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Abstract

Our cognition relies on the ability of the brain to segment hierarchically structured events on

multiple scales. Recent evidence suggests that the brain performs this event segmentation

based on the structure of state-transition graphs behind sequential experiences. However,

the underlying circuit mechanisms are poorly understood. In this paper we propose an

extended attractor network model for graph-based hierarchical computation which we call

the Laplacian associative memory. This model generates multiscale representations for

communities (clusters) of associative links between memory items, and the scale is regu-

lated by the heterogenous modulation of inhibitory circuits. We analytically and numerically

show that these representations correspond to graph Laplacian eigenvectors, a popular

method for graph segmentation and dimensionality reduction. Finally, we demonstrate that

our model exhibits chunked sequential activity patterns resembling hippocampal theta

sequences. Our model connects graph theory and attractor dynamics to provide a biologi-

cally plausible mechanism for abstraction in the brain.

Author summary

Our experiences are often hierarchically organized, so is our knowledge. Identifying

meaningful segments in hierarchically structured information is crucial for many cogni-

tive functions including visual, auditory, motor, memory, language processing, and rea-

soning. Herein, we show that the attractor dynamics of recurrent neural circuits offer a

biologically plausible way for hierarchical segmentation. We found that an extended

model of associative memory autonomously performs segmentation by finding groups of

tightly linked memories. We proved that the neural dynamics of our model mathemati-

cally coincide with optimal graph segmentation in graph theory and are consistent with

the experimentally observed nature of human behaviors and neural activities. Our model

established a previously unexpected relationship between attractor neural networks and

the graph-theoretic processing of knowledge structures. Our model also provides experi-

mentally testable predictions, particularly regarding the role of inhibitory circuits in con-

trolling representational granularity.
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Introduction

The brain builds a hierarchical knowledge structure through the abstraction of conceptual

building blocks such as groups and segments. This ability of the brain is essential for various

cognitive functions such as chunking of items, which increases the number of items retained

in a limited capacity of working memory [1], segmentation of words, which is essential for

learning and comprehension of language [2–4], and temporal abstraction of repeated sequen-

tial actions, which accelerates reinforcement learning [5].

Experimental evidence suggests that the brain performs segmentation based on the graph

structures behind the experiences. When the brain experiences a sequence of events, it learns

the temporal associations between the successive events and eventually captures the structure

of the state-transition graph behind the experience. It has been shown that event segmentation

performed by human subjects behaviorally reflects community structures (or clusters) of such

state-transition graphs, and neurobiologically, sensory events within the same community are

represented by more similar activity patterns than those belonging to other communities [6,7].

Such graph segmentation of events is considered to benefit the temporal abstraction of actions

in reinforcement learning [8,9]. Furthermore, graph-based representations can explain many

characteristics of place cells and entorhinal grid cells [10].

Despite its behavioral and representational evidence, the biological mechanism that creates

graph-based representations remains unknown. Conventionally, circuit-level mechanisms in

hippocampal and cortical processing have been modeled as attractor-based associative mem-

ory networks [11–13]. Experiments have revealed some hallmarks of associative memory net-

works such as Hebbian learning (as spike-timing-dependent plasticity) [14,15], pattern

completion and attractor states [16–19] in the brain. In the context of associative memory,

temporal associations between successive events can be modeled as hetero-associations

between successively activated cell assemblies through Hebbian learning [20–23]. This learn-

ing scheme creates correlated attractors from uncorrelated stimuli. Correlations depend on

the temporal distance between the memorized events along the event sequence, which quanti-

tatively agrees with neural recordings from the monkey brain [24,25]. Such correlated attrac-

tors, and hence the class of associative memory models, can be potentially extended to offer a

biologically plausible representational basis for more general graphical structures. However,

this hypothesis has not been examined.

