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Abstract

Investigating color centers in diamond for microwave quantum

technologies

The rapid advancement of quantum technology in recent years has necessitated the de-
velopment of many specialized microwave components such as the Josephson parametric
amplifier (JPA), to be used in conjunction with superconducting qubits. In this thesis, I
present research into impurity spins in diamond, which include nitrogen (P1), nitrogen-
vacancy (NV), and vacancy clusters, in particular (R5) centers, for use in these microwave
quantum technologies. I first present the development of a 3D loop-gap microwave res-
onator for use with these impurity spins. We were able to demonstrate strong coupling
with an ensemble of nitrogen-vacancy (NV) centers as well as that of nitrogen (P1) centers
at 10 mK. I next demonstrate two separate but related maser effects in the spin ensem-
ble. The first of which is a thermally-generated inversion of the NV centers, produced by
an abrupt cooling of the sample with a lifetime of several hours. Finally, I demonstrate
another spin-based cavity maser, this time using the P1 centers and an active microwave
pumping scheme. This cavity amplifier has several desirable qualities, including a large
gain and low noise temperature. Such an amplifier may be promising for future quantum
technology applications.

iii



Acknowledgment

First of all, I should thank Dr. Junichiro Kono of Rice University and Dr. Keshav Dani,
both of whom introduced me and encouraged me to apply to OIST. Without them, the
last few years do not happen the same way.

Secondly, I want to thank my thesis supervisor, Dr. Denis Konstantinov, as well as
all the members of the Quantum Dynamics Unit as OIST. From our first conversation in
February 2015, I was moved by Dr. Konstantinov’s enthusiasm for his experiments and
quantum physics in general. I have been fortunate to complete my thesis research under
such a supportive and knowledgeable advisor.

I would especially like to thank all the past and present members of the Hybrid Quan-
tum Device team within our group, led by Dr. Yuimaru Kubo. Dr. Kubo oversaw most
of my research and results and his guidance, input, suggestions, and revisions over the
last six years were absolutely essential to the completion of this thesis. Dr. Peter Mo-
roshkin, Dr. Shota Norimoto, Yu Yamashiro, Tatsuki Hamamoto, and Morihiro Ohta also
all helped me along the way with experiments and data analysis. Many thanks to the
fine people working at Sumitomo Electric Company, as well as Dr. Isoya, for providing
our group with the diamond sample from which we obtained our most interesting results,
and also to the variety of brilliant researchers I’ve had discussions with over the years,
including Dr. Klaus Mølmer, Dr. John Morton, Dr. Patrice Bertet, Dr. Denis Vion, and
many others.

My wife, Virginia, deserves special accolades. I’m not sure she was fully aware of what
she was getting into at the beginning of all this, but she has been my rock through it
all. I absolutely could not have completed this journey without her love, support, and
encouragement, as well as that of our beautiful kids, Helen and Henry. Finally, I would
like to thank Darren George, Loretta White, and Dr. Kazuyoshi Yamamoto for helping
me take care of myself during the more stressful times of the last few years.

iv



Abbreviations

AC alternating current
AWG arbitrary waveform generator

CQED cavity quantum electrodynamics
CW continuous wave
DC direct current
DR dilution refrigerator
ESR electron spin resonance

FWHM full-width at half-maximum
HQD hybrid quantum device

HPHT high pressure high temperature
JPA Josephson parametric amplifier
LGR loop-gap resonator
MSG microwave signal generator
NV nitrogen vacancy (in diamond)
P1 substitutional nitrogen center

QIS quantum information science
SCQ superconducting qubit
VC vacancy cluster

VNA vector network analyzer
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Glossary

Coopertivity The ratio of the square of the coupling rate g to
the loss rates κ and linewidth Γ in a coupled quan-
tum system. Determines the coupling regime of the
system.

Decoherence The relaxation towards zero of the x-y component
of the total magnetization vector ~M . Limits the
storage time of quantum information in the spins.

Dynamic range The regime of an amplifier where the input power
and output power follow a linear relationship. The
region begins at input powers above the noise floor
and ends at the 1 dB compression point.

Filling factor The proportion of electromagnetic field strength
that the occupies the same region of space as the
sample. Mathematically defined as the ratio of the
total electromagnetic energy in the sample volume
to the total energy within the mode volume.

Gyromagnetic ratio For a paramagnetic spin in a static magnetic field,
the ratio of the energy level splitting (in units of
frequency) to the magnitude of the applied field.

Larmor frequency The frequency of precession of a paramagnetic spin
about a static magnetic field, as a result of the field
exerting a torque on the object’s magnetic moment.

Lattice relaxation The relaxation of the z-component of the total mag-
netization vector ~M towards its equilibrium value.

Population inversion The state of an ensemble of quantum systems where
the majority of the population are in excited states.

Quality factor The ratio of the electromagnetic energy stored in a
resonator to the power dissipated in the resonator;
equivalently the ratio of the cavity resonance fre-
quency to the linewidth.
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Glossary vii

Rabi frequency The rate of cycling between levels in a quantum sys-
tem as the result of an applied oscillating B-field.

Saturation The state of an ensemble of quantum systems where
the ground and excited states are both 50% occu-
pied; no further photons can be absorbed by the
system.

Spontaneous emission For a quantum system in a non-equilibrium state,
the relaxation of an excited state to a lower state,
resulting the release of a photon with random phase.

Stimulated emission For a system in a state of population inversion, the
triggering of the release of a photon by an exter-
nal photon of the same frequency. These emitted
photons are coherent with the input photon.

Vacuum field The electromagnetic field resulting from quantum
fluctuations.



Nomenclature

c Speed of light in a vacuum (299792458 m/s)
γe Free electron gyromagnetic ratio (28 MHz/mT)
~ Reduced Planck constant (1.054× 10−34 Js)
kB Boltzmann constant (1.380× 10−23 J/K)
µB Bohr magneton (9.274× 10−24 J/T)
µ0 Permeability of free-space (4π × 10−7 H/m)
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Nomenclature ix

Table 5: Commonly used symbols in this work

Symbol Description
a†, a Cavity photon creation and annihilation operators
b†, b Bosonic creation and annihilation operators
B0 static (DC) magnetic field

gsingle Single spin-cavity coupling rate
gens Ensemble-cavity coupling rate
n̄ Number of photons in the cavity
N Number of spins in ensemble

∆N Population difference of spins in ensemble
T1 Spin lattice relaxation time
T2 Spin coherence time
T ∗2 Free induction decay time
Vc Resonator mode volume
α inversion ratio of the spin ensemble
γrad Spontaneous emission rate
Γ Inhomogeneous broadening linewidth
δB vacuum AC (alternating) magnetic field
∆s detuning between cavity and spin resonance
η Filling factor of sample mode volume
θ, φ misalignment angles of the static B-field

κ1, κ2, κext Loss rates of port 1, port 2, and the combined rate
κint Loss rate (linewidth) of the resonator
K(ω) Spin distribution function
σz Spin angular momentum z-component operator

σ+, σ− Raising and lowering operator of the spin
ωc, ωs Resonant angular frequencies of the cavity and spin

Ωn n-photon quantum Rabi frequency



Since I now recall fondly
the painful days of the past

if I live long, I may look back
on these harsh days, too

and find them sweet and good.
- Fujiwara no Kiyosuke
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Introduction

Quantum computing, which falls under the wider umbrella of quantum information sci-
ence and technology, has advanced rapidly in the last two decades. In that span there
have been a wide variety of systems proposed for use as quantum bits (qubits) in a quan-
tum computer. Of these options, systems using microwave frequencies for manipulation
and readout, including solid-state spins, spins in semiconductors, and superconducting
qubits (SCQ) are popular due to well-established microwave and radiofrequency (RF)
infrastructure. [1]

The rapid expansion of this field, due in no small part to massive investments of
resources from tech giants such as Google, IBM, Microsoft, Intel, and Amazon, has pushed
current microwave technology to its limits. Special (often custom-made) technologies are
now required to suit the needs of the experiments performed by companies and academic
groups at the cutting edge of SCQ research.

The low energy of individual microwave photons in particular provides a number of
experimental challenges to overcome. The energy of a 5 GHz photon is equal to:

E = hf = 3.31× 10−24J, (1)

which corresponds to a thermodynamic temperature of:

T =
3.31× 10−24J

kB
= 240 mK (2)

For comparison, the peak emission wavelength of the sun is ∼ 500 nm (∼ 600 THz),
which corresponds to a single-photon energy of 4×10−19 J and a thermodynamic temper-
ature of 30000 K.

This has several important ramifications. The first is that in order for the microwave
photons to be in the quantum ground state, measurements involving spin qubits or SCQs
must be performed at millikelvin (mK) temperatures, usually necessitating the use of
a dilution refrigerator or other cryogenic system. The second is that microwave signals
used for qubit manipulation must usually be cooled through several stages of attenuation
and amplification during the course of the measurement. Any amplifier will add noise of
its own in addition to amplifying any previous noise in the measurement chain. Ideally,
the amplifier at the lowest temperature stage should have the lowest added noise as is
physically possible. Finally, quantum information coded into microwave photons cannot
be removed from the cryostat and transported over long distances, lest it be overwhelmed
by thermal fluctuations at room temperature. Since optical frequencies do not have this
problem, a device that could efficiently and bidirectionally convert between optical and
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microwave photons, a so-called quantum transducer would be necessary for networking
between quantum nodes.

It is the particular challenge of quantum-limited microwave amplification that is one
of the subjects of this thesis. Quantum-limited amplification of microwave signals at
millikelvin temperatures has already been realized through the Josephson parametric
amplifier (JPA), which utilizes a chain of Josephson junctions (superconducting tunnel
junctions) and a microwave pump to amplify the input signal [2]. Although used in a
number of quantum information applications, JPAs do suffer from a few drawbacks, the
most significant of which is a low input saturation power. The current state-of-the-art
JPAs can theoretically read out about 20 qubits before saturating [3]. As the number of
qubits used in QC experiments steadily rises, it will eventually be necessary to measure
the state of many qubits simultaneously, which would overpower current technology.

Although only tangentially related to this thesis, the issue of a microwave-to-optical
transducer deserves a mention. Contrasted with the JPA, there is no practical solution
to this issue at the moment - at least not one with unit efficiency. The current record for
efficiency uses an optomechanical resonator to achieve conversion ratios over 47% [4]. Ideas
put forth over the years have included other nanomechanical devices [5][6][7], electro-optic
sideband conversion schemes [8] and a wide variety of proposals using spins in diamond
[9][10], magnons [11], atoms [12],and rare-earth crystals [13]. Williamson’s proposal [13] is
particularly interesting because it claims that unity efficiency can be achieved using spins
of sufficiently narrow bandwidth and high-Q microwave and optical cavities. However,
experimental implementations have so far fallen below this goal [14].

It was the idea of a quantum transducer and specifically the experimental implemen-
tation of the Williamson proposal that originally motivated my thesis research. Intro-
ductions to color centers in diamond and cavity quantum electrodynamics (CQED) are
presented in Chs. 1 and 3, respectively, whereas Ch. 2 focuses on the development and
history of microwave amplifiers, in particular masers. In Ch. 4 I describe the design,
construction, and characterization of a 5-6 GHz microwave resonator, as well as the cou-
pling of the device to color centers in diamond. Although the device was designed to be
suitable for microwave upconversion experiments, over the course of the research it was
discovered that under certain conditions the population of one particular spin transition
of negatively-charged nitrogen vacancies (NV−) could be inverted, essentially creating a
thermally-pumped microwave amplifier, referred to from now on as a thermal maser. This
phenomenon and its significance are discussed and analyzed in Chapter 5. Investigation
into the mechanism of this thermal maser led to the discovery of another, independent
maser effect in the substitutional nitrogen centers (called P1 or C centers) also present in
the sample. The mechanism, results, and potential uses for this P1 maser are presented in
Chapter 6. Lastly, some perspectives are discussed, including future directions and uses
for maser technology.



Chapter 1

Overview of impurity spins in diamond

1.1 Why diamond?
Diamond has long been of interest to researchers in a wide variety of fields. The diamond
lattice itself is simple to model and simulate, see Fig. 1.1, and is incredibly robust to any
physical wear and tear. Moreover, isotopically engineered diamonds can be magnetically
"silent" and thus provide an ideal environment to hold spin centers [15].

Figure 1.1: The pure diamond lattice, consisting of carbon atoms arranged in two face-centered
cubic structures shifted by a/4 along the vector x̂+ ŷ + ẑ.

Pure diamond consists of 98.9% carbon-12, 1.1% carbon-13, and trace amounts of
carbon-14, and of these only carbon-13 has a nonzero nuclear spin. Impurity spin centers,
also commonly known as color centers, are created by the presence of various dopants
which replace one or more carbon atoms within the diamond lattice. These dopants can
occur naturally or can be specifically engineered using a variety of process. Common
impurities include boron, nitrogen, silicon, nickel, and vacancies, although the presence
and concentration of these dopants highly depends on the growth method and conditions
[16] [17][18] [19].

One of the most popular impurity centers in diamond, negatively-charged nitrogen
vacancies (NV−), have long spin relaxation times (T1) and coherence times (T2), which
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make them good candidates for storing quantum information [20], even at room temper-
ature. NVs and other colors centers, including silicon vacancies (SiV−) and germanium
vacancies, are incredibly versatile for quantum information applications [21] [22] [23] [24].
Such spin centers have many desirable properties, namely the ability to manipulate the
spins via microwaves as well as to readout and reset them via optical frequencies.

In this work we are mostly concerned with NV centers and substitutional nitrogen
centers at millikelvin temperatures (<20 mK), where the spin relaxation times can reach
several hours [25]. These main impurity centers, as well as others that interact with them,
are discussed in detail below.

1.2 Negatively-charged nitrogen vacancies
Nitrogen is one of the most commonly-found impurities in both natural and synthetic
diamond. When a substitutional nitrogen atom is located adjacent to a vacant lattice
site, a nitrogen-vacancy center is formed. Such vacancies are usually formed by electron
irradiation, which has other consequences as well, such as production of vacancy clusters
(VC). See App. A for details on the specific samples used in the experiments in this thesis.
The nitrogen atom provides two valence electrons, while each of the three dangling carbon
bonds provide another, as seen in Fig. 1.2. This configuration forms what is known
as a neutral NV center (NV0), a spin-1/2 center. In cases where the system manages
to capture another donor electron, usually from another nitrogen atom, then a spin-1
negatively-charged NV center (NV−) is formed. This thesis concentrates exclusively on
(NV−) centers and will refer to them throughout the work as simply "NV centers."
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Figure 1.2: The negatively charged nitrogen-vacancy center in diamond, consisting of a sub-
stitutional nitrogen with an adjoining vacant lattice site. Three of the six electrons are provided
by the dangling carbon bonds (grey), two are provided by the nitrogen atom (green), and one
additional donor electron (pink) is captured to form a S = 1 spin triplet. The nearby 14N atom
has an innate spin I = 1 which contributes to the hyperfine splitting of the spin sublevels. The
axes in red correspond to the 〈111〉 direction, along which the depicted site is aligned. An NV
center may be aligned along any of the other blue-colored axes, with four possible orientations.

The NV center has trigonal symmetry located about the 〈111〉 diamond axis as in-
dicated in Fig. 1.2. Importantly, there are four such equivalent axes in the diamond
lattice, meaning that NV centers have four possible orientations. This becomes visible
when a magnetic field is applied, as the NV centers can effectively become four subspecies
depending on the B-field strength and orientation.

In terms of electronic configuration, the NV center has two unpaired electrons which
can form a spin triplet or singlet state. The ground state is the triplet state, commonly
referred to as the 3A state. This state is also accompanied by a singlet state 1A and first
excited triplet state 3E, see Fig. 1.3. Within the triplet ground state, the spin states
ms = 0 and ms = ±1 are separated by 2.878 GHz, as shown in figure 1.3. As discussed
more in Section 1.2.1, a unique property of NV centers is the spin-selective decay from
3E to the ground states, which allows for efficient optical pumping.

1.2.1 Optical properties

One of the most attractive properties of NV centers is the way that their spin state can
be optically pumped into the ms = 0 state by means of radiative decay through a bright
state (ms = 0) or non-radiative decay through the metastable singlet state (ms = ±1).
As depicted in Fig. 1.3, when a 532 nm laser signal is applied to NV centers in the ground
state, they are excited to the 3E state. If an excited spin was initially in the ms = 0 spin
state, then it will fluoresce and decay back to the ground state. However, if the spin was
initially in the ms = ±1, then it will first decay to the metastable dark state 1A, called



so because no optical photon is emitted during the process. The spin then continues to
decay from the 1A state to the 3A state, where it populates the ms = 0 sublevel. Using
this process, a green laser pulse can pump around 90% [26] of the NV spin centers into
the ms = 0 state over tens of nanoseconds [27]. This is an incredibly useful property for
applications in both the optical and microwave regimes. It allows the spin populations
Sz of NV centers to be probed via optical frequencies in a technique known as optically
detected magnetic resonance (ODMR) [28]. It also provides an active reset mechanism for
NV centers storing quantum information, allowing the system to be quickly reinitialized.

𝑚! = 0

𝑚! = ±1

𝑚! = 0

𝑚! = ±1
3E

3A

1A

Figure 1.3: The electronic structure of the NV center, consisting of a ground-level spin triplet
state 3A, a ground-level singlet state 1A, and an excited state 3E. A green laser pulse can be
used to excite the spins from 3A into a higher-energy state above 3E (green arrows), which then
relax via phonon processes into 3E. Spins that in the ms = 0 state when they are excited will
relax back to the ground state by emitting a photon, as indicated by the red arrows. Excited
spins that are in the ms = ±1 state will instead decay through 1A in a non-radiative ("dark"
path, shown in dark red). Repetition of this process for several cycles will eventually pump the
majority of spins into the ms = 0 state, effectively re-initializing the system.

1.2.2 Spin properties

Since the work in this thesis deal primarily with the spin transitions of NV centers, it is
important to establish the system Hamiltonian while discussing the contribution of each
term. As mentioned above, NV centers are a spin triplet with S = 1. We use the spin
state basis ms = −1, 0,+1 to characterize the three states. The principle axis (ẑ) is
defined to be along the 〈111〉 axis, and we can use the spin-1 operators in the following



sections, given by

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 , Ŝy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Ŝz =
1√
2

1 0 0
0 0 0
0 0 −1

 . (1.1)

For NV centers, the spin Hamiltonian has contributions from the zero-field splitting,
the Zeeman splitting, and the hyperfine splitting due to the nearby 14N nucleus. Contri-
butions from nearby spin-1/2 13C nuclei can also be taken into consideration and will be
shown in their relevant section. The full Hamiltonian is given by

ĤNV = ĤZF + ĤB + ĤNuc. (1.2)

The contributions are discussed in detail below.

The Zero-field splitting

The first term in the Hamiltonian arises from the fact that there are two unpaired spins
in the NV-center. These spins interact via dipole-dipole magnetic coupling even in the
absence of an external field, hence the name it is given. The zero-field splitting term is
represented as a 3× 3 tensor ˆ̄D and can be written

ĤZF = ~̂S · ˆ̄D · ~̂S = DxxŜ
2
x +DyyŜ

2
y +DzzŜ

2
z . (1.3)

These values are usually redefined as:

ĤZF/~ = DŜ2
z + E

(
Ŝ2
x − Ŝ2

y

)
, (1.4)

with D = 3Dzz/2 and E = (Dxx − Dyy)/2. The value of D is well-defined at 2.878
GHz [15], which is the value of the energy gap between the ms = 0 and the ms = ±1
states. The value E is nominally zero but in reality is local strain within the lattice and
thus varies from center to center, and sample to sample. Despite this, the effect of E can
be ignored at higher fields (>200 mT), as it is usually � Dz [15]. The highly anistropic
nature of the D-tensor means that NV centers are extremely sensitive to misalignment of
the static magnetic field, with tilts of only a few fractions of a degree producing large shifts
in the resonance frequencies. In our system, operating at about 200 mT, the transition
frequency shifts by about 1 GHz per degree. This also has the effect of spreading out
the transition frequencies of the four NV center orientations, as each can see a slightly
different alignment of the B-field. We will use this phenomenon to our advantage in Chs.
5 and 6 to tune the NVs so that their transition frequencies overlap with other spin centers
that are less sensitive to magnetic field and orientation.

The Zeeman splitting

As alluded to previously, NV centers are subject to a Zeeman splitting in the presence of
a static magnetic field. The magnitude of the splitting is given by

ĤB/~ = γe ~B · ~̂S. (1.5)



The g-factor of the NV center is nearly identical to that of the free electron, so the
gyromagnetic ratio γe = 28MHz/mT can be used. The behavior of the energy levels as a
function of field for the Hamiltonian ĤNV = ĤZF + ĤB in two orientations is plotted Fig.
1.4a-b and merits some discussion. The first point is that the levels change significantly as
~B is tilted further away from the NV 〈111〉 axis, becoming less linear and more quadratic,
as seen in Fig. 1.4a-b. The case of 54.7◦, namely B0 ‖ 〈001〉, is plotted in Fig 1.4b, where
the ms = 0 and ms = −1 states are strongly mixed for certain values of the magnetic
field. This is the standard orientation of the diamond sample used in a majority of this
work. See the details of Sample #2 in App. A.
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Figure 1.4: Energy level structure of the NV1 center in diamond. a) Energy levels (in units
of frequency) as a function of B-field strength. In this case the B-field is applied along the
[001] crystallographic axis, as is usually the case in our samples. b) Energy levels as a function
of B-field strength when applied along the [111] crystallographic axis. Note the crossing of
the ms = −1 and ms = 0 energy levels at B ≈ 102 mT, which become pure states again at
higher fields. c) The corresponding transition frequencies between the energy levels of a). Note
that initially the lowest-energy transition has an amplitude near zero, as it corresponds to the
∆ms = 2 transition. However, after the energy level crossing between ms = |0〉 and ms = |1〉,
the amplitude of this transition increases while the highest-energy transition goes to zero. d)
The corresponding transition frequencies between the energy levels of b), showing an even starker
difference between allowed and forbidden spin transitions, due to the lack of any off-axis B-field
component.



An important point about the labeling of NV spin states should be noted here. As
determined in the previous section, at zero-field the splitting betweenms = 0 andms = ±1
is 2.878 GHz. Adding a static magnetic field breaks the degeneracy of the ms = ±1 states
via the Zeeman effect. As shown in Fig. 1.4, a spin in the ms = 0 state can be excited
into either the ms = −1 or ms = 1 state, but the ms = −1 to ms = 1 transition cannot be
driven due to selection rules. As long as the magnitude of the Zeeman splitting is smaller
than the zero-field splitting, ms = 0 will remain as the lowest energy state. This is
the default configuration of many quantum information experiments using NV centers at
room temperature, as it allows for optical pumping into the ms = 0 state. This pumping
serves as an active reset mechanism for NV spin qubits. However, as the field magnitude
is increased the levels ms = 0 and ms = −1 form an anticrossing at Bz = D/γe ≈ 102mT
(see Fig. 1.4b). The size of this anticrossing depends on the field orientation. In the
"intermediate" regime near 102 mT, the mixing occurs between the lower energy levels
and the ms values are no longer good quantum numbers, hence they are renamed |0〉 and
|1〉 as in Fig. 1.4. As the field is increased beyond this regime, corresponding to transition
frequencies in the C-band and higher, the mixing between ms = 0 and ms = −1 states
becomes insignificant, so the ms values are restored as good quantum numbers and the
pure statems = −1 becomes the new lowest energy spin state. This regime, corresponding
to Fig 1.4a,c between 180-220 mT and 5-6 GHz, is where almost all of the experiments
performed in this thesis take place.

The hyperfine splitting and nuclear effects

Lastly, it is important to note the effect of the nitrogen nucleus on the spin system. Almost
every NV center contains a spin-1 14N nucleus, as the natural abundance of 15N is less than
0.4%. In addition to the hyperfine interaction and its own splitting due to the Zeeman
effect, the 14N nucleus also has a quadrupole moment. Thus the total contribution to the
Hamiltonian from nuclear effects is

ĤHF/~ = γ14N
~B · ~̂I + ~̂S · ˆ̄A · ~̂I + P Î2

z . (1.6)

Compared to the zero-field and electronic Zeeman splitting in our typical working
regime, around 200 mT, the contributions from the nuclear effects are rather small. The
value of the 14N hyperfine tensor is given by A⊥ = 2.7 MHz, A‖ = 2.14 MHz, whereas
the quadrupole term has a magnitude P = −5 MHz. The gyromagnetic ratio of 14N is
3 MHz/T, so the effect of the nuclear Zeeman effect at 200 mT is around ∼ 600 kHz.
Since these values can often be similar to the linewidth of the diamond sample itself, it is
sometimes difficult to resolve the individual nuclear transitions in cw-ESR experiments.
However, these hyperfine transitions can clearly be seen in pulse-ESR experiments.

The calculated energy levels using the full spin Hamiltonian for B ‖ 〈111〉 can be seen
in Fig. 1.5 below.
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Figure 1.5: The hyperfine levels of an NV center at low field. Assuming the nuclear spin is
conserved, this creates three possible transitions between each level.

1.2.3 Applications

The ease of access to NV centers by both optical and microwave frequencies as well as
their good coherence times at room temperature mean that NV centers are popular in a
vast array of quantum information research, including electric and magnetic field sensing
[29], possible use as qubit registers in conjunction with nuclear spins [24][30], and as a
multimode RAM for quantum information generated by a superconducting qubit [31][32].

Of particular interest to this work are experiments where an ensemble of NV centers
has been inverted and subsequently emit microwave photons. Two such recent experiments
come to mind. The first work, by Angerer et al., generated inversion in an ensemble of NV
spins by applying a high-power microwave π-pulse [33]. The spin system then underwent
superradiance, a collective, coherent emission effect predicted by Dicke in 1954 [34], which
was detected by measuring the spin population 〈Sz〉 via fluorescence (see Sec. 1.2.1). The
superradiant nature was confirmed by measuring the power of the emission as a function
of the number of spins, N , which was found to have nonlinear behavior [33]. The authors
predicted that this device could provide for the basis for a superradiant maser.

NV centers were also the medium of choice for the first demonstration of a room-
temperature, solid-state, continuous-wave maser [35]. This experiment, as well as the
history and physics of the solid-state spin maser, will be discussed in more detail in the
section on practical masers in Ch. 2.

1.3 Substitutional nitrogen centers
The most prominent spin centers in our samples are not, in fact, NV centers but rather
substitutional nitrogen centers, known as the P1 center in ESR literature and also some-



times referred to as the nitrogen C center. P1 centers consist of a single nitrogen atom
replacing a carbon in the diamond lattice as seen in Fig. 1.6, and are the most com-
mon paramagnetic impurity in diamond [36]. The presence of P1 centers in the diamond
provides the nitrogen required for the creation of NV centers, hence why, in most cases,
the concentration of P1 centers in a given sample is always higher than that of the NV
centers.

N e

S=1/2

I=1

Figure 1.6: The substitutional nitrogen center in diamond, also known as the P1 or C center.
The nitrogen atom provides both the donor electron with S = 1/2 and the nuclear spin I = 1

which form the energy level structure. The axes in red correspond to the 〈111〉 direction. Like
the NV center, a P1 center may be aligned along any of the blue-colored axes, with four possible
orientations.

1.3.1 Electronic structure and spin properties

Nitrogen is a group-V element, meaning that it has five valence electrons. When a nitrogen
atom replaces a carbon atom within a diamond lattice, it introduces an additional donor
electron. This electron can be ionized to the conduction band at energies above 2.2 eV (564
nm) [37], resulting in the yellow color of diamonds with a high nitrogen concentration.
The electron itself constitutes a spin-1/2 paramagnetic center with a relatively simple
spin Hamiltonian, given by

ĤP1 = ĤB + ĤHF . (1.7)

Like the NV center, the P1 center has a principle axis along 〈111〉 and thus can have
four different orientations relative to an applied B-field. Unlike the NV center, though, the
spin-1/2 nature of the P1 centers gives it a straightforward, linear energy level structure
with no dependence on orientation. Perhaps the most dramatic feature of P1 is its large
hyperfine coupling to the 14N nucleus (A‖ = 114 MHz, A⊥ = 81 MHz), which results in
three easily resolvable transitions for each of the nuclear sublevels, as seen in Fig. 1.7.



Although the center transition remains fixed for all orientations of ~B as stated above, due
to the anisotropic hyperfine tensor the satellite transitions will broaden and split based
on the direction of the applied field (see Fig. 1.7b).
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Figure 1.7: Structure of the P1 center in diamond. a) Energy levels (in units of frequency) as
a function of B-field strength. In this case the B-field is applied along the [001] crystallographic
axis. The transition frequency between the central (mI = 0) levels is 6 GHz at about 214
mT, with the other energy separated by A/2 (blue arrows). b) Energy levels as a function
of B-field strength when applied along the [001] and [110] crystallographic axes. The pictured
region is the typical operating regime of our experiments. While the central transition frequency
remains unchanged when the field is applied in the 〈110〉 direction, each satellite is split into two
transitions. These correspond to the two different alignments of the P1 centers relative to the
[110] plane, those lying in-plane and out-of-plane.

1.3.2 Four-spin cross-relaxation process

Due to its relevance to this work, it is important to describe the four-spin cross relaxation
process that occurs among the three nuclear sublevels in P1 centers. This effect was
discovered by Sorokin et al. in 1959 [38]. At a given value of the static B-field (for
B0 ‖ 〈001〉) the center mi = 0 transition will have a frequency ω0 and the upper- and
lower-frequency satellites will have respective frequencies ω−1 and ω1, as seen in Fig. 1.8.
Due to the symmetry of the satellites about the center transition, it is possible for the spins
populating these levels to undergo a four-spin "cross-relaxation" process that satisfies the
energy-conserving condition 2ω0 = ω− + ω+. As described in Fig. 1.8, this process can
occur in both "forward" and "reverse" directions. If a steady microwave pump signal is
applied at frequency ω0, it is easy to see that all three P1 transitions can eventually be
saturated due to this process. It is noted in Ref. [38], though, that population inversion
can be achieved if there is any asymmetry in the relaxation times of the system. We use
this effect to our advantage to create a microwave amplifier with a sizeable gain and large
dynamic range, as detailed in Ch. 6.
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Figure 1.8: Energy level transitions for P1 centers for the magnetic field orientation ~B ‖ 〈001〉.
Two spins on the center transition with frequency ω0 relax from ms = 1/2 to ms = −1/2. This is
accompanied by the excitation of one spin on each of the satellites to thems = 1/2 level, fulfilling
the condition 2ω0 = ω− + ω+. Note that the inverse process is also possible; the directions of
the arrows above are reversed and the same energy conservation condition is preserved.

