In case of τn,1 < αn,1 let η be such that αn,1 =NF η + τn,1, otherwise set η := 0, and define

β :=

{
κςη + dpς(η) if n = 1

δ + κςη + dpς(η) otherwise,
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so that β + τ̃n,1 = α. Set
ς? := rsn?(α),

and note that κς
?

τn,1 = τ̃n,1 according to part 1 of Lemma 3.78.
Applying Claim 4.3 of the i.h. to the ordinal ζ+κς

?

τn,1+1 we obtain finite sets X ⊆ ζ+1 and Z ⊆ (ζ, ζ+κς
?

τn,1+1)

such that there is no cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ ζ + τ̃n,1 + dpς?(τn,1). According to the
i.h., there are copies Z̃γ? of Z cofinally below γ? such that X ∪Z ∼= X ∪ Z̃γ? . By Lemma 1.7 and our assumption
γ? <2 α we now obtain copies Z̃α of Z cofinally below α (and hence above β) such that X ∪ Z ∼= X ∪ Z̃α. The
i.h. reassures us of the isomorphism

ζ + 1 + τ̃n,1 ∼= ζ + 1 ∪ (β, α).

This provides us, however, with a copy Z̃ ⊆ (ζ, ζ + τ̃n,1) of Z such that X ∪Z ∼= X ∪ Z̃, contradicting our choice
of X and Z, whence γ? <2 α is impossible. The ordinal α is therefore γ-≤2-minimal.

We have to show that pred2(α) = γ where γ is the ordinal according to the claim in part b). From now on
let us assume that τ?n > 1 and set (i, j) := n?, since τ?n = 1 immediately entails γ = 0 = pred2(α). After having
shown that α is γ-≤2-minimal, the next step is to verify that γ <2 α. In the situation τ?n < τn,1 the ordinal α is
a limit of <2-successors of γ (the greatest <2-predecessor of which is γ). This follows from the i.h. noticing that
αn,1 is a limit of indices which are successor multiples of τ?n. It therefore remains to consider the situation

τ?n = τn,1.

Here we show γ <2 α using Proposition 1.6. To this end let X ⊆fin γ and Y ⊆fin [γ, α) be given. Without loss of
generality we may assume that γ ∈ Y . Set τ := τ?n and

(i0, j0) :=

{
(i, j + 1) if (i, j) := n? ∈ dom(α)

(1, 0) otherwise.

We now check whether there is a <lex-maximal index pair (k, l) >lex (i0, j0), after which α continues with a sub-
maximal index: let (k, l) be the <lex-maximum index pair in dom(α) such that (i0, j0) <lex (k, l) <lex (n, 1) and
αk+1,1 < ρk−· 1 in case of (k, l)+ = (k+1, 1), i.e. l = mk, whereas τk,l < ρk(α�(k,l))−· 1 in case of (k, l)+ = (k, l+1),
i.e. l < mk, if that exists, and (k, l) := (i0, j0) otherwise. We observe that

1. αu,v+1 = µτu,v whenever (u, v), (u, v + 1) ∈ dom(α) and (k, l) <lex (u, v + 1), and

2. α = me(α�(k,l)+),

which is seen as follows. Assuming the existence of a lexicographically maximal (u, v + 1) violating property 1 of
(k, l), we can neither have χτu,v (τu,v+1) = 0, as this would be in conflict with the maximality of (k, l), nor can we
have χτu,v (τu,v+1) = 1, since α = me(α�u,v+1) according to the definitions of (k, l) and me, while τ?n = τn,1 < τu,v
by assumption and definition of τ?n, which is in conflict with Lemma 3.73. Thus properties 1 and 2 follow hand
in hand.

In case of τk,l < αk,l let η be such that αk,l =NF η + τk,l, otherwise η := 0. We set

β := ok,l(α) and ς ′ := ersk,l(α).

For the reader’s convenience we are going to discuss the following cases in full detail. Subcase 1.2.1.2 below treats
the situation in which a genuinely larger ≤2-connectivity component arises. Subcase 1.2.2.2.2 is a correction of
the corresponding subcase in [17]. Subcase 1.2.3 is new due to the extended claim of the theorem.

Simple examples involve the least <2-pair ε0 ·ω <2 ε0 ·(ω+1) in the example tc(ε0 ·(ω+1)) = ((ε0, ω), (ε0)) for Subcase
1.2.1.2, tc(ϕ2,0 · (ω2 + 1)) = ((ϕ2,0, ω

2), (ϕ2,0)) for Subcase 1.2.1.1., further instructive examples for these subcases are
tc(Γ2

0 + Γ0) = ((Γ0,Γ0), (Γ0)) (Subcase 1.2.1.1) and tc(Γ2
0 · (ω+ 1) + Γ0) = ((Γ0,Γ0 ·ω), (Γ2

0), (Γ0)) (Subcase 1.2.1.2) for the
pattern characterizing Γ0, namely Γ2

0 ·ω <2 Γ2
0 ·(ω+1)+Γ0 with the inner chain Γ2

0 ·ω <2 Γ2
0 ·(ω+1) <1 Γ2

0 ·(ω+1)+Γ0. Note
that tc(Γ2

0·2+Γ0) = ((Γ0,Γ0+1)) and not ((Γ0,Γ0), (Γ2
0), (Γ0)), which is not a tracking chain, since Γ2

0·(2k+1) <2 Γ2
0·(2k+2),

but Γ2
0 · (2k + 1) 6<2 Γ2

0 · (2k + 2) + Γ0 for all k < ω. These latter examples also illustrate Case 2.1, in particular Subcase
2.1.2 with the application of Claim 4.4 for tc(Γ2

0 · (2k + 2) + Γ0) = ((Γ0,Γ0 · (k + 1) + 1)).
An example for Subcase 1.2.2.1 is α = τω + τ2 · ω + τ , tc(α) = ((τ, τω), (τ2 · ω), (τ)), where τ := ϑ0(Ω2 · ω) =

ϑ0(ϑ1(ϑ1(0) + 1)) and β = τω + τ2 ·ω. Note that lh(τ) = lh(β) = β+ τ + 1. An example for Subcase 1.2.2.2.1 is α = β+ τ
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where τ = BH = ϑ0(ϑ1(ϑ2(0))), σ = εBH+1, β = σ · ω, and tc(α) = ((τ, σ, ω), (τ)). Note that lh(τ) = β + σ = σ · (ω + 1),
completing the least <2-chain of three ordinals. An easy example for Subcase 1.2.2.2.2 is α = β + σ · τ + τ where
τ := |ID2| = ϑ0(ϑ1(ϑ2(ϑ3(0)))), σ = BHτ+1 = ϑτ (ϑ1(ϑ2(0))), β = εσ+1, so that tc(α) = ((τ, σ, β), (σ · τ), (τ)). Note that
lh(τ) = β · (ω + 1), completing the least <2-chain of four ordinals.

