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Nobel Turing Challenge: creating the engine for scientific
discovery
Hiroaki Kitano 1✉

Scientific discovery has long been one of the central driving forces in our civilization. It uncovered the principles of the world we
live in, and enabled us to invent new technologies reshaping our society, cure diseases, explore unknown new frontiers, and
hopefully lead us to build a sustainable society. Accelerating the speed of scientific discovery is therefore one of the most important
endeavors. This requires an in-depth understanding of not only the subject areas but also the nature of scientific discoveries
themselves. In other words, the “science of science” needs to be established, and has to be implemented using artificial intelligence
(AI) systems to be practically executable. At the same time, what may be implemented by “AI Scientists” may not resemble the
scientific process conducted by human scientist. It may be an alternative form of science that will break the limitation of current
scientific practice largely hampered by human cognitive limitation and sociological constraints. It could give rise to a human-AI
hybrid form of science that shall bring systems biology and other sciences into the next stage. The Nobel Turing Challenge aims to
develop a highly autonomous AI system that can perform top-level science, indistinguishable from the quality of that performed by
the best human scientists, where some of the discoveries may be worthy of Nobel Prize level recognition and beyond.
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NOBEL TURING CHALLENGE AS AN ULTIMATE GRAND
CHALLENGE
Understanding, reformulating, and accelerating the process of
scientific discovery is critical in solving problems we are facing and
exploring the future. Building the machine to make it happen
could be one of the most important contribution to society, and it
will transform many areas of science and technology including
systems biology. Since scientific research has been one of the
most important activities that drove our civilization forward, the
implications of such development will be profound.
Attempts to understand the process of scientific discoveries

have a long tradition in the philosophy of science as well as
artificial intelligence. Karl Popper introduced a concept of
falsifiability as a criterion and process of solid scientific process
but the process of hypothesis and concept generation do not
have particular logic behind it1. Thomas Kuhn proposed a concept
of a Paradigm shift where two competing paradigms are
incommensurable and a set of knowledge, rather than a single
knowledge, has to be switched with the transition of paradigm2.
Imre Lakatos reconciles them by proposing actual science makes
progress based on a “research program” composed of a hardcore
that is immune to revision and flexible peripheral theories3.
Contrary to these positions, Paul Feyerabend argued that there are
no methodological rules in the scientific process4. Although these
arguments are important thoughts in the philosophy of science,
ideas are philosophical and not concrete to be implemented
computationally. In addition, these studies are focused on how
science is carried out as a part of human social activities. A rare
example of implementing such concepts can be seen in the model
inference system implemented by Ehud Shapiro that reflects
Popper’s falsifiability5.
Not surprisingly, scientific discovery has been a major topic in

artificial intelligence research that dates back to DENDRAL6 and
META-DENDRAL, followed by MYCIN, BEACON7, AM, and

EURISKO6,8. It continues to be one of the main topics of AI9,10.
Recently, an automated experimental system that closed-the-loop
of hypothesis generation, experimental planning, and execution
has developed for budding yeast genetics that clearly marks the
next step towards an AI Scientist11–13. While these pioneering
works have focused on a single data set or a specific task using
limited resources, it signifies the state-of-the-art of technology
today that can be the basis of more ambitious challenges.
The obvious next step is to develop a system that makes

scientific discoveries that shall truly impact the way we do science
and aim for major discoveries. Therefore, I propose the launch of a
grand challenge to develop AI systems that can make significant
scientific discoveries that can outperform the best human
scientist, with the ultimate purpose of creating the alternative
form of scientific discovery14. Such a system, or systems, may be
called “AI Scientist” that is most likely a constellation of software
and hardware modules dynamically interacting to accomplish
tasks. Since the critical feature that distinguishes it from
conventional laboratory automation is its capability to generate
hypotheses, learn from data and interactions with humans and
other parts of the system, reasoning, and a high level of
autonomous decision-making, the term “AI Scientist” best
represents the characteristics of the system to be developed.
The best way to accelerate the grand challenge of this nature is to
define a clear mission statement with an audacious yet
provocative goal such as winning the Nobel Prize14. Therefore, I
propose the Nobel Turing Challenge as a grand challenge for
artificial intelligence that aims at “developing AI Scientists capable
of autonomously carrying out research to make major scientific
discoveries and win a Nobel Prize by 2050”. While the previous
article14 focused on rationales for such a challenge with emphasis
on human cognitive limitations and needs for exhaustive search of
hypothesis space, this article formulates the vision as the Nobel
Turing Challenge and implications of massive and unbiased search
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of hypothesis space and verification, architectural issues, and
interaction with human scientists are discussed as a transforma-
tive paradigm in science. The distinct characteristic of this
challenge is to field the system into an open-ended domain to
explore significant discoveries rather than rediscovering what we
already know or trying to mimic speculated human thought
processes. The vision is to reformulate scientific discovery itself
and to create an alternative form of scientific discovery.
The accomplishment of this challenge requires two goals to be

achieved that are: (1) to develop an AI Scientist that performs
scientific research highly autonomously enabling scientific dis-
coveries at scale, and (2) to develop an AI Scientist capable of
making strategic choices on the topic of research, that can
communicate in the form of publications and other means to
explain the value, methods, reasoning behind the discovery, and
their applications and social implications. When both goals are
met, the machine will be (almost) comparable to the top-level
human scientist as well as being scientific collaborators. The
question and challenge is whether the machine will be
indistinguishable from the top-level human scientists and most
likely pass the Feigenbaum Test which is a variation of the Turing
Test15, or whether it will exhibit patterns of scientific discovery
that are different from human scientists.
It should be noted “winning the Nobel Prize” is used as a

symbolic target illustrating the level of discoveries the challenge is
aiming at. The value lies in the development of machines that can
make discoveries continuously and autonomously, rather than
winning any award including the Nobel Prize. It is used as a
symbolism that triggers inspiration and controversy.
At the same time, the implication of the statement that

explicitly aims to win the Nobel Prize poses a series of interesting
questions whether such AI systems making a decisive discovery
may also evolve to be indistinguishable from the top human
scientist (passing the Feigenbaum Test16). As witness in case of
Satoshi Nakamoto’s blockchain and bitcoin, there is a case where a
decisive contribution was simply published as a blogpost17 and
taken seriously, yet no one ever met him and his identity (at the
time of writing) is a complete mystery. Given the possibility of
creating a highly sophisticated virtual agent to interact with a
human, with natural language capability to generate professional
article, it will be non-trivial to distinguish whether such a scientist
is human or AI. If a developer of an AI Scientist determined to
create a virtual persona of a scientist with an ORCID iD, for
demonstration of technological achievement, product promotion,
or for another motivation, it would be almost impossible to
distinguish between the AI and human scientist. The challenge
shall be considered practically achieved when the Nobel Prize
committee is alerted for any confusion on potential recipients. We
might expect an AI Scientist detection system to be developed to
identify who is an AI Scientist or not, that may resemble Deckard’s
interrogation of Rachael in Blade Runner.
It shall be made clear that this goal does not state or imply that