1.3.3 Applications

In general, P1 centers have attracted less research interest than NV centers from the
quantum information community. This is primarily due to the lack of optical control and
the requirement of a static field B>100 mT, although attempts have been made to control
P1 centers optically via their NV counterparts [39]. They have, however, generated some
interest as a possible maser medium due to the ability to invert the satellite transition
population via the four-spin cross-relaxation process.

Interest in nitrogen-doped diamond was primarily motivated by the diamond mining
industry in the first half of the 20th century [40]. The nitrogen concentration was initially
determined to be the cause of the UV absorption that differentiated type-I and type-
II diamonds [41], however it was later discovered that the UV absorption was not due
to P1 centers particularly but to another unidentified nitrogen complex [37]. The ESR
spectrum of P1 centers was first detected by Smith et al. in 1959 [36]. During the course
of these experiments, the group discovered the P1 cross-relaxation mechanism described
above could lead to an inverted population on one satellite [38]. Although NV centers
constituted the first room temperature cw maser [35], inversion of P1 ESR transitions had
actually been witnessed a few years earlier [42] [43], but this phenomenon attracted little
further research. The P1 cross-relaxation mechanism was recently investigated in the
context of hybrid quantum systems, with the P1 diamond sample coupled to a microwave



resonator [44], although no inversion was achieved.
In the context of quantum information, P1 centers are generally seen as an impediment

to the performance of NV centers, as there are always stray P1 centers left behind as
byproduct of NV center creation. Studies have been performed examining the effect of P1
centers on the coherence times T2 and T ∗2 of NV centers [45][46] and it is has been found
that a higher concentration leads to accelerated decoherence [47].

1.4 Other spin centers
There are many other defects that can create other impurity spins in diamond. Below,
we discuss a few specific centers that are confirmed to be present in our sample (see App.
A for details), while some centers that may be present but are either unconfirmed or
irrelevant to the experiments are gathered under "others."

1.4.1 Double vacancy

The creation of single (isolated) vacancies in diamond is primarily the cause of radiation
damage, and is usually purposely done through electron bombardment [18] [48]. When
the diamond is then annealed at temperatures above 600-700◦ C, the vacancies begin to
migrate throughout the sample [48]. This migration forms both vacancy chains, and with
higher nitrogen concentrations, NV centers. We suspect that some of these vacancies
chains are present in our samples and thus some discussion of these vacancy chains is
warranted. The first such center to be discussed is the divacancy, consisting of two
nearest-neighbor vacancies aligned together along the diamond 〈111〉 plane, as pictured
below in Fig. 1.9.
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Figure 1.9: The divacancy center in diamond. The charge state [V-V]0 is also known as the
R4/W6 center, which is a spin-1 defect. When an extra electron from another donor (shown in
pink) is captured, the center becomes the spin-3/2 [V-V]− center, also known as the W29 center.
Both charge states have a principle axis aligned closely to the 〈111〉 direction.

Like other defect centers in diamond, the divacancy has multiple charge states. The
first is the neutral divacancy, also known as the R4/W6 center, which has spin S = 1
[48]. The second is the negative divacancy, known as the W29 center, which captures an
extra electron from a nearby donor and thus has S = 3/2 [18]. These centers anneal in
and out of the diamond at a similar temperature range of 700-1200 K [49], the zero-field
splitting terms of their spin Hamiltonians have similar orientations, and both exhibit a
temperature-dependent linewidth [18]. The spin parameters for both of these centers, as
collected in Ref. [18], are as follows:

Center Pr. z-axis Dzz Dyy Dxx

R4 [111] −303 MHz 197 MHz 105 MHz
W29 ≈ [111] −453 MHz 156 MHz 297 MHz

Table 1.1: The spin Hamiltonian parameters for the R4/W6 center and the W29 center
in diamond.

We can calculate the energy level structure and the transition frequencies in our specific
region of interest, as shown in Fig. 1.10 below. For the [001] orientation of the B-field,
some interesting behavior is seen. The transitions of both the R4/W6 and W29 centers
are located closely to other g ≈ 2 transitions such as those of P1 and NV. As the field
is tilted into the 〈110〉 direction the degeneracy of all four orientations of the centers is
broken and a behavior similar to NV centers is seen. Two pairs of transitions are seen (see
Fig. 1.10b) corresponding to the R4/W6 sites orthogonal to and lying in the [110] plane.
The spread between these transitions becomes larger for greater values of the D-tensor, as



seen with the W29 transitions of Fig. 1.10d. Under specific magnitudes and orientations
of the B-field, it may be possible for the divacancy centers to have resonant transitions
with P1 and NV, forming a spin relaxation bath for the long-lived P1/NV centers. As
described in Chs. 5-6, these short-lived centers are critical to the functioning of the spin
maser amplifier.
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Figure 1.10: Energy levels and transition frequencies of the divacancy centers in diamond
for different B-field alignments. a) Energy levels of the [V-V]0 divacancy charge state (R4/W6).
As the field is tilted from the 〈001〉 direction (θ = 54.7◦ to the 〈110〉 direction), two species of
R4/W6 transitions emerge as the result of the different orientations relative to the [110] plane.
b) The transition frequencies of R4/W6 in the region of interest. The ground state transitions
(−1 → 0) of each orientation are indicated with dashed lines. c) The energy level structure
of the negatively-charged W29 center, featuring four levels due to its spin-3/2 nature. d) The
transition frequencies of W29 in the region of interest. Note the substantially larger frequency
spread of the transitions relative to R4/W6, a result of the larger D-tensor values. The ground
state transition (−3/2 → −1/2) of each orientation is indicated with a dotted line. Unlike the
R4/W6 center, there are two other ∆ms = 1 transitions corresponding to (−1/2 → 1/2) and
(1/2→ 3/2).



The R4/W6 has a heavily temperature-dependent linewidth above 50 K, the result of
a rapid spin-lattice relaxation time [48]. The linewidth decreases to 0.13 mT (∼3.6 MHz)
below 33 K. The W29 linewidth follows a similar pattern but with a smaller variation [18].
At the higher temperature (above 50 K for R4/W6), the linewidths are considerably larger
than typical spin centers in diamond, which is attributed a fluctuation of the dangling
bonds of the vacancies. For both R4/W6 and W29 centers, the defect is thought to be
continually switching between different sets of four dangling bonds (out of the six total
provided by the nearby carbon atoms) [18]. This results in a huge broadening of the
linewidth at room temperature.

1.4.2 Vacancy clusters

When annealed at higher temperatures (>800◦), the divacancy centers are annealed out
and the vacancies forms chains of three or more. In this work we will collective refer
to these centers as "vacancy clusters" (VC) center, all of which have the same general
behavior and spin parameters. There are five centers in particular in this family, those
corresponding to chains of 3-7 vacancies, known as R5, O1, R6, R10, and R11 centers,
respectively. Evidence for chains of 8 or more vacancies exists but the spin parameters are
not well-established [19]. We can examine the behavior of this family of centers as they
all have S = 1 and a principle axis along the 〈110〉 direction. This gives the VC centers
a different response to the B-field orientation than the other 〈111〉. In Table 1.2 below,
the names given to the vacancy chains are shown, as well as the spin parameters. The
only substantial difference among the various VC centers is the decrease of the D-tensor
as the number of vacancies in the chain is increased.

Center Num. Dzz Dyy Dxx

R5 3 −524 MHz 244 MHz 283 MHz
O1 4 −205 MHz 95 MHz 109 MHz
R6 5 −120 MHz 59 MHz 62 MHz
R10 6 −73 MHz 36 MHz 36 MHz
R11 7 −53 MHz 27 MHz 27 MHz

Table 1.2: The spin Hamiltonian parameters for the vacancy chain centers in diamond.
The values of the D-tensor generally decrease as the number of vacancies in the chain is
increased.

The prevalence of different types of VC centers is strongly correlated with annealing
temperature [50]. In our case (see App. A), the annealing temperature of 1000 ◦C
corresponds to the R5 center being the dominant cluster, with the other VCs occuring in
much smaller concentrations. In this work, we focus primarily on the R5 (triple vacancy)
center as representative of the VC centers as a whole. The structure and energy levels of
the R5 center are seen in Fig. 1.11 below.
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Figure 1.11: The triple vacancy (R5) center in diamond. a) The structure of the R5 center,
showing the three vacancies aligned along the 〈110〉 axis within the diamond lattice. b) Energy
levels (given in terms of frequency) as a function of the static B-field. The other VC centers have
similarly-structured energy levels with the zero-field splitting being the only difference.

Similar to the calculations made for the R4/W6 andW29 centers, it is useful to plot the
transition frequencies in our area of interest to see if these VC center transitions overlap
with the transitions of other defect spins. In Fig. 1.12 below, transition frequencies for
all five of the VC centers are plotted for the 〈110〉 and 〈001〉 orientations of the B-field.
Interestingly, when the B-field is tilted into the 〈001〉 direction the energies of the −1→ 0
transitions become lower than that of the 0→ 1 transitions. The presence of ground-state
transitions at higher field values such as with VC centers means that they have interesting
interactions with the NV and P1 centers, which will be explored in later chapters. The
spread of energy levels is also much larger for the 〈001〉-aligned field, and it is the R5 center
that shows by far the largest effect (see Fig. 1.12). Therefore, the R5 center transition
frequency is the most responsive to "tuning" by adjusting the angle and magnitude of the
B-field.
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Figure 1.12: Vacancy cluster transition frequencies as a function of B-field. a) The transition
frequencies of the R5, O1, R6, R10, and R11 centers in our region of interest. Transitions from
−1→ 0 (0→ 1) are indicated with dotted (solid) lines. b) Tilting the B-field from 〈001〉 to 〈110〉
results in a shift of the transition frequencies, with R5 having the largest effect and subsequent
centers having a smaller effect.

Like R4/W6 and W29, the linewidth of vacancy cluster centers is quite large, around
0.2-0.5 mT (6-14 MHz) [19] at room temperature but decreasing as the temperature is
lowered. This homogeneous broadening of the R5 and R4 linewidth at room temperature is
due to the rapid lattice relaxation time T1, which in this temperature range is dominated
by Orbach processes [19]. For the R5 center in particular, the linewidth decreases to
around 0.1 mT at temperatures below 50 K. It has also been found that the R5 D-values
have a temperature dependence - something that has not been observed for the other VC
centers [19]. The characteristics of VC clusters at millikelvin temperatures, including the
values of D, the linewidth, and the lattice relaxation time T1, are currently unknown.

1.4.3 Carbon-13 nuclear spins

Diamond consists of 98.9% carbon-12 and 1.1% carbon-13, of which carbon-13 has a
nuclear spin I = 1/2. Thus, it is possible that any given spin center discussed above
could be located near a carbon-13 nuclear spin. The nuclear hyperfine interaction of
the defect center with the carbon-13 spin doubles the number of energy levels, splitting
each into two further sublevels. The magnitude of the splitting depends on the location
of the carbon-13 atom relative to the defect spin, i.e. whether it is a nearest neighbor,
next-nearest neighbor, and so far. For NV and P1 centers, the carbon-13 hyperfine tensor
values are well-established [51]. The nearest-neighbor carbon-13 interaction has by far
the largest hyperfine interaction, with the splitting from other neighboring sites becoming
smaller as the atom is further removed from the spin center. As seen in figure below, in
experimental ESR data it is common to see faint satellites appear on either side of a given
NV/P1 transitions, separated by about 100 MHz.

Like with NV and P1 centers, the orientation of the carbon-13 atom relative to the
B-field is crucial, and can result in multiple transitions due to different alignments. For
example, when the B-field is aligned along the 〈110〉 axis, not only are two pairs of NV



spin subspecies seen, but each subspecies has two pairs of satellites due to the differing
orientations of the nearest-neighbor carbon-13 relative to the NV center. This can quickly
make identification of spin transitions quite complicated.

Although research has attempted to harness spin centers coupled to carbon-13 atoms
as a tool (e.g. [24][30]), carbon-13 is primarily responsible for the accelerated decoherence
of spin defects. At high nitrogen concentrations, spin-spin interactions between the defect
centers themselves are the main mechanism of decoherence, but below a certain concen-
tration carbon-13 atoms become dominant [47]. Isotopically purified carbon-12 diamond
is thus the most desirable for experiments requiring long coherence times [32].

1.4.4 Others

Other possible impurities in the diamond include single vacancy centers (V−1 or GR1
centers) [17] created by electron irradiation, catalyst materials such as nickel, chromium,
and iron [52] and silicon [19]. It is expected that most of the single-vacancy centers are
annealed out of the sample at temperatures higher than 700-900 K, forming NV centers,
double-vacancies, and multi-vacancies instead. Substitutional nickel centers, which form
a spin-3/2 system, may be present in the sample with the ∆ms = 1 transitions in the
same general region as P1 and NV1. However, nickel absorption lines have found to be
isotropic (i.e. D ≈ 0 [53]), so they have very little response to B-field misalignment and
are thus not expected to contribute to the spin interactions described in later chapters.

1.5 Summary
Diamond is an incredibly rich host medium for paramagnetic spins. We have explored a
number of these spin defects that are present in our samples. As will be seen in Ch. 2
multiple species of spin defects have been used previously in conjunction for a variety of
interesting effects. If a particularly "fast" system (i.e. R4/W6 or R5) is paired in the
correct way with a "slow" (P1 or NV) system, then population inversion can be achieved
in the slow system. The challenge, then, is to engineer the system in such a way that two
spin species can cooperate. See Chs. 5-6 for more details.



Chapter 2

Microwave amplification and the maser

2.1 History of the maser

2.1.1 Early proposals and demonstrations

In his 1917 paper, Albert Einstein described the process by which a quantum oscillator
can undergo a transition from a higher energy state m to a lower state n by interacting
with a radiation field, which frees a photon of energy Em − En [54]. Einstein called this
process Einstrahlung, now known as stimulated emission. Over 30 years later, Basov and
Prokhorov described the theory of what they dubbed a "molecular generator," a device
that used a high-Q resonator in conjunction with a molecular beam, prepared so that the
majority of the molecules are in the upper energy states. The cavity field helps drive the
state transitions, creating a positive feedback loop [55]. As long as the power dissipation
in the resonator is sufficiently low, the device could not only amplify an applied radiation
field, but self-oscillate (i.e. generate a field of its own). This is widely recognized as the
first theoretical proposal of microwave amplification by stimulated emission of radiation,
or maser [56]. The challenge then for experimental implementation was how to prepare
(invert) a system so that it was capable of emitting radiation. In 1954 the first experi-
mental realization of a maser came from Gordon and Townes, using an ammonia beam
to generate a 24 GHz microwave signal [57]. The physics of this maser are discussed in
more detail in the section below. In summary, the device uses a focused beam of ammo-
nia molecules to produce a self-oscillating microwave signal at around 10 nW (estimated)
[57]. Even in cases where the masing threshold is not met, the device can still function
as a microwave amplifier. This breakthrough resulted in Townes, Basov, and Prokhorov
being jointly awarded the 1964 Nobel Prize in Physics. For a brief time, there was a
period where many different types of masers were proposed. Potential uses for a maser as
a microwave amplifier, spectrometer, frequency reference, and a microwave source were
suggested, with narrow bandwidth and low noise figure cited at its most appealing features
[58]. We discuss some of these permutations of masers in the next section.

2.1.2 Common types of masers

As noted above, the first working maser by Gordon et al. used a beam of ammonia
molecules focused through a quadrupolar EM field. Ammonia (NH3) molecules have an
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innate electric dipole moment due to the orientation of the nitrogen atom relative to the
three hydrogen atoms. When these molecules enter into the quadrupolar electric field,
the orientation of the field forces the lower-energy ammonia molecules in the outer radial
direction while the high-energy molecules remain in the center. They are fed into the
resonant microwave cavity where the energy is emitted at around 24 GHz [57].

Hydrogen was proposed as a gaseous maser medium by Kleppner et al. [59] and
later patented [60]. The proposal rests on the innate hyperfine splitting of the hydrogen
electronic structure, which are separated by ∼ 1.42 GHz. The hydrogen particles are
passed through a magnetic state selector similar to the resonant cavity. One of the more
enduring maser designs, the hydrogen maser is still used as a frequency reference today.

Solid-state masers using paramagnetic spins also present an interesting medium for
maser devices, and likewise several systems were investigated in the 1950s-1960s. The
first proposal for such a device was published by Bloembergen in 1956, with the system
of choice being gadolinium (Gd) ions in salts. The primary advantage of such a param-
agnetic system was the ability to tune the output frequency of the maser via the external
magnetic field [61]. However, using solid-state spins requires the cooling of the sample
to liquid helium temperatures or lower in order to extend the spin relaxation time T1 by
reducing lattice vibrations. Indeed, when the first demonstration of a solid-state maser
was performed by Scovil et al., the system had to be performed in a helium cryostat at
1.2 K [62]. Using Gd ions (S = 7/2) in ethyl sulfate, an effective three-level system was
created using a B-field of 0.29 T. When a pump tone of 17.5 GHz was applied at sufficient
power, a self-oscillating output field of 9 GHz was measured from the cavity [62]. The
schematic is seen in Fig. 2.1. The highest output power of the maser was measured to be
around 18 µW (c.f. the 10 nW obtained by Townes [57]).
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Figure 2.1: The first operating solid-state maser as demonstrated by Scovil and Schulz-DuBois.
The energy levels of the spin-7/2 Gd3+ ions are shown with the respective lattice relaxation times
for each level. This schematic represents an archetypal pumping scheme for lasers and masers,
consisting of a three-level (or more) system with a difference in relaxation times between the
levels. When the spins are pumped from the first level to the third level, the short lifetime allows
the spins to accumulate in the middle level, creating inversion.



Ruby, consisting of chromium ions in sapphire, became a popular medium for masers,
owing to its large number of spin-3/2 Cr ions [63], narrow linewidth, and convenient zero-
field splitting [64]. Chang et al. demonstrated a cavity ruby maser amplifier with an
output frequency of 2.74 GHz and a gain-bandwidth product of approximately 50 MHz;
however they admitted that the operation of the maser was unstable [65]. The same
work proposed and demonstrated a traveling-wave circuit design, also using ruby. In this
case, the resonant cavity is replaced by a slow-wave transmission line which results in a
large gain-bandwidth [1] [66]. In this design, the gain is dependent on the length of the
slow-wave structure and the bandwidth is only dependent on the natural linewidth of the
sample [65][66]. This improves its performance over a cavity maser, where it was estimated
that the equivalent cavity maser would need a gain-bandwidth product of over 500 MHz
for the same performance [65] Lastly, the estimated added noise of these amplifiers was
extremely low, on the order of TN ∼ S(ω)

kB
, where S(ω) is given by the outpower power per

bandwidth P0/∆f .
One interesting item of note is that the estimated input saturation power of both the

cavity maser and traveling-wave design, around -50 dBm, was deemed "low" at the time
[65], whereas on the scale of our experiments this value is extremely high and indeed one
of the main advantages of a solid-state maser amplifier over its competitors.

Another ruby maser was demonstrated by Arams and Okwit near-simultaneously with
Chang’s work [64]. Their experiments focused on making a tunable maser and achieved a
tuning range from 850 MHz to 2 GHz. This was achieved by using a typical X-band (∼ 9
GHz) waveguide with a dielectric rod inserted to provide the necessary L-band (∼ 2− 4
GHz) resonance [64]. The length of the the rod can be adjusted externally so that the
cavity can be resonant with both the pump and probe frequencies. At helium temperature
(1.5 K) the measured gain-bandwidth product for this three-level operation was 37.5 MHz
[64].

In Section 1.3 we discussed the P1 cross-relaxation mechanism, orignally predicted
by predicted by Bloembergen [67] and first experimentally observed by Sorokin et al.
[38]. It was noted that the mechanism, by itself, is unsuitable for establishing population
inversion, as an applied pump on the center transition will only result in the saturation
of all three P1 transitions. However, as will be seen in Chapter 5, the presence of another
paramagnetic spin transition resonant with one of the P1 satellites can indeed produce
population inversion on the opposite satellite. Curiously, this exact effect was noted in
Sorokin’s work with the following passage:

The effect of other impurity lines on the nitrogen spectrum in diamond is in
certain samples strong enough to produce a large c.w. inversion of the low
field satellite when the center line is saturated. That is, in contra-distinction
to the ideal case, represented by sample W-2, in which both satellites drop to
zero when the center line is saturated, in roughly half of the more concentrated
stones the low field line displays a negative absorption when the pump is set
on the center line. The amount of inversion varies from stone to stone; in one
sample it was as high as 92%. [38]

Despite witnessing inversion in half of their samples, no maser data is presented in their
paper, and the exact nature of the mechanism which contribute to the inversion process



is left unresolved. It is attributed to other impurities within the diamond, something that
will be examined further in Chapter 6.

One final type of maser relevant to this thesis is the thermal maser, which was also
investigated around the same time period. The first proposal for such a "heat engine"
was also written by Scovil, in conjunction with Schulz-DuBois. In their work, a three-
level system quantum system is placed in contact with a hot reservoir which can serve
as a "pump" from levels 1 → 3 by equilibriating the population between the two levels.
Simultaneously, a cold reservoir is place in contact to polarize the spins into level 2 [68].
This results in a gain of population in level 2 and an inversion between 1 and 2, essentially
creating a Carnot cycle with efficiency

ηC =
TH − TC
TH

. (2.1)

The maser efficiency must be smaller than this value [68] [69]. In 1961 Schulz-DuBois
obtained a patent for a practical implementation of this heat engine, proposing a sapphire
rod with one end inserted into liquid helium and the other end surrounded with a heating
element. The center portion of the rod is doped with chromium (i.e. ruby) to act as the
maser medium. Like our thermal maser in Chapter 5, this design requires periodic heating
and cooling of the sample and cannot produce continuous amplification or oscillation [70].
The authors, however, included a second system to overcome this limitation. Instead of
ruby, a scheelite (CaWO4) rod is doped in each section with various materials (erbium,
germanium, and gadolinium) in an attempt to engineer the thermal conductivity of the
rod to make it frequency selective [70].

Hot bath (TH)Cold bath (TC) System

1

2

3

Figure 2.2: The quantum heat engine, as described by Schulz-DuBois in Ref. [68]. A three-
level quantum system is coupled to a hot (cold) bath at temperature TH (TC). The hot bath,
which has the same energy gap as the 1→ 3 system transition, has the effect of populating level
3. The cold bath, which has the same energy gap as the 2→ 3 system transition, has the effect
of driving the population from level 3 into level 2. This creates a population inversion between
levels 1-2, allowing for microwave amplification or self oscillation.



In 1963 Basov and Oraevskii published a similar proposal for obtaining inversion by
rapidly heating and cooling a system, exploiting the differences in relaxation times between
different energy levels. The rapid change in temperature functions essentially identically
to the thermal baths of the Schulz-DuBois proposal, allowing for a short burst of inverted
spin population [71]. This is similar to what takes place within the NV system in our
diamond sample, as discussed in Chapter 5.

A few experimental realizations of thermal masers were developed in the 1980s, the
first by Vaisfel’d et al. using cobalt crystals [72]. By carefully controlling the orientation of
a static B-field and applying a perpendicular B-field pulse, they were able to generate spin
flip-flops 1 between the Co2+ nuclear manifold (S = 7/2) and nearby cesium electron spins.
This redistributed the populations of the nuclear sublevels so that some were inverted for
a brief period of time [72]. A more in-depth study determined that the lifetime of the
inverted state is 36 ms [73].

Imamutdinov demonstrated the first thermal maser using ruby and an external heating
source, similar to the DuBois patent and depicted in Fig. 2.3. The spin sublevels were
prepared at 1.75 K by applying a static B-field of 0.74 T to the ruby crystal, creating an
energy gap of 9.1 GHz between the top two sublevels (see Fig. 2.3a). An energy pulse
was applied to the crystal via a heating coil, which redistributes the spin population to all
levels. Using the natural relaxation times of the ruby, the authors were able to generate
inversion between the +3/2 and +1/2 energy levels with a lifetime of around 800 ms [74]
(see Fig. 2.3b) and with an energy conversion efficiency of around 10−5. The incredibly
brief lifetimes of these thermal masers proved to be too difficult to overcome, and despite
proposals for continuous-wave thermal masers [75], such a device never materialized.

However, the basic idea did live on in what are known as gasdynamic lasers [76].
In a paper describing the connection between thermal masers and gasdynamic lasers,
Konyukhov outlines the following. A system of heated gas molecules with a long vi-
brational relaxation times (N2) operates in conjunction with other molecules with short
vibrational relaxation time (CO2). The exchange of energy between the fast and slow sys-
tem is similar in principle to that which occurs in a thermal maser, however the process
is reversed and results in population inversion on the CO2 (the "fast" system).

1Vaisfel’d, as well as many of the works cited here from the 1960s-1980s, refer to the process of energy
exchange between different species of paramagnetic spins as "cross-relaxation." We appropriate the term
"cross-relaxation" for processes taking place within a single defect type, for example the four-spin energy
exchange within the three nuclear sublevels of P1 centers. However, in this work we use the term "spin
flip-flops" to refer to exchanges between different spin species, and hence the term is applied here and
throughout the rest of this thesis.
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Figure 2.3: Ruby thermal maser implementation by Imamutdinov in Ref. [74]. a) The energy
levels in the ruby crystal are set with a 740 mT B-field, creating an X-band frequency gap
between the top two levels. A heat pulse redistributes the spins from the ground state to all
levels (red arrows). After the pulse is applied, a brief population inversion is achieved between
levels ms = +3/2 and ms = +1/2. b) Time-dependent behavior of the relative inversion ratio
for the maximum pulse energy of E = 48 mJ, extracted from the observed ESR signal. The
inversion lasts for approximately 800 ms.

2.1.3 Abandonment of masers

Although masers had been initially proposed for a wide variety of uses, including as fre-
quency references, for radio astronomy, and as low-noise microwave amplifiers [58][66],
they were hampered by numerous shortcomings. Among these were the difficulty of op-
eration, low power output, and, especially for solid-state schemes, the required liquid
helium bath and static magnetic fields. With a few notable exceptions, such as the hy-
drogen frequency reference [59] and the NASA Jet Propulsion Lab’s use of ruby masers
for astronomic data collection [77], masers gradually fell by the wayside as more efficient
means of achieving similar results were invented. Famously, in 1958 Townes and Schlalow
extended maser physics into the optical regime with their seminal work on what were then
known as "optical masers," or lasers [78]. In this work, the authors proposed the first
laser, using potassium vapor to produce a narrow monochromatic beam of around 400
nm [78]. The work also suggested the possibility of using solid-state crystals as a lasing
medium, but acknowledged that at the time an efficient way to pump the crystals was
lacking. Despite this, Maiman demonstrated the first operational laser using ruby only
two years later [79]. Following this result, lasers, which did not require static magnetic
fields, cryogenic operation, or high-vacuum chambers, eventually superseded the maser to
become ubiquitous in research labs everywhere. Maser amplifiers and oscillators were gen-
erally overcome by semiconductor technology using transistors, which would be developed
in the new few decades.



2.1.4 Recent experiments

Interest in maser systems began to resurface in the mid-2000s with the advent of rapidly-
developing quantum technology. Spins in synthetic diamond were initially considered as
a masing medium with the detection of inverted ESR signals arising from the P1 centers
[42] [43]. However, the first demonstration of a room-temperature, solid-state maser was
published in 2012 by Oxborrow et al. using organic materials, specifcally p-terphenyl
crystals doped with pentacene. The pentacene is activated with a 585 nm laser, which
can then decay non-radiatively via intersystem crossing into a triplet state [80]. This
transition to the triplet state is spin-selective and results in an inverted population at
the top level, which then undergoes a 1.45 GHz decay to the bottom level of the triplet.
Although this system has many attractive features, including room-temperature operation
and lack of a need for a static B-field, it was unable to sustain continuous operation [80].

A maser meeting all the following criteria: 1) solid-state, 2) room-temperature, and 3)
continuous-wave would be proposed in 2015 by Jin et al. and finally achieved in 2018 by
Breeze et al., more than 60 years after the first solid-state maser proposals [81][35]. Using
the unique optical properties of NV centers, Breeze et al. used a 532-nm laser to optically
pump the NV centers to the ms = 0 level. At fields above 102.5 mT, the ms = −1 lies
below the ms = 0 level, allowing the green laser to act as a pump and producing inversion
on the NV centers [35]. At a field value of around 430 mT, the microwave out put signal
is 9.1 GHz, in the X-band of frequencies. By using the spins in conjunction with a high-
Q microwave cavity, the masing threshold was overcome and produced a total power of
around -90.3 dBm (∼ 1 pW), comparable to a hydrogen maser [35].

Another type of micromaser was developed by Liu et al. in 2015, this time using
double quantum dot (DQD) heterostructures instead of spins. By applying a bias voltage
to two DQDs such that the electron tunneling rate to the DQD’s upper level from the
reservoir is faster than the electron relaxation and the coupling rate to the cavity, (i.e.
higher population in the upper level than average), they were able to generate population
inversion in the DQDs, resulting in transmission gain and free-running maser action. The
total gain (×1000) of both DQDs combined was much greater than the produce of either
dot individually [82]. Free-running maser action action was also observed, although with
a broader spectrum than predicted by the Schlalow-Townes theorem [82].

Masers, despite their historical importance, have been mostly confined to niche uses
for the last 60 years. However, given the growing demand for quantum technology, es-
pecially low-noise amplifiers and microwave sources, it may be possible that the maser
may see a resurgence in popularity. This would require a solid-state maser which could
be operated continuously with microwave frequencies in a low-temperature environment,
which excludes some of the more recent maser schematics that are activated with opti-
cal frequencies [80][35]. In the next section, we will discuss current low-noise amplifier
technology, particularly solid-state (HEMT) and superconducting Josephson parametric
amplifier, and end by discussing the potential for a spin maser in such a role.