In this study, we propose a generalized class of associative memory networks [20–23] that

performs graph-based segmentation and abstraction. Herein, we present two major exten-

sions. First, we generalize the one-dimensional sequential structure of temporal associations in

the conventional model [20–23] to arbitrary symmetric graphs. Second, we allow the model to

have negative associative weights which can be interpreted as assembly-specific inhibition

[26]. We found that this network generates mixed representations that are shared by multiple

memory items within the same communities in the graph, which fits with human experiments

[6,7]. We mathematically revealed that information representations in the attractor state in

our model are related to graph Laplacian eigenvectors, a popular mathematical method for

graph segmentation [27,28] and nonlinear dimensionality reduction [29]. Because of this

property, we call our model Laplacian associative memory (LAM), and demonstrate that LAM

applies to problems related to graph Laplacian eigenvectors such as subgoal finding in rein-

forcement learning [8,9]. Our model predicts that the scale of the representations (the size of

the represented communities) is modulated by the relative strength of local and global inhibi-

tory circuits, which indicates an active role of target-specific inhibition [26] and inhomoge-

neous neuromodulation of inhibitory circuits [30,31]. Finally, we show that LAM with

asymmetric links generates chunked sequential activities observed in the hippocampus
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[32,33]. Our model establishes a theoretical relationship between associative memory networks

and graph theory, providing a biologically plausible dynamical mechanism for hierarchical

abstraction in the brain.

Results

The Laplacian associative memory model

Laplacian associative memory (LAM) is a novel class of Hopfield-type recurrent network mod-

els [11–13,20,23]. Let us define a network of N units xi(t) (i = 1,� � �,N; 0�xi(t)�1) as follows:

_xi ¼ � xi þY
XN

j¼1

wijxj

 !

; ð1Þ

where wij is the synaptic weight and Θ(x) is a step function (Θ(x) = 1 if x>0, otherwise Θ(x) =

0). We assume that each memory item (e.g. sensory stimuli, places or events) is represented by

a 0–1 binary random memory pattern x
m

i ði ¼ 1; � � � ;N; m ¼ 1; � � � ; PÞ with sparsity

p ðP½xmi ¼ 1� ¼ pÞ. In this study, we used N = 10000 and p = 0.1 unless otherwise specified. We

set the synaptic weights from these memory patterns as

wij ¼
1

NV

XP

m¼1

XP

v¼1

ðadmv þHmvÞ
~xmi

~xvj �
1

N
ðaþ 1Þg; ð2Þ

where ~x
m
i ¼ x

m

i � P
� 1
P

m
x
m

i and V = p(1−p). The term αδμν represents auto-association within

each item, where δμν is the Kronecker delta and α is a modifiable parameter that determines

the strength of auto-association. On the other hand,Hμν is a hetero-associative weight between

memory items μ and ν (Hμμ = 0). Parameter γ�0 provides an additional global inhibitory effect

[13]. In short, this network stores multiple cell assemblies (Pmemory patterns) through auto-

associative Hebbian learning and links them through hetero-associative Hebbian learning (Fig

1, left). We construct hetero-associative weights from a normalized adjacency matrix of a

state-transition graph, or generally, other graphs such as semantic relationships. Specifically,

we hypothesize that the hetero-associative weight matrix H = (Hμν)1�μ�P.1�ν�P is constructed

as D� 1
2AD� 1

2 (symmetric normalization) or D−1A (asymmetric normalization) where A and D

are the adjacency matrix and the degree matrix of the graph, respectively. As in the graph

Fig 1. Laplacian associative memory (LAM) model. Left: associative memory network model with auto-association and hetero-

association. The parameter α indicates the auto-associative strength. Right: Equivalent biological neural network model which

contains local (assembly-specific) and global (non-specific) inhibition. The parameter α indicates the ratio between local and global

inhibition.

https://doi.org/10.1371/journal.pcbi.1009296.g001
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Laplacian, two normalization yields the same results qualitatively. However, the symmetric

normalization model enables formal theoretical analyses and the asymmetric normalization

model provides a biologically plausible interpretation of the model. Asymmetrically normal-

ized weights directly correspond to the transition probability matrix for random walk on the

graph [28] and therefore can be learned in sequential experiences through Hebbian learning of

successively activated cell assemblies [22,25]. Therefore, the structure of hetero-associative

links is a graph reflecting the statistical structure behind experiences in which we may find

some communities.