The simplest example for Subcase 1.2.3.1 is υ2 <2 α = υω +υ1, tc(α) = ((υω +υ1)), and for Subcase 1.2.3.2 υω <2 α =

υω · 2, tc(α) = ((υω · 2)).

Subcase 1.2.1: (k, l) = (i0, j0) = (i, j + 1) where (i, j) = n? ∈ dom(α). In this case we have β = γ. Let
% := αi+1,1 if (i, j + 1)+ = (i+ 1, 1) and % := τi,j+1 (which then is an epsilon number greater than τ) otherwise.
Lemma 3.5, allows us to conclude χτ (%) = 1 since maximal extension takes us to a successor multiple of τ at
(n, 1), and as verified by Lemma 3.80 we have

α = γ + κς
′

% + dpς′(%).

Let λ′ ∈ Lim0 and q < ω be such that logend(αi,j+1) = λ′ + q, whence by definition

αi,j+1 = η + ωλ
′+q and %ταi,j+1

= τ · (λ′ + q −· χτ (λ′)).

It follows from χτ (%) = 1 and % ≤ %ταi,j+1
that % must have the form

% = τ · ξ for some ξ ∈ (0, λ′ + q −· χτ (λ′)]

where λ′ + q > 0.

1.2.1.1: % < %ταi,j+1
. In this case we are going to check that αi,j+1 is a supremum of indices η + ν such that

% ≤ %τη+ν and χτ (ν) = 0. Indeed, inspecting all cases we have

αi,j+1 = sup{η + ν | ν ∈ E}

where

E :=


{ωζ+k | k ∈ (0, ω), ζ ∈ Lim0 ∩ λ′, and ζ + k −· χτ (ζ) ≥ ξ} if q = 0

{ωλ′ · r + ωζ+k | k, r ∈ (0, ω), ζ ∈ Lim0 ∩ λ′, and ζ + k −· χτ (ζ) ≥ ξ} if χτ (λ′) = 1 & q = 1

{ωλ′+q−1 · r | r ∈ (0, ω)} if χτ (λ′) = 0 & q > 0 or
χτ (λ′) = 1 & q > 1.

According to the definition we have

%ταi,j+1
=


τ · λ′ if either q = 0 or χτ (λ′) = 1 & q = 1 (note: λ′ > ξ)

τ · (λ′ + q) if χτ (λ′) = 0 & q > 0

τ · (λ′ + q − 1) if χτ (λ′) = 1 & q > 1,

and obtain for ν ∈ E in the respective cases of the definition of E

%τη+ν =


τ · (ζ + k −· χτ (ζ)) if either q = 0 or χτ (λ′) = 1 & q = 1 (note: λ′ > ξ)

τ · (λ′ + q − 1) if χτ (λ′) = 0 & q > 0

τ · (λ′ + q − 2) if χτ (λ′) = 1 & q > 1.

Now it is easy to see that %τη+ν ≥ %, since % = τ · ξ < %ταi,j+1
according to the assumption of this subcase. By the

i.h. we have
γν := o(α�(i,j+1)[η + ν]) <2 αν := γν + κς

′

% + dpς′(%)

and
αν ∼= γν ∪ [γ, α) (4)

for the ν specified above. Choose ν from E large enough so that X ⊆ γν and let Yν ⊆ [γν , αν) be the isomorphic
copy of Y according to isomorphism (4). By the i.h. we obtain a copy Ỹ ⊆ γν according to the criterion given by
Proposition 1.6. Let Ỹ + with Ỹ ⊆ Ỹ + ⊆ γ be given, and set U := X ∪ Ỹ + ∩ γν , V := Ỹ + \ γν . Since by the i.h.
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clearly γν <1 γ, we obtain a copy Ṽ such that U < Ṽ ⊆ γν and U ∪ Ṽ ∼= U ∪ V . Setting Ỹ +
ν := (Ỹ + ∩ γν) ∪ Ṽ ,

hence Ỹ ⊆ Ỹ +
ν ⊆ γν , the criterion yields an appropriate extension Y +

ν ⊆ αν such that X ∪ Ỹ +
ν
∼= X ∪Y +

ν extends
X ∪ Ỹ ∼= X ∪Yν . Now let Y + be the isomorphic copy of Y +

ν according to (4). This provides us with the extension
of Y according to Ỹ + as required by Proposition 1.6.

1.2.1.2: % = %ταi,j+1
. Recalling that we have χτ (%) = 1 this implies (i, j + 1)+ = (i + 1, 1) by condition 2 of

Definition 3.69 and Lemma 3.73, which also shows that here the case q = 0 does not occur, since otherwise it
would follow, invoking Lemma 3.5, that χτ (αi,j+1) = 1, whence cml(α) = (i, j) and α 6∈ TC. We now have

αi,j+1 = sup{η + ωλ
′+q−1 · r | r ∈ (0, ω)},

and

%ταi,j+1
=

{
τ · (λ′ + q) if χτ (λ′) = 0

τ · (λ′ + q − 1) if χτ (λ′) = 1

=

{
%τ
η+ωλ′ ·r if χτ (λ′) = 1 and q = 1

%τ
η+ωλ′+q−1·r + τ otherwise

= %

Let r ∈ (0, ω) be large enough so that, setting ν := ωλ
′+q−1 · r and γν := o(α�(i,j+1)[η + ν]), we obtain X ⊆ γν .

Setting αν := o(α�(i,j+1)[η + ν + 1]), by Lemma 3.80 we obtain

αν =

 γν + κς
′

% + dpς′(%) if χτ (λ′) = 1 and q = 1

γν + κς
′

%τη+ν
+ dpς′(%

τ
η+ν) + τ̃ = γν + κς

′

% otherwise.

Now the i.h. yields
αν ∼= γν ∪ [γ, α), (5)

and we choose Ỹ to be the isomorphic copy of Y under this isomorphism. Let Ỹ + with Ỹ ⊆ Ỹ + ⊆ γ be given.
Let U := X ∪ Ỹ + ∩ αν and V := Ỹ + \ αν . Since by the i.h. we have αν <1 γ there exists Ṽ with U < Ṽ < αν
and U ∪ Ṽ ∼= U ∪ V . Now let Y + be the copy of (Ỹ + ∩ αν) ∪ Ṽ under (5). This choice satisfies the requirements
of Proposition 1.6.