2.2 General principles of signal amplification

2.2.1 Key properties of an amplifier

Gain and bandwidth

Having a high gain is obviously a desirable property for any amplifier. In reality, though,
the highest possible gain is not always desirable as it can result in a number of sacrifices
made to other key parameters, especially bandwidth. In simplest terms, the gain is defined
as the ratio of the input power to the output power

G =
Pout
Pin

, (2.2)

whereas the bandwidth is defined as the full-width half-maximum, or the difference be-
tween the frequencies where the maximum amplifier output is reduced by -3 dB (0.5Pmax).
For an amplifier based on a resonator, such as a maser or Josephson parametric amplifier
(JPA), the gain and bandwidth are inversely proportional (i.e. ∆f

√
G = const).

Thermal noise

Electrons are always in motion. In any circuit, no matter the medium, devices involved,
or configuration, there will always be a minimum amount of noise due to the fluctuations
of electrons. To quantify the noise due to thermal fluctuations, we imagine the following
scenario, seen in Fig. 2.4 and following the derivation of Nyquist [83]:

Figure 2.4: Nyquist noise of a simple resistor. The resistor R on the left has noisy electrons
at temperature T . A distance L away is a load resistor, also of resistance R, where the power
generated by the noisy electrons is dissipated.

The "noisy" electrons are confined to a resistor of resistance R at temperature T , with
the noise represented by a fluctuating (AC) voltage, given by

V (x, t) = V0e
−2πift cos kx, (2.3)

where f is the center frequency of the oscillation and k is the wavenumber, which is related
to frequency by the relation

kn =
2πf

c
, (2.4)



where c is the speed of light. Another load resistor, R is connected a distance L away to
measure the power output of the noisy resistor. For the voltage to be a standing wave,
the wavenumber k must be constrained by the condition

k =
nπ

L
(n = 1, 2, 3, ...), (2.5)

which in frequency space corresponds to:

fn =
cn

2L
. (2.6)

The space between successive modes fn and fn+1 is given by c/2L, so the number of modes
in a given bandwidth ∆f , represented as N∆f , is

N∆f =
2L

c
∆f, (2.7)

which leads to the number of modes per length per bandwidth frequency

N∆f

L∆f
=

2

c
. (2.8)

To get the energy, we can then take this quantity and multiply by the number of photons
in each mode, and the corresponding energy of each photon. We know from Eq. 1 that
the energy of a photon at frequency f is given by E = hf . From quantum mechanical
principles, we also know that mode occupation at temperature T is

n =
1

ehf/kBT − 1
. (2.9)

Putting it all together, we can obtain the energy per length per bandwidth

u =
2hf

c

1

ehf/kBT − 1
. (2.10)

Since the energy is split between the two resistors, we must add an additional factor of
1/2 to calculate the power at the load resistor. Additionally, we know that the distance
a wave covers per unit time is equal to c. By multiplying each side of the above by c, we
turn the left-hand side from energy per length per bandwidth to power per bandwidth

p =
hf

ehf/kBT − 1
. (2.11)

Finally, we can multiple by bandwidth to get the total thermal noise power emitted by
our electrons. This is known as Johnson-Nyquist noise, which is

Pnoise =
hf∆f

ehf/kBT − 1
. (2.12)

In the high temperature limit, we can simplify this further by assuming hf � kBT . This
removes the central frequency dependence and the expression is rewritten as

Pnoise = kBT∆f. (2.13)



By looking at this equation we can obviously see that smaller bandwidth and lower tem-
peratures result in lower noise power. Note that while this is a safe approximation for
C-band microwave temperatures above 1 K, we will soon see that this approximation
breaks down in the quantum regime.

Thermal noise is not the only source of noise, of course, especially in solid-state devices
with a high number of charge carriers, which can also fluctuate at random. Therefore, it
is convenient to define the equivalent noise temperature in order to characterize devices
with many different sources of noise.

Figure 2.5: A noise source with equivalent noise temperature Teq and producing noise power
P0, measured with a load resistor of resistance R.

In figure 2.5, an arbitrary source of noise is connected to a load resistor, similar to our
earlier example. If a noise power P0 is measured in a given bandwidth ∆f , then using
Eq. 2.13 the equivalent noise temperature can be written as

Te =
P0

kB∆f
. (2.14)

Note that this temperature is not necessarily the actual temperature of the device.
Instead, the device produces a level of noise power as if it were a noisy resistor at tem-
perature Te, and can be treated as such in calculations. This makes comparisons between
various devices in a measurement chain much easier, regardless of the actual tempera-
ture of the device. The equivalent noise temperature, especially for room temperature
electronics, is typically much higher than a noise temperature due purely to thermal fluc-
tuations. For example, a room temperature amplifier at 297 K can have an equivalent
noise temperature of ∼ 2000 K.

Quantum Noise

One can see a problem with the expression for the Nyquist noise as T → 0, known as the
quantum limit. As the temperature approaches absolute zero, the noise likewise goes to
zero. This is not correct and is in fact unphysical, as it implies that there is no motion in
the system, in violation of Heisenberg’s uncertainty principle.

For situations where T � hf
kB

, the system will mostly reside in its quantum ground
state. For the case of a quantum harmonic oscillator, the zero-point energy is given by

EZP =
hf

2
. (2.15)



The total noise in a system, then, is the sum of the Johnson-Nyquist noise and the
zero-point (or quantum) noise, or

Ptotal = hf∆f

(
1

ehf/kBT − 1
+

1

2

)
. (2.16)

The power spectral density P/∆f is plotted in Fig. 2.6 below as a function of T ,
assuming a C-band microwave frequency (6 GHz).

Figure 2.6: Noise power per bandwidth as a function of temperature for a fixed frequency
f = 6 GHz. At high temperature the function closely follows the linear relation P0 = kBT , but
diverges at low temperature, reaching a minimum value of hf/2.

Dynamic range

If the power being fed to an amplifier is gradually increased, it is impossible for said
amplifier to continue amplifying indefinitely. Thus, an important characteristic of an
amplifier is its dynamic range, or the range of input powers over which the amplifier
outputs a signal with gain in a linear fashion. An illustration of the dynamic range can be
seen in Figure 2.7. The lower bound of the dynamic range is given by the noise floor, or
the noise added by the amplifier itself. The upper bound is when the output signal begins
to deviate from the ideal amplifier, called compression. A measure often used to define
compression is the 1 dB compression point, which is the input power where the real output
differs from the ideal amplifier curve by 1 dB. Going far above the 1 dB compression point
can damage or destroy the amplifier. Cryogenic amplifiers, such as HEMTs and JPAs,
have a small dynamic range and can be easily saturated by powerful microwave signals
[3], such as those used in pulse-ESR experiments.



Figure 2.7: Output versus input power for an amplifier of G = 10 dB. At low input power
the noise floor overtakes the signal. Above the noise floor, the input and output enter a linear
regime, which then begins to break down at higher temperature. The dynamic range and 1 dB
compression point are indicated.

Amplifier chains

A typical microwave spectroscopy measurement setup, including those used in this thesis,
usually has several stages of attenuation and amplification. If the noise temperature of
each individual stage is known, then the noise performance of the entire chain can be
found. In our case, imagine the cw dilution refrigerator setup as described in Fig. B.1 of
App. B. Before reaching the input port of the VNA, a signal with noise power N travels
through a room temperature amplifier, where the signal is amplified with a gain of G0.
Thus we can calculate the output noise power N0 via the expression [1]

N0 = G0(N1 +Nadded). (2.17)
As we described in the previous section, the room temperature amplifier adds its own

noise to the signal while amplifying the noise of the previous stage. We know that the
added noise can be represented by the noise temperature as in Eq. 2.13:

N0 = G0(N1 + kBTe,0∆f). (2.18)
Where Te,0 is the equivalent noise temperature of the room temperature amplifier.

The input noise, N1, is the product of the previous amplifier stage (in our case at 4 K),

N1 = N4K = G4KkBTe,4K∆f, (2.19)
where we assume, for the moment, that no signal is being transmitted from previous

stages through the 4 K amplifier. Combining with Eq. 2.18, we obtain

N0 = G0(G4KkBTe,4K∆f + kBTe,0∆f), (2.20)



which can be rewritten

N0 = G0G4KkB∆f

(
Te,4K +

Te,0
G4K

)
. (2.21)

Comparing this with Eq. 2.13, we can define the total gain as the product G0G4K and
the equivalent noise temperature of the two-amplifier chain as

Te,sys =

(
Te,4K +

Te,0
G4K

)
. (2.22)

This has some important ramifications. Note that the room-temperature equivalent
noise temperature, Te,0 is reduced by a factor equal to the gain at the 4 K amplifier. This
means that the first amplifier in a given chain, in this case the 4 K amplifier, is weighted
much more heavily than subsequent amplifiers in terms of contribution to the overall
equivalent noise temperature. If an amplifier were to be added earlier in the chain, for
example at the lowest temperature stage of the dilution refrigerator, known as the mixing
chamber (MXC), the steps above could be repeated and the equation would become

N0 = G0G4KGMXCkB∆f

(
Te,MXC +

Te,4K
GMXC

+
Te,0

G4KGMXC

)
, (2.23)

which corresponds to an effective system noise temperature

Te,sys =

(
Te,MXC +

Te,4K
GMXC

+
Te,0

G4KGMXC

)
. (2.24)

The amplifier at the mixing chamber has now become the most critical component.
Indeed, this is the basis for quantum-limited amplification at the mixing chamber of the
dilution refrigerator. By adding the minimum allowed noise at the first amplifier stage,
the overall noise of the system is reduced, preserving a signal-to-noise ratio capable of
detecting the small powers characteristic of microwave photons.

2.3 Modern amplifier schemes

2.3.1 High-electron mobility transistor

The high-electron mobility transistor (HEMT) amplifier is a type of field-effect transistor,
a device that uses a gate electric field to control the conductivity, and thus the flow of
current between the source and drain terminals. While the transistor effect was first
demonstrated (using a bipolar junction transistor) at Bell Labs in 1947 [84] and the now-
ubiquitous metal-oxide-semiconductor field-effect transistor following in 1959 [85], the
HEMT was not proposed until 1979 by Fujitsu engineer Takashi Mimura [86]. Mimura,
inspired by a device patented by Dingle et al. at Bell Labs [87][86], eventually came up
with his own patented device and demonstrated the first working HEMT in 1980.[88]

Physically, a HEMT consists of a of two semiconductors with differing bandgaps form-
ing a junction as they are layered on top of each other (heterojunction). The most
commonly-used materials for this junction are galium arsenide (GaAs) and aluminum
galium arsenide (AlGaAs). This difference in bandgaps results in the deformation of the



band structure at the interface, which in the case of GaAs/AlGaAs takes the form of a
potential well. If the AlGaAs is n-doped (i.e. has excess donor electrons), the electrons
in the conduction band leak into this potential well. By applying a gate voltage, these
electrons can become tightly confined in the z−direction, resulting in the formation of
a 2-dimensional electron gas (2DEG). The electrons in the 2DEG have extremely high
mobilities, resulting in high gain and speed with relatively low noise.

HEMT amplifiers outperform other field-effect transistors at microwave frequencies in
terms of gain and switching speed. One of their earliest commercial uses was in radio
astronomy [88], and this was later expanded to many other fields. Although useful in
a wide variety of circumstances, the advent of highly specialized and sensitive quantum
information experiments (e.g. [89]) imposes a new set of requirements on amplifiers. For
one, in order to minimize the added noise photons of already small (i.e. few photon)
microwave signals, the amplifier should be located at the same temperature stage as the
measurement. In a dilution refrigerator, this corresponds to the 20 mK mixing chamber
stage, where cooling power is extremely limited (. 100µW. A HEMT is unsuitable for
this stage since they can dissipate milliwatts of power [2]. The noise temperature of a
cryogenic HEMT (around 3 K), although very low, is still enough to disturb quantum
measurements at millikelvin temperatures. While cryogenic HEMT amplifiers continue to
be used in quantum information experiments at the 4 K stage, where the cooling power is
much higher, it is clear that a new type of amplifier is needed for the lowest temperature
stage. [2].

2.3.2 Parametric amplification

Though primarily used now for superconducting quantum computing applications, the
concept of parametric amplification goes back to the 1960s [90], shortly after the Joseph-
son effect was discovered. After appearing sporadically throughout the 1980s [91] and
1990s [92], interest stated to grow again as the result of the rapid development of quan-
tum information science and the need for ultra-low noise measurement. A series of JPA
experiments were demonstrated in the mid-2000s [93] [94] and have been used in a number
of influential experiments, particularly those involving transmon qubits [95]. The prin-
ciple of parametric amplification involves the periodic exchange of energy between two
conjugate variables [2]. In the case of the JPA these are voltage and current, but can
also be, for example, position and momentum. In fact, an oft-invoked classical example
of parametric amplification involves a child sitting on a swing and generating momentum
by periodically shifting their center of mass (i.e. pumping). This can analogously be done
using an LC resonator and modulating the inductance via the Josephson effect.

An LC circuit has a natural frequency of f0 = 1/(2π
√
L0C), where L0 is the center

frequency of the Josephson junction. If a signal frequency fs is passed into the LC
resonator which is then modulated at a frequency fp, then the mixing operation fi = fs±fp
occurs, producing two sidebands. In this case, when fp = 2f0, then the signal and lower
sideband (called the idler), are equal and can be detected via homodyne detection with
fLO = fS [2].

Critically, JPAs do not dissipate heat in any of the elements due to the superconducting
nature of the device, meaning that quantum-limited amplification can be achieved, and
indeed this has been demonstrated in a number of experiments.



However, JPAs suffer from two main limitations. The first is that the LC-resonator
basis of the device imposes a limitation on the gain-bandwidth product. This fundamental
limitation can be overcome by moving the geometry from a standard LC-resonator to a
traveling-wave geometry using a series of Josephson junctions. Such a device, coined a
Josephson traveling wave parametric amplifier (JTWPA) was demonstrated with near-
quantum limited noise by Macklin et al. [3]. This JTWPA was able to provide over 3
gigahertz of bandwidth while producing a noise temperature of 0.6 K, making it incredibly
promising for future applications [3].

The second problem is that of the limited power handling. This is unfortunately
more innate to the nonlinear nature of the Josephson junction [2], since it is primarily
limited by the critical current. This value is typically no more than a few microamps,
although it can be pushed to milliamps at the cost of requiring extra pumping power.
The corresponding saturation power of a JPA is around -110 dBm, meaning that only
a few qubit channels can be read out simultaneously [96]. This problem still extends
to JTWPA, as the one measured by Macklin et al. is estimated to be able to read out
a maximum only 20 qubits [3]. JPAs, while being incredibly impactful in the field of
superconducting quantum computing, are fickle devices that require constant tuning [2].
As quantum computing becomes more sophisticated and commercialized, more reliable
devices with better saturation powers may be needed in order to read out the growing
number of qubits simultaneously.

2.3.3 Spin maser

Although recent research on solid-state spin masers has focused on room temperature-
operation, solid-state spins could also be an attractive choice for low-temperature quantum
technology applications. The noise temperature of such an amplifier is, hypothetically,
limited only by the operation temperature of the spins [66]. A spin maser could also
potentially have a much larger saturation power than is possible for a JPA, due to the
large number of spins present. Typical spin maser amplifiers investigated in Refs. [65][64]
begin to saturate at output powers between -30 and -50 dBm. Operation in a dilution
refrigerator at millikelvin temperatures also serves to overcome the main drawback of a
spin maser, and the advantages are such that a spin maser could directly compete with
JPAs in situations where the readout of many qubits is necessary. In Chs. 5 and 6
we will develop a spin-maser that can operate as a low-noise amplifier in a millikelvin
environment.

2.4 Summary
We have investigated the history, significance, and applications of various maser schemes,
as well as a few key parameters that are of significance to a practical amplifier. Since
masers have the potential to be particularly useful within the context of quantum tech-
nology, in the next section we derive a link between classical spin physics and cavity
quantum dynamics (CQED). I will introduce some of the core concepts of CQED and
calculate some of the key parameters of the cavity spin maser within these confines.



Chapter 3

Coupling spins in diamond to a
resonant cavity

3.1 Theory of a resonant cavity

3.1.1 The quantum LC circuit resonator

We begin with a simple circuit studied in almost every introductory physics class, the LC
circuit. The circuit is so named because of its two components - a capacitor C and an
inductor L, as seen in Fig. 3.1.

Figure 3.1: Common simple harmonic oscillator models. a) The LC simple harmonic oscillator.
b) the equivalent mechanical simple harmonic oscillator

If the capacitor is charged prior to being connected to the inductor, then current
will begin to flow as a result of the charged plates equilibriating. However, due to the re-
sponse of the inductor to current flow through it, the charge will undergo simple harmonic
oscillation between plates with a frequency given by

ω =

√
L

C
. (3.1)

Since the circuit lacks any dissipative element, the sum of the energy stored in the

36



capacitor and inductor is always conserved, or

Etot =
1

2

Q(t)2

C
+

1

2
LI(t)2 = constant. (3.2)

Note that the current I(t) is equal to the time derivative of the charge dQ(t)/dt, which
itself is proportional to the flux through the inductor Φ(t),

I(t) =
dQ

dt
=

Φ(t)

L
. (3.3)

Thus we can then express Eq. 3.2 in terms of the variables Q(t) and Φ(t),

Etot =
Q(t)2

2C
+

Φ(t)2

2L
. (3.4)

The motivation for representing the variables this way is that Φ and Q represent a
pair of conjugate variables, or variables that are Fourier transforms of each other. This is
analogous to the position and momentum of a mechanical simple harmonic oscillator, seen
in Fig. 3.1b. We now move to the quantum mechanical picture, where these conjugate
variables are defined as observables whose operators do not commute,

[Â, B̂] = ÂB̂ − B̂Â = i~. (3.5)

Returning to the LC resonator, we now make the following substitutions of classical
observables with their quantum operators:

Q→ q̂

Φ→ φ̂,
(3.6)

which yields a Hamiltonian

Ĥ =
q̂2

2C
+
φ̂2

2L
. (3.7)

This Hamiltonian is exactly analogous to the commonly-studied quantum harmonic
oscillator. The solution consists of a series of Fock states, represented in bra-ket notation
by |n〉 = |0〉, |1〉, |2〉,... which satisfy the condition

Ĥ |n〉 = ~ω0

(
â†â+ 1/2

)
, (3.8)

where ω0 is defined as in Eq. 3.1. The operators â† and â are the state raising and
lowering operators (also known as "ladder operators"), respectively, given by

â =
1√

2~Z0

(
φ̂+ iZ0q̂

)
â† =

1√
2~Z0

(
φ̂− iZ0q̂

)
,

(3.9)



where Z0 =
√
L/C is the LC circuit impedance. The ladder operators are called so

because they have the following effects on a given Fock state:

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉 .

(3.10)

Thus the corresponding energy of the nth state is

En = ~ω0 (n+ 1/2) . (3.11)

We can then express the physical observables of the system in terms of the ladder operators

V̂ =
q̂

C
= iω0

√
~Z0

2

(
â− â†

)
Î =

φ̂

L
= ω0

√
~

2Z0

(
â+ â†

)
.

(3.12)

An interesting result of Eq. 3.11 is that even in the n = 0 state there is a nonzero
energy E0 = ~ω/2, known as the zero-point energy. This energy is the source of the
quantum noise seen in Chapter 2. This zero-point energy also has associated voltage and
current fluctuations which can be calculated by the variance of Eqs. 3.12,

〈δI2〉 = 〈0|Î2|0〉 =
~w2

0

2Z0

〈δV 2〉 = 〈0|V̂ 2|0〉 =
~Z0w

2
0

2
.

(3.13)

These fluctuations produce small electromagnetic fields known as the vacuum field,
usually written as δE and δB. Later, in Section 3.3, we will use this vacuum magnetic
field to calculate the coupling between the spin ensemble and the loop-gap resonator.

3.1.2 The lumped element resonator

We can now move on to modeling a more realistic system. The first thing we can do is to
add a resistance R in parallel to L and C to represent the losses of the resonant cavity.
This is seen in Fig. 3.2a. Secondly, the cavity can be capacitively coupled to and input
and output transmission line, each of which has a capacitance Cκ. Each line also has a
resistance RL Such a system can be represented by the Norton equivalent in Fig. 3.2b,
with the definitions [97]

R′ =
1 + w0

2C2
κR

2
L

w0
2C2

κRL

(3.14)

C ′ =
Cκ

1 + w0
2C2

κR
2
L

. (3.15)



Since the elements are now all in parallel, the total resistance can be written as

1

Rtot

=
1

R
+

2

R′
, (3.16)

and total capacitance as
Ctot = C + 2C ′. (3.17)

This also has the effect of shifting the cavity resonance to the new value

ω′0 =
1√

L(C + 2C ′)
. (3.18)

In order to simplify these expressions, we will assume that the coupling capacitors are
small relative to the capacitance of the resonator, Cκ � C. This implies that w0CκRL � 1
and thus C ′ ≈ Cκ. The total capacitance of the system is then assumed to be approxi-
mately equal to C. We now introduce the concept of the quality factor Q, defined as the
ratio of the energy stored in a resonator to the energy lost per cycle. For a damped LRC
oscillator, Q = ωCR. The above approximation makes calculation of our current system’s
quality factor relatively straightforward [97],

QL = ω′0CtotRtot

QL = ω′0
C + 2C ′

1/R + 2/R′

≈ ω0
C

1/R + 2/R′
.

(3.19)

We can define this quantity as the total quality factor and separate out the contribu-
tions from the resonator (Qint) and the coupling lines (Qext), such that

Q−1
tot =

1

ω0CR
+

2

ω0CR′

= Q−1
int +Q−1

ext,1 +Q−1
ext,2.

(3.20)

An alternative definition of Q is the ratio of the central frequency to the resonator
linewidth (Q = ω0

κ
. This allows us to define the linewidths (i.e. loss rates) due to the

cavity and coupling lines as

κint =
ω0

Qint

,

κ1 =
ω0

Qext,1

,

κ2 =
ω0

Qext,2

.

(3.21)

Note that the final two quantities are usually referred to, including in this work, by
their combined rate κext = κ1 + κ2. These rates will be used in the definition of the
S-matrix in the next section.



Figure 3.2: The realistic model of a resonant cavity. a) The lumped element equivalent of a
lossy resonant cavity coupled to transmission lines. b) the Norton equivalent circuit.

3.1.3 Input-output theory and the S-matrix

Now that we have constructed our open quantum system, we can calculate the change of
the intra-resonator field operator â (Eq. 3.9). In the Heisenberg picture, the evolution of
the operator as a function of time can be found by invoking the Lindblad master equation
[98],

∂t (â(t)) =

[
â, Ĥ

]
i~

− 1

2
(κ1 + κ2 + κint) â(t) +

√
κ1âin,1, (3.22)

which for â(t), which has time-dependence of the form a0e
−iωt,

∂t (â(t)) = −iω0â(t)− 1

2
(κ1 + κ2 + κint) â(t) +

√
κ1âin,1. (3.23)

Where the first term represents the oscillation of the cavity field within the resonator,
the second term the losses of the field to the internal resistance and ports 1 and 2, and
the third term the input driving field. We represent the coherent driving field applied
to port 1 by the expression âin(t) = αin,1e

−iωt, normalized such that the input power
P = ~ω|αin,1|2, where |αin,1|2 is the mean number of photons entering port 1 per second.



This input field obeys the conservation equations

âin,1(t) + âout,1(t) =
√
κ1â(t),

âin,1(t) + âout,2(t) =
√
κ2â(t).

(3.24)

We can replace the â(t) operators in Eq. 3.23 with their expectation (classical) values

〈â(t)〉 = α(t), (3.25)

which gives us the expression

∂t (α(t)) = −iω0α(t)− 1

2
(κ1 + κ2 + κint)α(t) +

√
κ1αin,1(t). (3.26)

In order to express these quantities in terms of frequency dependence, we perform a
Fourier transform on α(t), resulting in the expression for the cavity field

α(ω) =
2
√
κ1

κ1 + κ2 + κint − 2i(ω − ω0)
αin,1(ω). (3.27)

From this we can calculate the number of photons in the cavity at a given time when
driven by an microwave signal of frequency ω and power Pin, given by

n̄ = |α(ω)|2 =
4κ1Pin

~ω[(κ1 + κ2 + κint)2 + 4(ω − ω0)2]
. (3.28)

Finally, we can derive the scattering matrix, or S-matrix, which gives the complex
ratio of the outgoing signal to the input. Although in our case it is assumed that port 1
provides the input signal, this formula can be written in the more general form of

Sij =
aout,i
ain,j

. (3.29)

Where ports 1 and 2 are represented in Fig. 3.3. Combining Eqs. 3.24 and 3.27, the
expressions for reflection (S11) and transmission (S12) can be calculated. The behavior of
these ratios is highly influenced by the relative strengths of the internal (κint) and external
(κ1 + κ2 = κint) damping rates. There are three different regimes based on the ratio of
these values, as discussed in the respective sections below.

Figure 3.3: The S-matrix in terms of input and output fields.



Reflection measurement

The reflection coefficient is given by S11 = aout,1
ain,1

, which equates to

S11 =
2κext

κext + κint − 2i(ω − ω0)
− 1. (3.30)

In the reflection measurements described in Chs. 4 and 5, we terminate and pull
up the antenna pin on port 2 on the resonator enclosure and exclusively use port 1 for
measurement, hence in Eq. 3.30 κ2 ≈ 0 in and κ1 is replaced with κext. The three regimes,
pictured in Fig. 3.4, can thus be described as follows:

• The undercoupled regime, where κext < κint (Qext > Qint). Near resonance the
reflection is characterized by a broad dip in amplitude. The width of this amplitude
dip is primarily determined by κint.

• The critically coupled regime, where κext = κint (Qext = Qint). The reflected signal
amplitude goes to zero on resonance.

• The overcoupled regime, where κext > κint (Qext < Qint). For all frequencies the
reflected amplitude S11 ≈ 1, whereas the phase shifts by 360◦.

Transmission measurement

Likewise, the transmission coefficient, S21 = aout,2
ain,1

, is equivalent to

S21 =
κext

κext + κint − 2i(ω − ω0)
. (3.31)

In our transmission measurements described in subsequent chapters, we choose a con-
figuration where κ1 = κ2 = κext/2. This has been incorporated into Eq. 3.31. Similar to
the reflection case, we can characterize the three different regimes:

• The undercoupled regime, where κext < κint. The transmission amplitude through
the cavity is scaled to the ratio of κext and κint (≈ κext/κint) and the width of the
transmission peak is primarily determined by κint.

• The critically coupled regime, where κext = κint. The transmitted signal reaches
1/2 at resonance and both κext and κint contribute to the width of the transmission
peak.

• The overcoupled regime, where κext > κint. At resonance, the magnitude of the
transmitted signal approaches 1 and the width is primarily controlled by κext.

These regimes are plotted for transmission and reflection in Fig. 3.4.
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Figure 3.4: Transmission and reflection spectra for a hypothetical microwave resonator with
internal quality factor Qint = ω0/κint = 600. a) The reflection power amplitude for the case of
κ2 = 0 with varying values of κ1 relative to kint. b) The transmission power amplitude for the
case of κ1 = κ2 = κext/2, for varying values of κext. c) Corresponding phase of the reflected
signal under the same conditions. d) Corresponding phase of the transmitted signal.

3.2 Electron Spin Resonance
For a two-level, spin-1/2 system, applying a static magnetic field splits the degeneracy of
the spin alignments (the Zeeman effect), with one alignment being lower energy than the
other depending on the g-factor of the system. Adding a second, oscillating perpendicular
B-field can drive the spins between these states, if the field has the same frequency as the
corresponding frequency splitting between the spin levels. The process of using this effect
for the characterization and manipulation of spins is known as electron spin resonance
(ESR), alternatively electron paramagnetic resonance (EPR). ESR is a powerful technique
that is used for many applications in a variety of different fields [99]. Although it is a
well-developed theory with a plethora of available references, for instance Ref. [99] [100],
I will briefly cover some of the basic concepts relevant to our experiments.



3.2.1 The Bloch Equations

An ensemble of N paramagnetic spins each have individual magnetic moments of ~µi,
represented quantum mechanically by the operator µ̂ = gs

e
2m
Ŝ, where gs is the Lande’s

g-factor of the system (≈ 2 for a free electron), and e and m are the charge and mass,
in this case of the electron. The quantity Ŝ is the spin angular momentum operator,
assuming a spin-1/2 system. The spin operators Ŝ =

〈
Ŝx, Ŝy, Ŝz

〉
are operators on the

spin states |s,ms〉 with eigenvalues defined by s, the total spin quantum number, and ms,
the projection of the spin vector in the z-direction:

Ŝ2 |s,ms〉 = s(s+ 1) |s,ms〉 ,
Ŝz |s,ms〉 = ms |s,ms〉 .

(3.32)

The operators Ŝx, Ŝy, Ŝz satisfy the commutation relations [Ŝi, Ŝj] = i~εijkŜk, where
εijk is the Levi-Cevita symbol. This relationship will be helpful later. For now, we return
to the definition of the magnetic moment operator, where we can lump the constant
quantities together as

γe = gs
e

2m
. (3.33)

Defining γe as the free electron gyromagnetic ratio, which has a value of |γe| = 28
MHz/mT when converted into units appropriate the scale of our experiments. When
placed in a B-field B(t), the spin magnetic moment of the electron will couple to the
magnetic field. The energy associated with the interaction between the field and the
electron can be found through the system Hamiltonian

Ĥ = −µ̂ · ~B(t) = −γŜ · ~B(t). (3.34)

Thus the time evolution of the magnetic moment under the applied B-field can be found
through the Ehrenfest theorem,

d
〈
Ŝ
〉

dt
=
i

h

〈[
−γŜ · ~B(t), Ŝ

]〉
. (3.35)

Substituting in the spin operators introduced above, this makes the evaluation of the
above equation straightforward,

d
〈
Ŝ
〉

dt
= −γ

〈
Ŝ × ~B(t)

〉
= −γ

〈
Ŝ
〉
× ~B(t). (3.36)

Rewriting in terms of ~µi, which is the classical expectation value 〈µ̂〉 for the ith spin is

d~µi
dt

= −γ ~µi × ~B(t). (3.37)

The net macroscopic magnetization of the spin ensemble can be written as M =
∑

i µi,
so that the time-evolution of M can be found by summing equation 3.37 over i,

d ~M

dt
= −γ ~M × ~B(t). (3.38)



In an ESR experiment, the direction of the static magnetic field is usually defined to
be along z, meaning that the spins are polarized in the z-direction, given by ~B(t) = B0ẑ.
In this case the components of the magnetization have the behavior

Ṁx = −ω0My,

Ṁy = ω0Mx,

Ṁz = 0.