“all major discoveries will be made by AI Scientists”, nor that
completeness of hypotheses or discoveries made by AI Scientist
will be achieved. The challenge is fundamentally different from
any attempts to prove the completeness of the system, including
the Hilbert Program intended to prove axiomatic completeness of
mathematic where feasibility is debunked by Incompleteness
theorems by Kurt Gödel. It simply implies: “among discoveries
made by AI Scientists, there should be discoveries that are
considered very significant at the level worthy of the Nobel Prize
or beyond”. The challenge is initiated based on the belief any
significant acceleration of scientific discovery would benefits our
civilization. This will be achieved by creating an alternative form of
scientific discovery, and will change the form of science as we
know as well as uncovering the essence of scientific discovery. The
utility of such technology shall benefit broader areas of science,
industry, and society.

The core of the research program shall be about “Science of
Science” rather than “Science of the process of science by human
scientists”. As in the case of past AI grand challenges, the best and
perhaps the only way to demonstrate that scientific discovery can
be reformulated computationally is to develop an AI system that
outperforms the best human scientists. Furthermore, it is not
sufficient to have AI Scientist make one discovery, it shall generate
a continuous flow of discoveries at scale. The fundamental
purpose behind this challenge is to uncover and reformulate the
process of scientific discovery and develop a scalable system to
perform it that may result in an alternative form of scientific
discovery that we have not seen before.

Case studies: scientific discovery as a problem-solving
Herbert Simon argued that science is problem-solving in his article
“The Scientist as Problem Solver”18. Scientists set themselves tasks
of solving significant scientific problems. If this postulation holds,
defining the problem and strategy and tactics to solve these
problems is the essence of scientific discoveries.
An example of the discovery of cellular reprogramming leading

to iPS cell and regenerative medicine by Shinya Yamanaka is
consistent with this framework19,20. It has a well-defined goal with
obvious scientific and medical implications, and search and
optimization has been performed beautifully to discover cellular
reprogramming capability using four transcription factors, now
known to be Yamanaka factors21.
Another example is the discovery of conducting polymer by

Hideki Shirakawa, Alan MacDiarmid, and Alan Heeger. It started
with an accident that an intern researcher at Shirakawa’s Lab
mistakenly used an abnormally high concentration of chemicals
that formed thin film. Shikawaka noticed this accidental discovery
and optimized the condition of thin-film formation. Then, with
MacDiarmiad and Heeger, they identified a condition for
conducting polymer formation. The initial experiments with an
accidentally high dose of the chemical can be view as a stochastic
search process where search space was extended beyond normal
scope followed by extensive search and optimization for stable
thin-film formation22.
The very simplified processes of these discoveries are shown in

Fig. 1. These examples, among many other cases, exemplify the
process of scientific discovery as problems solving and typical
tactics are search and optimization.

Deep and unbiased exploration of hypothesis space as an
alternative form of science
Discovery with an exhaustive search of hypothesis space is what
characterizes AI Scientist. In the traditional approach, scientists
wish to maximize the probability that the discovery they make will
be significant under certain criteria. In other words, scientists are
focusing on making significant discoveries and are not interested
in the number of discoveries made. This is the value-driven
approach. In the alternative approach, the system will learn to
maximize the probability that discovery at any level of significance
can be made without imposing any value-driven criteria. This is an
exploration-driven approach that is an unbiased exploration of
hypotheses and makes sharp contrast against the current practice
of science. This approach subsumes the problem-solving
approach because specific problems will be included in hypoth-
eses generated by an unbiased search of hypothesis space and
their verification. This means AI Scientist will generate-and-verify
as many hypotheses as possible, expecting some of them may
lead to major discoveries by themselves or be a basis of major
discoveries. A capability to generate hypotheses exhaustively and
efficiently verify them is the core of the system and it can be the
engine that gives horsepower to the system.
This transition of a value-based approach to exploration-based

approach driven by the unbiased search of hypotheses space may
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resemble a transition from the intuition-driven design of experi-
ments to unbiased exhaustive measurements represented by
omics-approach made possible with microarray and high-
throughput genome sequencers, combined with bioinformatics
supported by powerful computing resources. Unbiased hypoth-
eses generation and verification will be built on the unbiased
measurement of the well-established omics-approach, hypothesis
generation system, a series of machine learning and reasoning
systems, and robotics-based experimental systems. This is a logical
evolution of the modality of science where a vast hypothesis
space is searched in an unbiased manner rather than depending
on human intuition.
A potential argument against this approach is that such a brute

force approach is too inefficient and may not lead to any
significant discoveries. Furthermore, one may argue that asking
the right question is most important in science rather than brute
force exploration. It is interesting to note that in the early days of
AI research, it was widely accepted that a brute force approach
would not work for complex problems such as chess, and that
heuristic programming was essential for very large and complex
problems23. The actual history of AI clearly demonstrated massive
computing and machine learning is the key to success as seen in
DeepBlue24 and AlphaGo25.
Does that lessen apply to scientific discovery? There are three

notable differences that are: (1) hypothesis space in scientific
discovery is vast, open-ended, and possibly infinite as opposed to
huge but finite space as in most games, (2) description in science,
either knowledge or data, is not well-defined and often inaccurate
whereas the well-defined description of game states and records
exist in most games, and (3) evaluating hypothesis is likely to be
more costly and time-consuming in science due to involvement of
experiments. However, these issues can be made manageable and
series of technologies to make them manageable will transform
science and bring it to the next stage.