Subcase 1.2.2: (i0, j0) <lex (k, l). We argue similarly as in Subcases 1.1.1 and 1.1.2 above.

1.2.2.1: l = 1. This subcase corresponds to Subcase 1.1.1. Here we can only have (k, l)+ = (k + 1, 1) and
αk+1,1 < ρk −· 1 = log((1/τ?k ) · τk,1), due to the maximality and property 1 of (k, l). We see that αk,1 is a limit of
ordinals η+ν < αk,1 such that τ?k < end(ν) < τk,1 and log((1/τ?k ) · end(ν)) ≥ αk+1,1, and choosing ν large enough
we may assume that Y ∩ β ⊆ o(α�(k,1)[η + ν]) =: βν . Using the i.h. and setting αν := βν + κς

′

αk+1,1
+ dpς′(αk+1,1)

we now obtain the isomorphism
αν ∼= βν ∪ [β, α) (6)

via a mapping of the corresponding tracking chains defined similarly as in Subcase 1.1.1. In fact, since γ <2 αν
by the i.h., proving that γ <2 α shows that this isomorphism extends to the suprema, that is, mapping αν to α.
Exploiting (6) and using that the criterion holds for γ, αν we can now straightforwardly show that the criterion
holds for γ, α.

1.2.2.2: l > 1. Here we proceed in parallel with Subcase 1.1.2. Let ξ := αk+1,1 in case of (k, l)+ = (k+ 1, 1) and
ξ := τk,l otherwise, whence according to property 2 of (k, l) and Lemma 3.80

α = β + κς
′

ξ + dpς′(ξ).

Let further σ := τk,l−1 and σ′ := τ ′k,l−1. In the case αk,l ∈ Lim let α′ ∈ (η, αk,l) be a successor ordinal large
enough so that, setting α? := o(α?) where α? := α�(k,l)[α′],

Y ∩ [α?, β) = ∅,
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otherwise let α′ := αk,l −· 1 and define α? and α? as above. Notice that we have ρk(α�(k,l)) ≥ σ and ξ < λσ. We
consider two cases regarding ξ.

1.2.2.2.1: ξ < σ. In the special case where χσ(α′) = 1 consider α′ := me(α?). Using Lemma 3.73 and part 7(c)
of Lemma 3.80 we know that ec(α′) exists and is of a form σ · (ζ + 1) for some ζ as well as that the maximal
extension of α? to α′ does not add epsilon bases between σ′ and σ. In the cases where χσ(α′) = 0 we set α′ := α?.
Clearly, σ is a limit of ordinals ρ such that log((1/σ′) · end(ρ)) = ξ + 1, which guarantees that end(ρ) > σ′, and ρ
can be chosen large enough so that setting

ν :=


σ · ζ + ρ if χσ(α′) = 1

%σα′ + ρ if α′ ∈ Lim & χσ(α′) = 0

ρ otherwise

we obtain, setting βν := o(α′
_

(ν)), Y ∩ [βν , β) = ∅. Observe that by the i.h. βν and β then have the same
<2-predecessors and the same <1-predecessors below βν . The i.h. shows that

αν := βν + κς
′

ξ + dpς′(ξ)
∼= βν ∪ [β, α) and γ <2 αν

which we can exploit to show that the criterion given by Proposition 1.6 holds for γ, α from its validity for γ, αν ,
implying that the above isomorphism extends to mapping αν to α.

1.2.2.2.2: ξ ≥ σ. Then we consequently have αk,l ∈ Lim, hence τk,l > 1, α′ is a successor ordinal, σ < λσ and
thus σ ∈ Lim(E). We proceed as in Subcase 1.1.2.2 in order to choose an epsilon number ρ ∈ (σ̄, σ) suitable for
base transformation. Clearly, τk,l takes the role of the ordinal τ in Subcase 1.1.2.2, and the role of δ there is taken
here by β. Consequently, δ̃ there will become βρ here, as defined later.

Parameters from Y are treated as follows. Note that for any y ∈ Y >α? the tracking chain tc(y) is an extension
of tc(β), and is of a form

tc(y) = α�k−1
_(αk,1, . . . , αk,l, ζ

y
0,1, . . . , ζ

y
0,k0(y))

_ζy

where k0(y) ≥ 0, ζy = (ζy1, . . . , ζ
y
r(y)), r(y) ≥ 0, and ζyu = (ζyu,1, . . . , ζ

y
u,ku(y)) with ku(y) ≥ 1 for u = 1, . . . , r(y).

Notice that k0(y) > 0 implies that τk,l ∈ E>σ and ξ ≥ τk,l. We now define r0(y) ∈ {1, . . . , r(y)} to be minimal
such that end(ζyr0(y),1) < σ if that exists, and r0(y) := r(y) + 1 otherwise. For convenience let ζyr(y)+1,1 := 0.
Using Lemma 2.49 we may choose an epsilon number ρ ∈ (σ̄, σ) satisfying τk,l, ξ ∈ Tσ [ρ] and λρ ≥ π(ξ), where
π := πρ,σ, large enough so that

ζyr0(y),1, ζ
y
u,v ∈ Tσ [ρ]

for every y ∈ Y >α? , every u ∈ [0, r0(y)), and every v ∈ {1, . . . , ku(y)}.
We may now map β to βρ := o(βρ) where

βρ := α?_(ρ, π(τk,l)),

easily verifying using the i.h. that β and βρ have the same <2-predecessors in Ord and the same <1-predecessors
in X ∪ (Y ∩ βρ). Setting ς̃ := ersn,2(βρ), define

αρ := βρ + κς̃π(ξ) + dpς̃(π(ξ)).

In the same way as in Subcase 1.1.2.2 we can now define the embedding

t : αρ ↪→ α

which fixes ordinals ≤ α?, so that by the i.h.

αρ ∼= Im(t) and γ <2 αρ.

By our choice of α? we have X ∪ (Y ∩ β) ⊆ α?, and by our choice of ρ we have Y ⊆ Im(t), hence t−1 copies Y >α
?

into [βρ, αρ), and applying the mapping t we can now derive the validity of the criterion given by Proposition 1.6
for γ, α from its validity for γ, αρ, which implies that the above isomorphism extends to mapping αρ to α.

Subcase 1.2.3: (k, l) = (1, 0). According to our assumptions, in particular (i0, j0) = (1, 0), τn,1 = τ?n > 1, and
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since the Special Case α = υλ has been considered already, we have (k, l)+ = (1, 1), λ ∈ Lim, α1,1 ∈ (υλ, υλ+1),
α = me(α�1,1) according to property 2 of (k, l), and

γ =

 υλ if τ?n = υλ
υλj if τ?n = υλj for some j ∈ {1, . . . , p} where λj ∈ Lim
υλj+tj+1 if τ?n = υλj+tj for some j ∈ {1, . . . , p} where λj ∈ Lim0 and tj > 0.