(3.39)

Where ω0 = γeB0 is called the Larmor frequency. The magnetization vector ~M will
precess about ẑ at the Larmor frequency, while conserving its magnitude.

A useful model of visualizing the time evolution of spins was developed by Richard
Feynman and is called the Bloch sphere [101]. Since the magnitude is conserved, the
magnetization of the spins can always be represented by a point on the surface of the
sphere. Fig. 3.5 details how to represent the direction of an arbitrary magnetization
vector as defined by the two angles θ and φ.

The magnetization of the spins precesses about z when any static field is applied, and
since this is a requirement for spin resonance experiments it is usually more convenient
to transform into a rotating coordinate system of frequency ω, represented by

~M = M ′
xx̂
′ +M ′

yŷ
′ +M ′

z ẑ
′. (3.40)

In order to drive the spins around the surface of the Bloch sphere, an oscillating
magnetic field is applied in the x − y plane. For the sake of convenience, we define the
oscillating field to be applied along the x-direction with magnitude B1(t) = 2B1 cosωtx̂.
Note that we chose the frequency of the rotating frame to be the same as that of B1. The
oscillating field can then be decomposed into counter-rotating terms of frequencies ω and
−ω with amplitudes equal to B1. When transformed into a rotating frame, one of these
terms will have zero frequency (i.e. a static field) and the other will have frequency 2ω,
which can be ignored when the rotating wave approximation (RWA) is applied. The RWA
allows us to ignore rapidly-oscillating terms in the Hamiltonian, and this approximation
is valid under the condition B1 � B0 (i.e. B1 is a perturbation of B0). In this case, the
time evolution of the magnetization must account for the rotating frame, such that

d ~M ′

dt
=
d ~M

dt
− ~M × ~ω. (3.41)

Equating this with Eq. 3.38 we can obtain the following expression for the time
evolution of the magnetization in the rotating frame, which is

d ~M ′

dt
= −γe ~M ′ × ~Beff , (3.42)

where ~Beff represents the effective field experienced in the rotating frame, which can be
represented as

Beff (t) =

 B1

0
B0 − ω

γ
.

 . (3.43)



This produces the equations for the components

Ṁ ′
x = ∆0M

′
y

Ṁ ′
y = −∆0M

′
x − ω1M

′
z

Ṁ ′
z = ω1M

′
y,

(3.44)

where we have defined ∆0 = ω − ω0 and ω1 = γeB1. Similar to the case of a static field
applied along ẑ, the oscillating field drives the net magnetization vector of the spins about
x, with a frequency of ω1 as seen in Fig. 3.5. The angle θ that the net magnetization
makes with the z-axis is given by θ = ω1/∆0 and the rotation frequency ΩR =

√
∆2

0 + ω2
1

is called the Rabi frequency.
Control of the duration and phase of a pulse of frequency ω and amplitude can drive

the spins to any arbitrary angle θ and φ about any transverse axis. Pulses which rotate
θ by π/2 or π are called π/2- and π-pulses, respectively, and the time required for such a
pulse can easily be calculated by

tπ/2 =
π

2ω1

=
π

2γeB1

,

tπ = 2tπ/2,
(3.45)

whereas φ can be manipulated by setting the phase of the applied microwave pulse. A
pulse with phase φ represented by B1(t) = 2B1 cos (ωt+ φ)x̂, when transformed into a
rotating frame at frequency ω, becomes B′1(t) = B1 cos (φ)x̂′ + B1 sin (φ)ŷ′. This allows
one to choose any rotation axis lying in the x− y plane. This is an essential technique of
pulse ESR, a field which has a similarly well developed theory [102], and was first proposed
and developed by the Bloch [103, 104] and later Purcell [105] groups in the early 1950s.

As depicted in Fig. 3.5, the Bloch sphere can also be used to represent magnetization
in the quantum regime, or more generally the state of a qubit. In this case the net
magnetization of the ensemble can be replaced with the spin (or qubit) quantum states
|↓〉 and |↑〉,

|ψ〉 = cos (θ/2) |↑〉+ sin (θ/2)e−iφ |↓〉 . (3.46)

The angle θ, known as the azimuthal angle, represents the weight of the superposition
between the two states. For example, an azimuthal angle of 0 corresponds to the eigenstate
|↑〉, and an angle of π/2 corresponds to an equal superposition of states |↓〉 and |↑〉. The
angle φ is known as the phase angle. We will use this picture when deriving results in
later sections.



Figure 3.5: Representation of the Bloch sphere for a two-level quantum system. |↓〉 and |↑〉
represent the direction of the magnetization in the classical regime, or the spin state in the
quantum regime. The static B-field applied along the ẑ direction causes the system to precess at
frequency ω0, which when transforming into a rotating frame ω results in a frequency of rotation
∆0 = ω−ω0 (green arrow). An oscillating field applied along x̂ causes the magnetization vector
to rotate about that axis (green arrow, ω1). The state of the spin, as represented by the vector
in blue, can be defined anywhere on the Bloch surface by two angles, θ and φ.

3.2.2 Relaxation and Decoherence

The magnetization of the spins is described by the vector sum of the three component
vectors - one parallel to the direction of the applied static field (z-direction) and two in the
perpendicular (x−y) plane. The parallel and perpendicular components are known as the
longitudinal and transverse magnetization, respectively. In the absence of a driving pulse,
the z−component of ~M will decay back to the thermal equilibrium state, ~Meq = Meqẑ.
As given above, the total magnetization is Nµ where N is the total number of spins. Due
to thermal energy fluctuations at a given temperature T , the fraction of spins occupying
the ground state is given by the Curie law,

Meq = Nµ tanh

(
~ω0

kBT

)
, (3.47)

which means that at low enough temperatures or high enough field nearly all the spins are
aligned parallel to z, as is the case at 10 mK in our experiments. The process of returning
to the thermal equilibrium state is known as spin lattice relaxation and is characterized by
a time constant T1. In most cases, spin relaxation is caused by interaction with the lattice
vibrations (phonons), which is highly dependent on the temperature. Typical T1 times
at millikelvin temperatures can reach hours for NV centers but are reduced to < 10ms at
room temperature [20].



Meanwhile, the x− and y− components of ~M vanish in a process called spin deco-
herence. The processes that govern spin decoherence are complex and the time scale,
represented by T2, is usually much shorter than that of T1. For example T2 of NV center
ensembles has been measured to be of order ∼ 10µs at room temperature [20][106][107].
The relaxation of ~M can be incorporated into Eqs. 3.44,

Ṁ ′
x = ∆0M

′
y −

M ′
x

T2

Ṁ ′
y = −∆0M

′
x − ω1M

′
z −

M ′
y

T2

Ṁ ′
z = ω1M

′
y −

M ′
z −Meq

T1

.

(3.48)

From these coupled differential equations, the steady-state solution of these so-called
Bloch equations can be found, and are

M ′
x, s =

T 2
2 ∆0ω1

1 + (T2∆0)2 + T1T2ω2
1

Meq

M ′
y, s =

T2ω1

1 + (T2∆0)2 + T1T2ω2
1

Meq

M ′
z, s =

1 + T 2
2 ∆2

0

1 + (T2∆0)2 + T1T2ω2
1

Meq.

(3.49)

As the drive power ω1 is increased, the spins oscillate faster between states. When
this oscillation (i.e. Rabi frequency) becomes much faster than the relaxation timescales,
ω2

1 � 1/T1T2, the net magnetization begins to approach zero. This is known as saturation,
and in this state there are no more available spins to absorb microwave photons.

In quantum information science (QIS) experiments, T1 essentially functions as the
maximum possible timescale - once excited, any measurements or manipulations of the
spins must be completed before the magnetization again reaches its thermal equilibrium
state. In truth, though, QIS experiments are often governed by the decoherence time T2,
as it governs the qubit phase coherence. Thus, the ability to measure the quantity T2 of
a given qubit system accurately is critical. It is also desirable for one to try to extend
this time as far as possible. However, an ensemble of spins contains a range of resonance
frequencies due to local magnetic field inhomogeneity. The spin distribution is typically
modeled as a Lorentzian function, with the spins centered around a central frequency ωs
as depicted in Fig. 3.6 below. The general form of a Lorentzian is characterized by its
full-width at half-maximum (FWHM), which we represent by the symbol Γ.
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Figure 3.6: Simulated Lorentzian distribution of an ensemble of spins with a full-width half-
maximum (FWHM) of 2 MHz.

This broadening of the resonance signal from effects such as inhomogeneity and spin
diffusion leads to quicker decay of the transverse magnetization as given by the formula

1

T ∗2
=

1

T2

+ ∆ωinhom, (3.50)

where ∆ωinhom is the range of the inhomogeneous broadening, which for a Lorentzian
distribution is directly related to Γ, and T ∗2 is the free induction decay time. For any
amount of broadening, T ∗2 will always be smaller than T2.

3.2.3 Hahn Echo technique

A method for measuring T2 was developed [108] and refined [105][109] into what is now
known as the Hahn-echo or spin-echo technique. The technique compensates for the effects
of static inhomogeneous broadening by using a π-pulse to rotate the spin magnetization
by 180◦ about the y-axis, as seen in Fig. 3.7. By performing this rotation, the spins will
eventually "rephase", meaning that the magnetization vectors realign and emit microwave
photons, known as an "echo" signal. Varying the time τ before the π-pulse allows for the
measurement of T2.
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Figure 3.7: Standard Hahn echo pulse sequence. The sequence starts with a π/2 pulse to
rotate the spin magnetization about x. Once the pulse ends, the spins begin to dephase due
to local field inhomogeneities on a time scale T ∗2 . This can be pictured as many spin vectors
"spreading out" as they precess about ẑ at different rates. This results in an apparent decay of
My. After a time t > T ∗2 , the spins are flipped by a π pulse about y. When the spins refocus,
the magnetization along ŷ is restored and an echo is emitted. [32].

3.3 Paramagnetic Spins in a Cavity
ESR experiments often make use of a resonant cavity to enhance the signal [110, 111].
When microwave photons are injected into a cavity, the photons circulate back and forth
for a number of times corresponding to the cavity’s quality factor Q, as defined in the
previous section. The higher the quality factor, the more likely the photons are to interact
with the spins under study. The study of this interaction between the photons in the
cavity and the anharmonic quantum system is known as cavity quantum electrodynamics
(CQED). CQED concepts play a central role in many QIS applications, so a brief summary
of important topics will be discussed in the following sections.

3.3.1 System Hamiltonian

We will begin by deriving some of the key results of CQED. Beginning with a system
consisting of a single electron of spin 1/2 (or other two-level system) contained within a
cavity, the cavity EM mode is modeled as a quantum harmonic oscillator [112]. We can
write the total system Hamiltonian as

Ĥ = Ĥspin + Ĥcavity + Ĥint. (3.51)



Recalling Sec. 3.2.1, the Hamiltonian for a spin in a static magnetic field aligned along
the lab frame z−axis is

Hspin = −~µ · ~B = |γe| ~B · ~S.

Here we introduce the Pauli matrices for a spin-1/2 system

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.52)

which are related to the operators ~S by

Si =
~
2
σi. (3.53)

Thus we can rewrite the spin Hamiltonian as:

Hspin/~ =
1

2
ωsσz. (3.54)

For the resonator, the result was derived in the previous section and is

Hcavity/~ = ωca
†a, (3.55)

where we have dropped the 1/2 since it is a constant energy offset. In these equations,
ωs and ωr are the resonant frequencies of the spin and cavity, respectively, and a† and a
are the creation and annihilation operators on the cavity photon number |n〉, |n+ 1〉, etc.
Similar to the electron and the B-field, the interaction between the cavity and the spin
is governed by the strength of the electron’s magnetic dipole moment and the magnetic
vacuum (zero point) fluctuation of the resonator, and can be written in the Schrödinger
(non-time dependent) picture as [32, 113]

Hint/~ = |γe| ~B1 · ~S. (3.56)

In this case, the oscillating field ~B1 takes the quantized form ~δB1(â+â†), as it is determined
by the number of microwave photons present in the resonator (see Section 3.1.1 for details
on deriving the current quanta). Thus the interaction term can be written

Hint/~ = |γe|δBσx(a† + a)

= g(σ+a
† + σ+a+ σ−a

† + σ−a),
(3.57)

where we have introduced the operators σ+ and σ− as the raising and lowering oper-
ators of the spin state, which transfer the system between excited and ground states |e〉
and |g〉. These operators are related to σx and σy by

σx =
1

2
(σ+ + σ−),

σy =
1

2i
(σ+ − σ−).

(3.58)



We have also defined the coupling constant g as:

g = 〈1|Ĥint|0〉 , (3.59)

which for a oscillating B-field that is uniform in space can be simplified to

g =
|γe|δB

2
for spin-1/2

=
|γe|δB√

2
for spin-1.

(3.60)

Note the factor
√

2 difference of the spin matrices for spin-1/2 and spin-1 systems that
is reflected in the coupling constants above. Since our diamonds contain impurity centers
with both S = 1/2 and S = 1, we will have to use both of these formulas when calculating
the coupling constants.

In order to approximate the single-spin coupling in our system, we can assume that the
vacuum field ~δB is roughly constant throughout the sample space. As will be explored
later in Chapter 4, this is a reasonable approximation for a loop-gap resonator. For a
resonator of ωr in the quantum ground state (n = 0), the vacuum field has an energy of
~ωr/2, which is split between the electric and magnetic fields. The total magnetic field
energy is given by

1

2

~ωr
2

=
1

2µ0

∫ V
c

|δ ~B(~r)|2dV. (3.61)

Rearranging to solve for δB, we get

δB =

√
~ωrµ0

2V
. (3.62)

Where Vc is the total mode volume of the resonator. In our loop-gap resonator (see
Ch. 4), the center mode has Vc = 11.5mm3 and ωr = 6 GHz. Using Eqs. 3.62 and
3.60, this results in δB = 16pT and g = 0.23Hz, 0.33Hz for spin-1/2 and spin-1 centers,
respectively. We note that these coupling constants are both far less than the typical loss
rates (∼ 1 − 5 MHz) and cavity resonance (∼ 6 GHz), which allows us to approximate
solution to the system Hamiltonian, as descibed below.

3.3.2 Jaynes-Cummings Hamiltonian

To simplify the Hamiltonian of Eq. 3.57, we can again invoke the rotating wave approx-
imation to neglect the non-resonant terms proportional to σ+a

† and σ−a. These terms
represent non-energy conserving processes that oscillate quickly compared to the energy
conserving processes σ+a and σ−a

†. Since the individual coupling to the spin is much
smaller than the resonant frequency and loss rates (g � κ, ωr), the quickly rotating terms
can safely be dropped. This results in the well-known Jaynes-Cummings Hamiltonian
[114],

ĤJC = Ĥspin + Ĥcavity + Ĥint,

HJC/~ =
1

2
ωsσz + ωca

†a+ g(σ+a+ σ−a
†),

(3.63)



where g = γeδB/2~ is the coupling between the spin and the cavity. This Hamiltonian
can be solved exactly with the following dressed states [112]:

|+, n〉 = cos (θn/2) |e, n〉+ i sin (θn/2) |g, n+ 1〉 , (3.64)
|−, n〉 = sin (θn/2) |e, n〉 − i cos (θn/2) |g, n+ 1〉 , (3.65)

where θn = tan−1 Ωn

∆s
is called the mixing angle, ∆s = ωs−ωr is the detuning between the

spins and the cavity, and Ωn is the n-photon quantum Rabi frequency given by:

Ωn = 2g
√
n+ 1 (3.66)

The corresponding eigenenergies to these dressed states are given by

En,± = (n+ 1/2)~ωr ±
~
2

√
∆2
s + Ω2

n (3.67)

In the quantum ground state (n = 0), then the Rabi frequency is related to the coupling
by Ω0 = 2g. There are two regimes of ∆s of interest, to be discussed below, illustrated in
Fig. 3.8:
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Figure 3.8: Coupling between a single spin and a resonant cavity. The cavity is modeled as
a quantum harmonic oscillator with levels |0〉, |1〉, |2〉 ... separated by frequency ωr, whereas the
spin is a two level system with resonant frequency ωs. The state of the spin affects the total
energy of the system, represented by a shift in the cavity energy levels (shown in blue). When
the spin is near-resonant with the cavity, a coupling with strength g is established between the
states |1, ↓〉 and |0, ↑〉. When the spin is far detuned from the cavity, no energy is exchanged
between the systems.

1. The resonant regime. When ∆s ≈ 0, the mixing angle approaches π/2 and the
dressed states are analogous to a classical pair of coupled oscillators [112]. The cav-
ity and spins exchange energy reversibly at frequency Ωn. When this rate of energy
exchange is higher than any other loss or decay rates (such as cavity losses, sponta-
neous emission, or for a spin ensemble, inhomogeneous broadening), the cavity-spin
system is said to be in the strong-coupling regime, manifested by two split peaks in
the frequency spectrum. In the strong coupling regime quantum information can be
coherently exchanged (swapped) between the two coupled systems before it decays,
making the achievement of strong coupling necessary for many QIS experiments.



2. The dispersive regime. When ∆s � g, the mixing angle θn approaches zero. The
eigenstate equations are thus reduced to the separate states |e, n〉 and |g, n+ 1〉 with
only a tiny admixture between them. As a result, no energy is exchanged between
the systems. However, both systems experience a small shift in their resonance
frequencies depending on the state of the other.

3.3.3 Spin ensembles and the Tavis-Cummings Hamiltonian

In order to see new behavior that appears with ensembles of spins, we now turn to
a situation where there is an ensemble of N identical spins instead of just one. The
Hamiltonian of the system, known as the Tavis-Cummings Hamiltonian, can be written
as follows [115]:

ĤTC/~ =
1

2
ωs

N∑
i

σ̂(i)
z + ωrâ

†â+ g

N∑
i

(σ̂
(i)
+ â+ σ̂

(i)
− â
†) (3.68)

In this expression, we sum each spin operator i over the entire ensemble. In keeping
with the previous section, we assume that the coupling constant is uniform over the
sample. In reality this is not quite the case, but this will be discussed later. The total
spin operators can be written as a sum of the individual operators over all N spins, given
by

Ŝx,y,z =
N∑
i

σ̂(i)
x,y,z, (3.69)

Ŝ+ =
N∑
i

σ̂
(i)
+ , (3.70)

Ŝ− =
N∑
i

σ̂
(i)
− . (3.71)

Replacing the terms in Eq. 3.68 with their summations, we get the Hamiltonian

ĤTC/~ =
1

2
ωsŜz + ωcâ

†â+ g(Ŝ+â+ Ŝ−â†). (3.72)

In this case, we note that the total spin operator Ŝ2, as well as Ŝz, commute with ĤTC

and thus their eigenvalues represent good quantum numbers. We establish the following
basis for quantifying the collective system:

Ŝ2 |S,M〉 = S(S + 1) |S,M〉 ,
Ŝz |S,M〉 = M |S,M〉 .

(3.73)

The value M , representing the total z-spin of the system, can take any integer value
from −S to S (i.e. −N/2 to N/2). The value S is known as the cooperation number and
its value describes the state of the ensemble. For example, a state of only two spins will
have S = 0, 1, corresponding to the singlet state and triplet state, respectively [116]. For



large N , the number of possible values for the state |S,M〉 (O(N2))is much smaller than
the total number of spin states, (2N). Therefore, for a given cooperation state S there are
a high number of degenerate states with the same value of M . This can be seen in Fig.
3.9. The exception is the highest S state, S = N/2, for which there is one single ground
state given by M = −N/2. This state can be written as a product of the individual spin
states as

|G〉 = |N/2,−N/2〉 = |g1, g2, ...., gN〉 . (3.74)

If we were to apply the raising operator S+ to the ground state, we preserve the
cooperation number N/2 and obtain an expression for the collective first excited state

|E〉 = |N/2,−N/2 + 1〉 =
1√
N

(|e1, g2, ...., gN〉+ |g1, e2, ...., gN〉+ ....+ |g1, g2, ...., eN〉).

(3.75)
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Figure 3.9: Energy level diagram of an ensemble of NV centers. The ground state is given
by the eigenvalues |N/2,−N/2〉, which is nondegenerate. There are N different ways to add a
single excitation to the system, with 1 state given by |N/2,−N/2 + 1〉 and N − 1 states with
|N/2− 1,−N/2 + 1〉. Lower values of S have higher degeneracy.

We then see that a single excitation is spread throughout all N spins, requiring a
factor of 1√

N
for normalization. If a single microwave photon exists in the cavity (|1〉),

then by Eq. 3.72 the combined cavity-spin state |G, 1〉 and |E, 0〉 are coupled as

〈E, 0| ĤTC |G, 1〉 = g
√
N. (3.76)

The collective coupling between the cavity and N spins is equal to the single-spin
coupling enhanced by a factor of

√
N , assuming that each spin coupling gi is identical.



However, we can show that even if an inhomogeneity in the coupling constant for each
spin is introduced, the result does not change [117][118].

Let us now envision our system under typical experimental conditions. As we have
noted, when the condition kBT � ~ωs is met, then the collective spin system almost
entirely occupies the ground state |N/2,−N/2〉. This is the case for spins with resonant
frequency 6 GHz at 10 mK. We also assume that the number of excitations n̄ is much less
than the number of spins, also met in our experiments since N ∼ 1014 and n̄ . 105.

With this in mind, a useful mathematical trick is to envision the N spins as a single
oscillator whose transitions are described with the bosonic ladder operators b† and b, which
replace the Paui spin operators. Each "step" corresponds to flipping a single spin and
moving the total spin between minimum and maximum values −N/2 and N/2. Mapping
the Pauli spin operators to bosonic operators, we can rewrite them as follows [118]:

σ̂iz ≡ −
1

2
+ b̂i

†
b̂i,

σ̂i− ≡ b̂i

√
1− b̂i

†
b̂i,

σ̂i+ ≡ b̂i
†
√

1− b̂i
†
b̂i.

(3.77)

These operators create and annihilate spin excitations, such that the sum
∑N

i b̂i
†
b̂i

gives the total number of excitations in the system. The normalization term in
√

1− b̂i
†
b̂i

ensure that each spin may only have one excitation, and thus preserve the two-state nature
of the spins [116]. However, in the low-excitation limit, these operators can be simplified
further by applying the Holstein-Primakoff approximation [119]. If we assume that the
number of photons in the cavity n̄ is much less than N , then the probability that two
excitations act on a single spin is negligible and the square root terms in the above
operators can be ignored. They can then be written as

σ̂i− ≈ b̂i,

σ̂i+ ≈ b̂i
†
.

(3.78)

Using the Holstein-Primakoff approximation and combining the bosonic operators with
Eq. 3.68, the Hamiltonian obtained is

HTC−HP/~ = ωca
†a+

1

2
ωs

N∑
i

b†ibi +
N∑
i

gi(b
†
ia+ bia

†). (3.79)

Note that g has been swapped with gi and placed inside the sum to represent the
inhomogeneous coupling. Like above, we can define a collective bosonic operator, but one
that also incorporates gi such that

b† =
1

gens

N∑
i

gib
†
i , (3.80)



where gens =
√∑N

i gi. This is the total ensemble coupling of the spins, and we see
that if all gi = g then the sum reduces to the expression gens = g

√
N . Finally, putting

this expression into the Tavis-Cummings Hamiltonian, we arrive at the final form that we
will use in the next section to derive the coupled dynamics of the system,

ĤTC/~ = ωca
†a+

1

2
ωs

N∑
i

b†ibi + gens(b
†a+ ba†). (3.81)

Compared with the Jaynes-Cummings Hamiltonian presented earlier, this Hamiltonian
can be solved in exactly the same way, with the same form of the solution, as Eq. 3.63,
the only change being that g is replaced with gens. The net result are the appearance of
two polaritonic modes as the result of the coupling; their frequencies are given by

ω± = ωr ±
1

2

√
4g2

ens + ∆2
s, (3.82)

where ∆s is the detuning between the spins and cavity. As shown in Fig 3.10, these
modes follow the behavior of ωr and ωs at large detunings, but near ∆s = 0 an avoided
level crossing appears with a width given by 2gens. The experimental observation of
such behavior between our loop-gap microwave resonator and both NV and P1 centers in
diamond is detailed in Chapter 4.

3.3.4 Coupling to an inhomogeneously broadened spin ensemble

One note must be made about the spin ensemble. In the case of a realistic sample,
the resonant frequencies of N spins will not all be at exactly ωs. Rather, due to local
magnetic field inhomogeneities, a distribution of resonance frequencies (ωi) spread around
the central frequency ωs, as discussed in Sec. 3.2.2 and shown in Fig. 3.6. When the
distribution is modeled as a well-behaved function (i.e. Gaussian or Lorentzian), the
effects of this broadening can be calculated directly [117, 120]. The key result is that the
first collective excited state of the system |E〉, known as the bright mode, now couples to
the N − 1 dark modes of S = N/2 − 1 as shown in Fig. 3.9. Energy is transferred to
these modes at a rate of T ∗2 = 2/Γ, where Γ is the characteristic width of the distribution
function (the inhomogeneous broadening) of ωi [32]. Although the broadening can be
useful for certain applications, such as spin quantum memories [32][31] [121] [122], in
other applications (such as a quantum emitter) it is desirable to keep the inhomogeneous
broadening as low as possible.

3.3.5 Coopertivity and coupling regimes

We define the collective behavior of the system in a quantity known as the coopertivity,
which depends on the relative values of gens, κ, and Γ. This dimensionless quantity is
expressed as

C =
2g2

ens

κΓ
. (3.83)

This leads to two broad categories of behavior:



• If C � 1, alternatively gens � κ,Γ, then the system is in the strong coupling regime,
which manifests as an avoided crossing between the polaritonic modes as seen in Fig.
3.10. Qualitatively, a system in this regime is exchanging energy between the spins
and cavity at a faster rate than the energy is being lost through either transfer to
dark modes, or leakage out of the cavity. The ability to reach this regime is critical
for efficient and coherent transfer of quantum information from a cavity to the spin
ensemble, as in the case of quantum memory [122][121][31] or quantum transduction
[13].

• If Γ > gens > κ or Γ > κ > gens (i.e. C & 1), the system is described as being in the
high-coopertivity regime. In this regime, avoided-crossing like behavior is seen near
the ∆s = 0 point as a result of the spin-cavity coupling, but two distinct polaritonic
modes cannot be resolved. There is also no coherent exchange of energy in this
regime [123].

• If C � 1 or gens � κ,Γ, the system is in the weak coupling regime. In this case
the cavity and spin system do not strongly interact; it is not possible to coherently
transfer energy between the two systems. This regime is desirable for ESR measure-
ments, where the spins are the key item of interest. The signal can still be enhanced
by the presence of the resonator, but it does not distort the absorption spectrum of
the spins.
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Figure 3.10: Weak versus strong coupling. Simulated reflection amplitude as a function of
cavity probe detuning (y-axis) and spin detuning (x-axis). a) A coopertivity of C=0.05 means
that the system is in the weak coupling regime. In this regime only the cavity resonance is visible
and the spins do not exchange energy with the cavity. b) A coopertivity of C=20 puts the system
in the strong coupling regime. The cavity and spin modes couple together into two hybridized
polaritonic modes given by Eqs 3.82, with a clear avoided crossing between the modes.



3.3.6 Input-output theory of a cavity with spins

We will now establish the dynamics of the coupled spin-cavity system. We reintroduce
the quantities κ1, κ2, κint to represent the rates of the loss of energy through the input and
output ports of the cavity as well as the internal losses of the resonator itself. We once
again use Γ to represent the inhomogeneous broadening of the ensemble. The spontaneous
emission rate of photons by the spins, represented by γrad, is low enough that it is ignored
throughout this work. However, we will include it in the derivation below for the sake of
completeness. In order to represent the probing of the spins with a low-power signal, we
take the Holstein-Primakoff Hamiltonian obtained above and add a term to represent a
coherent driving field at port 1, like the previous case of the bare resonator. We represent
the probe signal by β(t) = β0 exp−iωt, with β2

0 representing the number of photons entering
the cavity per second (i.e. input power). The Hamiltonian (see Eq. 3.68 for reference) is
thus

Ĥ/~ = ωcâ
†â+

1

2
ωs

N∑
i

b̂†i b̂i + gens(b̂
†â+ b̂â†) + i

√
κ1

(
βâ† − β∗â

)
. (3.84)

Following the procedure outlined in Ref. [32] and similar to the bare resonator case, the
above Hamiltonian can be solved using the Lindblad master equation. The system of
differential equations for the mean cavity- and spin-operator values are

∂t (â(t)) = −
(
iωr +

(κ1 + κ2 + κint)

2

)
â(t)− i

N∑
i

gib̂i +
√
κ1âin,1,

∂t

(
b̂i(t)

)
= −

(γrad
2

+ iωi

)
b̂i − igiâ.

(3.85)

Like in the previous case, we replace the operators â and b̂i with the mean-field values
〈â〉 and

〈
b̂i

〉
, with a steady-state ansatz of 〈â〉 (t) = a0e

−iωt and
〈
b̂i

〉
(t) = b0,ie

−iωt. The
differential equations above can then be solved as

b0,i = − igi
γ/2 + i(ωj − ω)

a0,

a0 =
i
√
κ1

ω − ωr + i(κ1 + κ2 + κext)/2−K(ω)
ain.