The exploration of hypothesis space in scientific discovery
The hypothesis space for scientific discovery is huge and complex
as opposed to very big but finite, well-defined, and monolithic
state-space in games. State-space for games such as Chess, Shogi,
and Go are finite, quantized, completely observable, and
monolithic. For example, the game of Go is known to have a
state-space complexity in order of 10170 and a game tree
complexity in order of 10360. Every state of the game can be
fully and unambiguously describable with a set of coordinates.
There is no hierarchical structure in the state space. This is not the

case in scientific discovery. The size of an entire hypothesis space
is infinite or undefinable. States of objects involve substantial
continuous values of higher-order dimensions. Nested hierarchical
structures are prevalent. While it appears to be fundamentally
different, much can be learned and adapted from experiences in
building AI systems for gaming.
The most recent and significant success of building AI system

for a board game is AlphaGo series that beat the best human
players. AlphaGo combined deep learning, reinforcement learning,
and Monte-Carlo Tree Search (MCTS) to explore possible state
space and game tree to learn best possible play within an
explored state space25. State spaces are explored based on
predictions of possible next moves generated by networks trained
through supervised learning of past records of Game of Go (SL
policy network) and MCTS expanded a search space. Reinforce-
ment learning using self-play improves policy network and a value
network is trained to properly evaluate game status. This
approach enabled AlphaGo to learn how humans played, and
how humans may play in the possible game state that has
proximity to the past game (Fig. 2a, orange circle). AlphaGo Zero
starts from a random move and learns to play purely using
reinforcement learning without human knowledge26. Interest-
ingly, AlphaGo Zero not only outperforms the best human players,
it outperforms AlphaGo as well. This demonstrates the strength of
unbiased exploration of state space as AlphaGo Zero explores an
entire state space of Go where AlphaGo incrementally searches
the vicinity of human play styles (Fig. 2a, green space).
AlphaZero27 and MuZero28 further extend such approaches to
be able to learn and exhibit superhuman capability in multiple
different games by learning game dynamics with model-free and
mode-based reinforcement learning, respectively.
A part of such an approach can be applied to scientific

discovery. With AlphaGo levels of approach, a set of hypotheses
can be generated using a body of knowledge accumulated to
date, and it can be tested against a body of knowledge for their
consistency and verified experimentally (Fig. 2b, orange circle).
Enhancing the level of complexity of hypothesis and automation
of experimental verification, exploration can be extended to
hypothesis space where it was not practical with an incremental
extension of current scientific practice (Fig. 2b, blue circle). The
challenge would be to implement AlphaGo Zero strategy to
randomly generate hypotheses for an entire hypothesis space
because the hypothesis space can be infinite and undefinable (Fig.
2b, green zone). However, practical approaches may exist to solve
this issue by leveraging the intrinsic structure of problem domains.

Goal: Reprogram Cell to gain Stemness

24 genes enabled reprogramming

Yamanaka Factors identified

Leave-one-out 
experiments

Search 24 genes 
from FANTOM DBSEARCH

OPTIMIZATION

SEARCH and OPTIMIZATION

Accidental discovery of thin film formation in 
polyacetylene polymerization process

Goal: Conducting polymer

Search optimal thin film 
formation condition

SEARCH & 
OPTIMIZATION

Goal: Polyacetylene thin film formation condition

OPTIMIZATION

Conducting polymer thin film

ACCIDENT

ACCIDENT, SEARCH and 
OPTIMIZATION

Nobel Prize in Chemistry 2000Nobel Prize in Physiology and Medicine 2012

Prof. Alan MacDiarmid

Prof. Alan Heeger

Fig. 1 Very simplified process of scientific discoveries of iPS and conducting polymer. Search and optimization plays a critical role in the
process of discovery. Yamanaka’s case is interesting because a search was conducted in bioinformatics followed by experiment-driven
optimization that may be well suited for AI Scientist in the future.
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In biomedical sciences, any biological phenomena are the result
of molecular interactions. It can be a simple interaction or involve
a very complex network composed of very large numbers of
molecules. Interactions among cells or even individuals can be
attributed to molecular interactions. Information of any kind will
be received by receptors to be meaningful for a biological system,
therefore converted into molecular interactions. The exploration-
driven approach in biomedical science leverages such intrinsic
characteristics of application domains and may start from
generating and testing hypotheses for basic biological mechan-
isms such as molecular interactions, genetic functions, metabolic
reactions, material properties, and so forth and explore them at an
unprecedented scale. Since most discoveries in biomedical
science are on mechanisms behind diseases or specific biological
phenomena exhaustive and unbiased exploration of molecular
mechanisms shall be a building block for uncovering complex
mechanisms for more complex biological phenomena (Fig. 3).
Therefore, it is reasonable to assume that the first stage of the

project focuses on the hypothesis of a particular form, rather than
unlimited and complex forms, specifically to identify molecular
mechanisms behind biological processes. By focusing on the
specific type of canonical form of knowledge, the problem is now
relatively well-defined which is important as an opening game of
the challenge. While the omics-approach uncovered massive data
on genomes, transcriptomes, metabolomes, and interactomes,
detailed and exhaustive characterization and precision measure-
ments using low-throughput methods are required to verify
specific molecular characteristics and nature interactions. Such
processes are generally time-consuming and often not automated
thus experiments are performed only for high priority targets.
Automating such processes to match omics-scale enables
exhaustive search and verification of a broader range of
hypotheses, which shall lead to discoveries with high-impact
biomedical and biotechnology applications.
There are pioneering works to turn this idea into reality. Adam,

the first closed-loop system for scientific discovery, is designed to
execute the discovery of orphan enzymes in budding yeast11,13.
Eve was designed to perform an automated drug repositioning
screen for neglected diseases and identified TP-470, originally
developed as an angiogenesis inhibiting anti-cancer drug for its
irreversible binding to methionine aminopeptidase-2, to be as
effective as an anti-Malaria drug as a DHFR inhibitor29. These
systems automated low-throughput assay processes and enabled
exhaustive verification based on the hypothesis generated. These
systems are highly automated, but not autonomous, as the
problem to be solved and the process are fully designed by
humans to the detail. These are special-purpose machines
optimized for specific types of problems.