1.2.3.1: γ < υλ. Here we argue as in Subcase 1.2.2, as α1,1 is clearly a submaximal index. Cofinally in λ we
find ρ such that Y ∩ [υρ, υλ) = ∅ and all parameters below υλ from components of tracking chains of elements of
Y \ υλ and of α = o(me(α�1,1

)) are contained in υρ. Applying base transformation π := πυρ,υλ to the elements of
Y \ υλ then results in an isomorphic copy of X ∪ Y below αρ := π(α), which itself satisfies γ <2 αρ by the i.h.,
so that again we can derive the validity of the criterion for γ <2 α and X ∪ Y from its validity for γ <2 αρ using
the embedding from αρ into υρ ∪ [υλ, α) via inverted base transformation π−1.

1.2.3.2: γ = υλ. Setting ξ := α1,1 we have

α = κξ + dp(ξ), α = me(((ξ))), and χυλ(ξ) = 1,

invoking again Lemma 3.5. We again choose a sufficiently large ρ < λ, where now ρ = λ′ + t′ + 2 for suitable
λ′ ∈ Lim0, and t′ < ω, such that X < υρ and all parameters below υλ of α (equivalently, ξ) and of all components
of tracking chains of the elements of Y are contained in υρ. Setting π := πυρ,υλ and ζ := (υλ′+1, . . . , υλ′+t′+2),
notice that by Lemma 3.13 χυρ(π(ξ)) = 1 and choose ν ∈ P ∩ υρ+1 such that

ρ1((ζ_ν))−· 1 = π(ξ),

which is done as follows. Let ξ = υλ · (ζ + l) where ζ ∈ Lim0 and l < ω. Note that if l = 0, we must have
ζ = (1/υλ) · ξ ∈ Lim since ξ > υλ, and χυλ(ζ) = χυλ(ξ) = 1 according to Lemma 3.5. Also recall that base
transformation commutes with ω-exponentiation (Lemma 2.51) and the %-operator (Lemma 3.13), which is useful
to keep in mind during the following calculation. Set

k :=

{
0 if l = 0
l − 1 + χυλ(ζ) if l > 0

and ν := ωπ(ζ)+k.

Now, if χυρ(ν) = 1 it follows that k = 0 and χυρ(π(ζ)) = 1, hence χυλ(ζ) = 1 and l = 0, whence ρ1(ζ_ν)−· 1 =
%
υρ
ν = υρ · π(ζ) = π(ξ). And if χυρ(ν) = 0, we have ρ1(ζ_ν) −· 1 = %

υρ
ν + υρ and k −· χυρ(π(ζ)) + 1 = l, since if

k = 0 we must have l > 0 as χυλ(ξ) = 1. Thus %υρν + υρ = υρ · (π(ζ) + l) = π(ξ).
Setting µ := νζν , we now obtain our master copy Ỹ of Y by

Ỹ := µ+ (−υρ + π[Y ]).

Now, let a finite set Ỹ + such that Ỹ ⊆ Ỹ + ⊆ υλ be given. If necessary, let Z̃ be a copy of Ỹ + \ µ+, where
µ+ := νζν+1, below µ+ such that for Ỹ ′ := (Ỹ + ∩ µ+) ∪ Z̃

X ∪ Ỹ + ∼= X ∪ Ỹ ′,

and set
Y + := (Ỹ ′ ∩ µ) ∪ π−1[υρ + (−µ+ Ỹ ′)].

It is now easy to see that the isomorphism of X∪ Ỹ and X∪Y extends to an isomorphism of X∪ Ỹ + and X∪Y +.

Case 2: mn > 1. We now discuss the situation where the <lex-maximal index of the tracking chain of α is a
ν-index.

Simple examples for the subcases of Case 2 discussed below are tc(ε0 · 2) = ((ε0, 1)) (Subcase 2.1.1.1.1), tc(εBH+1 · 2) =

((BH, εBH+1, 1)) (Subcase 2.1.1.1.2), where BH stands of the Bachmann-Howard ordinal and εBH+1 for the least epsilon
number greater than the Bachmann-Howard ordinal, tc(ε0 · 3) = ((ε0, 2)) (Subcase 2.1.1.2), and tc(ϕ2,0 · (ω + 2)) =

((ϕ2,0, ω+ 1)) (Subcase 2.1.1.3). Examples for Subcase 2.1.2 were already given in the paragraph preceding Subcase 1.2.1,
and a simple example for the remaining Subcase 2.2 is tc(ε0 · ω) = ((ε0, ω)). Note that the characterizing pattern for BH,
BH <2 εBH+1 <2 εBH+1 · (ω + 1), is the least example for a <2-chain of three ordinals.

Subcase 2.1: αn,mn is a successor ordinal, say αn,mn = ξ + 1. Let τ := τn,mn−1 and α′ := o(α[ξ]). We consider
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cases for χτ (ξ):

Subcase 2.1.1: χτ (ξ) = 0. In order to verify part a) we have to show that pred1(α) = α′. By monotonicity and
continuity we have

α = sup{o(α[ξ]_(%τξ + η)) | η ∈ (0, τ)},

which by the i.h. is a proper supremum over ordinals the greatest <1-predecessor of which is α′.

We now proceed to prove part b) and consider cases regarding ξ.

2.1.1.1: ξ = 0. By part a) α′ = on,mn−1(α) is the greatest <1-predecessor of α.

2.1.1.1.1: mn = 2. By the i.h., α′ is either ≤1-minimal or has a greatest <1-predecessor, whence it does not have
any <2-successor, and thus α′ 6<2 α as claimed. Clearly, any <2-predecessor of α then must be a <2-predecessor
of α′ as well. If pred2(α′) > 0 then using the i.h. α is seen to be a proper supremum of <2-successors of pred2(α′)
like α′ itself, hence pred2(α) = pred2(α′), as claimed.

2.1.1.1.2: mn > 2. Then α′ <2 α, as according to the i.h. α then is the supremum of <2-successors of α′, hence
pred2(α) = α′, as claimed.

2.1.1.2: ξ is a successor ordinal. Then by the i.h. α′ has a greatest <1-predecessor, so α′ does not have any
<2-successor, in particular α′ 6<2 α. In the special case mn = 2 & τ?n = 1 the ≤2-minimality follows then from the
≤2-minimality of α′, while in the remaining cases α is easily seen to be the supremum of ordinals with the same
greatest <2-predecessor as claimed for α′.