(3.86)

Where we have kept the notation from Ref. [32] and introduced the function K(ω)
that contains all of the information about the spin ensemble, written as

K(ω) =
∑
i

|gi|2

ω − ωi + iγ
2

. (3.87)

This is the general, discrete form of K(ω), but a smooth function can also be obtained,
assuming that the spins are distributed according to a well-behaved function. In this



work we will assume a Lorentzian distribution for the resonance frequencies of all spin
ensembles. With this, the spin density function takes the form

ρ(ω) =
g2
ens

π

Γ

(ω − ωs)2 + Γ2
, (3.88)

where Γ is the full-width half-max (FWHM) linewidth of the spin ensemble, which
is also the characteristic linewidth of the ensemble that determines T ∗2 . We also define
ωs =

∫∞
−∞ ρ(ω)ωdω/g2

ens to be the average spin frequency around which the distribution
is centered. Note that, given our definition of the distribution in Eq. 3.88, integrating
ρ(ω) over all frequencies returns g2

ens. We can replace the discrete sum in the expression
for K(ω) with the Lorentzian distribution function and one can show that

K(ω) =

∫ ∞
−∞

ρ(ω′)dω′

ω − ω′ + iγ/2

=
g2
ens

ω − ωs + iΓ
.

(3.89)

In the above equation we have ignored the spontaneous emission γrad since Γ� γrad.
This finally allows us to determine the transmission spectrum in terms of the cavity spin
ensemble,

t(ω) =
i
√
κ1κ2

ω − ωr + iκ1+κ2+κext
2

−K(ω)
, (3.90)

and reflection spectrum

r(ω) =
iκ1

ω − ωr + iκ1+κ2+κext
2

−K(ω)
− 1. (3.91)

Many of the experiments in Ch. 4 will measure the transmission through a cavity,
so it is important to note that Eq. 3.90 cannot by itself distinguish between the loss
rates κ1 and κ2. For this reason they will often be referred to as the combined loss rate
κext = κ1 + κ2. In the reflection spectrum measurements in Chs. 5 and 6, port 2 is
terminated and heavily undercoupled so that κ2 ≈ 0 and thus κext = κ1. One final note
on the expression K(ω) is that it can be generalized to other cases, including a bare cavity
(K(ω) = 0), which returns the same values for t(ω) and r(ω) as derived earlier. A K(ω)
comprised of multiple superimposed Lorentzians can represent hyperfine splitting, such as
in the case of 14N nuclei in our spin ensemble. However, in order to resolve the different
peaks it is required that the value of the hyperfine splitting is larger than the linewidth
of the ensemble.

3.3.7 Spin susceptibility

An alternate way to derive equations 3.90 and 3.91 involves relating the function K(ω)
to the magnetic spin susceptibility χ(ω). We begin by deriving the real and imaginary



terms for the susceptibility for the spin ensemble. In SI units, the total B-field inside the
spin sample is given by

~B = µ0

(
~H + ~M

)
. (3.92)

The definition of the spin susceptibility is the ratio of the magnetization ~M induced
by the applied H-field ~H, M/H = χ, so that the expression for ~B becomes

~B = µ0 (1 + χ) ~H. (3.93)

Following the usual notation for ESR calculations, for a given spin ensemble the oscil-
lating microwave field is applied along the lab frame x-axis, Hx(t) = 2H1 cos(ωt). Earlier
in section 3.2.1, we derived the behavior of M ′

x(t) and M ′
y(t), the magnetization vector in

the rotating frame (Eqs. 3.49). We rewrite these equations here in slightly different form
[124], given by

M ′
x = χ0ω0T2

T2∆0

1 + (T2∆0)2
H1,

M ′
y = χ0ω0T2

1

1 + (T2∆0)2
H1.

(3.94)

Compared to Eqs. 3.49, we assume a light driving power (i.e. T1T2ω
2
1 � 1), which

allows us to eliminate the term in the denominator. We have also replaced Meq with
χ0H0, the product of the static susceptibility and static H-field. Lastly, we have defined
the quantities ω1 = µ0γeH1 and ω0 = µ0γeH0 and made the appropriate substitutions.

Transforming from the frame M ′
x,M

′
y, rotating at an arbitrary frequency ω, back into

the lab frame Mx, we obtain the expression

Mx = M ′
x cos(ωt) +M ′

y sin(ωt). (3.95)

Combining Eqs. 3.94 with the above, we get

Mx = 2H1 (χ′(ω) cos(ωt) + χ′′(ω) sin(ωt)) , (3.96)

where we have substituted the definitions

χ′(ω) ≡ χ0ω0T2

2

T2∆0

1 + (T2∆0)2
, (3.97)

χ′′(ω) ≡ χ0ω0T2

2

1

1 + (T2∆0)2
. (3.98)

For the sake of completeness, we allow the magnetization and applied H-field to be
complex values M̃x and H̃x, with Mx and 2H1 defined as the corresponding real parts.
Then, we can define the complex susceptibility as χ(ω) = χ′(ω)− iχ′′(ω). This allows us
to make the definition

M̃x = χH̃x. (3.99)

Taking the real part of the left and right hand sides above, we return the relation 3.96.



Figure 3.11: The lumped-element representation of the spin-cavity system, with a spin en-
semble having susceptibility χ(ω). The real and imaginary parts of the spin susceptibility will
modify the total impedance of the system and contribute an additional loss term, respectively.
This relationship allows the spin susceptibility to be determined via microwave transmission and
reflection measurements.

If the resonator can be imagined as a lumped-element LRC circuit, then the spin
system can be incorporated as a modification to the inductance L. An RLC circuit
with the added spins can be seen in Fig. 3.11. A coil of inductance L0 that is filled
with a paramagnetic system has the total magnetic field inside the coil increased by
the polarization of the spins, analogous to the enhancement of the electric field inside a
capacitor by a dielectric material. The new inductance is given (in SI units) by L(ω) =
L0(1+χ(ω)), which introduces a frequency dependence as well as an imaginary component.
It is easy to see that Re{χ(ω)} modifies the resonator inductance, whereas Im{χ(ω)}
adds another series resistance. The impedance of the capacitive component is unchanged.
Calculating the inductor and resistor impedances of the circuit, we get

ZL = iωL0 (1 + χ′(ω)) ,

ZR = R0 + ωL0χ
′′(ω).

(3.100)

We must also introduce the so-called filling factor, η. In reality a paramagnetic sample
will not fill the entirety of the inductive coil, so η compensates for this by reducing the
magnetic susceptibility of the sample accordingly. For a coil inductor, as in Ref. [124],
where the B-field is uniform over the volume of the coil, this ratio can be calculated by
simply taking the ratio of the sample volume to the coil volume η = Vs/Vc. However,
in cases where the AC field is not uniform over the sample or the LRC resonator, it is
necessary to take an integral of the magnetic energy over the corresponding volume,

η =

∫ Vs |δB(~r)|2d~r∫ Vc |δB(~r)|2d~r
. (3.101)

Inserting the filling factor into the equation for ZR, we then calculate the total resis-
tance for ω ≈ ωr,

Rtot = R0 + ωrηL0χ
′′(ωr). (3.102)



If we divide both sides by ωrL0 and use the definition of the quality factor for a series,
Q = ωL/R, then we obtain an expression for the total Q of the system,

1

Qtot

=
1

Qint

+
1

Qmag

, (3.103)

where we have defined
Q−1
mag ≡

κmag
ωr

= ηχ′′(ωr). (3.104)

From this expression follows the definition of the magnetic loss rate,

κmag = ηωrχ
′′(ωr). (3.105)

These equations define a quantity used in typical maser literature of the 1950s and
1960s (e.g. [66]), known as the magnetic Q-factor. This quantity represents the power
absorbed, or in the case of a maser, emitted by the spins and is dependent only on the
imaginary portion of the spin susceptibility and the filling factor. There is no reason that
χ cannot be negative (as is the case in dimagnetic materials), and we can see clearly that
the a positive (absorbing) susceptibility and a negative (emitting) susceptibility will result
in different signs of Qmag. Siegman, working primarily in a maser context, defines Qmag

so that it is negative when the spin is absorbing and positive when it is emitting, which
I will continue to use in this work for the sake of continuity [66].

Returning to Eq. 3.100, we see that the inductance, and thus the resonance of the
circuit is also shifted by the addition of the spins. This shift has magnitude

ω′r =
1√
L′C

=
1√

L0C(1 + ηχ′(ωr))
. (3.106)

Assuming χ′(ωr)� 1, as is the case for the vast majority of paramagnetic materials,
this can be approximated as

ω′r ≈ ωr

(
1− η

2
χ′(ω)

)
. (3.107)

In section 3.1.2 we derived the equation for transmission of a microwave signal through
a bare cavity. Now taking the spins into account, we add the additional loss term κmag
and replace ω0 with the shifted resonance frequency ω′0, obtaining

S21 =
i
√
κ1κ2

ω − ω0 + i
2
(κ1 + κ2 + κext)− 1

2
ω0ηχ′(ω) + i

2
ω0ηχ′′(ω)

. (3.108)

Comparing the above with Eq. 3.90 derived earlier, we see that a relation between
K(ω) and χ(ω) can be established:

χ(ω) = − 2

ω0η
K(ω). (3.109)

Assuming the spins and cavity are resonant (ω = ωs = ωr), the value κmag can be
derived in terms of the spin properties from the above equation and Eq. 3.105, which
results in

κmag(ωs) =
2g2

ens

Γ
. (3.110)

Having established a link between quantum input-output theory and the classical spin
picture, in the next section we examine the effect of inverting the spin ensemble.



3.4 The cavity maser
The equations derived in the previous section, while derived in the context of an absorb-
ing cavity-spin system, can easily account for an inverted spin ensemble with minimal
modification (i.e. a cavity maser). Here we derive some key parameters of a reflection
cavity maser in a CQED context, using the quantities introduced in the previous section.

3.4.1 Population inversion

As noted in the previous section, the spin susceptibility of a system of paramagnetic spins
may be negative. We describe the spins as being in a state of population inversion, mean-
ing that for a 2-level system more spins inhabit the upper, excited levels than the lower
(ground) state. Mathematically, the population difference ∆N = Ng − Ne between the
lower and upper states becomes negative. In this work we will characterize the population
inversion as the ratio between ∆N and the total number of spins N , or

pinv =
∆N

N
. (3.111)

A visual representation of an inverted and non-inverted spin transition, along with the
corresponding values of pinv, can be seen in Fig. 3.12.
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Figure 3.12: Inverted vs. non-inverted spin population. a) Spin transition at equilibrium,
with all of the spins occupying the ground state. This is represented by a value of pinv = 1. b)
Partially inverted spin transition. Only 1

3 of the spins are occupying the ground, corresponding
to an inversion ratio of pinv = −0.33.

Recalling the expression for K(ω) from the preceding section, we note that inverting
the spin ensemble has the effect of changing the sign of K(ω), given that the term ∆N
is contained within it. Thus, we can modify the formula for K(ω) slightly to take this
into account. We assume that instead of the fully polarized state, the spin system is
in a state with a population difference ∆N . The total coupling gens must be replaced
with a (reduced) effective coupling representing the fact that fewer spins are available for



coupling to the cavity. K(ω) becomes

K(ω) =
g2
ens,eff

ω − ωs + iΓ

=
g2
single∆N

ω − ωs + iΓ

=
g2
singleNpinv

ω − ωs + iΓ

=
pinvg

2
ens

ω − ωs + iΓ
.

(3.112)

A simple addition of the factor pinv allows the function K(ω), and thus the expressions
for t(ω) and r(ω), to be used in both cases where the spins inside the cavity are inverted or
in their equilibrium state. Knowing the number of spins N and the full ensemble coupling
gens, as well as the parameters of the cavity, allow the determination of the population
inversion ratio from transmission or reflection data.

3.4.2 Gain-bandwidth product

When the spins inside the cavity are inverted, the system will emit microwave photons,
amplifying the probe tone. If the degree of inversion is sufficiently high, the system will
enter the free oscillating, or free-running maser, state. The degree of inversion is related
to the magnetic quality factor introduced in Eq. 3.104 in the last section. When the
system is amplifying,

Qmag < 0, κmag < 0. (3.113)

With this, the total quality factor of the spin-resonator system can be written

Q−1
tot = Q−1

ext +Q−1
ext +Q−1

mag. (3.114)

We will now derive the expression for the gain of the amplifier in terms of Qmag. We
recall the expression for reflected power from a spin-cavity ensemble that was derived in
the previous section (Eq. 3.91). Assuming κ2 = 0 and κ1 = κext,

r(ω) =
iκext

ω − ωr + iκext+κint

2
−K(ω)

− 1. (3.115)

Now we redefine the function, substituting K(ω) for its definition in terms of spin
susceptibility,

r(ω) =
iκext

ω − ωr + i
2
(κext + κint)− 1

2
ωrηχ′(ω) + i

2
ωrηχ′′(ω)

. (3.116)

Assuming we are working on resonance, ω = ωr + 1
2
ωrηχ

′(ω), and using the definition
of κmag established in the previous section, we obtain

r(ω) =
κext

1
2
(κext + κint) + 1

2
ω0ηχ′′(ω)

− 1,



rewritten as
r(ω) =

2κext
κext + κint + κmag

− 1.

Thus the ratio of reflected power to input power, i.e. the amplifier gain, is defined by
the square of the above function,

G ≡ |r(ω)|2 =

(
κint + κmag − κext
κint + κmag + κext

)2

. (3.117)

The bandwidth of the amplifier is simply the sum of all the linewidths,

B = ω0Q
−1
tot = κext + κint − |κmag|. (3.118)

We see then that if the linewidth of the cavity is very large relative to the other values
of κ (i.e. the under-coupled regime), then no gain occurs. However, for a case where the
linewidth is sufficiently small (i.e. the critical- or over-coupled regime), gain can occur
under certain conditions of κmag. For a low-bandwidth cavity, κint can be ignored relative
to the other two linewidths, and Eqs. 3.117 and 3.118 simplify to

G =

(
κext + |κmag|
κext − |κmag|

)2

, (3.119)

and
B = κext − |κmag|. (3.120)

Thus we define the gain-bandwidth product as

B
√
G = κext + |κmag|. (3.121)

We see that for the overcoupled case, the maximum gain-bandwidth product occurs
when κext = |κmag|, resulting in

B
√
G = 2κext. (3.122)

In the case of this work, we typically operate in the critically or near-critically coupled
regime κint ≈ κext. In this case we can re-derive the results above in an identical manner,
and obtain

B
√
G = |κmag|. (3.123)

For a critically-coupled system, the gain-bandwidth product is dependent only on the
properties of the spin system and the collective coupling to the cavity.

3.4.3 The maser threshold and the self-oscillating regime

Spontaneous emission

In his 1917 paper on quantum radiation, Einstein related the probabilities of spontaneous
and stimulated emission to the frequency mode density. These values, represented by



coefficients A and B respectively, obey the relation [54]

A

B
=

~ω2

π2c3
dω,

A

B
=

~ω3

3π2c3
.

(3.124)

The coefficient A, representing the spontaneous emission rate, will be replaced in
this work by the value γrad in order to be consistent with other CQED literature. The
spontaneous emission rate of a free electron at a given frequency ω can be calculated via
the formula [66]

γrad =
µ0|µ|2ω3

3π~c3
, (3.125)

where µ = −9.284 × 10−24 J/T is the electron magnetic moment. The ω3 term in
the numerator of Eq. 3.125 results in a very strong frequency dependence, such that the
spontaneous emission rate can be safely ignored at microwave frequencies but becomes
very high in the optical frequency range. For a typical operation frequency of ω =
2π × 6 GHz we find that the value of γrad is of order ∼ 10−12 Hz, corresponding to a time
period of about 60000 years. Compared to other losses in the system, γrad is negligible, and
was treated as such during the derivation of the input-output equations for the coupled
cavity-spin system.

The Purcell Effect

It is possible to enhance the spontaneous emission rate via coupling to a cavity, known as
the Purcell effect [125]. This effect has been used to accelerate the relaxation of solid-state
spins [126]. Operating on resonance with the cavity, the Purcell rate is given by

Γp =
4g2

single

κtot
. (3.126)

For our system, where the single spin couplings are gP1 = 0.19 Hz and gNV = 0.29 Hz,
and the total linewidth is κtot ≈ 6 MHz, we calculate the Purcell rate to be Γp ∼ 10−7,
corresponding to about a few months’ time. Although greatly enhanced compared to the
spontaneous emission, the time constant is still very long and is negligible compared to
the other rates within the system.

The stimulated emission rate

We have determined the stimulated emission rate, B, in terms of the spontaneous emission
rate γrad, which in turn can be used to determine the output power of an inverted spin
ensemble. The power output Pm can be calculated as

Pm = ∆NW~ω. (3.127)

Where ∆N is the number of inverted spins, ω is the central frequency of emission, and
W is the transition probability amplitude (units of Hz), which is defined as the Einstein



coefficient B times the electromagnetic energy density per Hertz of the stimulating radia-
tion [66]. The energy density can be estimated as the total magnetic energy Etot divided
by the mode volume Vc, and the bandwidth ∆ω (i.e. the spin linewidth) is introduced as
the frequency band of interest.

When the power output of the inverted ensemble surpasses the power dissipated in
the cavity, it enters the self-oscillating or free-running maser regime where the maser can
freely emit microwave photons into the cavity without the need for an applied probe tone.
The condition is known as the masing threshold, and the inversion ratio needed to achieve
this can be calculated through combining the previous equation with the definition of the
cavity quality factor, obtaining the expression

Ploss =
ωEtot
Qtot

, (3.128)

where Etot is again the total magnetic energy contained in the oscillating B-field inside
the cavity. Setting Eqs. 3.127 and 3.128 equal to each other, we get

∆NthW~ω =
ωEtot
Qtot

, (3.129)

where we have introduced ∆Nth as the inversion threshold needed to enter the free
maser regime. Using the relationship between B and W ,

∆NthBEtot~ω
Vc

=
ωEtot
Qtot

,

∆Nth =
Vc∆ω
~BQtot

,

(3.130)

Now we want to replace B in the above equation with γrad and fundamental constants.
We do this by inserting Eqs. 3.124 into the above equation, replacing B and A in turn.
Putting these equations all together, we arrive at the result

∆Nth =
ω3Vc∆ω

π2c3γradQtot

. (3.131)

Looking at the above equation, we see that in order to generate the lowest possible
masing threshold for a given system, the spins and cavity should meet the following
criteria:

• small mode volume Vc

• small spin linewidth ∆ω

• large radiative decay γrad

• large cavity quality factor Qtot

Some of these criteria are also listed in Ref. [127] in the context of an optical laser. We
will use Eq. 3.131 in Chapters 5 and 6 to determine the maser threshold for our diamond
samples. If the threshold is low enough it may be possible to generate a self-oscillating
maser within the cavity that we develop in Ch. 4.



3.5 Summary
We have established some of the key concepts and derived important parameters of cav-
ity resonators, spin resonance, CQED, and maser physics. These concepts will be used
throughout the next three chapters for analysis of the various measurements performed
on spin defects in diamond.



Chapter 4

A loop-gap resonator for hybrid
quantum systems

4.1 Introduction
In this chapter, I will detail the design, construction, and characterization of the loop-
gap resonator used in all subsequent experiments. I will also present evidence of strong
coupling between the resonator and the ensembles of NV and P1 centers in our diamond
samples. Results on this phenomenon have been published in Ref. [128]; the analysis
presented here is intended to supplement said work. In addition, time-domain data will
be presented, showing the accelerated lattice relaxation of NV-P1 samples when compared
with commercial nitrogen diamond samples that have not been subjected to the electron
bombardment and annealing processes. Details about the impurity concentrations and
growth methods of the diamond samples can be found in Appendix A. More information
on the experimental setup is included in Appendix B.

4.2 The Loop-gap Resonator

4.2.1 Microwave resonator design

The first stage of the experimental setup involves a microwave loop-gap resonator for
coupling to the spin ensembles. Given that the resonator was engineered with future use
as a quantum transducer in mind, there were several important parameters that needed
to be met in the design and construction. Firstly, the resonator had to be optically
accessible and able to withstand magnetic fields on the order of 200-300 mT. It was es-
tablished in Ch. 1 that a number of impurity centers with g ≈ 2 have spin transitions
separated by 5-6 GHz in this regime. The combination of these two conditions eliminates
several popular resonator designs used in microwave quantum technology experiments.
Many previously-researched hybrid quantum devices (HQDs), for example in Ref. [121],
use niobium stripline resonators, but this design is unfeasible for our experiments. The
niobium is superconducting at millikelvin temperatures, but both the magnitude of the
applied magnetic fields and photons in the visible light spectrum will break the supercon-
ductivity. Matching the optical and microwave modes is also much more difficult with a
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Figure 4.1: Microwave resonator geometry. Left: 2-D stripline resonators, while enabling
single-spin coupling an order of magnitude higher than 3-D designs at similar frequencies, also
suffer from an inhomogeneous AC field that renders them incompatible with an optical beam.
Right: A 3-D loop-gap design allow for a more homogeneous AC field in the center sample mode,
higher filling factors, and optical compatibility, at the cost of weaker coupling to individual spins.
Since most of the magnetic energy is concentrated in the center mode, better mode overlap with
the applied optical beam is possible.

2-D geometry, as seen in Fig. 4.1.
For this reason, we choose a 3-D loop-gap resonator (LGR) design as seen in Fig.

4.1. An LGR consists of a center mode where the sample resides, flanked by two narrow
slits to provide the capacitance. The inductance is provided by the material itself in
the area of the resonator around the center mode. The electric field fluctuates between
the capacitance gap (in the ẑ-direction) while the magnetic field oscillates in the x − y
plane, as defined in Fig. 4.1. Two large openings at the ends of the capacitance gaps
provide space for the AC magnetic field, which oscillates in two flux "loops" that both
flow through the center mode, similar to a TE102 mode in a waveguide. The advantages
offered by a 3-D LGR include a more homogeneous AC magnetic field throughout the
sample, meaning that many more spins can be equally accessed by the microwave field.
This allows the ensemble coupling constant gens to remain relatively high despite weaker
individual spin coupling (gsingle,2D ∼ 1 − 10 Hz vs. gsingle,3D ∼ 0.2 Hz). This allows for
the best mode overlap between the optical and microwave fields while maintaining the
ability to tune the spin transition via a static magnetic field. The disadvantages of such
a geometry are the lower resonator quality factor due to the lossier material (copper vs.
superconducting aluminum/niobium), which is required due to the static B-field, and the
inability to tune the resonator frequency in situ. We hope to eventually achieve a quality
factor of around Qint = 5000 for implementation of the quantum transducer, but a lower
quality factor will still suffice for ESR measurements.

Having chosen a microwave resonator with loop-gap geometry and made out of copper



to use in our experiments, the designs were then evaluated and tested using COMSOL
Multiphysics. The resonator was engineered to have a fundamental frequency around
5-6 GHz, as well as a small sample space around 10mm3. The extremely narrow (∼
100µm) gap size necessitated that the resonator be built in two identical halves and
bolted together. The seam from this junction is indicated by the black dotted line in Fig.
4.2a. An enclosure for the resonator was also designed to minimize radiative losses, and
SMA coaxial pins embedded into the enclosure provide the input and output signals. The
finalized design and specifications can be seen in Fig. 4.2. Based on the dimensions of
the diamond samples we used in this work, the center mode volume was set at 11.5 mm3,
the dimensions of which are seen in Fig. 4.2c.
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Figure 4.2: Finalized design of the loop-gap resonator. a) Photograph of the resonator and
enclosure. The two halves of the resonator meet at the junction indicated by the black dotted
line. The yellow dotted line indicates the boundaries of the loop-gap resonator, which is sealed
on either end by two enclosure pieces, labeled with black arrows. The enclosure piece on the
right is open in order to show the location of the SMA coupling pin. The orientation of the
resonator is labeled as well. The static B-field (B0) is applied in the z-direction and the AC field
oscillates along the y-axis in the sample space. b) Front view of the AC magnetic field profile
of the main loop-gap mode, calculated using the COMSOL model. The center mode has a high
field homogeneity due to the field lines being tightly squeezed through the gap. c) Top view of
the inside of the enclosure, with the boundaries of the resonator indicated with solid black lines.
The color plot shows the electric field strength as a function of position inside the enclosure.
Most of the electric field energy is confined between the narrow capacitive gaps on either side
of the sample mode. Direction and relative strength of the AC B-field are also indicated by
the cyan arrows. d) Resonance test at room temperature, showing the main loop-gap resonance
frequency, which during this measurement was 5.4 GHz.

The resonant microwave magnetic field in the loop-gap resonator is tightly focused



through the sample space and results in a high homogeneity (Fig. 4.2b-d), which can be
verified through simulation. The spatial profile of the AC magnetic field throughout the
sample was simulated using COMSOL and can be seen in more detail in Fig. 4.3.
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Figure 4.3: Electromagnetic simulation in COMSOL showing the AC magnetic field strength
as a function of position inside the sample space. a) X-Y plane at z=0, with the dimensions of
the diamond sample shown with the dotted white lines. The field has 93% field homogeneity
over the area enclosed by the sample. Cuts used in b) and c) are indicated with the red and blue
dotted lines, respectively. b) Cut at y = 0.75 mm in the X-Z plane. Dimensions of the diamond
samples (h = 0.5 mm and h = 1 mm) are outlined with the dotted white lines. c) Cut at y = 0

mm in the X-Z plane, showing a near-totally homogeneous field near the center of the LG mode.

Using COMSOL it is calculated that the AC field over the sample dimensions is ho-
mogeneous to about 93%. Using Eq. 3.61, the vacuum field can be estimated using the
relationship

1

2µ0

∫ Vc
|δB0(r)|2dV =

1

2
}ωr ×

1

2
, (4.1)

where Vc = 11.5 mm3 is the volume of the sample mode and ωr = 2π × 6 GHz is
the fundamental resonance frequency. Assuming that the field is nearly homogeneous
throughout the sample space, the need for an integral is eliminated and we get

δB0 =

√
µ0}ωr

2V
. (4.2)

Using the numbers above results in δB0 = 14 pT. From this, we can estimate the
single spin coupling g. We calculate the values for both an NV center and a P1 center in
diamond, as we will use these centers to calibrate the resonator. The coupling constants
are

gsingle,NV =
1

}
〈+1|Ĥint|0〉 =

γe√
2
δB0,

gsingle,P1 =
1

}
〈+1/2|Ĥint| − 1/2〉 =

γe
2
δB0.

(4.3)

From this we calculate g = 0.29 Hz for NV and g = 0.19 Hz for P1. Although these
values are around two orders of magnitude lower than values of g for 2-D resonator



designs [129][130], this will be sufficient for achieving strong coupling provided that there
are enough spins inside the cavity mode, as discussed in Ch. 3.

4.2.2 Resonator characterization

Having fabricated the resonator, we tested the unloaded (without samples inside) cavity
at room temperature to verify the resonance frequency ωr and internal (external) quality
factors Qint(Qext). The enclosure is bolted together, using indium to help provide good
contact between the surfaces. Two SMA pins are inserted into the enclosure to provide
the capacitave coupling between the microwave line and the sample space. The length of
the pins extending into the cavity are the primary determiners of the external loss rates
κ1 and κ2, which we will refer to jointly as κext. We examined the coupling between the
resonator and the input and output pins for differing values of the height to extract the
range of possible quality factors. The equation for transmission through the resonator
cavity, derived in Ch. 3 as Eq. 3.31, was written as

|t(ω)|2 =

∣∣∣∣ i
√
κ1κ2

ω − ωr + iκ+κint

2

∣∣∣∣2 , (4.4)

where ωr is the main resonance frequency, κint is the loss rate of the resonator, and κ1 and
κ2 are the loss rates of the input and output pins, respectively. The rates κ1 and κ2 are
controlled by the distance between the resonator and the pins. This distance is adjusted
by stacking washers between the rim of the SMA pin and the enclosure. The results can
be seen in Fig. 4.4. Since the transmission formula by itself cannot differentiate between
κ1 and κ2, and since the height of the washer stack was kept the same on both pins, for
simplicity we assume κ1 = κ2 = κext/2, where κext is the total external loss rate. The
ratio κext

κint
determines the coupling regime: over- (> 1), critical (≈ 1)-, or under-coupled

(< 1), see the corresponding section in Ch. 3.
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Figure 4.4: Cavity transmission as a function of frequency at 10 mK, along with fitting lines,
for different coupling strengths. For this test, Qint ≈ 1300. External coupling was controlled by
stacking washers between the SMA pin and the enclosure surface. Qext was extracted using the
cavity transmission formula, with Qint and ωr also used as free parameters.



We also use Eq. 3.28 to calculate the mean number of photons in the cavity

n̄ =
2kext

}ωr(κext + κint)2
Pin, (4.5)

where Pin is the microwave probe power at the input port of the resonator. As can
be seen from the above equation, the maximum photon injection efficiency for a given
microwave power occurs when the system is in the critically coupled regime. This should
be easily achievable at low temperature, where Qint ≈ 1300.

Before continuing further, special attention was paid to other modes of the resonator.
The center loop-gap mode must be well-isolated in frequency space from any other "par-
asitic" modes in order to be able to couple strongly to the spin ensemble. Such parasitic
modes are endemic to the LGR itself; others can be generated from the enclosure geome-
try as well as the SMA pins that are inserted into the cavity. We attempt to prevent this
interference with the LG mode by performing a broad frequency scan through the LGR
in COMSOL, which will then be verified via experiment. Eigenmodes for the resonator,
cavity, and pin system were found using COMSOL, and the results can be seen in Fig.
4.5.
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Figure 4.5: Broadband microwave transmission spectroscopy. a) Transmitted power of the
unloaded resonator at room temperature, showing box modes as well as the LG and parasitic
modes. Different pin heights and lengths affect the position of the parasitic resonance, demon-
strating coupling between the pins and cavity. b) Electric field strength as a function of position
for the fundamental "box" mode indicated in a). Like the LG mode, the electric field is contained
between the capacitive plates but the AC magnetic field oscillates around the center mode (cyan
arrows), producing no substantial field in the sample space. c) Front profile of the resonator for
the "box" mode, showing the the AC B-field modulus as a function of position in the X-Z plane.
Note the absence of field in the center of the resonator, meaning that this mode cannot be used
for coupling to the spin ensemble.