This process can be applied iteratively (Fig. 4a). A biological
process in questions (h1) may be explained by hypothesis h2 or a
combination of h3 and h4, where h2, h3, and h4 may have possible
underlying molecular mechanisms of h5 and h6, h6 and h7, and h8,
respectively. In such a case, a process of hypothesis generation
and verification will be performed iteratively to verify or reject h1
with a verified supporting mechanism either h2, h3, and h4.
Generating experimental protocols and executing them is rather
straightforward.
There are cases where a biological process can be only

understood from a system dynamics perspective such as
bifurcation and phase transition. A simple application of the
iterative procedure to identify molecular mechanism is not
sufficient. It requires reconstruction of molecular interaction
network and analysis of their dynamical behaviors possibly
underlying the process in question (Fig. 4b). This is more
challenging as it requires the generation of hypothesis that link
biological process with mathematical concepts and verifying them
through experimental verification of network behaviors and
molecular mechanisms composing the network.
Exhaustive exploration of hypothesis means a set of hypotheses

is generated and verified rather than a single hypothesis. Thus,
nodes of a hypothesis dependency tree in Fig. 4 shall be sets,
rather than an element (Fig. 4c). Experiments shall be executed to
verify an entire set of hypotheses, and protocols enabling such a

Game of GO
recorded in
the past

Game of GO
played and
learnined by
AlphaGo

AlphaGo Zero generated
possible moves out of an
entire state space

An entire Game of GO
(Approximately 10^170
state space complexity
and 10^360 game tree
complexity)

a Game of GO b Scientific Discovery

Discovered knowledge:
Current scientific
knowledge

Knolwedge discoverable
with human-centric AI-
Human hybrid system 

An entire hypothesis
space for scientific
knowledge is infinite
or undefinable (a boundary is not clear)

Knolwedge human may
not be able to discover
- The region for AI-driven 
exploration

Human discoverable knowledge:
Hypothesis space searchable
extending current scientific
knowledge

Fig. 2 A possible space of exploration by AI Scientists. Search space structures for a perfect information games as represented by the Game
of GO and b scientific discovery are illustrated with commonalities and differences. While the search space for the Game of GO is well-defined,
the search space for scientific discovery is open-ended. A practical initial strategy is to augment search space based on current scientific
knowledge with human-centric AI-Human Hybrid system. An extreme option is to set search space broadly into distant hypothesis spaces
where AI Scientist may discover knowledge that was unlikely to be discovered by the human scientist.

Explaining mechanisms 
of biological phenomena

Combinations 
of molecular 
mechanisms

Molecules 
involved

System dynamics 
context

Experimental 
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Fig. 3 A basic structure of discovery in biology.Most discoveries in
biology and medicine are concerned with the identification of
mechanisms behind important biological processes. It can be
fundamental processes such as cell cycle and cellular reprogram-
ming or clinically relevant processes such as mechanisms of disease
outbreak and progression. In many cases, this basic structure will be
nested into multiple levels. It should be noted that “Molecular
mechanisms” are biological processes by themselves, thus multi-
layer construction of this basic structure of discovery are inevitable.
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process shall be generated. This may also include the generation
of sub-hypothesis to be verified (Fig. 5).
The value of exhaustive generation of hypothesis and verifica-

tion is in its potential capability to overcome the horizon problem.
Assume that hypotheses are generated to maximize the expected
significance of the discovery and tuned to focus highly expected
value, such a strategy would work when the landscape is
monotonically increasing (Fig. 6a). However, it may avert exploring
paths to significant discovery, when a series of discoveries
precondition to the significant one was low in expected
significance (Fig. 6b). Searches may be terminated before reaching
a significant discovery that may be located over-the-horizon. The
landscape of discovery significance may be complex and non-
monotonic. By enabling exhaustive exploration of hypothesis
space, AI Scientist can go beyond the area that is over-the-horizon
without it. At the same time, AI Scientist is not free from resource

limitation. One of the most important areas of research would be
to find out how to sample hypothesis space to effectively identify
its landscape. Machine learning-guided experimental design was
shown to be effective in chemistry30 and some of the principles
can be applied here.
Knowledge of the world that science deals with is composed of

multiple layers of abstraction, generally corresponding to the
layers of systems in the domain. Discussions so far are centered
around exploring and verifying hypothesis at molecular mechan-
isms, although it can be complex and nested. The next step shall
be to uncover more complex phenomena and their dynamics that
are interlinked with multiple layers of interaction, cells, organs,
and individuals. This level further requires the identification of
design principles and concepts behind complex systems (Fig. 7a).
As discussed already, system dynamics play a central role in
discoveries of this level, hence mathematical concept shall be

Molecular 
interaction 
network

System 
dynamics

a b c
h₁ h₁

h₂ h₃ h₄

h₅ h₆ h₇ h₈ h₅ h₆ h₇ h₈

H₁

H₂ H₃ H₄

H₅ H₆ H₇ H₈
Fig. 4 Hypothesis dependency tree. a Each hypothesis is dependent upon other hypotheses that are related to molecular mechanisms. b A
hypothesis in question can be verified only at the system-level analysis of molecular interaction network behaviors, c a set of hypotheses and
their dependency tree where each element is also a set (e.g., H1 ¼ h01; h

1
1; h

2
1; � � � ; hn1

� �
). In massive and exhaustive search of hypothesis space,

a set of hypotheses, rather than a single hypothesis, is generated to cover specific hypothesis space and verified.

Hypothesis
Set A

Hypothesis
Set B

Hypothesis 
Set C

Data Set 1 Data Set 2 Data Set 3

Verification Data
for Hypothesis 
Set B

Verification Data 
for Hypothesis 
Set A

Verified 
Hypothesis 

Set B

Verified 
Hypothesis 

Set A

Exhaustive experiments to 
be performed to generate 
Data Sets 1, 2, and 3

Verification experiments 
are executed using 
automatically generated 
protocols

Hypothesis Set C requires generation and
verification of Hypothesis Set A and B that 
triggers experiments for obtaining Data Sets
1, 2, and 3, followed by verification experiments

Fig. 5 Hypothesis tree. A hierarchical generation of hypothesis sets and data to verify them will be automatically generated and executed.
Verification of Hypothesis set C requires both Hypothesis sets A and B to be verified. Verification data for Hypothesis sets A and B shall be
obtained from experiments in general. In general, multiple data sets are required to fill various parameters of elements in Hypothesis set
before finally tested in the verification process. This requires Data Set 1 for Hypothesis set A, and Data Sets 2 and 3 for Hypothesis set B need
to be collected. Data sets 1, 2, and 3 can be obtained from databases, or through automated experiments. Verified Hypothesis sets A and B
mean a set of elements of Hypothesis sets A and B that are verified to be true or entire sets with a score for each element. Given the
hypothesis set to be verified, this process automatically generates hypothesis sets that need to be verified first and specifies the data sets
required.
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linked to biological processes (Fig. 4b). At the same time, actual
biological systems are constrained by fundamental principles such
as biochemistry and physics, systems principles such as feedback
theory and information theory, selected through evolution and
manifested in the context of the environment it lives (Fig. 7b). AI
Scientist need to learn what are possible and impossible and what
possible biology exist at present, and this could be potentially
similar to learning models of game dynamics28, but in open-ended
and a highly complex environment.
The challenge is to find a way for the system to generate and