2.1.1.3: ξ ∈ Lim. As α′ is its greatest <1-predecessor, α is α′-≤2-minimal, and showing that α′ 6<2 α will imply
the claim as above. Arguing toward contradiction, let us assume that α′ <2 α. Let X and Z ⊆ (α′, α′ + κς%τξ+1)

be sets according to Claim 4.3, for which there does not exist any cover X ∪ Z̃ such that X < Z̃ and X ∪ Z̃ ⊆
α′ + κς%τξ

+ dpς(%
τ
ξ ). We set

X ′ := X \ {α′} and Z ′ := {α′} ∪ Z.

By part 2 of Lemma 1.7 we obtain cofinally many copies Z̃ ′ below α′ such that X ′ < Z̃ ′ and X ′∪Z̃ ′ ∼= X ′∪Z ′ with
the property that o(α[1]) ≤ α̃′ := min Z̃ ′ <1 α

′. Let ν ∈ (0, ξ) be such that o(α[ν]) ≤ α̃′ < o(α[ν + 1]). Choosing
Z̃ ′ accordingly we may assume that X ′ < o(α[ν]) and logend(ν) < logend(ξ), hence %τν ≤ %τξ . Notice that if
o(α[ν]) < α̃′ the i.h. yields χτ (ν) = 1 and α̃′ ≤ pred1(o(α[ν+ 1])) = me(o(α[ν])), whence o(α[ν]) <2 α̃

′. We may
therefore assume that α̃′ = o(α[ν]) since changing α̃′ to o(α[ν]) would still result in a cover of X ′ ∪ Z ′. Because
o(α[ν + 1]) <1 α

′ by the i.h., we may further assume that Z̃ ′ ⊆ o(α[ν + 1]). Noticing that in the case %τν = %τξ we
must have χτ (ν) = 1 and by the i.h. o(α[ν]) + κς%τν <1 α

′, we finally may assume that X ′ ∪ Z̃ ′ ⊆ o(α[ν]_(ζ)) for
some ζ < %τξ with min Z̃ ′ = o(α[ν]) so that X ′ ∪ Z̃ ′ is a cover of X ′ ∪ Z ′. Since by i.h.

o(α[ν]_(ζ)) ∼= o(α[ν]) ∪ [α′, o(α[ξ]_(ζ))),

setting
Z̃ := (α′ + (−o(α[ν]) + Z̃ ′))− {α′}

results in a cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ α′ + κς%τξ
+ dpς(%

τ
ξ ). Contradiction.

Subcase 2.1.2: χτ (ξ) = 1. Part a) claims that, setting δ := me(α[ξ]), pred1(α) = o(δ) =: δ. It is easy to see
that the extending index of ec(δ) is of a form τ · (η + 1) for some η, shown explicitly in part 7(c) of Lemma 3.80.
Notice that cml(δ) = (n,mn − 1). By monotonicity and continuity we then have

α = sup{o(δ_(τ · η + ζ)) | ζ ∈ (0, τ)},

which by the i.h. is a proper supremum over ordinals the greatest <1-predecessor of which is δ.

As to part b) we first show that α is α′-≤2-minimal, arguing similarly as in the proof of (relativized) ≤2-minimality
in Subcase 1.2., but providing the argument explicitly again for the reader’s convenience. We will then prove
α′ 6<2 α which as above implies the claim.

Let δ = (δ1, . . . , δr) where δi = (δi,1, . . . , δi,ki) for 1 ≤ i ≤ r with associated chain σ. Then r ≥ n,
kn ≥ mn, δn,mn = ξ, and δi,j = αi,j for all (i, j) ∈ dom(δ) such that (i, j) <lex (n,mn). Recall that we have
pred1(α) = o(δ) = δ, i.e. δ is the greatest <1-predecessor of α, according to part a). For any γ <2 α we therefore
must have γ ≤ δ. According to the i.h. and with the aid of Lemma 3.73 the maximal <2-chain from α′ to δ
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consists of ordinals the tracking chains of which are initial chains of δ that extend tc(α′) = α[ξ], in particular
(n,mn) <lex (r, kr) and α′ <2 δ, and as verified by part 7(c) of Lemma 3.80 we have, setting ςδ := ersr,kr (δ),

α = δ + κςδτ ·(η+1) = β + τ̃ , where β := δ + κςδτ ·η + dpςδ (τ · η) and τ̃ = κςδτ .

Now, arguing toward contradiction, let us assume that there exists a greatest <2-predecessor γ of α such that
α′ <2 γ ≤2 δ, so that by the i.h. γ := tc(γ) is an initial chain of δ, say γ = oi,j+1(δ) for some (i, j + 1) ∈ dom(δ)
with j > 0 and (n,mn) <lex (i, j + 1). We then have σi,j > τ by Lemma 3.73 and set θ := oi,j(δ). According to
Claim 4.3 of the i.h. for o(δ�i,j

_(τ + 1)) = θ + τ̃ + 1 there exist finite sets X ⊆ θ + 1 and Z ⊆ (θ, θ + τ̃ + 1) such
that there does not exist any cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ θ + τ̃ . By the i.h. we know that
for every ν ∈ (0, δi,j+1), setting δν := o(δ�(i,j+1)[ν]) we have

θ + 1 + σ̃i,j ∼= θ + 1 ∪ (δν , δν + σ̃i,j)

Since δi,j+1 = µσi,j ∈ P and τ̃ < σ̃i,j (due to the monotonicity of an appropriately relativized κ-function, say,
κςδ ), we directly see that below γ there are cofinally many copies Z̃γ of Z such that X ∪ Z ∼= X ∪ Z̃γ . By part 1
of Lemma 1.7 and our assumption γ <2 α we now obtain copies Z̃α of Z cofinally below α (and hence above β)
such that X ∪ Z ∼= X ∪ Z̃α. The i.h. reassures us of the isomorphism

θ + 1 + τ̃ ∼= θ + 1 ∪ (β, α),

noting that (by the i.h.) the ordinals of the interval (β, α) cannot have any <2-predecessors in (θ, β] and that the
tracking chains of the ordinals in (θ, θ+ τ̃)∪ (β, α) have the proper initial chain δ�(i,j). This provides us, however,
with a copy Z̃ ⊆ (θ, θ + τ̃) of Z such that X ∪ Z ∼= X ∪ Z̃, contradicting our choice of X and Z, whence γ <2 α
is impossible. Therefore α is α′-≤2-minimal.