These modes were examined using a vector network analyzer (VNA) and an unloaded
resonator and enclosure at room temperature. A broadband frequency sweep (100 MHz-14
GHz) revealed the positions of the three main resonances (Fig. 4.5). The lowest frequency
peak corresponds to the fundamental mode of the LGR, which we call the "box" mode,
where the magnetic field circulates in a single loop through the two large openings and the
field in the sample space is near zero, as seen in Fig. 4.5a. In our design this frequency
occurs around 2 GHz and thus the separation between it and the "main" LG mode is
sufficient. The second such resonance is the main mode, labeled as "LG," and occurring
near where it is expected. The final mode is a large, broad parasitic mode occurring near
7 GHz, with the exact location varying based on the external coupling. We determine
that these modes are coupled box-pin modes and that the length of the pins extending
into the cavity not only alters the external Q-factor but the position of these parasitic
modes. As seen in Fig. 4.5, for low quality factors the broad parasitic mode overlaps
slightly with the LG mode, resulting in an asymmetric lineshape.



4.3 Experiments on NV/P1 centers

4.3.1 CW measurements

With the resonator fully characterized, proof-of-concept demonstrations of coupling were
then performed with ensembles of nitrogen-vacancy (NV) and substitutional nitrogen (P1)
centers in diamond. The resonator and ensemble were placed in a dilution refrigerator
and cooled down to 20 mK so that the resonator and spins are fully polarized to the
ground state. Transmission of the microwave signal through the sample was monitored
as described in the previous section and in Appendix B. Note that some transmission
measurements in this section have been converted from decibel scale to a linear scale in
order to extract the resonator parameters. For these experiments the parameters were
fixed at ωr = 5.275 GHz, Qext & 8×105, Qint = 1300. The first ensemble used is the [110]-
aligned diamond, which has an NV concentration of∼ 10ppm and a P1 concentration of 40
ppm (labeled Sample #1 in Appendix A). The energy level schematic for this orientation
is illustrated in Fig. 4.6.
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Figure 4.6: The [110]-oriented NV center. a) Structure of the NV center in the [110] B-field
orientation. Two species of NV centers are present within this orientation: the orthogonal centers
(grey lines), which do not have a detectable transition in this region, and the non-orthogonal
centers (blue lines), which make an angle of 35.3◦ with B0 One such example of an NV center in
this orientation is pictured. b) Energy levels of the |0〉, |1〉, and |2〉 states in NV centers in the
[110] orientation of the magnetic field. The point where the |0〉 → |2〉 transition reaches 5.275
GHz is labeled with a black arrow line.

As seen in Fig. 4.6, our choice of axis for sample 1 results in two distinct spin species
over all four possible NV site orientations, those orthogonal to B0 and those that are
non-orthogonal (i.e. have a component along B0 at approximately 35.3◦). The orthogonal
transition is not detectable in this mid-field region due to spin selection rules. The non-
orthogonal spin species has a resonance frequency of approximately 5.3 GHz at ≈ 74 mT,
corresponding to the spin transition |0〉 → |2〉 as indicated in Fig. 4.6b. We use the



annotations |0〉 , |1〉 , |2〉 to describe the spin sublevels in this region due to the mixing of
the two lowest levels - meaning that ms is not a good quantum number. At higher fields
the states will again be well described by ms and the transition between the lowest and
highest levels will be forbidden.

Fig. 4.7 shows the results of the spectroscopy test. A probe signal was applied using
a vector network analyzer, sweeping the frequency across the cavity resonance at each
B-field step. The applied power reaching the resonator was approximately -106 dBm,
which corresponds to n̄ = 10000. This number of photons n̄ is many orders of magnitude
lower than the number of spins in the sample, assuring that the collective approximation
is valid.

Magnetic field B0 (mT)

 ycneuqerF
ω

2/
π

)z
H

G( 

0

Tr
an

sm
is

si
on

 A
m

p.
  (x

10
-3
)

|S21| (10-3)

20

7876747270

5.30

5.28

5.26

5.24

73.7 mT10 mK

84

ωs

ωr

a) b)

2g
en

s =
 2

4 
M

H
z

Figure 4.7: Results of the transmission measurements on sample #1. a) Transmission spec-
trum as a function of magnetic field and frequency for sample #1 at 10 mK. The main mode
of the resonator ωr = 5.275 GHz is labeled with a horizontal dashed line. The |0〉 → |2〉 spin
transition, labeled ωNV , is also indicated with a white dotted line. The two lines intersect at ap-
proximately 73.7 mT (red arrows), with the data clearly showing an avoided crossing around that
point. The two hybridized levels that arise as a result of spin-resonator coupling are shown with
solid black lines. Fine structure due to nearest-neighbor carbon-13 atoms is indicated with black
arrows. b) The splitting in frequency space between the two modes at 73.7 mT. The ensemble
coupling can be extracted from the distance between the two peaks, giving gens ≈ 12 MHz.

.

While the experimental value of gens can be extracted by simply looking at the fre-
quency difference between the polaritonic modes at 73.7 mT, we will determine this value
using a more precise method. We fit the transmission spectra data to the coupled Hamilto-
nian. The frequencies of the polaritonic modes can be found by diagonalizing the following
matrix [

0 gens
gens ωNV − ωr

]
, (4.6)



which has the eigenvalues

ω± = ωr +
1

2
(ωNV − ωr)±

√
g2
ens +

(ωNV − ωr)2

4
. (4.7)

Between the region of 70-80 mT (see Fig 4.6b), we approximate ωNV as a quadratic
function of B0, ωNV (B0) = K0 + K1B0 + K2B

2
0 . This expression was inserted into Eq.

4.7 and the values K0, K1, K2, ωr, and gens were used as fitting parameters. From this,
gens = 11.5 MHz andωr = 5.2746 GHz were obtained. The linewidth of the spin ensemble
is estimated to be Γ ≈ 3 MHz, obtained via deconvolution of the spins and resonator (see
Sec. 4.3.4 for details). We can see that the condition C � 1 is indeed met in this case,
and the spin-resonator system is in the strong coupling regime.

We can compare the experimentally-obtained coupling value of gens ≈ 12 MHz with
the estimated coupling based on resonator geometry and spin concentration, given by the
formula

gens = gsingle ×
√
ρNV Vs, (4.8)

where gsingle is the single-spin coupling previously determined, ρNV is the NV center
concentration of the sample, and Vs is the sample volume, respectively. Earlier, we esti-
mated gsingle for NV centers to be 0.29 Hz. In appendix A the concentration of NV centers
is listed as 10 ppm, which in diamond corresponds to a concentration of 1.8× 1018cm−3.
However, we must remember that only half of the spin centers are being activated in this
configuration. All of these can finally be put together in the formula

gens = 0.29Hz×

√
(1.8× 1018cm−3)(0.3× 0.15× 0.11cm3)

(
1

2

)
= 19 MHz. (4.9)

The difference between the experimental and theoretical values is attributed to the spin
transition strength in this regime, which also must be taken into account. As discussed
earlier, the system lies in the mixed mid-field regime, where the matrix element for the
|0〉 → |2〉 transition is < 1. By diagonalizing the spin Hamiltonian at the resonance field
B0 = 73.7 mT we obtain a matrix element value of 0.75, which when incorporated into the
calculation of the coupling gives gens = 14 MHz. This agrees more closely with our value
obtained via experiments. Nonetheless, we have clearly demonstrated strong coupling
between the spins and the loop-gap resonator.

For the second test, a Sample #2 was used, which has a lower concentrations ([NV]=2
ppm, [P1]=16 ppm). Although the lower concentration does make achieving strong cou-
pling more difficult for NV, the alignment of Sample #2 (‖ [001]) means that all of the
spins within the sample have the same projection along the B-field. This avoids the sit-
uations where two spin species are created, such as with the NV centers in Sample #1,
see the previous section. It was found through investigation of NV centers in Sample #2
that the crystal [001] axis is not perfectly parallel to the applied B-field. These results
will be discussed later in this section; for now, P1 centers were chosen as the system for
coupling to the resonator. P1 centers are relatively insensitive to a small misalignment of
the static B-field. The energy level structure for these centers is shown in Fig 4.8.
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Figure 4.8: The P1 center in the [001] B-field orientation. a) The P1 centers are uniformly
aligned to an angle of 54.7◦ along the static field, meaning that it is possible to drive all spins
together with an AC microwave field. b) Energy levels of the ms = −1/2, 1/2 spin sublevels
of P1 for the [001] B-field orientation. Zooming in on the region around 185 mT reveals three
hyperfine transitions (mi = −1, 0, and +1), which are well-resolved due to the relatively large
hyperfine tensor (|A| ≈ 94 MHz. The point where each of the three hyperfine transitions reaches
5.295 GHz is labeled with a black arrowed line.

The same experimental conditions were used as with the NV centers in Sample #1,
however in this case the resonator frequency ωr has shifted to around 5.293 GHz 1. The
results are illustrated in Fig. 4.9, with three clear avoided crossings due to the nuclear
sublevels of the P1 centers. We label these centers P1A, P1B, and P1C for the sake of
convenience, and these names will be used throughout the rest of the work.

1It should be noted that the thermal expansion and contraction of the resonator during each mea-
surement cycle, along with the indium placed in the seams of the resonator, causes the loop-gap mode to
shift in frequency. These shifts can be seen in experiments throughout Chapters 4 and 5.
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Figure 4.9: P1 transmission data from Sample #2. a) Transmission spectrum as a function
of magnetic field and frequency for sample #2 at 10 mK in the region near 185 mT. The main
mode of the resonator ωr = 5.293 GHz is labeled with a horizontal dotted line. The three spin
transitions corresponding to the nuclear spin sublevels, labeled ωP1,+, ωP1,0, ωP1,− respectively
are also indicated with a white dotted lines. We name these three transitions P1A, P1B, and
P1C. The hybridized levels that arise as a result of spin-resonator coupling are shown with solid
black curves, which are found through matrix diagonalization. Fine structure due to nearest-
neighbor carbon-13 atoms is indicated with black arrows. An NV transition near ωP1,+ is labeled
with a green arrow, and two "unknown" spin centers, later determined to be R4, are indicated
with pink arrows. b) The splitting in frequency space between the two modes at 188.7 mT. The
coupling can be extracted from the distance between the two peaks, giving gens,0 ≈ 8 MHz.

Due to the increased complexity of the spin system, i.e. three modes coupled to the
resonator instead of just one, a closed-form solution for the polaritonic modes (c.f. Eq.
4.7) cannot be derived. The model for obtaining the four polaritonic modes can, however,
be obtained through numerical diagonalization of the 4 × 4 interaction matrix. For the
P1 centers, the eigenenergy matrix can be written

0 gens,− gens,0 gens,+
gens,− ωP1,− − ωr 0 0
gens,0 0 ωP1,0 − ωr 0
gens,+ 0 0 ωP1,+ − ωr

 , (4.10)

where ωP1,j refers to the resonance frequencies of the three P1 hyperfine transitions
(j = −1, 0,+1) at a given magnetic field. These values were found via EasySpin [131] and
then numerically diagonalized with gens,−, gens,0, gens,+, and ωr as the fitting parameters.
As a result, the values 7.8 MHz, 7.9 MHz, and 8.8 MHz were obtained for the three
coupling values, and 5.2929 GHz for the resonator frequency. The linewidth is calculated



to be 1.3 MHz. The pythagorean sum of these values gives the total coupling to all three
P1 transitions

g2
ensNtotal = g2

ens,− + g2
ens,0 + g2

ens,+

, gens =
√

(7.8 MHz)2 + (7.9 MHz)2 + (8.8 MHz)2 = 14.1MHz.
(4.11)

Once again comparing the above experimentally-obtained coupling value with the
estimated coupling based on spin concentration,

gens = gsingle ×
√
ρP1Vs, (4.12)

where gsingle is the single-spin coupling to P1, approximately 0.19 Hz. In Sample #2
the concentration of P1 centers is 16 ppm (2.9× 1018cm−3), however the physical size of
the sampler is smaller than Sample #1. Putting these values in the formula, we obtain

gens = 0.19Hz×
√

(2.9× 1018cm−3)(0.3× 0.15× 0.05cm3) = 15.3 MHz. (4.13)

Which agrees reasonably well with our calculated value. We have thus demonstrated
strong coupling between the resonator and two different ensembles of spin centers in dia-
mond. Our loop-gap resonator is thus viable for further experiments in spin-based hybrid
quantum systems, such as for spin quantum memories or a quantum transducer. How-
ever, in this work we will continue to examine interesting features of the low-temperature
ESR data, which will eventually reveal the mechanism of a spin-based cryogenic maser
amplifier.

4.3.2 Identification of spin centers

In addition to the strong coupling to the P1, a number of interesting secondary features
in Fig. 4.9 jump out, notably the presence of spin transitions in the same region that are
not either the P1 or NV main transition. Several of these transitions are in fact carbon-
13 satellites that are easily distinguished by using the well-known hyperfine tensor [132],
shown with dashed lines in Fig. 4.10. The second is a relatively strong transition near
ωP1,+ (P1A) that was found to be due to an NV center. Normally well-separated in
frequency space from the P1 center, this particular NV resonance was pushed to higher
field due to misalignment between the crystal [001] axis and the lab frame z−axis. To
determine the misalignment angle, a program was created in Matlab, making use in part of
the EasySpin software package [131]. This allowed us to calculate transition frequencies
as a function of field and overlay them onto the 2-D transmission data, adjusting the
misalignment angles as appropriate. Fig. 4.10 shows the results of the attempt to identify
all of the spin centers by simulating P1, NV, and associated 13C centers. This, however,
does not identify all of the spin transitions that can be seen in the plot. Therefore, we
turn to other spin centers such as the vacancy clusters introduced and discussed in Ch.
1. Using the parameters listed in Ch. 1 we also overlay spin transitions of the R4/W6
(divacancy) and O6 and R7 (quadruple-and quintuple-vacancy) spin defects onto Fig.
4.10. As discussed in subsequent sections, it is likely that R5 centers are also present in
the sample, however none of the transitions fall within the magnetic field and frequency
range of Fig. 4.10.
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Figure 4.10: Full transmission spectrum as a function of magnetic field and frequency for
sample #2 at 10 mK. The main color plot is overlaid with lines indicating the spin transition
frequencies as a function of magnetic field. In addition to the three main P1 transitions, an
NV transition is present near ωP1,+ due to the misalignment of the B-field relative to the [001]
crystal axis.

4.3.3 The nitrogen-dense sample

For the sake of comparison, it is helpful to look at a sample that only contains nitrogen
centers and has not been subjected to the process of electron bombardment used to
create the nitrogen vacancies and thus the other impurity centers. We obtained a HPHT
Ib diamond sample grown at Sumitomo Electric Industries which we refer to from now on
as "Sample #3" (see Appendix A). The nitrogen concentration, although not precisely
known, is significantly higher than in Sample #2, so we expect to achieve strong coupling
to the P1 centers in Sample #3. Like Sample #2, Sample # 3 is grown in such a way
that the [001] axis aligns with the lab z-axis, i.e. the direction of the static magnetic field.
The P1 ESR spectrum in the regime of 185-210 mT should thus look very similar to Fig.
4.10. As mentioned above, the sample should not have an appreciable quantity of nitrogen
vacancies and thus we only expect to see the three main P1 transitions. Sample #3 was
placed in our resonator and subject to the same cw-microwave experimental procedure
of Samples #1 and #2. Fig. 4.11 shows the results of the coupling test of Sample #3.
The transmission data is dominated by the large coupling to each of the P1 transitions,
and other than some faint lines due to 13C there are no other notable transitions in this



regime.
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Figure 4.11: Transmission spectrum as a function of magnetic field and frequency for sample
#3 at 10 mK. The main color plot is overlaid with lines indicating the spin transition frequencies
as a function of magnetic field (black dotted lines) and lines indicating the polaritonic modes
(solid white lines). From these the coupling values gens,− gens,0 gens,+ are obtained. No other
notable transitions are present, indicating a lack of vacancy clusters or NV centers.

Following the same procedure as with Sample #2 we extract ωr = 5.269 GHz for the
resonator frequency, Qtot = 700 for the total quality factor, and gens(−,0,+) = 18, 18.48, 16.84 MHz
as the ensemble coupling constants, respectively. Although the precise concentration of
the sample is not known, we estimate [P1] = 50 ppm based on the total ensemble coupling
and the size of Sample #3.

From the results of Sample #3 shown in Fig. 4.11, it can be deduced that the extra
transitions present in Sample #2 are due to vacancy centers created during the process of
electron bombardment. In the next section, we will perform time-domain measurements
to examine the effects of the vacancy centers on the system relaxation rates.

4.3.4 Time-domain experiments

It has been demonstrated in literature that while centers such as P1s and NVs have
incredibly long lattice relaxation times at low temperature [25], vacancy clusters such
as R4/W6 and R5 centers have much shorter relaxation times [133]. Now that we have
established the presence of R4/W6 and R5 centers in our sample, it is interesting to look
at the effect of these "fast" centers when their transition frequencies nearly overlap those
of the "slow" centers.

We look at Sample #3 first to establish the timescale of T1 in P1 centers at 10 mK. The
fact that each of the P1 transitions is strongly coupled to the resonator makes measuring
T1 on resonance (e.g. by saturation recovery) more complicated. It can be done, however,



through measuring the dispersive shift in a manner similar to one employed in cavity-
and circuit-QED experiments such as in Ref. [134]. The process can be seen in Fig.
4.12a. Sample #3 is cooled to ≤ 20 mK and the spectrum is measured using the VNA.
For both P1A and P1C the field is fixed to the point where the resonance frequency of
the transition is detuned from the main cavity resonance by 70 MHz, which is several
times the ensemble coupling strength (satisfying ∆s � gens). A microwave pump tone is
applied using a signal generator to saturate the spins off-resonantly. After the spins are
fully saturated, the VNA monitors the shift of the resonance frequency of the cavity over
time. From Chapter 3, we established that when the resonator and spins are detuned
by a value greater than the coupling g between them, then the systems cannot exchange
energy directly. However, the frequencies of each system are "pulled" slightly depending
on the state of the other. This allows us to remove the effect of the resonator coupling
to the spins and also monitor the spins indirectly through the resonator. As the spins
(∼ N) recover from saturating, the ensemble coupling gens increases and thus the shift of
the cavity resonance from its "natural" frequency ωr also increases. A sample data set
it seen in Fig. 4.12b. The microwave probe tone is swept across the cavity resonance at
each time interval, and the resonator frequency and quality factor at each step can be
extracted by fitting the phase using the function derived from the angle of 3.31,

φ(ω) = φ0 −∆ arctan

(
2(ω − ωr)
κint + κext

)
. (4.14)

Where φ0 and ∆ are fitting parameters representing the phase offset and span. Two
example phase fits are pictured in Fig. 4.12b. The evolution of ω − ωr over time behaves
as an exponential function from which the lattice relaxation times T1, A and T1, B can
be determined. The two different relaxation times are attributed to the diamond forming
facets during growth, meaning that different regions of the diamond can have varying
concentration of nitrogen. The dispersive measurement experiment was performed on
both the P1A and P1C transitions at 10 and 100 mK, and the results are seen in Fig.
4.12c-d.
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Figure 4.12: Results of dispersive measurements of T1 for the P1A and P1C transitions of
Sample #3. a) VNA map of transmission power in the region near the P1 transitions. The
VNA is centered on the resonator frequency (5.293 GHz). For dispersive measurement of P1A
(P1C), B0 is fixed at 182.1 mT (193.7 mT) and the saturation frequency is applied at 5.199 GHz
(5.339 GHz). The resonator and spin transition frequencies are thus separated by about 70 MHz.
b) Sample phase traces taken during the P1A saturation recovery. The shift in the resonator
frequency can be extracted by fitting the data. c) Frequencies of maximum transmission power
as a function of time for P1C. The measurements were performed at 10 mK and 100 mK and
the data was fitted with a double-exponential function. d) The same dispersive measurements
performed on P1A at 10 and 100 mK, with the double-exponential time constants indicated on
the plot.

As can be seen from the data depicted in Fig. 4.12, the spin-lattice relaxation T1 times
of the P1 centers, absent any other spin defect centers in the sample, are extremely long,
with the fits to the data returning two time constants of ∼ 1 hr and ∼ 10 hrs. Next,
we will probe the lattice relaxation times of the defect-rich Sample #2 to determine the
effect of the added vacancies.

We use the following measurement technique for measuring the T1 of the P1 centers in
sample #2. Note that beginning with these experiments, we have switched from measuring
the transition to the reflection spectrum. See Appendix B for information on the exact
changes made in this setup. This allows us to more-easily compensate for the background
signal of the spectra due to the measurement lines and electronics. First, to determine
the parameters of the resonator we take a frequency profile when it is far detuned from



any spin resonance. This profile and the extracted resonator parameters are illustrated
in Fig. 4.13a, with extracted values of ωr = 6.263 GHz and Qtot = 550. Following
this, we determine the magnetic field where the P1 centers transitions are resonant with
the LG resonator. We set the field modulus at this value and then saturate the P1
centers on-resonance with a signal generator. Saturating on-resonance ensures that the
entire bandwidth of the spin ensemble is pumped by the PSG tone. As the spins relax
from saturation, resonator spectroscopy is performed using the VNA. These traces as a
function of time are shown in Fig. 4.13 and show relaxation from the bare resonator
profile to the polaritonic-mode behavior characteristic of strong coupling. The relaxation
time is clearly much quicker than in the previous measurement. However, as noted in
the previous section, the effect of the resonator must be removed in order to accurately
determine the characteristic time T1 of the spins. We thus perform the following procedure
to deconvolute the resonator and the spins. The background is subtracted from the raw
magnitude data so that the off-resonance reflected power is ≈ 0 dB. The magnitude data
is then linearized and combined with the phase data,

R(ω) = |R(ω)|iφ(ω). (4.15)

We then reintroduce the spin function K(ω) introduced in Ch. 4. We can easily
rearrange the expression to calculate K(ω) in terms of R(ω),

K(ω) = ω − ωc +
i

2

(
κL + κ1

R(ω)− 1

R(ω) + 1

)
, (4.16)

where ωc, κL, and κ1 are the resonator parameters which we have determined in Fig.
4.13. This removes the effect of the strong coupling to the resonator from the spins. The
imaginary part of K(ω) is directly proportional to the spin density, which we will now
calculate. We assume that the distribution of the spin defect frequencies constitutes a
Lorentzian function given by

ρ(ω) = g2
ens

Γ/π

ω − ωs
, (4.17)

where ωs and Γ are the spin resonance and linewidth, respectively. This function is
normalized as

∫
ρ(ω)dω = g2

ens

∫
Γ/π

(ω − ωs)2 + Γ2
dω∫

ρ(ω)dω = g2
ens

1

g2

∫
ρ(ω)dω = N.

(4.18)

Note that in the last line we have substituted gens = g
√
N , where g is the single-spin

coupling. To determine the number of spins from our data we can use the relationship
between ρ(ω) and the imaginary portion of K(ω) [32],

ρ(ω) = − 1

π
Im[K(ω)]. (4.19)



Combining this with Eq. 4.18,

N = − 1

πg2

∫
Im[K(ω)]dω. (4.20)

This can be expressed more generally as a spin density as a function of frequency n(ω),

n(ω) = − 1

πg2
Im[K(ω)]. (4.21)

Having established the expression for n, we can now calculate the total number of
spins in any given bandwidth. The function n(ω) is plotted in Fig. 4.13c and shows
a steady increase in time as the spins relax. Note that the negative sign in n means
that the function is positive for absorbing spins and will become negative for an inverted
spin ensemble (see Ch. 5). From the profiles of n vs. time the lattice relaxation times
T1,AB can be determined (Fig. 4.13d). It is clear that the P1 relaxation times are greatly
accelerated in this sample, by a factor of ∼ 10. We attributed this acceleration to the
presence of nearby vacancies formed through electron irradiation and annealing of the
sample, specifically via direct flip-flops between the P1 centers and vacancy clusters. An
explanation of this mechanism, as well as an estimate of the flip rate Γflip based on
experimental data, is included in Ch. 6. Note that, like Sample #3, the two relaxation
rates are attributed to the diamond containing different facets with varying concentrations
of both P1 centers and vacancy clusters. These facets can clearly be seen with the naked
eye upon inspection.
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Figure 4.13: Results of saturation recovery measurements of T1 for the P1A and P1C tran-
sitions of Sample #2. a) Linearized reflection profile of the resonator at a magnetic field off-
resonant from the spin ensemble. The resonator parameters extracted from the fit are shown
in the box. b) Time evolution of the P1A transition near the resonator frequency following the
saturation. When the spins are saturated, the sprectrum is characterized by a single dip in the
reflected power. As the spins relax, the spectrum once against returns to the double reflection
dips that is the result of the strong coupling between the P1 centers and and the resonator. The
splitting grows wider as the spins return to their equilibrium state. c) The time-evolution of
the spin profile as a function of frequency when the resonator and spins are deconvoluted. The
spins clearly show recovery from saturation as time increases. Note that the misalignment of the
B-field results in broadening of the spin profile. d) Normalized spin recovery as a function of
time, obtained by integrating the traces in (c). The data sets are fitted with a double-exponential
model and the extracted T1 values are shown on the plot. Notice that they are greatly accelerated
when compared to Fig. 4.12.



4.4 Locating the R5 center
Having shown the acceleration of the P1 centers, we now attempt to locate evidence of
the R5 center within the sample. We anticipate the concentration of R5 is very small (1
ppb), and thus difficult to detect using cw-microwave spectroscopy. For this reason, we
switch to a time-domain setup, using homodyne-detected Hahn echo method to detect R5.
The same sample and magnetic field orientation is used for these experiments. The pulse
envelopes are generated using an arbitrary waveform generator (AWG) and mixed with
a microwave signal generator (MSG) at a frequency resonant with the microwave cavity
(ωr = 5.961 GHz). After being transmitted to the cavity, the reflected signal is amplified
at 4K, demodulated using the local oscillator signal from the MSG and amplified again
at room temperature, and measured using a PC fast acquisition card. Further details of
the setup are described in Appendix B. The pulse sequence itself is a standard Hahn echo
sequence as illustrated in Fig. 4.14a. In this case we use two pulses of the same length
but the amplitude of the second pulse is increased by twice that of the first. Moreover,
since the R5 center lies among many other spin transitions in this orientation, we will
"silence" the other transitions by applying a 1 second, frequency-modulated saturation
pulse prior to the echo sequence. By allowing only 1 second between the pulse and the
echo sequence, we ensure that only the spin transitions with the shortest values of T1

will be detectable. The detected spin echo as a function of B-field can be seen in Fig.
4.14. The R5 transition, which should lie between 220-225 mT, could not be directly
detected. The reason for this is still unclear, but it may be related to the very broad
background resonance visible between 215-230 mT in Fig. 4.14b. The origin of this broad
signal is also unclear, but may be a stray paramagnetic resonance due to water or oxygen
condensation on the resonator. Such resonances have been observed previously in the
context of superconducting resonators [135].

What is clear from Fig. 4.14, though, is that the relaxation of the high-field (P1C)
transition is accelerated when compared to the other P1 transitions, indicated by the
large echo signal present even after thoroughly saturating the spins. This asymmetry in
T1 between P1 satellites will be used in Ch. 6 to generate inversion on the lower-field
satellite via cross-relaxation.
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by a 1 s-long delay time. This allows for the detection of spins with short T1. After the 1 sec
delay, a standard Hahn-echo sequence with 4µs delay between the two pulses is employed. b)
Echo amplitude versus B-field magnitude. Several NV (solid green lines) and P1 (solid purple
lines) transitions are visible, as well as accompanying paired 13C centers (green/purple dashed
lines). The location of the R5 center is indicated with a solid yellow lines, however the R5
transition is not visible within the echo data, possibly due to the large, broad background signal
present between 215-230 mT. It is clear, however, that the relaxation of high-field P1 satellite is
greatly accelerated relative to the low-field satellite.

Having been unsuccessful at detecting R5 in this orientation, we tilt the B-field 90◦,
from the [001] crystallographic axis to the [110] direction and once again perform cw-
microwave spectroscopy on our sample. Shifting the field to this direction removes all
NV transitions from the region of interested, as they are all pushed to higher or lower
frequencies, as seen in the region near 160 mT in Fig. 4.15. Some of the NV centers are
now oriented perpendicularly to the applied B-field, resulting in extremely weak transition
amplitudes. For this reason, not all main NV transitions can be detected. Regardless,
in the region of interest (200-220 mT), we clearly see five P1 transitions as a result of
the new alignment. Two transitions also appear at ≈205 mT and ≈ 221 mT. These spin



transitions, indicated by the yellow lines, were at first thought to be 13C-P1 satellites, but
upon further investigation it was found that they are too far separated in frequency space
from the main P1 transitions for this to be the case. These transitions were ultimately
determined to be manifestations of R5. By overlaying the calculated spin transition
frequencies onto the data, as in Fig. 4.15, we determined the R5 D-tensor to be about 0.82
of the value reported at low temperature in Ref. [19], with a value of Dzz = −328 MHz.
The perpendicular components were in the range of Dxx, Dyy = 200 − 233 MHz, but it
should be noted that the exact orientation of D relative to B0 could not be determined by
the current data. By demonstrating that R5 is present in our sample and determining the
most accurate spin parameters, we can optimize the performance of our maser amplifiers
which are based on the R5 spin-flip mechanism. At the time of writing we have not been
able to perform time-domain spectroscopy on these detected R5 centers, but this is the
logical next step.
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Figure 4.15: Wide-field VNA scan showing evidence of the R5 center. The field is tilted
into the [110]-plane (lab y − z plane) while maintaining a slight (< 5◦) offset about the x-axis.
The splitting of P1 and NV into subspecies can clearly be observed. The main NV resonances
(solid green/cyan/red lines) near 160 mT are not detected either due to weak transition matrix
elements or negligible spin population. Transitions involving paired NV-13C centers (dotted
green/cyan/red lines) are seen on either side of the main NV transition. Of the three main P1
transitions (solid pink lines), the two outer satellites are also split into two subspecies that are
both clearly detectable. In this orientation the R5 center (yellow clearly manifests outside the
P1-13C center satellite transitions. The −1 → 0 transition is located at higher field (≈ 220.5

mT), and shows a correspondingly higher absorption than the 0→ 1 transition. From this data
we can estimate the D-tensor of R5.