test conceptual level hypotheses and test them. This shall be done
in an unbiased manner. Methods such as model-based reinforce-
ment learning and generative adversarial learning can be applied
initially to investigate how to develop system that learn laws of
nature at scale. Some recent studies demonstrate deep learning
networks trained over millions of articles generate extensive
molecular interactions31 and the potential relationship between
molecules and disease only using articles a year (or years) before
such a relationship was discovered32. Deep learning was also used
to uncover hierarchical structure and functions of cells33, deep
generative models for discovering hidden structures34, precision
phenotyping to predict genetic anomalies35, and many more. The
outcome of such approaches is a set of hypotheses generated by
deep learning and other AI methods from unbiased data, and
hypotheses are generated in an unbiased manner. Such predic-
tions can be a basis for the search for in-depth molecular
relationships and functions. Furthermore, recent success in the
Ramanujan Machine36 in mathematics and the project Debater37

in adversarial reasoning augmented possible approach that can
be incorporated in the hypothesis generation process. Qualitative

physics offers the opportunity to generate, match, and explain
physical and mathematical concepts such as bifurcation and
phase transition38,39. Combined with the capability of deep
learning neural network to learn, classify, and generate non-
linear dynamics40,41, qualitative physics approach can be a
powerful method for hypothesis generation and verification at
the level of dynamical system concept. There are studies to use
qualitative physics for biological processes42,43. This illustrates the
potential of AI to be able to generate conceptual model
exhaustively, assemble basic knowledge to be consistent with
the conceptual model, and experimentally verify them. This
approach essentially forces us to create a set of possible
substructures of systems and search for structural matching with
reality. With unbiased exploration at this level, AI Scientist shall be
capable of exploring the complex dynamical system and may be
able to discover new knowledge that is less likely to be discovered
by human scientists.

The multiverse of knowledge in scientific discovery
Generating hypotheses and maintaining a set of consistent body
of knowledge in science is a formidable task due to the vast
number of hypothesis generated and maintained, complexity and
non-monotonicity, and unreliability of knowledge and data
published. While publications and data already available today
will be the initial foundation of hypothesis generation, the
problem is that this initial foundation is not necessarily a solid
ground; they contain substantial errors, missing information, and
even fabrications. Manually checking statements with misinter-
pretation and biased interpretation of data individually and
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Fig. 6 The landscape of estimated significance of the discovery. a The landscape is monotonic, and b the landscape is non-monotonic. A
simplified illustration on why there are cases that research outcomes not immediately recognized to be significant lead to a major discovery.
“Estimated significance of discoveries” is used only as a conceptual index. There is no rigid method to estimate the significance of the
discovery. The numbers of citations and their temporal changes can be an interesting index, but it may be biased toward short-term
popularity unless the time horizon is set appropriately.
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exhaustively is not practical given the volume of publications that
shall be processed by AI Scientist. Currently, certain types of
experimental results are known to be difficult to reproduce44,
where some aspects of reproducibility issues shall be reduced by
automated, transparent, and traceable experimental systems45–47.
Intrinsic variability of biological systems due to noise and
individual variations are treated as intrinsic features48,49 and shall
be treated separately from ambiguities and inaccuracy caused by
the process of research itself. Aside from the immediate
reproducibility problem, some observations may hold true in
some contexts but may not be applicable in the other context as
an intrinsic nature of the complex system. Scientific knowledge is
probabilistic and non-monotonic and a representation system
shall be able to reflect this reality50. Knowledge shall be
contextualized, and a new context can be added incrementally.
While this is a nature of scientific research, this poses a serious
issue in the computational process as hypothesis will be
generated using a body of knowledge that is sure to be revised
constantly. It is like making reasoning in the twilight zone where
what is correct or not is always ambiguous. In this regard,
hypothesis and knowledge cannot be clearly distinguished. It is a
matter of degree of confidence. Verification in the context of
inductive reasoning means that “a certain hypothesis is still
surviving against all falsifiability challenges, thus considered most
likely so far”. This implies for all hypotheses, survived or not, the
trace of tests and their outcome need to be recorded. Unless
errors are obvious, every statement in publications shall be
converted into knowledge graph and the knowledge graph shall
be constantly updated (Fig. 8). Obviously, inconsistencies will
emerge which will trigger forks of knowledge graph, each of them
consistent internally. Whenever some of the assumptions are
altered, the relevant hypothesis shall be automatically re-
evaluated. This can be accomplished by maintaining a very large
number of multiple consistent set of knowledge and data with
explicit breaking point which set to be considered more probable.
Truth maintenance system, brief revision system, and non-
monotonic reasoning can be applied to maintain consistency
with multiple contexts51–53. Given the nature of scientific

knowledge that is essentially probabilistic, multiple sets of
knowledge graph shall be maintained persistently, unless sets
are proven to be inconsistent, and likelihood of each knowledge
set to be most probable change dynamically.
To evaluate the probability and possibly eliminate inconsistent

knowledge sets, mechanisms to resolve ambiguities and falsify
hypothesis need to be implemented. When a hypothesis is
generated and verified, it always associated with data and
justification why data support or reject the hypothesis. Theory of
argumentation54 and non-monotonic reasoning shall be the basis
of argumentation structure generation and processing55,56.
Hypothesis, or claim, can be rejected or needs further delineation
with multiple cases such as (a) data is fabricated, inaccurate, or
incomplete, or (b) interpretation of data/assumption is not
sufficient to justify the hypothesis, (c) scope of the hypothesis
shall be limited, and (d) effective rebuttle exists that denies
reasoning connecting data/assumptions and the claim. It is
possible that reasoning presented in publications are insufficient
to justify hypothesis, and detailed justification may need to be re-
generated or argument against the claim to be created to make
knowledge set complete. Recent progress in computational
debate may be a first step to implement mechanisms to generate
such argumentations37,56,57. The argumentation module shall
generate argumentation to support or falsify existing hypothesis
thereby justification can be strengthened through additional
experiments and reasoning. At the same time, argumentation
generated need to be understood by the human scientist.
Qualitative simulation38,58–60 should be able to generate qualita-
tive explanations consistent with human reasoning39. A closed-
loop system involving such a process shall be developed that can
incrementally improve confidence and consistency of knowledge
and data thereby incrementally building up rigidly fortified data,
argumentations, and hypotheses.