We now show that α′ 6<2 α. In order to reach a contradiction let us assume to the contrary that α′ <2 α. Under
this assumption we can prove the following variant of Claim 4.3:

Claim 4.4 Assuming α′ <2 α, there exist finite sets X and Z ⊆ (α′, α], where X consists of α′ and all existing
greatest <2-predecessors γ of elements of Z that satisfy γ ≤ α′, such that there does not exist any cover X ∪ Z̃ of
X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ α.

Proof. The proof of the above claim both builds upon Claim 4.3 and is similar to its proof, but for the reader’s
convenience we give it in detail, with an emphasis on a situation that is not particularly difficult but did not occur
in the proof of Claim 4.3, cf. Subcase I.2.

We are going to show that for every index pair (i, j) ∈ dom(δ) such that (n,mn) ≤lex (i, j) ≤lex (r, kr),
setting ηi,j := oi,j(δ), there exists a finite set Zi,j ⊆ (ηi,j , α] such that for Xi,j consisting of ηi,j and all existing
greatest <2-predecessors below ηi,j of elements of Zi,j there does not exist any cover Xi,j ∪ Z̃i,j of Xi,j ∪Zi,j with
Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ α. We proceed by induction on the finite number of 1-step extensions from δ�(i,j) to
δ: The initial step is (i, j) = (r, kr), hence ηi,j = δ. Recalling that α = δ + κςδτ ·(η+1), we can apply Claim 4.3 of
the i.h. to δ + κςδτ ·η+1 to obtain sets X ′ and Z ′ ⊆ (δ, δ + κςδτ ·η+1) such that there does not exist any cover X ′ ∪ Z̃ ′

of X ′ ∪ Z ′ with X ′ < Z̃ ′ and X ′ ∪ Z̃ ′ ⊆ δ + κςδτ ·η + dpςδ (τ · η) =: δ′. Defining

Zi,j := Z ′ ∪ {α}

and noticing that by our assumption we have α′ <2 α and that by the i.h. there do not exist any <2-successors
of α′ in the interval (δ′, α), it is easy to check that Zi,j has the required property. Let us now assume that
(i, j) <lex (r, kr). We set (u, v) := (i, j)+, ς ′ := ersi,j(δ), and consider two cases.

Case I: (u, v) = (i + 1, 1). By Lemma 3.73 we have σu,v > τ ∈ E and hence σ?u ≥ τ . Notice that the case
σu,v = σ?u cannot occur since then ec(δ�(u,v)) would not exist. We discuss the remaining possibilities for δu,v:

Subcase I.1: δu,v ∈ E>σ?u . We then argue as in the corresponding Case I in the proof of Claim 4.3. We therefore
define

Zi,j := Zu,v.

That this choice is adequate is shown as in the proof of Claim 4.3.

Subcase I.2: Otherwise. In case of δu,v > σu,v let ζ be such that δu,v =NF ζ+σu,v, otherwise set ζ := 0. If ζ > 0
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let Xζ and Zζ ⊆ (ηi,j , ηi,j + κς
′

ζ+1) be the sets according to Claim 4.3 of the i.h. so that there does not exist any
cover Xζ ∪ Z̃ζ of Xζ ∪Zζ with Xζ < Z̃ζ and Xζ ∪ Z̃ζ ⊆ ηi,j + κς

′

ζ + dpς′(ζ), otherwise set Xζ := ∅ =: Zζ . We now
define

Xi,j := {ηi,j} ∪Xζ ∪ (Xu,v \ {ηu,v}) and Zi,j := Zζ ∪ {ηu,v} ∪ Zu,v.

In order to show that this choice of Zi,j satisfies the claim let us assume to the contrary the existence of a set
Z̃i,j such that Xi,j ∪ Z̃i,j is a cover of Xi,j ∪ Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ α. Let Z ′ := {ηu,v} ∪ Zu,v
and Z̃ ′ be the subset of Z̃i,j corresponding to Z ′. Due to the property of Zζ in the case ζ > 0 we have

Z̃ ′ ⊆ [ηi,j + κς
′

ζ+1, α),

and since ηu,v <1 α there are cofinally many copies

Z̃ ′ ⊆ [ηi,j + κς
′

ζ+1, ηu,v)

below ηu,v keeping the same <2-predecessors. The ordinal µ := min Z̃ ′ corresponds to ηu,v in Zi,j , and since
µ ≤1 Z̃

′ we see that there exists ν ∈ (ζ, δu,v) such that setting ην := ηi,j + κς
′

ν and ην+1 := ηi,j + κς
′

ν+1 we have

Z̃ ′ \ {µ} ⊆ (ην , ην+1),

which again we may assume to satisfy ν ≥ σ?u and logend((1/σ?u) · ν) < log((1/σ?u) · σu,v). By the i.h. we have

ην+1
∼= ην ∪ [ηu,v, ηu,v + (−ην + ην+1))

since ηu,v and ην have the same <2-predecessors. Exploiting this isomorphism and noticing that Xu,v \ {ηu,v} ⊆
Xi,j we obtain a copy Z̃u,v of Z̃ ′ \ {µ} such that Xu,v ∪ Z̃u,v is a cover of Xu,v ∪ Zu,v with Xu,v < Z̃u,v and
Xu,v ∪ Z̃u,v ⊆ α. Contradiction.

Case II: (u, v) = (i, j + 1). Setting σ := σi,j we then have δi,j+1 = µσ and proceed as in the corresponding case
in the proof of Claim 4.3. Applying Claim 4.3 of the i.h. to o(δ�(i,j)

_(σ̄ + 1)) yields a set Zσ̄ ⊆ (ηi,j , ηi,j + κς
′

σ̄+1)

such that there does not exist a cover Xi,j ∪ Z̃σ̄ of Xi,j ∪Zσ̄ with Xi,j < Z̃σ̄ and Xi,j ∪ Z̃σ̄ ⊆ ηi,j + κς
′

σ̄ + dpς′(σ̄).
We now define

Zi,j := {ηu,v} ∪ (ηu,v + (−ηi,j + Zσ̄)) ∪ {o(δ�(u,v)
_(σ))} ∪ Zu,v.

In order to show that Zi,j has the desired property we assume that there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪ Zi,j
with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ α and then argue as in the corresponding Case II in the proof of Claim 4.3 in
order to drive the assumption into a contradiction.

The final instance (i, j) = (n,mn) establishes Claim 4.4. 2

We can now derive a contradiction similarly as in the previous subcase. Let X,Z be as in the above claim.
Without loss of generality me may assume that pred1(α) = δ ∈ Z. We set

X ′ := X \ {α′} and Z ′ := {α′} ∪ Z \ {α}.