4.5 Conclusion
We have designed a microwave loop-gap resonator for applications in quantum technology
and demonstrated strong coupling to an ensemble of NV and P1 centers. During this
process we have shown that the lattice relaxation times of the ensemble P1 centers can
be accelerated by the presence of other vacancy clusters (particularly R5 centers), which
are also present in our sample. In the next chapter we will attempt to engineer this
acceleration of T1 to our advantage by using it to implement a thermal maser.



Chapter 5

A thermal maser in diamond

5.1 Theoretical model

5.1.1 Engineering Spin flip-flops

We have seen in a number of maser and laser systems explored in Chapter 2, particularly
thermal masers and gasdynamics lasers, that a way to achieve population inversion within
a long-lived spin system is to pair it with a faster-relaxing system, or the other way
around. If the energy gaps between levels of the slow and fast systems are well-matched,
the relaxation of the slow system can be accelerated. If the system begins in a high-
temperature Boltzmann state (kBT � ~ω) and is cooled to low temperature quickly,
it may be possible to achieve a temporary population inversion. Of course, without an
active pump this inversion will only last for a finite amount of time before the entire
system relaxes to thermal equilibrium, i.e. the lowest energy spin state at millikelvin
temperature. Nonetheless, such a maser has the potential to be much longer-lived than
other experimental realizations of the thermal maser, as discussed in Ch. 2.

We can use two spin species present within our [001]-aligned Sample #2 to establish
such a coupled system necessary for a thermal maser. The long-lived system will consist
of NV centers, which at 10 mK has a lifetime of nearly 10 hours. The fast system will
consist of vacancy clusters that are present as a result of the electron irradiating process.
The spin Hamiltonians and parameters of both of these spin systems were discussed in
Chapter 4. By engineering the direction and magnitude of the applied magnetic field,
the conditions required for spin flip-flops between R5 and NV centers can be created.
When the B-field is aligned precisely to the diamond’s [001] axis, the four possible NV
center orientations will all experience the same B-field projection, as seen in Fig. 5.1.
This results in one single detected absorption band each for the |−1〉 → |0〉 and |0〉 → |1〉
transitions, see Fig 5.2. However, due to the relatively large and anisotropic D-tensor of
NV (Dzz ≈ 2.8GHz, Dxx, Dyy ≈ 0), the degeneracy of the transition frequencies is quickly
lifted by applying a small misalignment angle to the sample. This essentially creates
four separate NV center species, labeled NV1-NV4, whose transitions frequencies can be
spread out over a range of >1 GHz for angle differences of only (< 5°). The misalignment
is defined by two angles, θ and φ, each of which is associated with one pair of NV species.
This configuration is depicted in Fig. 5.1.
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Figure 5.1: Diamond lattice misalignment. The lab frame z−axis is indicated with the black
solid arrow. The orientation of the diamond corresponds to that of Sample #2, with the corre-
sponding crystal frame axes labeled with dotted lines. The crystal 〈001〉 axis is misaligned from
the lab frame z-axis (and thus the static B-field). This misalignment is defined by two angles,
θ and φ, which correspond to the tilts of the magnetic field along the 〈110〉 and 〈01̄0〉 axes,
respectively.

Like NV centers, R5 centers are also spin-1 and have an anisotropic zero-field splitting.
However, the degree of anisotropy is much less severe than that of NVs and thus the R5s
are less sensitive to a small misalignment of the B-field. For the typical angles that
are used for misalignment (θ < 5°), the R5 transitions only shift by ∼ 1 − 5 MHz. In
the [001] orientation it can also be calculated that the lower |−1〉 → |0〉 transition has
a smaller energy than that of the |0〉 → |1〉 transition for a given B-field value. By
applying a specific misalignment of the B-field, we can engineer the system so that the
upper transition of one particular NV species overlaps their frequencies with the lower
transition of R5. The systems can then exchange energy through spin flip-flops, increasing
the number of relaxation channels available for the NV center relaxation and thus rapidly
accelerating the relaxation time. Given that the decay of the NVs to the ground state is
on the order of several hours, this means that spins accumulate in the ms = 0 state and
population inversion is achieved.

5.1.2 B-field tilt and spin transitions

We first conduct a test with a cw-microwave probe similar to the experiments performed
in Ch. 4. In contrast to early experiments, this time we make use of a vector magnet
which allows for control of the B-field along all three axes. This will allow us to align
the field relative to the crystal axis at any angle of our choosing. As seen in the previous
chapter, the diamond [001] axis was misaligned with respect to the z-axis of the lab frame



B-field by about 4.5 deg, causing the NV ESR transition of Sample #2 to be split into
four distinct lines, one of which overlapped with P1B (refer to Fig. 1.9). As a test of our
vector magnet, we will compensate for this misalignment by adjusting the B-field values
along x− and y−, which should align all of the NV centers into one single transition. The
reflected power data can be seen in Fig. 5.2.
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Figure 5.2: Reflected power spectrum of sample #2 at 10mK under B-field tilt. a) Spectrum
with B0 tilted at an angle of 4.25◦ about the lab frame y-axis. The P1 centers can be seen in
cyan lines, with one 13C satellite near 223 mT (dashed cyan line). This tilt nearly compensates
for the natural misalignment of the NV centers, whose lower transition (ms = −1 → 0) is seen
around 203 mT (black arrow). The corresponding upper transitions (ms = 0 → 1) can still be
detected at 209 mT (pink arrow), indicating that some population remains in thems = 0 state at
the time of measurement. b) Spectrum with much smaller compensation angles of 0.3◦ and 0.5◦

along the x and y axis. Four distinct NV transitions are seen (black arrows), including one that
crosses over P1A. The P1 centers have remained at the same field values, although the tilting
effect can also be seen on 13C satellite at 221.5 mT (dashed cyan lines). The upper transitions
of the NV centers are no longer detected in this configuration, because the measurement was
performed sufficiently long time after the cool down to 10 mK.

From Fig 5.2 it can be clearly seen that the NV centers are incredibly responsive to
even small shifts of the magnetic field, making it easy to tune the transitions where they
are needed. Using the information about the R5 tensor obtained in Ch. 4, we construct a



theoretical model of the transition frequencies as a function of magnetic field in order to
determine the approximate frequency difference between the transitions of R5 and NV.
Using the known spin parameters of NV and R5, we generate the transition spectrum
seen in Fig. 5.3.
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Figure 5.3: Control of the transition frequencies of R5 and NV. a) Transition frequencies
of NV and R5 when there is no misalignment. In this case the upper NV transition (NVu)
and lower R5 transition (R5) are far detuned from each other. b). Zoom in on the transition
frequency map. R5 and NVu are separated by almost 1 GHz, as such any interaction between
the two spin species is likely to be extremely weak. c) Transition frequencies for a misalignment
angle of θ = 7◦. The green lines represent the pair of NV alignments (NV2/NV4) whose axes
are orthogonal to the tilt angle and thus do not shift from the values depicted in a). The red
(NV1) and cyan (NV3) lines represent the pair of NV alignments whose degeneracy is broken
by the misalignment, which results in one being shifted to higher frequency (NV1) and one to
lower frequency (NV3). d) Zoom in on the blue region indicated in c). The R5 centers have
negligibly shifted, and the upper transition (NV1u) has become nearly resonant with the lower
R5 transition. The quick relaxation time of the R5 centers can act as an extra decay channel for
nearby NV transitions, accelerating their relaxation.



5.1.3 The diffusion model

Since the number of R5s is a few orders of magnitude lower than the NVs, they do not
constitute a thermal bath in the traditional sense. Thus, we have developed the following
model for diffusion of the spin flip-flops throughout the system.

The primitive cell of diamond, consisting of 8 atoms, has a volume of 45.37 Å3. This
corresponds to 104 carbon atoms per 56.7 nm3. Impurity concentrations are usually given
in terms of parts-per-million (ppm), which is the ratio of the number of impurity atoms to
the number of carbon atoms. The concentration of NV centers in our sample is roughly
2 ppm, which corresponds to one NV center per 5670 nm3. Likewise, we estimate the
concentration of R5 centers in our sample to be 1 part-per-billion (ppb), corresponding to
one R5 center per 5.67× 106 nm3. Thus we can imagine the average NV and R5 centers
occupying spheres of radii 11 nm and 110 nm, respectively, to represent the average
separation between atoms of the same type, as seen in Fig. 5.4.

R5

11 nm

110 nm

NV
Γ!")#$

Figure 5.4: A phenomenological model of the NV-R5 interaction within the diamond lattice.
Each R5 center occupies a "bubble" of radius 110 nm in which no other R5s reside. Approxi-
mately 1000 NV centers are located within this same bubble, based on the known concentration
of NV centers. An R5 center, however, will primarily interact via spin flip-flops with its nearest-
neighbor NV center, located ∼11 nm from it. These interactions will then diffuse throughout
the rest of the bubble via NV-NV interactions. Despite being much lower in concentration, the
R5 centers can still act as a spin bath in this way. This is taken into account by the effective
spin flip-flop rate Γflip.

Within each R5 sphere there are roughly 1000 NV centers, however the R5 center
cannot interact with all of these centers efficiently as the spin-spin interaction decreases
with distance, Γflip ∝ 1/r3. At a distance of 11 nm a given the spin-spin interaction rate
will decrease to 1/1000 at 110 nm. Given this picture, we make the following assumptions



about our sample:

• The interaction between the R5 centers, separated by an average distance of 110
nm, can be ignored.

• On average, an R5 center will have one NV center within an 11-nm "bubble" sur-
rounding it, and these two spins will interact the most efficiently

• The NV centers, separated by an average distance of 11 nm, will interact with each
other at a rate roughly equal to the R5-NV rate.

• Energy transferred from R5 diffuses to further NV centers via resonant NV-NV
flip-flops.

• Thus, the interaction of R5 with further NV centers can be represented by an
"effective" spin flip-flop rate. We initially estimate this rate at 10 Hz.

With this information we can construct the interaction model for the R5/NV centers.
We first establish 6 energy levels corresponding the energy levels of R5 and NV at a
given field modulus and angle, whose populations will be monitored as a function of time.
These spin energy levels, the interactions between them, and the lattice relaxations are
represented by the diagram in Fig. 5.5.
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Figure 5.5: The spin flip-flop interaction model for NV/R5. The three spin states of NV (R5)
are labeled 1-3 (4-6). The B-field has been tuned in such a way that the transition NV2−3 is
resonant with the transition R54−5. Energy is exchanged between these four levels at the rate
Γflip. In addition, spins in each upper level relax to the lower levels at the rates ΓNV and ΓR5,
respectively. If there is a large asymmetry in the relaxation rates, a population inversion should
manifest on the transition NV1−2.



5.1.4 Rate Equations

Using the interaction model, we now wish to establish a model for describing the time
evolution of the system after it is quickly brought from 4 K to 10 mK. We assume the
B-field is fixed at B0 = 186.5mT, which in our case is where the −1 → 0 spin transition
of NV1 is equal to the resonator frequency in the orientation (θ = 4.5◦), see Fig 5.3d. We
construct a system of differential equations to model the complex relations between the
levels of R5 and the NVs. The equations are written

dn1

dt
= n2ΓNV ,

dn2

dt
= −n2ΓNV + n3ΓNV − (n2n5 − n3n4)Γflip,

dn3

dt
= −n3ΓNV + (n2n5 − n3n4)Γflip,

dn4

dt
= n5ΓR5 + (n2n5 − n3n4)Γflip,

dn5

dt
= −n5ΓR5 + n6ΓR5 − (n2n5 − n3n4)Γ,

dn6

dt
= −n6ΓR5.

(5.1)

In order to predict the behavior of the system, timescales for spin interactions and relax-
ation are needed, as well as initial conditions. We assume that the spin system is initially
at 4 K, which functions as the hot bath by distributing the spins across the three energy
levels according to the Boltzmann distribution. We assume 6 GHz for the Zeeman split-
ting of the energy levels, which is the resonator frequency for these experiments. This
gives the initial conditions as

n1,i = n4,i = 0.358,

n2,i = n5,i = 0.333,

n3,i = n6,i = 0.309.

At 10 mK, the cold bath temperature, the spins are overwhelmingly populating the
ground state, n1,i = n4,i ≈ 0.358. There is no active pump in this arrangement so no such
terms need to be added to the rate equations. The rates used for the relaxation and spin
flip-flops are

ΓNV ≈ 3× 10−5 Hz,

ΓR5 ≈ 50 Hz,

Γflip ≈ 10 Hz.

The results are plotted in Figure 5.6, showing the behavior of each of the subsystems
as a function of time. The initial value of ΓNV is based on measurements in Ch. 4.
The actual values ΓR5 and Γflip are not well known and are initially guessed based on
the conditions required for the thermal maser to populate, according to our current best



understanding. They will be refined when compared to the data. The effect is primarily
due to the asymmetric effect of the spin flip-flops; the R5s relax much faster than the
NVs and thus overwhelmingly populate the ground state. When an R5 center undergoes
a flip-flop with NV it is excited to level 5. Because of the fast relaxation of R5, the centers
can occasionally relax back to 4 again before another flip-flop interaction can take place.
It is this fast relaxation of R5s and the efficient transfer of energy between the R5s and
NVs that makes the inversion possible. Therefore, the conditions required for the effect
to take place are 1) ΓR5,Γflip � ΓNV , and Γflip & ΓR5. If the flip-flop rate is too weak or
the relaxation of R5s too long, the entire system relaxes to the ground state before any
inversion can be generated. We notice in Fig. 5.6c, representing the behavior of the NV
centers, that level 2 (ms = 0) exceeds the population in level 1 (ms = −1), meaning that
the system achieves population inversion. The total lifetime of the inversion is governed
by the relaxation of the NV centers from the middle to the ground state. No more spin
flip-flops are possible from the ms = −1 state of the NV centers and once the spins reach
this state they must be "woken up" by warming the system to 4 K once again.
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Figure 5.6: Rate equation simulation results for NV-R5. a) Projection of the populations of
the R5 energy levels as a function of time. The levels 4-6 correspond to ms = −1, 0, 1 spin
states, respectively. The top level (6) depopulates almost immediately, whereas the middle level
(5) relaxes more slowly, allowing the population in NV centers to build up via spin flip-flops.
Eventually the spins all accumulate in the ground state (4) and the system remains there. b)
Projection of the populations of the NV energy levels as a function of time. The levels 1-3
correspond to ms = −1, 0, 1 spin states. The spins in the top level (3) relaxes to the middle NV
level (2) at a much faster rate than those in (2) to the ground state (1). This means that the
population in level (2) grows in time, reaching a peak around 2000 seconds before beginning to
relax into the ground state. c) The population difference between NV levels 2 and 1 as a function
of time. The population difference becomes positive shortly after initialization, indicating that
the system has reached an inverted state. The population difference slowly becomes negative
again after a long time, as the system slowly relaxes back to equilibrium.



5.2 Experimental detection of a thermal maser

5.2.1 Initial lifetime measurement

Using the theoretical results of the thermal maser we can implement an experimental
procedure for detecting and measuring the population inversion. The diamond (Sample
#2) is once again placed inside the resonator cavity and then inside the dilution fridge and
cooled to <20 mK. In order to be able to extract the spin parameters from the reflection
data, the cavity parameters were first determined at B0 = 0 using a VNA reflection trace.
The next step was to locate the resonance of the lowest-field NV transition ("NV1" in
Fig. 5.3), which serves as point where the measurement takes place. Keeping the B-field
magnitude and angle fixed, the mixing chamber (MXC) heater of the dilution fridge was
supplied with current to raise the temperature of the spins to 4.5 K. At this temperature,
the T1 of the spins is much faster, around 1 min. The heater was kept on for 15 minutes to
ensure that all of the spins are in thermal equilibrium (i.e. the Boltzmann distribution).
After this waiting time the heater was shut off and the MXC temperature returned to <20
mK within one hour. For more technical details, see B. At this point a probe frequency
was applied to the cavity from the VNA, which monitored the behavior of the reflected
power in time. Results of this procedure are shown in Fig. 5.7a. The behavior of the
system closely follows the general pattern predicted by the model in Fig. 5.6. A short
time after beginning the measurement, the reflected power from the resonator is amplified
and eventually surpasses the background of the resonator. By using the known cavity
parameters we can deconvolute the spins and cavity and calculate the function K(ω) (see
the procedure in Sec. 4.3.4),

K(ω) = ω − ωr +
i

2

(
κL + κ1

R(ω)− 1

R(ω) + 1

)
. (5.2)

By examining the various profiles of Im[K(ω)] plotted in Fig. 5.7b-d, we can make
a few conclusions about the behavior of the spins. The first is that the system achieves
population inversion, with an incredibly long lifetime of the inverted spins. This is gov-
erned almost entirely by the NV spin lattice relaxation time. In fact, such is the length
of the time that spins remain inverted even after > 4 hours of measurement time. To our
knowledge, this is the longest-lived and strongest inversion ever seen in thermal maser
setup (cf. Refs. [72]-[74]).

The second is the fact that the spins achieve inversion very quickly, already showing a
negative value of Im[K(ω)] by the time that the measurement is started. The rise time of
the inversion is governed by the relaxation time T1 of the R5 centers, which we estimate
to be around 100 ms based on the data in Fig. 5.7d. Based on this, it would seem sensible
that the start of the measurement, i.e. t = 0, be moved to the point when the heater is
shut off. This solution, too, is not without its problems. We know that the R5 centers
begin to relax immediately, during the re-condensation and cooldown of the MXC, and
the lattice relaxation time T1 itself has a strong temperature dependency. Starting at
the instant the heater is stopped would present a difficult situation for our model, which
assumes a constant T1 throughout. The nature of the recondensation procedure of the
3He/4He mixture may also mean that the temperature of the MXC and spin ensemble do
not follow any sort of predictable pattern and can be slightly different each time. Our



solution to this problem, implemented in the next section, is to monitor the temperature
of the MXC and begin the measurement immediately upon reaching a certain value of T
(e.g. 50 mK).
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Figure 5.7: The long-lived thermal maser in diamond. a) Time evolution of the reflected
power spectrum as a function of probe frequency, after warming the sample to 4 K and cooling
back to <20 mK. The field modulus is set so that the anticipated NV transition frequency is
resonant with the cavity (ωs = ωr). After a brief initial absorption period, the system shows
amplification of the microwave probe signal, peaking around 1 hour and eventually returning
to equilibrium after a lengthy relaxation period. The central spin frequency is noted with a
purple dashed line. b) Profile of the reflected power at the center frequency 6.0046 GHz over
time (purple dashed line in (a)). The area where the reflected power exceeds the background
is indicated by the black dashed line. c) Im[K(ω)] function extracted from the raw data by
deconvoluting the resonator from the spin ensemble. The spin system is clearly already inverted
(K(ω) < 0) upon the start of the measurement, and the inversion persists throughout the entire
measurement. Positions of frequency profiles are indicated with vertical green dashed lines. d)
Frequency profiles of Im[K(ω)] at various times during the measurement. At t = 0 the function
is already slightly inverted, and the function becomes more negative until ≈ 2500 s, where is
begin to return toward equilibrium. The long lifetime of the inversion indicates a bottleneck in
the middle level of NV, indicating high asymmetry in the relaxation times.



5.2.2 Optimization of the thermal maser

With the process for creating an inverted ensemble established, we set about characterizing
and optimizing the maser performance. The procedure described above is repeated over
a range of misalignment angles. Using the same MATLAB program that generated the
plots of Fig. 5.5, we calculate the detuning between R5 and the upper NV transition as
a function of the misalignment angle. Using this, we will identify the optimum angle for
operation and provide evidence that NV-R5 spin flip-flops are indeed the primary cause
of the population inversion.

As mentioned above, the measurement process is started at the same temperature for
each iteration (T0 = 50 mK), over a range of misalignment angles from θ = 4.5−10◦. One
such example of inversion is seen in Fig. 5.8a, which follows the same pattern established
in previous measurements. At each point, the frequency trace at the maximum gain was
fitted using the expression for the imaginary portion of K(ω), as derived in Ch. 3,

K(ω) =
g2
ens,eff

ω − ωs − iΓ

Im[K(ω)] =
∆Ng2Γ

(ω − ωs)2 + Γ2
.

(5.3)

From this we can determine that the linewidth of the NV1 subensemble is Γ = 2.2±
0.4 MHz, which is consistent with the value derived from the absorption measurements
in Ch. 4. The population difference between the NV levels 2 and 1, in terms of number
of spins, was obtained by integrating the region between the cyan dashed lines of 5.8a.
In order to make this quantity into the population difference ratio, the absolute number
of spins had to be determined. Given the incredibly long lifetime of NV1, we instead
deduced the number of spins from another nearby NV transition (NV3), which at the
time of measurement was fully relaxed. From this, we could calculate the ratio p2 − p1

as depicted in 5.8c. Transforming the data in this way allowed us to fit our model to
the data using a least-squares method. The lattice relaxation rates were first determined
to be ΓNV = 0.5 × 10−6 Hz and ΓR5 = 10 Hz, these values were kept constant for each
fit, with initially only Γflip as a free parameter. However, it was quickly discovered that
the initial population in the ground state, p1,i, was a critically important parameter that
also needed to be determined for each data set. As discussed earlier, the nature of the
experimental procedure results in poor control over the initial conditions of the spins.
The value p1,i correlates strongly with the maximum inversion ratio achieved by the spins
during a given experiment, more so than the flip-flop rate Γflip. However, it was found
that Γflip does indeed have a dependence on the detuning between NV and R5. Using
the values of Dxx, Dyy, and Dzz calculated in Ch. 4, it was found that the flip-flop rate
reaches its maximum reasonably close to the point where the detuning is zero (see Fig.
5.8d. The flip-flop rate drops off as the detuning is increased, and tilting to an angle
smaller than θ = 4.5 results in no inversion of the spin ensemble at all.

5.2.3 Towards a self-oscillating thermal maser

Lastly, we want to compare the value ∆N extracted from the data to the masing thresh-
old ∆Nth to see if the thermal maser is capable of reaching the self-oscillation regime.



Recalling Eq. 3.131 and inserting our values calculated from Fig. 5.8b, we get

∆Nth =
(2π × 6.0046× 109 Hz)3(11.5 mm3)(2π × 2.24× 106 Hz)

π2c3(5× 10−13 Hz)(1300)

= 4.9× 1013 spins.
(5.4)

For these parameters, the observed amplifier behavior in this cavity configuration falls
just short of the maser threshold. This is consistent with our own observations, as we have
not yet detected any emission from the cavity-spin system in the absence of the applied
probe tone. Future experiments on this system should be repeated with a higher-Q cavity,
or a spin ensemble with a narrower linewidth. If the other parameters are preserved as
they are, Qtot need only be increased to ≈ 1600 to push the spins across the masing
threshold. This seems easily within reach even with the current resonator geometry, for
example, by improving the contact at the seam between the two resonator halves.
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Figure 5.8: Optimizing the thermal maser. a) Time evolution of the reflected microwave
signal as a function of probe frequency, after warming the sample to 4.5 K and cooling, starting
measurement once the mixing chamber temperature reaches 50 mK. The B-field is tiled ≈ 7◦

about the y-axis, and the field modulus is set so that NV transition frequency is resonant with the
cavity (determined in a prior measurement). The frequency profile at the approximate maximum
gain is indicated with a dashed white line. The bandwidth used in (c) is labeled with cyan dashed
lines. b) The values of Im[K(ω)] as a function of frequency at maximum gain, converted from the
raw data in (a). The profile is fit with a Lorentzian, from which the spin linewidth (2.24 MHz)
and number of inverted spins ∆N are extracted (see Eq. 5.3) in main text). c) The population
difference ratio p2 − p1, derived from integration of Im[K(ω)], as a function of time, with the
accompanying model. The model fits the data well and from it the spin flip-flop rate Γflip and
initial population p1 are extracted. d) Plot of Γflip as a function of the detuning between the
upper NV transition and R5 center, which itself is proportional to the component of the B-field
along x. The maximum spin flip-flop rate occurs close to ∆ ≈ 0, showing that R5 centers are
likely responsible for the behavior of the thermal maser. The flip-flop rate quickly drops as the
angle detuning is increased.

5.3 Summary
In this section we observed the thermally induced population inversion of an ensemble of
NV centers coupled to a resonant cavity, manifested by the amplification of a microwave



probe tone applied to the cavity. The pump power was supplied completely by heat
energy trapped within the system as it cooled from 4 K to <20 mK, demonstrating what
is known as a "thermal maser," a type of heat engine that converts thermal energy to
microwave photon energy. This is achieved through spin flip-flop interactions with what
were determined to be R5 centers also present in the spin ensembles, which accelerate
the relaxation from the upper NV level to the middle level. This creates a long-lived
inverted state that persists on a timescale equal to the NV lattice relaxation time (T1).
Although no self-oscillating coherent signal has been detected at the time of writing,
our quantitative estimation predicts that such conditions should be achievable using an
improved resonator and spin ensemble.



Chapter 6

A spin-based microwave amplifier

6.1 Generating inversion in P1 centers
In Chs. 1 and 2 we discussed the electronic structure of the substitutional nitrogen
(P1) center in diamond, as well as the mechanism of the four-spin, energy-conserving
cross-relaxation process between the central P1 transition (P1B) and its two satellites
(P1A/P1C). This mechanism was first observed in Ref. [38], and it was noted that under
certain conditions inversion could be achieved on one of the satellites. Specifically, it
required that the lattice relaxation times of P1A and P1C be asymmetric, which could be
simulated by using a rate equation model [38]. The authors attributed this asymmetry to
spin flip-flops with other defects in the diamond, in a manner similar to what we have seen
with the NV thermal maser. In Ch. 4, we have determined via time-domain spectroscopy
that P1C does, in fact, relax faster than P1A and thus we should meet the conditions
required to generate inversion on P1A.

The mechanism by which cross-relaxation and spin flip-flops can generate inversion
on P1A is illustrated in Fig. 6.1. Under normal circumstances, a pump signal applied to
the central transition will saturate all of the satellites via the cross-relaxation mechanism.
If another spin defect (most likely a vacancy cluster) is resonant with the P1 satellite, a
second decay channel opens for the P1 center and the lattice relaxation time is accelerated.
This allows the central transition to continue to be pumped without saturating P1C, which
will eventually result in the generation of an inverted population on P1A. Using this
mechanism, it may be possible to generate a continuous maser amplifier or self-oscillating
maser.
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Figure 6.1: Inversion of P1 satellite transition. a) At a given magnetic field, the main P1
transition (P1B, green) is flanked by two hyperfine satellites equidistant in frequency space: a
higher-energy transition (P1A, yellow) and a lower-energy transition (P1C, blue). A microwave
pump tone is applied to the center transition, which excites the spins at a rate Γpump. b) The
P1 centers undergo a four-spin, energy-conserving cross relaxation process in which two spins
on the center transition exchange energy with a single spin on each satellite, occurring at a
rate Γcr. If Γpump is continuously applied, then this will eventually result in the saturation of
all three satellites. c) The same arrangement, but with a vacancy cluster (VC) whose lower
transition is co-resonant with P1C. P1C and VC center exchange spin flip-flops at a rate Γflip.
The fast relaxation of the VC center (Γflip) ensures that this process is asymmetric, resulting in
accelerated relaxation of the P1C satellite spins. d) Under these circumstances, P1C does not
become saturated. This allows the population in the higher energy level of P1A satellite to build
up via cross-relaxation, eventually resulting in population inversion on P1A.

6.2 Experimental observation

6.2.1 Maser amplifier

For this experiment, we perform cw-microwave spectroscopy on sample #2 by measuring
the reflected power from the cavity under a continuous pump applied to P1B and a probe
signal applied to P1A. See App. B, Fig. B.2 for the electronic and wiring diagrams of the
dilution refrigerator.

Firstly, the reflection profile was measured at zero magnetic field in order to determine
the resonator background and line profile. By fitting the bare cavity reflection data, we
obtain the following values: ωr = 6.383 GHz, κint = 2.67 MHz, κext = 9.64 MHz. In



this case, the external coupling (linewidth) was intentionally made larger so that the
spins could be pumped off-resonantly. Knowing these parameters, it is now possible to
deconvolute the spin profile from the resonator.

The second step is to estimate the total number of spins on P1A by measuring the
absorption profile on resonance when the spins are in thermal equilibrium at 20 mK. We
use the cavity deconvolution procedure (see Ch. 4) to extract the following information
about the spin ensemble Γ = 3.16 MHz, ∆Neq = 2×1015. This value of ∆Neq is consistent
with the value of gens determined in Ch. 4 for sample #2, and as a result we can safely
assume that the spins are indeed in thermal equilibrium. This value provides a baseline
so that the inversion ratio can be accurately determined.
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Figure 6.2: Pumping scheme for the P1 cw maser. The transition frequencies as a function of
B-field of the three major P1 transitions are plotted with pink lines. The static B-field is set at
≈ 224 mT (black dashed line), so that the P1A transition is resonant with the probe (and cavity)
frequency (green dashed line). The pump frequency is set at 6.29 GHz so that it is resonant with
the P1B transition.