Challenges in technology platform: automation, precision,
and efficiency
Development of high precision, fast, and low operation cost
experimental system and data analysis system is mandatory for
this challenge. Unbiased search of hypothesis space means an
unprecedented number of hypotheses will be generated and
tested. The test requires both computational and experimental
tests. The volume of experiments required to execute unbiased
exploration would be a magnitude larger than current scientific
practices. The revolutionary precise, cost-effective, and fast
experimental systems need to be developed and deployed. Since
the cycle of hypothesis generation and verification is the rate-
limiting factor of the entire process, how fast and accurately
perform experiments will determine the chance of success of the
challenge. Some experiments will involve hypothesis exploring
unusual conditions such as 1000 times off from the conventional
parameters such as the concentration of chemicals. The first step
would be to make laboratories fully connected and automated.
Then, equipment will be replaced over time for high precision and
efficient devices including microfluidics, followed by the use AI
modules for each process before reaching the high level of
autonomy expected in the AI Scientist.
Therefore, experimental systems shall be less resource-

demanding and accurate yet reliable, reproducible, and inte-
grated. While automation of various experimental processes has
been commercialized already these are fragments of an entire
process. The challenge requires an entire process of various types
of experiments to be automated and part of such system may be
installed as robotics cloud laboratory46. Recently, a robotics
experimental system successfully identified proper condition for
cell culture of medical-grade iPS-derived retinal pigment epithelial
(RPE) cells after searching 200 million possible parameter
combinations through Bayesian optimization with local

Fig. 8 Evolving multiverse of knowledge graphs. The original
knowledge graph (KG1

0) is split into two incompatible KGs (KG1
1 and

KG1
2) with the addition of a new data “d1” and associated

arguments. Further addition of data “d2” resulted in the additional
split of KGs. Data d3 and associated argumentation contextualized
conflicting interpretations separating two KGs (KG1

4 and KG1
5) that

resulted in the merger of them. Such a merge happens when KG1
4

and KG1
5 are not compatible due to conflicting interpretation of

data d2, but data d3 and associated argumentation clarified conflict
can be resolved that two interpretation of data d2 is context-
dependent thus both interpretations hold in a different context. For
two competing KGs (KG1

6 and KG1
7), d4 and associated argumenta-

tion eliminated KG1
7, and KG1

6 survived and augmented to be
KG1

10.
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penalization47. Optimization of lycopene biosynthesis pathway
and biofuels for synthetic biology-based bio-manufacturing are
other examples automated search of design space was shown to
be effective61,62. Such success demonstrates the introduction of
robotics-AI systems for each process shall improve the quality and
efficiency of experiments. Automated closed-loop system impacts
synthetic biology as well due to its quality and reproducibility63.
Currently, only a system closed-the-loop of hypothesis generation
and experimental verification is on budding yeast genetics13.
Variety of experiments and their complexity shall be significantly
augmented to cope with an extensive set of hypotheses to be
verified. A literature analysis of over 1628 papers indicates 86–89%
of experimental protocols in these papers can be automated by
readily available commercial robotics systems64. This implies the
progress can be quick initially, and what matters will be how to
integrate different processes, data management, and how to
automate processes that are not automated at this moment as
well as novel protocols in future.
To achieve this, precise process management shall be imposed

for the flows of control, materials, data, and physical agents. Due
to vast numbers of experiments required for verification,
experimental systems shall be compact and requirements for
experimental samples and reagents shall be minimized. Organs-
on-Chips is a recent addition to technologies that can reproduce
experimental context closer to in vivo condition while maintaining
controllability, traceability, and requires smaller amounts of
experimental materials65,66. A novel origami-inspired surgical
robot has interesting characteristics of being compact and high
precision that can be applied for a range of experiments67. In
future, the combination of microfluidics and robotics system will
be used extensively in biological experiments to meet the
demands of large numbers of experiments and requirements for
controllability, accuracy, and traceability68.
Experimental devices shall be controlled by a platform that

combines software tools, data access, and experimental systems
embedded in the closed loop. Machine learning-guided experi-
mental design was shown to be effective in chemistry30 and some
of the principles can be applied to broader domains. Some of the
technological platforms are readily available today, as seen in
Garuda Connectivity and Automation Platform69, Wings workflow
management tool70,71, and DISK Data Analysis and Hypothesis
Evolution framework72, but many have to be developed as a part
of the technology challenge. Extensive efforts are made to
develop bioinformatics and systems biology analysis and model-
ing software and data standard that are fundamental to obtain
data, analyze them properly, make accurate curation, and enabling
dynamical simulations. Annual workshops such as COMBINE and
HARMONY drive the development and adaptation of standards
(http://co.mbine.org/home). Interoperability of software and data
is mandatory to ensure connectivity of laboratory that is essential
to automation of not only experimental processes but also
analysis and modeling processes. More effort shall be made on the
representation of hypothesis and knowledge reflecting the reality
of scientific knowledge.

Evolving relationship between AI Scientists, human scientists,
and society
How does AI Scientist evolve and transform scientific activities? It
is clear superhuman-AI Scientist would not emerge out of blue. It
will co-evolve with the scientific community over time. A possible,
and logical, evolutional path of AI Scientist is to increase the level
of automation first, followed by the increase of autonomy level
(Fig. 9). Most current use of AI for research is a tool for specific
tasks such as image classification, text-mining, and other tasks that
are isolated and fully instructed by the human scientist. This is an
AI tool stage. An early stage of AI scientist will take a form of a
group of useful and highly competent software, including

hypothesis generation module, and robotics to execute complex
but pre-define tasks as instructed. Robot Scientist Adam and Eve
are pioneering examples of this stage. Increasing repertoire of
experiments and complexity of hypothesis are the next step.
Substantial investment and user feedback are essential to make
such systems useful and widely adapted.
Evolutionary pressure imposed on AI Scientist is whether it will

be used by human scientists and widely adopted. Investment to
develop AI Scientist, either by public funding or private sources,
will be driven by the utility of such systems for human scientists.
Therefore, AI Scientist will be inevitably interlocked with the
research ecosystem of human scientists, and highly competent
and user-friendly systems will survive for further development.
This path inevitably make AI Scientist designed to be highly
interactive with human scientists. Researchers will quickly under-
stand the value and the power of AI Scientist, and will soon start
asking questions that require the exhaustive generation of
hypotheses and verification that exploits the full potential of AI
Scientist at each stage of evolution. This will trigger the
transformative change in biology as we witness in genomics
when the unbiased measurement of genome sequence and
transcriptome uncovered new realities in biology such as non-
coding RNA73,74. Even without large-scale experiments, hypothesis
generation capability of AI Scientist shall help researchers to
explore hypotheses that may not be considered without such AI
Scientist as well as being an extremely effective dialog-based
creativity and discovery support system. Institutions without AI
Scientist will no longer be competitive in science and technology.
With an increasing level of autonomy, AI Scientists are expected