By part 2 of Lemma 1.7 we obtain cofinally many copies Z̃ ′ below α′ such that X ′ < Z̃ ′ and X ′ ∪ Z̃ ′ ∼= X ′ ∪ Z ′
with the property that all ≤1-connections to α are maintained. Let

α̃′ := min Z̃ ′

and notice that α̃′ <1 α and α̃′ ≤2 γ̃ for all γ̃ ∈ Z̃ ′0, where Z̃ ′0 is defined as the subset of Z̃ ′ that consists of
the copies of all γ ∈ Z ′ such that γ <1 α. Let ν ∈ (0, ξ) be such that o(α[ν]) ≤ α̃′ < o(α[ν + 1]). Choosing
Z̃ ′ accordingly we may assume that both X ′ < o(α[ν]) and logend(ν) < logend(ξ). Notice that using the i.h.
χτ (ν) = 1, hence %τν = τ · logend(ν) < τ · logend(ξ) = %τξ (as ν = ν′ · ω for some ν′ would imply χτ (ν) = 0,
simimarly for ξ), and α̃′ ≤1 pred1(o(α[ν + 1])) = me(o(α[ν])), whence o(α[ν]) ≤2 α̃

′. We may therefore assume
that α̃′ = o(α[ν]) since a replacement would still result in a cover of X ′ ∪ Z ′. Because o(α[ν + 1]) <1 α

′ by
the i.h., we may further assume that Z̃ ′ ⊆ o(α[ν + 1]) as elements of Z̃ ′0 are not affected. Noticing that since
χτ (ν) = χτ (ξ) = 1 we have ν · ω < ξ, and setting

α? := o(α[ν · ω]) + κς%τν·ω + dpς(%
τ
ν·ω)
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we can use the isomorphism
o(α[ν + 1]) ∼= o(α[ν]) ∪ [o(α[ν · ω]), α?),

which is established by the i.h., in order to shift Z̃ ′ by the translation

Z̃? := o(α[ν · ω]) + (−o(α[ν]) + Z̃ ′).

This results in the cover X ′ ∪ Z̃? of X ′ ∪ Z ′. By the i.h. we know that

o(α[ν · ω]) <2 α
? = o(α[ν · ω]) + (−o(α[ν]) + o(α[ν + 1]))

and that for all γ̃ ∈ Z̃ ′0 the corresponding element in Z̃? satisfies

o(α[ν · ω]) + (−o(α[ν]) + γ̃) <1 α
?.

Since %τν·ω = τ · logend(ν) < %τξ , setting α̃ := α′ + κς%τν·ω + dpς(%
τ
ν·ω), we may finally exploit the isomorphism

α? + 1 ∼= o(α[ν · ω]) ∪ [α′, α̃]

so that setting
Z̃ := (α′ + (−o(α[ν · ω]) + (Z̃? ∪ {α?}))) \ {α′}

we obtain the cover X ∪ Z̃ of X ∪ Z which satisfies X < Z̃ and X ∪ Z̃ ⊆ α. Contradiction.

Subcase 2.2: αn,mn ∈ Lim.

Part a) follows from the i.h. by monotonicity and continuity, according to which

α = sup{o(α[ξ]) | ξ ∈ (0, αn,mn)}.

In order to see part b) we simply observe that according to part a) and the i.h. (o(α[ξ]))ξ<αn,mn is a <1-chain of
ordinals either ≤2-minimal as claimed for α or with the same greatest <2-predecessor as claimed for α. 2

The following Corollary 4.6 applies Theorem 4.2 in order to completely describe the structure R2 in terms
of ≤i-successorship, i = 1, 2. As a preparation we need the following definition of greatest branching point of a
tracking chain, denoted as gbo(α), which is crucial in calculating lh(α), i.e the maximum β such that α ≤1 β
if such ordinal exists. Recall that we write lh2(α) for the maximum β such that α ≤2 β if such ordinal exists,
and Succi(α) for the class {β | α ≤i β}, i = 1, 2. Recall also Definition 3.74 of reference sequence, rsi,j(α), and
evaluation reference sequence, ersi,j(α).

Definition 4.5 (7.12 of [17]) Let α ∈ TC where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n and set

α? :=

{
α if mn = 1
α[µτn,mn−1

] otherwise.

We define the (index pair of the) greatest branching point of α, gbo(α), by

gbo(α) :=

{
gbo(α�(i,j+1)) if (i, j) := cml(α?) exists

(n,mn) otherwise.

Corollary 4.6 (cf. 7.13 of [17]) Let α ∈ Ord with tc(α) = α where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n, with
associated chain τ and segmentation parameters (λ, t) := υseg(α) and p, sl, (λl, tl) for l = 1, . . . , p as in Definition
3.58.

Case 1: α ∈ Im(υ).

1.1: α = 0. Then lh2(α) = lh(α) = α.

1.2: α = υλ+1. Then lh2(α) = α and lh(α) =∞.

1.3: α = υλ > 0. Then lh2(α) = lh(α) =∞ and

Succ2(α) = {υλ · (1 + ξ) | ξ ∈ Ord}.



Pure Σ2-Elementarity beyond the Core 73

1.4: α = υλ+t′+1, t′ ∈ (0, ω). Then lh2(α) = lh(α) =∞ and

Succ2(α) = {α+ υλ+t′ · ξ | ξ ∈ Ord}.

Case 2: α 6∈ Im(υ).

a) We first consider ≤2-successors of α.

Subcase 2.1: mn = 1. Then
Succ2(α) = {α} and lh2(α) = α.

Subcase 2.2: mn > 1. Set (i0, j0) := (n,mn − 1), τ := τi0,j0 , τ̃ := τ̃i0,j0 , ς := rsi0,j0(α), % := %ττn,mn , and
let ν, ξ be such that

κς% + dpς(%) = τ̃ · ν + ξ and ξ < τ̃ .

Writing ηmax := ν −· χτ (τn,mn) we then have

Succ2(α) = {α+ τ̃ · η | η ≤ ηmax} and lh2(α) = α+ τ̃ · ηmax.

b) Writing (n0,m0) := gbo(α), m := m0 −· 2 + 1, and setting as in Definition 3.76 ς := ersn0,m(α) we have

lh(α) =

{
on0,m(α) + dpς(τn0,m) if on0,m(α) 6∈ Im(υ)

∞ otherwise.