The field magnitude is kept so that the P1A spin transition is resonant with the cavity,
while the pump signal is applied at a frequency fpump = 6.29 GHz and power Pin = −26
dBm at the resonator, approximately 94 MHz away from the resonator frequency. The
pump-probe scheme is depicted in Fig. 6.2. The variable attenuator and phase shifter on
the cancellation line are calibrated so that the pump signal reflected from the cavity is
neutralized and does not enter the return line. The results can be seen in Fig. 6.3. At
the time of the initial application of the pump signal, the spins of P1A are close to their
equilibrium state (Im[K(ω) > 0]), but slowly begin to saturate over time. This process is
limited by the cross-relaxation time of the P1 centers (∼ 10ms). After a lengthy period
of pumping (> 10 min), the spins finally begin to show inversion (Im[K(ω)] < 0). The
inversion continues to grow until around 2500 s, where it levels off and provides a steady
gain of around 30 dB. By taking the profile of Im[K(ω) > 0] at the final timestamp and
fitting it to the formula 5.3, we determine the linewidth Γ to be 3.18 MHz. The number



of inverted spins obtained is ∆N = 6.6 × 1014, which when compared to ∆Neq gives an
inversion ratio of around

pinv =
6.6× 1014

2.0× 1015
≈ 0.33. (6.1)

This large inversion should be enough to overcome the maser threshold, but we have
also increased the linewidth of the resonator, which pushes the threshold higher. We
recalculate the maser threshold ∆Nth for this new configuration and compare it to the
value of ∆N extracted in Fig. 6.3d above,

∆Nth =
(2π × 6.383× 109 Hz)3(11.5 mm3)(2π × 3.16× 106 Hz)

π2c3(5× 10−13 Hz)(520)
,

∆Nth = 2.1× 1014 spins.
(6.2)

Despite the decrease of the total quality factor, the masing threshold is surpassed in
this case due to the large inversion ratio, meaning that the observation of a self-oscillating
maser should be possible.

Before we attempt to detect the self-oscillating maser, we want to conduct experiments
to determine two key parameters of the amplifier, the first of which is the gain-bandwidth
product. This value essentially provides a hard cap on the amount of gain which can be
generated by the maser, and comes at the sacrifice of bandwidth. This quantity must
be high enough that sufficient gain can be provided to the microwave probe signal, while
over a bandwidth at least comparable to the cavity linewidth. The second parameter is
the noise temperature, which should be close to the quantum-limited value [66]. This is
a necessary condition in order for the spin maser to be useful for quantum information
experiments. These quantities are discussed in the following sections.
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Figure 6.3: Maser amplifier using P1 centers in diamond. a) Raw reflection data as a function
of probe frequency in time. The pump frequency is applied at the central P1 transition, ≈ 95

MHz detuned from the cavity. As the pump power is applied, the reflected power grows, and after
15 minutes the signal levels off around 30 dB. b) Spin profile Im[K(ω)] obtained by deconvoluting
the spins and the cavity. Initially, Im[K(ω)] > 0, indicating absorption. However, the value of
K(ω) approaches zero as the system is pumped, finally turning negative after ≈ 10 minutes. c)
Profiles of Im[K(ω)] at various times during the measurement. At t = 0 the profile resembles
the equilibrium spin profile, which quickly decays as the spins are excited from the lower energy
levels. By t = 307 s, Im[K(ω)] ≈ 0, corresponding to an equal population in the upper and
lower spin state (i.e. saturation). The system reaches an inverted state (Im[K(ω)] < 0) shortly
after, and begins to level off after about 30 minutes of pumping. The profile remains relatively
consistent as the pumping is continued for another 30 minutes. Note that the shift in the center
spin frequency is due to saturation of the nearby P1B transitions as well as hole burning due to
pumping. d) The profile of -Im[K(ω)] at t = 3744 s. By fitting the spin profile to a Lorentzian,
a spin linewidth of 3.18 MHz is obtained. The number of inverted spins, ∆N , is calculated to be
6.6×1014. When compared to the value obtained at equilibrium (see main text), this corresponds
to an inversion ratio of pinv = 0.33.



Gain-bandwidth product

Using the extracted spin parameters, we calculate the magnetic loss rate κmag according
the formula derived in Ch. 4,

|κmag| =
2∆Ng2

single

Γ

=
2(6.6× 1014)(0.19)2

3.18× 106

= 14.9 MHz.

(6.3)

The system linewidths κmag, κext, and κint can be used to calculate the maximum gain
and bandwidth of the system. Since κint is of comparable magnitude to the other two
linewidths, we must use the full formula for the gain:

G =

(
κint − κext − |κmag|
κint + κext − |κmag|

)2

=

(
2.67 MHz− 9.64 MHz− 14.9 MHz

2.67 MHz + 9.64 MHz− 14.9 MHz

)2

= 71.3.

(6.4)

A multiplicative factor of 71.3 corresponds to a power gain of 18.53 dB. The corre-
sponding bandwidth is ∆f = 2.59 MHz. This results in a total gain-bandwidth product
of

B
√
G = (2.59 MHz)

√
71.3

= 21.9 MHz.
(6.5)

This value is in the range of calculated gain-bandwidth products for spin masers
based on ruby [63][64], but about half of a typical JPA [2], and far below that of a
Josephson traveling wave parametric amplifier [3]. Nonetheless, the gain-bandwidth value
is promising and could be improved further by any of the following:

• increase the magnetic loss rate κmag by increasing the spin inversion ratio, the cavity
coupling, or reducing the spin linewidth,

• increase the cavity coupling linewidth κext by moving the capacitive coupling pin
closer to the sample,

• reduce the resonator linewidth κint by improving the contact at the seam, or elimi-
nating the seam altogether (see Ch. 4 for details).

Rate equations

In order to estimate the spin flip-flop rate and vacancy cluster relaxation rate within the
P1 maser system, we construct a system of rate equations similar to that of Ch. 5. In
addition to spin lattice relaxation times and spin flip-flop rate, the cross relaxation of P1
must also be taken into account, as well as the active pump that is applied to P1B. We



establish eight energy levels - six for P1 and two for VCs - to simulate the maser pumping
scheme. We assume that the system always begins in equilibrium, allowing us to ignore
the uppermost level of the VCs, as no population exists there. A visualization of these
energy levels with all associated rates can be seen in Fig. 6.4a. The equations themselves
are

dn1

dt
= n4ΓP1A + (n2

2n4n6 − n2
5n1n3)Γcross,

dn2

dt
= n5ΓP1B − (n2 − n5)Γpump − 2(n2

2n4n6 − n2
5n1n3)Γcross

dn3

dt
= n6ΓP1C + (n2

2n4n6 − n2
5n1n3)Γcross + (n6n7 − n3n8)Γflip,

dn4

dt
= −n4ΓP1A − (n2

2n4n6 − n2
5n1n3)Γcross

dn5

dt
= −n5ΓP1B + (n2 − n5)Γpump + 2(n2

2n4n6 − n2
5n1n3)Γcross

dn6

dt
= −n6ΓP1C − (n2

2n4n6 − n2
5n1n3)Γcross − (n6n7 − n3n8)Γflip

dn7

dt
= n8ΓV C − (n6n7 − n3n8)Γflip

dn8

dt
= −n8ΓV C + (n6n7 − n3n8)Γflip

(6.6)

For our system, the P1A and P1C relaxation times used will be those directly measured
in Ch. 4,

ΓP1A = 1/T1 = 1.45× 10−3 Hz,

ΓP1C = 2.47× 10−3 Hz,
(6.7)

whereas the P1B relaxation rate will be the average of these two values, ΓP1B = 1.9 ×
10−3 Hz. The cross relaxation rate was not measured directly but the value of Tcross =
10 ms was used from Ref. [38], so that Γcross = 100 Hz. The pump rate was directly
calculated by using the expression for the n-photon Rabi frequency,

fRabi = 2gsingle
√
n̄, (6.8)

where n̄ is the average number of pump photons in the cavity based on the input power and
cavity parameters as shown in Eq. 3.28. For a pump power of−26 dBm, the corresponding
Rabi frequency is ≈ 9 kHz, a rate which is much larger than the others in our system. The
terms Γflip and ΓV C were used as fitting parameters. The results are plotted in Fig. 6.4b
along with experimental data extracted from Fig. 6.3 for fitting. Values of Γflip = 5 Hz
and ΓV C = 10 Hz are extracted from the fit; these are consistent with values determined
from a similar fitting in Ch. 5.

For a sufficiently large pumping power, the steady-state value of the inversion is pri-
marily determined by Γflip, whereas the quick initial response is dominated by Γcross.
However, obtaining a proper fit in this region did require reducing Γcross by a factor of
10. This will be investigated by independently determining Γcross within our system. The
intermediate region displays the correct qualitative behavior but overestimates the value



of the inverted population. It is unknown exactly why this is the case, but it is clear that
the vacancy clusters within our system need to be properly characterized, with their con-
centration and lattice relaxation times determined precisely. Hopefully by doing this we
will help improve the qualitative results of the spin flip-flop model. It also remains to be
seen if the spin flip-flop rate Γflip can be altered by tilting the magnetic field and changing
the detuning between the P1 and VC centers, as is the case with the NV thermal maser.
This would be strong evidence that our model is correct and that the primary mechanism
of operation is a result of spin flip-flop interactions between P1 and VC centers.
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Figure 6.4: Simulation of P1 maser. a) The energy levels and terms used in the rate equations
model for the three P1 transitions and the VC lower transition. b) Population difference between
level 1 and level 4 as a function of time. Experimental results were calculated from theK(ω) data
presented in Fig. 6.3, whereas the simulated populations p1 and p4 are determined by solving
Eq. 6.6. The fast-response (t < 50 s) and steady-state regimes (t > 2000 s) are well-described by
the rate equations, with some discrepancy in the intermediate region. Nonetheless, the model
qualitatively reproduces the behavior of the P1 maser.



Noise temperature calculation

In order to estimate the noise temperature of the spin amplifier, we measure the respective
gain and noise temperature of each amplifier in the chain sequentially, working backwards.
In our setup (see Fig. B.2) we have a three-amplifier chain, consisting of the spins (0.01
mK), the HEMT amplifier (4 K), and the room-temperature (RT) amplifier (297 K). The
total noise temperature can thus be calculated by Eq. 2.21,

Pnf = kB∆f ×GRT [GHEMT [Gspins(TN + Tspins) + TN,HEMT ] + TN,RT ], (6.9)

where GRT , GHEMT , and Gspins are the gains of the room-temperature (RT) amplifier,
4 K cryogenic (HEMT) amplifier, and the spin maser amplifier, respectively. The corre-
sponding noise temperatures of the amplifiers are TN,RT , TN,HEMT , and TN , whereas the
actual spin temperature of the maser amplifier is given by Tspins. See the relevant section
in Ch. 2 for the derivation of the formula. The procedure for measuring the RT amplifier
is as follows:

1. Disconnect the input line from the RT amplifier and terminate with a 50 Ω resistor.

2. Connect the amplifier output to the spectrum analyzer (SPA).

3. Set the detection bandwidth of the SPA to 1 kHz and measure the power spectrum.

4. Calculate TN,RT via Eq. 2.21, removing the HEMT and spin terms.

Likewise, we repeat the procedure for the HEMT / RT amplifier chain. We reconnect
the RT amplifier to the DR return line and observe the change in the SPA power spectrum,
which allows the determination of THEMT by Eq. 2.21 when the spin terms are removed.

Finally, we can calculate the noise temperature of the spins. After turning on the
pump, properly calibrating the cancellation line, and waiting for the inversion to be
established, we record the change in the SPA reading. The gain of the spins is determined
from the data presented in Fig. 6.3. We use the following table of values for the final
calculation.

Parameter Value
∆f 1000 Hz
GRT 302

GHEMT 1320
Gspins 724
TRT 2000 K

THEMT 2.7 K

Table 6.1: The parameters measured for each of the amplifiers in the measurement chain.
Note that the values of the amplifier gains are represented as linearized values as opposed
to dB.

With all the amplifiers connected in a chain, the noise floor was measured with an
SPA to be -86.1 dBm over the bandwidth, which corresponds to 2.45 pW. Note that the



value of gain for the spin amplifier was measured using different cavity parameters and
thus is different from the previous section. Using the above formula, we extract a value
TN+TN,spins = 0.61 K, which corresponds to an added noise in terms of number of photons
equal to

nth =
2kB(0.61 K)

h(6.383 GHz)
≈ 4. (6.10)

Which is near the quantum limit of nth = 1/2, however the amplifier needs to be
further optimized in order to reach truly quantum-limited amplification.

6.2.2 Free-running maser

We now determine if the maser is capable of operating in self-oscillation mode. As we
have calculated previously, the inversion ratio is high enough that it should be detectable.
The experimental setup is mostly identical to that of the pump-probe experiments, see
App. B. The magnetic field is fixed to be resonant with P1A and the pump is applied
off-resonantly at fpump = 6.292 GHz and power Pin = −36 dBm. The cancellation tone
is calibrated prior to measurement. In this case we do not apply the probe tone to the
cavity; the return line is connected to the SPA (500 Hz bandwidth) and the results are
monitored there. The data can be seen in Fig. 6.5. After around ten minutes of pumping,
the threshold condition is met and the system begins emitting microwave photons. The
magnitude of the signal remains relatively consistent in amplitude and drifts in frequency
over a range of 10-20 kHz.
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Figure 6.5: Observation of a self-oscillating maser in diamond. A pump tone is applied at
6.292 GHz, while the response is measured using a spectrum analyzer. No probe tone is applied.
After more than ten minutes of pumping, the threshold is suddenly surpassed and the P1 satellite
begins to emit microwave photons. The center frequency shifts in time over a range of about 15
kHz, while the amplitude remains relatively steady.

Using the profile of the SPA, the linewidth of the maser signal is calculated to 40 kHz,
assuming a Lorentzian spin distribution, and the maximum power output is around 2 nW.
We will compare this value to a theoretical value based in the number of spins. Recall
the formula for Pout which we used to define the maser threshold in Ch. 3,

Pout =
∆NBEtot~ω

Vc
, (6.11)

where ∆N is the number of inverted spins, B is the Einstein coefficient for stimulated
emission given by B = 3π2c3γrad/~ω3, and Etot/Vc the total amount of electromagnetic
energy per volume contained in the resonator mode. This value can be represented in
terms of the oscillating magnetic field δB as

Etot/Vc =
1

2

1

2µ0

|δB|2. (6.12)

Combining these expressions and using previously determined values for the variables,
we get

Pout =
3π2c3γrad∆N |δB|2

4µ0ω2

=
3π2c3(5× 10−13 Hz)(6.6× 1014)|14× 10−12 T|2

4µ0(2π × 6.383× 109 Hz)2

= 6.2 nW.

(6.13)



The measured power is roughly 1/3 of this value, although there is a significant degree
of noise in the measured power spectrum. A more thorough or faster measurement with
a higher amount of averaging may be needed to smooth out the SPA spectrum.

We also wish to calculate the mean photon number nph inside the cavity in order to
determine if the P1 maser is truly in the oscillation regime. Unlike traditional optical
lasers, which can have an extremely large number of modes, our P1 maser only contains
one microwave cavity mode within the linewidth of the spins. The time evolution of the
inverted population and total photon number can be determined through a series of rate
equations, and the steady-state solution for nph is determined in Ref. [136] to be

nph =
1

2β

(
−(1− βP̃ ) +

√
(1− βP̃ )2 + 4β2P̃

)
, (6.14)

where β is the fraction of photons emitting into the main laser (or maser) mode and is
≈ 1 in our case. P̃ = P/κtot is the input power normalized by the total cavity linewidth
[136]. In the case where β ≈ 1, the above equation becomes linear and simplifies to

nph =
P

κtot
. (6.15)

Likewise, the inverted population N can be determined in terms of P and β through
the rate equations, and the steady-state solution is [136]

N =
P/γrad
βn+ 1

. (6.16)

By combining Eqs. 6.15 and 6.16 and eliminating P we arrive at

nph =
γradN

κtot − γradN
. (6.17)

Into this equation we substitute the inverted population at the threshold, Nth ≈
2 × 1014, the total linewidth κtot = 12 MHz, and the Purcell rate 10−7 Hz determined in
Ch. 3, obtaining

nph ∼ O(1). (6.18)

This is the expected result. The number of cavity photons at the threshold is given
by the square root of the number of available modes [127]. For our case, there is only one
mode and thus nph = 1. Our results support the conclusion that our maser has entered
the self-oscillating regime.

6.3 Summary and perspectives
We have demonstrated a cw spin maser based on P1 centers in diamond, as the result of
asymmetric relaxation due to spin flip-flop interactions between P1C and local vacancy
clusters (VCs). Unlike previous maser schematics in diamond [35], our P1-based maser op-
erates at millikelvin temperatures and is pumped with microwave frequencies as opposed
to optical. The maser can act as a microwave amplifier, having a low noise as well as a



satisfactory gain-bandwidth product that could be made higher through improvements to
the resonator and coupling setups. As mentioned in Ch. 2, it is possible that the dynamic
range could be quite large, on the order of 50 − 70 dBm, and with a high saturation
power given the number of spins [66]. Even in its current state, the maser can enter
self-oscillation mode after being pumped for 10 minutes, generating a few nanowatts of
power with a linewidth of order 40 kHz. If sufficiently optimized, such a spin maser could
be used for quantum technology applications such as a low-noise amplifier or microwave
source operating at millikelvin temperature.



Conclusion and Perspectives

Spin defects in diamond for quantum technologies
In this thesis work we have developed and tested microwave loop-gap resonators (LGR),
initially for use as a quantum transducer, and have been able to demonstrate strong
coupling between the LGR and ensembles of both P1 and NV centers in diamond at
millikelvin temperatures. Additionally, we have shown that diamond also contains a
significant number of additional defects; most prominently triple-vacancy chains (R5).
These centers have much shorter relaxation times than P1 and NV centers, and thus the
net effect of accelerating the lattice relaxation times of the normally long-lived P1 and
NV centers due to spin flip-flop interactions. Using cw-microwave spectroscopy we were
able to estimate the D-tensors of the R5 centers’ spin Hamiltonian.

We have discovered two different maser effects, both of which are a result of spin
flip-flops with R5 centers or other, longer vacancy chains. The first effect was a thermal
maser using NV centers, where the pumping energy was provided by heat alone. By
warming the sample to 4 K and cooling it back to <20 mK, a population inversion was
created between the ms = −1 and ms = 0 energy levels of NV. The inverted state was
incredibly long-lived, with its rise time and decay time governed by the relaxation rates of
the R5 and NV centers, respectively. A rate-equation model was developed alongside the
measurements, which could extract the spin flip-flop rate Γflip from the data. We found
that Γflip had a dependence on the detuning between R5 and NV, and matched well
with the estimated R5 parameters. The maser threshold was not met in this particular
configuration, but should be achievable.

The second effect was a cw maser effect using the P1 centers in diamond. As a result
of asymmetric interactions between the satellites of the P1 centers themselves and nearby
vacancy cluster centers, population inversion was achieved on one of the P1 satellites.
This effect could be used as an amplifier, providing over 30 dB of gain to the microwave
probe tone with near quantum-limited added noise (∼ 0.6 K). In this case the inversion is
large enough to overcome the maser threshold and enter the self-oscillation regime. Given
more optimization of the power and bandwidth, a spin maser based on diamond could
potentially compete with other common microwave amplification technology, particularly
Josephson parametric amplifiers.

Let us briefly highlight two projects in which the loop-gap resonator and diamond
maser could be developed further.
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Future research directions

The traveling-wave maser amplifier

One of the major drawbacks of a cavity maser is the limited gain-bandwidth product
and fixed operation frequency. For a maser amplifier to be competitive with Josephson
parametric amplifiers, these issues must be addressed. One potential solution is to move
from a 3D resonant-cavity geometry to a 2D traveling wave guide geometry. This re-
moves the resonance condition and allows operation over a wider frequency range while
still preserving the desirable attributes of the spin maser such as a large gain and low
noise power. Demonstration of such a device exist in the early maser era[65], but to our
knowledge have never been implemented for quantum information purposes at millikelvin
temperatures.

The quantum transducer

The realization of a quantum network requires the ability to coherently and bidirectionally
convert between microwave and optical photons, i.e. a quantum transducer with unity
efficiency. One scheme for achieving such a device involves an ensemble of solid-state
spins coupled to a loop-gap resonator and optical (Fabry-Perot) cavity simultaneously.
The geometry of the LGR allows for the maximum mode overlap between the optical and
microwave fields, and the quality factor can be high enough that unit efficiency could
be achieved [13]. This was, in fact, the initial motivation for designing the resonator in
such a way. However, the large optical linewidth of NV centers disqualifies them from
consideration in such a device. For this reason, another spin system will need to be
used, whether it is rare-earth ions in crystals or another diamond color center such as
negatively-charged silicon vacancy centers.
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Appendix A

Information on diamond samples

A.1 Samples #1 and #2
The first two samples used in this work are type-Ib synthetic diamond crystals grown
by temperature gradient method at high pressure and high temperature (HPHT). These
samples were grown and prepared by Dr. Hitoshi Sumiya at the Advanced Materials R&D
Laboratories at Sumitomo Electric Company. The initial nitrogen impurity concentration
of Sample #1 was about 40 ppm, which are incorporated during the growth. In order
to create highly concentrated NV centers, the crystal was irradiated by 2 MeV electrons
with a total fluence of 6 × 1018 cm−2 at 800◦C and annealed at 1000◦C in a vacuum
for two hours. Sample #2 was also treated in similar way, but started with a lower
initial concentration of nitrogen (20 ppm). The sample was also irradiated in two steps,
first irradiated at room temperature with a fluence of 5 × 1017 cm−2 and annealed at
800◦C for 5 hours in vacuum. In the second stage it was irradiated at 700◦C with a
fluence of 5× 1017 cm−2. The sample was then finally annealed at 1000◦C for 2 hours in
vacuum. Sample #2 is the same diamond sample as the one that was used in Ref. [137].
Since Sample #2 is used for the NV thermal maser, here we provide an estimate of the
concentration of the R5 centers that act at the spin bath. The formation and behavior
of vacancy clusters have been studied as a function of annealing temperature [138] [139],
determining an R5 concentration of 1017 cm−3 for an annealing temperature of 1000◦C
and an electron irradiation fluence of 8× 1019 cm−2. Given that the electron fluence used
in our sample irradiation was an order of magntitude less, we place a lower bound on the
concentration to be 2 ppb, which we use in the main text of Ch. 5.

The impurity concentrations of Samples #1 and #2 are summarized in Table A.1
below, as well as the vertical orientation direction.
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Figure A.1: A picture of Sample #2 when it is loaded into the resonator.

A.2 Sample #3
This sample is also a type-Ib synthetic diamond crystal grown by HPHT method, com-
mercially available for purchase from Sumitomo Electric Company. It is suspected to have
a higher nitrogen concentration than the other samples (50-100 ppm), and has not been
treated with electron beam irradiation. This means that the concentration of NV centers
and other vacancy clusters should be negligible.

The parameters of the samples are listed below. The value of the P1 concentration
post-irradiation in Sample #2 is revised from the reported 10 ppm in Ref. [128].

Sample Size (mm3) Orientation [P1] [NV]
#1 3× 1.5× 1.1 [110] 20 ppm 10 ppm
#2 3× 1.5× 0.5 [001] 16 ppm 2 ppm
#3 2.5× 2.5× 0.5 [001] 50 ppm negligible

Table A.1: The parameters of the synthetic diamond samples used in this work. The
orientation corresponds to the axis of diamond which is aligned along the diamond’s
smallest dimension.



Appendix B

Experimental setup information

All of the experiments performed in this thesis take place in a BlueFors dilution refrigerator
(DR), a dry cryogenic system which is able to reach temperatures as low as 10 mK.
Samples are placed in an enclosure which is thermally anchored to the lowest temperature
plate, known as the mixing chamber (MXC), of the DR. Details about the resonator and
enclosure are detailed in Ch. 4. Since several types of measurements, involving different
wiring and electronic configurations, are performed throughout the work of this thesis,
they will be discussed in detail in the subsequent sections.

B.1 Continuous-wave (CW) spectroscopy

B.1.1 The magnet

In all measurements a superconducting magnet, anchored to the 4 K stage of the DR,
surrounds the sample and provides the static B-field, as seen in Fig. B.1. The current
is provided to the magnet by a DC current source at room temperature, itself controlled
by the measurement computer. In experiments from Ch. 4.4 onward, we were able to
implement a three-axis vector magnet (American Magnetics, Inc.) to allow arbitrary ori-
entation of the B-field. The only change in the experimental configuration is the addition
of two more (identical) DC current sources to provide a magnetic field to each axis.

B.1.2 Transmission measurement

Frequency-domain, alternatively continuous wave (cw), spectroscopy measurements com-
prise most of experiments performed in this work. Of these measurements, there are two
types: transmission and reflection. Early experiments, such as those in [128], are per-
formed by measuring the transmitted power. The room-temperature electronic and DR
wiring schemes are shown in Fig. B.1.

When measuring S21, the signal begins at port 1 of the vector network analyzer (VNA),
usually outputting power between -30 and -10 dBm. As the probe signal travels through
the probe coaxial line (black line) in the DR, thermal noise from room temperature is
suppressed by attenuators at several temperature stages. Total power attenuation from
the source to the resonator enclosure is about -76 dB at 5-6 GHz, meaning that the power
at the resonator is typically in the range of -105 to -85 dBm. The signal transmitted
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through the resonator is passed through two isolators, a low pass filter, and then amplified
via a HEMT amplifier at 4 K. The isolators serve to prevent noise signals of the HEMT
from entering back into the resonator. Passing out of the fridge, the signal is fed through
another isolator and room-temperature amplifier. The signal can either be returned to
port 2 of the VNA or be diverted to a spectrum analyzer (SPA) if needed, which is coupled
into the return line via a directional coupler.

In the cases where a pump signal is needed, this can be provided by a microwave source
(MWS) at room temperature and transmitted to the resonator by the pump (green) line.
The pump line is less attenuated in order to allow for larger pump powers. The pump
and probe lines are joined together via a directional coupler at the lowest temperature
stage, configured so that the pump line is attenuated by -10 dBm.

In order to properly calibrate transmission measurements, the amount of attenuation
throughout the fridge in the absence of the resonator must be known to a high degree
of precision. Given the difficulty of obtaining this information, we decided to reconfigure
the wiring inside the DR to measure reflection.
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Figure B.1: Experimental setup for cw-microwave transmission spectroscopy. a) Room-
temperature electronic setup used in in cw measurements. b) Measurement setup and wiring
diagram inside the DR. Symbols used for electronic components are indicated below the diagram.

B.1.3 Reflection measurement

Measuring in reflection allows for much easier calibration of the resonator profile, as off
resonance the reflected signal should be ≈ 1, which can then be used as the background
level. The room-temperature electronic and DR wiring schemes are shown in Fig. B.2.
A few changes are made to the wiring at the mixing chamber of the DR. Two isolators
are added to the probe (black) line in order to prevent signal from being reflected back
through the line. The probe/pump (black/green) lines terminate at a circulator, which
transfers the signal into the resonator, which is then reflected out through the blue line.



Another isolator in the return (blue) line prevents microwave reflection and thermal noise
from the HEMT, as done in the transmission measurement. A microwave switch is added
to the return line in from of the HEMT. During situations where high power is applied
to the resonator (saturation, pumping, pulses), the microwave switch can terminate the
signal at the 4 K stage and avoid saturation of the HEMT. The rest of the return line is
unchanged.

A pump signal can once again be provided by a microwave source (MWS) at room
temperature and transmitted to the resonator by the pump (green) line. In this case,
however, we have added a microwave cancellation (red) line. During cases when the
probe and pump are applied simultaneously (i.e. the P1 maser in Ch. 6), most of the
pump tone, which is detuned from the cavity, gets reflected from the resonator. It is thus
necessary to remove (or "cancel") the pump tone so that the much weaker probe tone can
be accurately measured by the VNA. This is accomplished by splitting the signal from
the microwave signal generator and feeding it through a variable attenuator and phase
shifter such that the pump tone and cancellation tone have the same amplitude but 180◦
out of phase at the lowest temperature. The values of the attenuator and phase shifter
are optimized by turning on the pump tone and measuring the results of the cancellation
on the SPA, in absence of the probe tone. When the power spectrum measured on the
SPA is at a minimum, then the pump tone is well-cancelled.
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Figure B.2: Experimental setup for cw-microwave reflection spectroscopy. a) Room-
temperature electronic setup used in in cw measurements. b) Measurement setup and wiring
diagram inside the DR. Symbols used for electronic components are indicated below the diagram.

B.2 Time-domain experiments
For the time-domain measurements performed in Ch. 4, a more complex electronic setup
is needed. The wiring inside the DR remained exactly the same as in B.2, and the new
schematic for the room temperature electronics can be seen in Fig. B.3. When the



measurement script is started, the pulse sequence is triggered by an arbitrary function
generator (AFG). Pulse envelopes of I- and Q-quadratures are generated by the arbitrary
waveform generator (AWG), which are then mixed within the microwave signal generator
(MSG). The pulses emitted from the MSG is gated via an internal switch and another
room-temperature switch to improve the on/off ratio, with the switch also controlled by
the the AWG. The pulses are then amplified, and transmitted through the coaxial line in
a manner similar to the cw experiments. After amplification at 4 K via the HEMT and
again at room temperature, the signal is passed into the RF input of an IQ mixer, where
it is demodulated using the original frequency of the MSG as the local oscillator (LO)
input. The signal, now down-converted into fast DC I and Q quadratures, is then passed
through low-pass filters. The final signal is collected by a fast digitizer board attached
to the measurement PC. The digitizer board, AFG, AWG, and MSG are all synchronized
by a 10 MHz frequency standard reference. The pulses can also be monitored with a
spectrum analyzer.

B.3 Thermal maser experimental procedure
Here we include some extra details about the procedure for initializing the thermal maser,
described in Ch. 5. After finding the resonance field of NV1 and keeping the B-field mag-
nitude and angle fixed there, the mixing chamber (MXC) heater of the dilution fridge was
supplied with current to raise the sample temperature to 4.5 K. Raising the temperature
started to boil the helium mixture, which raised the pressure inside the injection line and
thus required some of the 3He/4He mixture to be recollected in the storage tank. This
was done by manually opening the valves through which the mixture could return to
its storage tank. The heater was kept on for 15 minutes, which allowed all of the spins
time to equilibrate according to the Boltzmann distribution. The temperature was kept
relatively stable around 4.5 K using a PID temperature controller. After this waiting
time the heater was shut off and the mixture that had been collected in the storage tank
was re-condensed and injected back into the 3He/4He mixture circulation line of the DR,
controlled electronically via a custom script. The MXC temperature return to <20 mK
within one hour, however the exact amount of time the procedure took tended to vary.
This means that the NV1 spins had slightly different amounts of time to relax before the
measurement, and it is likely for this reason that the initial population of the NV1 ground
state has a degree of variability.
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