to make an autonomous decision on what to investigate next.
While mechanisms to make it possible is yet to be seen, multiple
strategies can be considered such as (1) goal-oriented approach of
defining very high-level goals and find multiples paths to best
achieve such goals or (2) bottom-up approach of exploring
hypothesis search space based on discoveries already made by a
specific AI Scientist. In either case, questions to be asked can be
automatically extracted from publication, defined by human
researchers, or randomly generating questions to be answered.
With an increased level of connectivity and flexibility to

generate hypotheses and their verification process, instruction
from human scientist will be more abstract, and AI Scientist will
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Fig. 9 A possible path towards the Nobel Turing Challenge. AI
Scientist requires a highly automated and connected laboratory to
be able to design and execute experiments, as well as extensive
access to databases and publication archives to process, extract, and
evaluate current knowledge. Sophisticated laboratory automation is
mandatory. Robot Scientist, Adam & Eve, is highly specialized
automation with a certain level of intelligence for hypothesis
generation and experimental protocol generation. The next step is
to fully automate and connect laboratory equipment with layers of
control for data flow, material flow, and physical control flow.
Numbers of AI assistants shall be installed for each task initially, but
need to be integrated as an integrated and highly autonomous
system. The transition of automated system to autonomous system
will be one of the most challenging part of the initiative.
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have an increased autonomous process to make decision of
priorities of hypotheses to be tested and experimental protocols
to be performed. This is a semi-autonomous stage because
instruction on what to investigate is provided from outside
although how to investigate them may be generated internally by
AI Scientist. The level of abstraction of instruction by Human
scientists need to be carefully chosen so that AI Scientist can
execute the task with success. Instruction such as “find a set of
protocols (transcription factors, chemicals, procedures) that can
transform types of somatic cell (X) into defined cell types (Y)” is a
difficult but tangible one. For such an instruction, multiple
experimental protocol shall be generated, and prioritize choice
of source and target cell types, interventions to use tested, and
analysis procedures. However, much higher goals, such as “cure
cancer”, “increase human life span to 150 years”, or “minimize
climate change” would be problematic as some of these goals are
too abstract, at least at the initial phase of AI Scientist. With the
evolution of AI Scientist over years, some these questions may be
addressed in future, still it requires user understanding on
capability of AI Scientist to utilize its power.
With potentially expensive running cost of AI Scientists,

especially when large-scale experiments are required, a certain
level of monitoring will be enforced in most institutions. AI
Scientist may include a function to generate questions more
relevant to its owner or to the society. At least, it is highly plausible
larger investment will be made to deliver high return on
investment outcome. In this case, the choice of problem and
evaluation of the significance of discoveries will reflect human-
centric value system, most specifically the value of the
stakeholders.
However, AI Scientists under this circumstance are less likely to

make unexpected discoveries since the problems to be solved are
pre-defined. Researchers with a priori expectations may sometime
miss the big picture when one without such expectation may
notice75. There are many cases discoveries initially received minor
attention led to major discoveries later. It is extremely difficult, if
not impossible, to evaluate the significance of the discovery when
a few more discoveries may be needed to translate the discovery
into high-impact outcome due to the over-the-horizon problem.
The real value of AI Scientist is its capability to explore hypothesis
space magnitude more efficiently into seemingly low-value
domains with expectation that may eventually leads to major
outcomes. Such systematic explorations into seemingly low-value
hypothesis space are infeasible to be performed by human
scientists. Both aspects of discovery are important that implies two
roles for AI Scientist can be assumed that are “AI Scientist as a
Problem Solver” aligned with the value of the stakeholders and “AI
Scientist as an Explorer” that boldly explore hypothesis space
nobody have gone before. However, in either cases, exhaustive
hypothesis generation and verification will be the core of the AI
Scientist that distinguishes it from the traditional approach.

AI Scientist will be a multiplexed multi-agent system generating
multiple instances of AI Scientist (Fig. 10). It is comprised of many
software and hardware agents (highly functional modules with a
certain level of autonomy) with a high level of interactions,
interoperability, and scalability in problem size and complexity.
There may be two characteristics for an architecture of AI Scientist.
First, it may be a multiplexing multi-agent system. It is possible

multiple instances of AI Scientist are created each specialized in a
certain area extensively exploring hypothesis space organically.
They are almost identical in components but differ in hypothesis
space exploring. Communication among AI Scientists may enable
them to merge discoveries for further exploration. This may take a
form of communication between AI Scientists through a series of
inquiries or the creation of a new synthetic new AI Scientist.
Therefore, AI Scientist as a whole entails multiple instances of AI
Scientist with focused areas. In this case, discoveries may be made
systematically centered around initial core domains and even-
tually as a combination of multiple domains forming specific path-
dependencies in discoveries. In the community of AI Scientist, a
series of discoveries and publications made by AI Scientist may
resemble that of the successful scientist. Interaction between AI
Scientists is equivalent to the search and exchange of new
knowledge and style of discovery specialized by each AI Scientist.
When the critical mass of knowledge and data is required to
generate significant hypothesis combining multiple domains,
forming the community of AI Scientist would make sense. The
discovery of CRISPR–Cas9 may be one of the examples of
revolutionary discoveries coming from the combination of basic
research seemingly distant areas of research76. It is well
recognized that many discoveries considered groundbreaking
was triggered by connecting two or more seemingly unrelated
ideas. If AI Scientist shall be able to make discoveries of this
nature, it must be able to access and connect very broad and less
related domains where there is already a sufficient accumulation
of knowledge and data by each AI Scientist.
Second, it may be a human-in-the-loop system. From AI

Scientist perspective, agents composing them do not have to be
exclusively software or hardware, it can be human expert as far as
it can interface with the rest of the system. Human experts can be
in the role of domain experts or in the commanding and
monitoring role. The commanding and monitoring role is
important to avoid misuse of the system. Potentially, AI Scientist
can make discoveries that are harmful to human and our planet.
What to discover fully depends on how the owner uses such
capability. A strict ethical guideline and enforcement may be
required with increased level of autonomy of AI Scientist.
Ultimately, it will impact national security of the highest level.
There will be multiple AI Scientists either by institutions,

academic community, country, or other societal boundaries. Some
of them may communicate each other, some may be configured
in isolation, and some would form local networks. Such