Proof. In Case 1 claims regarding lh follow directly from Theorem 4.2. The claim regarding lh2 in Subcases
1.2 and 2.1 follows from Lemma 3.1, since according to Theorem 4.2 cofinal <1-chains do not exist. We now
consider the situations in Subcases 1.3, 1.4, and 2.2. If β is a <2-successor of α, according to the theorem either
α ⊆ β := tc(β), where mn > 1, or α = υλ+t, where λ ∈ Lim0, t ∈ N \ {1}, and λ + t > 0. In the situation of
Subcase 1.3 let τ := υλ =: τ̃ , in Subcase 1.4 let τ := υλ+t′ =: τ̃ , and in Subcase 2.2 let τ and τ̃ be as defined
there. Note that ≤i-successorhip is closed under limits, i = 1, 2, so it is sufficient to consider successor-<2-
successors β of α, which are immediate <2-successors, as by the theorem non-immediate <2-successors cannot be
successor-<2-successors. Suppose therefore that β = (β1, . . . ,βr) where βi = (βi,1, . . . , βi,ki) for i = 1, . . . , r is
a successor-<2-successor of α, whence by the theorem pred2(β) = α, kr = 1, and τ = σ?r = βr,1 > 1, where σ
is the chain associated with β. Clearly, the converse of this latter implication holds as well. Therefore, if β is a
successor-<2-successor of α, then it must be of the form α + τ̃ · (η + 1) for some η. In Subcase 2.2 we see that
such η must be bounded as claimed, since according to the theorem β is then a proper extension of α, whence
with the aid of Corollary 3.93 β ≤ α+ κς% + dpς(%), with strict inequality if χτ (τn,mn) = 1. Note that any ordinal
greater than α and bounded in this way has a tracking chain that properly extends α, cf. Corollary 3.93.

Having seen that all <2-successors of α are of the claimed form, we now assume β to be of the form α+ τ̃ ·(η+1)
for some η, bounded as stated in the situation of Subcase 2.2. Let again tc(β) =: β = (β1, . . . ,βr) where
βi = (βi,1, . . . , βi,ki) for i = 1, . . . , r, with associated chain σ. According to our assumption we have end(σ̃r,kr ) = τ̃ .

We first consider the situation of Subcase 2.2, where α ⊆ β as we have seen above. Assuming that σr,kr = 1,
which implies kr > 1, we would have σ̃r,kr−1 = τ̃ , hence by part 3 of Lemma 3.78 (r, kr − 1) = (n,mn − 1) and
thus α = β, which is not the case. We therefore have σr,kr > 1 and hence σ̃r,kr = τ̃ , which entails

ts(σ̃r,kr ) = ts(τ̃)

due to Lemma 3.36, and by part 3 of Lemma 3.78 it follows that neither kr > 1 nor kr = 1 & σr,1 ∈ E>σ?r , since
otherwise (r, kr) = (n,mn − 1), which is not the case. By parts 1 and 2 of Lemma 3.78 we have σ̃r,1 = κς

′

σr,1
(where ς ′ := rsr?(β)) and ts(τ̃) = rsi0,j0(α) = ς ∈ RS (where by definition (i0, j0) = (n,mn−1)), the membership
relation according to part 2 of Lemma 3.75. Thus kr = 1, and since the assumption σ?r < σr,1, where as we
already know σr,1 6∈ E, would imply ts(σ̃r,1) 6∈ RS as this tracking sequence could not be a strictly increasing
sequence of epsilon numbers, we obtain σr,1 = σ?r , so that ts(σ̃r,1) = ς ′ and hence σ?r = τ , moreover r? = (i0, j0)
again by part 3 of Lemma 3.78, whence by the theorem α <2 β.

Next, we consider the situation of Subcase 1.3, where α = υλ > 0 and β = υλ · (1 + η + 1) for some η. Then
we have end(σ̃r,kr ) = υλ, which implies kr = 1 as υλ can not be (the last summand of) an element of the image
of any ν-function, hence σ̃r,1 = σr,1 = υλ as κ-functions map additive principal numbers to addivitive principal
numbers, and thus σ?r = υλ. The theorem now yields pred2(β) = α.
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Finally, in Subcase 1.4, we have α = υλ+t′+1 and τ = υλ+t′ = τ̃ . Then we have end(σ̃r,kr ) = τ < α, which again
implies that kr = 1 as τ can only be (the last summand of an element) of the image of a ν-function that occurs
in tracking chains of ordinals below α, namely if it is either equal to νγ

′

τ = νγ0 , where γ
′ = (υλ+1, . . . , υλ+t′−1)

and γ = γ′
_
τ , or (the last summand of) an element of the image of νγ , cf. Corollaries 3.50 and 3.81. We again

conclude that σ̃r,1 = σr,1 = τ = σ?r , and hence by the theorem pred2(β) = α.
It remains to show part b) of the Corollary. We argue as in the corresponding proof of Corollary 7.13 of [17].

Let α′ := (α�(n0,m0))? using the ?-notation from Definition 4.5, according to which the vector α′ does not possess
a critical main line index pair. We set

α+ := o(me(α′)).

If on0,m(α) ∈ Im(υ), we have α+ = o(α′) ∈ Im(υ), otherwise inspecting definitions as was done in part 7(b) of
Lemma 3.80 we obtain

α+ = on0,m(α) + dpς(τn0,m).

We first show that
α ≤1 α

+. (7)

In the case m0 = 1 we have (n0,m0) = (n,mn), and the claim follows directly from Theorem 4.2. Now assume
that m0 > 1. By Theorem 4.2 we have α ≤1 o(α?) ≤1 o(me(α?)). If cml(α?) does not exist, that is α′ = α?,
we are done with showing (7). Otherwise let cml(α?) =: (i1, j1) and let l0 be maximal so that for all l ∈ (0, l0)
cml((α�(il,jl+1))?) =: (il+1, jl+1) exists. Clearly, the sequence of index pairs we obtain in this way is <lex-decreasing,
and by Definition 4.5 (il0 , jl0 + 1) = (n0,m0). Theorem 4.2 yields the chain of inequations

α ≤1 o(α?) ≤1 o((α�(i1,j1+1))?) ≤1 . . . ≤1 o((α�(il0
,jl0

+1))?) = o(α′) ≤1 α
+.

In the case on0,m(α) ∈ Im(υ) the claim follows directly from the theorem, so let us assume otherwise. We claim
that

pred1(α+ + 1) < o(α′). (8)

To this end note that tc(α+ +1) must be of a form α�i
_(αi+1,1 +1) where i ≤ n0. By Theorem 4.2 α+ +1 is either

υλ-≤1-minimal or the greatest <1-predecessor is o(αi−1,mi−1
). Hence (8) follows, which implies that α 6≤1 α

+ + 1.
We thus have lh(α) = on0,m(α) + dpς(τn0,m). 2
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