A new
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An instance augmented by 
knowledge exchange

Stakeholders: Scientific Community, Funding Agency, Industry, ELSI

AI Scientist 
Development 
Community

A Community
of Scientists
(Users)

Instances of 
AI Scientist

AI Scientist as Multiplex 
Multi-Agent System

Fig. 10 A possible configuration of AI Scientists: AI Scientist is a multiplexed multi-agent system where multiple instances of AI Scientist
will be created. They evolve, merge, and interact with humans. Human experts can be a part of the system as human-in-the-loop system.
Scientists who wish to work with AI Scientist are most likely to work with instances of AI Scientist.
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configuration may be decided based on ownership of data and
intellectual properties generated. Some modules and databases
will be publicly maintained, and some would be proprietary.
Although the level of autonomy can be very high, intellectual
property is still retained with human researchers who run this
system because human researchers make the decision to run AI
Scientist and monitor their progress, and are responsible for the
outcome. Some institutions may run AI Scientist at free-run modes
with very high levels of autonomy, to let it explore hypothesis
space that human researchers may not think of. Even in such a
case, completely autonomous may not be achievable, as the
intention of the owner will influence the running of the system.

AI Scientist to transform systems biology and broader area of
sciences
Automating the process of hypothesis generation and verification
shall transform broad areas of sciences. Systems biology is one of
the representative areas most affected by such technology, not
only because it enables researchers to cope with massive data and
publications otherwise under-utilized, but also it enables research-
ers to develop large-scale high-precision models as well as
performing investigation significantly broader in scope and more
extensively in parameter space than current approaches.
One of the initial expectations of systems biology was to

develop a high-precision large-scale model of biological systems
such as virtual humans that can be used as digital-twin of patients
with in-depth molecular mechanisms behind77,78. While it is a holy
grail of systems biology, it was proven to be extremely challenging
as anticipated. There are fundamental difficulties for such a task
partly due to the limitation of our cognitive capabilities and
sociological constraints14. The research landscape of systems
biology is clustered around two modalities that are; (1) a high-
precision mechanistic model for the smaller and tractable system
and (2) a large-scale network model based on omics data but less
on detailed mechanisms. There is an inherent trade-off between
these two modalities and attempts to overcome such trade-off
have fallen short of expectations. First, there are human cognitive
constraints. A vast amount of data and complexity of the system
often goes beyond human comprehension and non-linear nature
of biological process make things more difficult. Second, there are
practical constraints as well. Building a large-scale precision model
requires details of almost every interaction and molecular
behavior to be investigated both computationally and experi-
mentally which is beyond the capability of most research groups.
Investigating each of such interactions and molecular behavior
would require major efforts while many of them may not result in
immediate major discoveries by itself. While interesting discov-
eries shall spring out from some of such efforts, tasks are designed
to fill in every detail of a large model, rather than speculating the
potential importance of interactions and molecules. It is not
practical to assume dedicated efforts by members of the research
group to be sustainable for many years unless most of such
process is automated.
Perhaps, systems biology, particularly studies for large-scale

precision models, is not a research field for human alone to
investigate as possible causes of difficulties lies in human
cognitive and sociological limitations. Once we accept the reality
such a trade-off is inherent in human cognitive limitations and
sociological constraints, the path to overcoming the trade-off is
obvious. It is a field suitable for AI or AI-human hybrid system.
Building high-precision large-scale models and efficiently exploit
such models and aggregated knowledge to back it up requires
powerful AI systems to support our scientific activities.
The AI system is not only useful for building large-scale in-depth

models but will exhibit its power to discover new mechanisms and
principles we have not imagined as well as discovering novel drug
targets efficiently with a significantly extended search of target

candidates. Extensive use of AI for drug discovery has been
discussed with the implication of dramatically improving its
efficiency and the transformation of the process79. Early successful
cases including rapid identification of kinase inhibitor for DDR1
are encouraging80. A recent success of AlphaFold represents how
AI technologies impact biomedical studies81. Studies on the
relationship between drug target proteins and numbers of
interactions of proteins demonstrate there is a low but reasonable
probability that proteins with small numbers of identified
interactions to be drug targets82. Although chances each protein
can be a drug target may be small because the total numbers of
such proteins are huge, exhaustive search of this class of proteins
may result in abundant novel drug targets. With the same issues
that arose in high-precision large-scale models, automation of the
research process is essential to explore such opportunities.
Extending such an approach to synthetic biology to automate

design and verification processes63,83,84.
Ultimately, a series of new discoveries will be integrated into an

integrated model that is large-scale, high-precision, and in-depth.
The implication is massive. It does not only mean researchers use
AI Scientist as one of the tools, but it implies the practice of
scientific discovery will be transformed dramatically with AI
Scientist because discoveries will be made at scale and
autonomously. At the same time, this will be a golden opportunity
for systems biology since it will transform system biology into the
next stage.
AI Scientist can be transformative not only in life science but

also for broader science and technology domains. This is
especially the case that requires hypothesis generation and
verification to broader range parameter search of chemical
synthesis and material discovery. Already, there are emerging
interests in chemistry and material science for automation of
experiments coupled with machine learning guide experimental
design at various levels30,46,85–90. The idea of massive search of
hypothesis space and verification applies to these domains as
well. However, if such efforts can be applied to the discovery of
novel concepts are yet to be seen. Recently, The Ramanujan
Machine was announced for automated generation of conjectures
in mathematics36. The Ramanujan Machine added a new
perspective as it is not a parameter search and extensive
generation of conjectures. With the rapid advances in robotics,
sensors, AI with the increasing availability of computing powers, AI
Scientists for broader domains of science will be inevitable.
Research institutions without such capability will no longer be
competitive in the coming decade.
The Nobel Turing Challenge is the ultimate challenge for AI and

systems biology. Any progress toward achieving the goal will
generate high utility technologies that shall accelerate science.
Due to its breadth of expertise required and possible length of
duration to achieve the goal, it may best be organized as a virtual
big science91. Once the initiative taking off, it will uncover the
essence of scientific discovery, and results in the creation of an
alternative form of science. AI Scientist and human scientists will
work together to solve formidable problems and to explore new
intellectual territories where no one have gone before.
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