LAM can be regarded as a generalization of previous associative memory models. When

α>0 and allHμν are zero, the LAM is analogous to the conventional Hopfield-type model stor-

ing biased memory patterns [11–13]. If only adjacent items are associated (Hμ,μ+1 =Hμ+1,μ>0,

and all otherHμν are zero) so that associative links form a one-dimensional chain, the model

coincides with an associative memory model for a repeated sequence of sensory inputs [20,23].

However, unlike the previous models, LAM can also take other arbitrary hetero-associative

link structures, possibly formed through sensory experiences with complex state transition

structures rather than a sequential experience repeated in the same order. Furthermore, we did

not restrict the parameter α to being positive, allowing inhibitory auto-association. We found

unique behaviors of LAM mostly in the regime of negative auto-association, which has not

been extensively investigated previously.

We clarify the biological interpretation of the model by the decomposition of excitatory

and inhibitory components. Here, we assume asymmetric normalization of the hetero-associa-

tive weights. As in a previous study [23], we can decompose the weights as

wij ¼ w
E
ij � ðamax � aÞw

L
ij � ð1þ aÞw

G
ij : ð3Þ

wE
ij
¼

1

NV

XP

m¼1

XP

v¼1

ðamaxdmv þHmvÞx
m

i x
v
j ; ð4Þ

wL
ij
¼

1

NV

XP

m¼1

x
m

i x
m

j ð5Þ

wG
ij
¼
P
NV

1

P

XP

m¼1

x
m

i

 !
1

P

XP

v¼1

x
v
j

 !

þ
1

N
g: ð6Þ

Here, we used the constraint
PP

n¼1
Hmn ¼ 1 and approximated

PP
m¼1
Hmn � 1. The decom-

posed weights wE
ij; w

L
ij and wG

ij are always non-negative; thus, wE
ij is an excitatory component

and � ðamax � aÞwL
ij and � ð1þ aÞwG

ij are inhibitory components in the range −1<α<αmax.

The wE
ij component can be regarded as an excitatory connection that reflects the structure of

cell assemblies. The wL
ij component is assembly specific local inhibition, whereas wG

ij is a non-

selective global connection. Therefore, LAM can be regarded as a circuit with local and

global inhibition, in which the parameter α determines the ratio between the strengths of the

two types of inhibitory circuits (Fig 1, right). Biologically, the difference in αmay correspond

to the anatomical inhomogeneity of the interneurons. Otherwise, the balance of inhibition

can be changed through the inhomogeneous modulation of interneurons by acetylcholine

[30,31].
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Multiscale representation of community structures in LAM

To demonstrate the representations in LAM, we tested three representative graph structures.

The first is the graph used previously to study how humans segment temporal sequences obey-

ing probabilistic state-transition rules [6,7] (Fig 2A). The second is the karate club network

[34], a popular dataset for testing community detection methods in graph theory (Fig 2F). The

Fig 2. LAM generates multi-scale representations for community structures. (A) Graph used by Schapiro et al. (2013)

[6]. (B) Pattern overlaps of example attractors. (C) Correlation matrices between activity patterns in the attractor states

reached from different trigger stimuli (trigger nodes). (D) Maximum pattern overlaps obtained by various values of α. (E)

Numbers of active patterns obtained by various values of α. In D and E, we averaged values from all attractors reached

from different trigger stimuli. (F) Karate club network[34]. (G-J) Results for Karate-club network. (K) A

compartmentalized room structure[5,9,10,36] (four-room graph). (L-O) Results for a four-room graph.

https://doi.org/10.1371/journal.pcbi.1009296.g002
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third graph represents the structure of compartmentalized rooms (Fig 2K), which is often used

as the state-transition graph for reinforcement learning [5,8–10]. For each graph, we assigned

a random binary pattern to each node and constructed an LAM network with hetero-associa-

tive weights Hμν based on the adjacency matrices of the graph. This setting implicitly assumes

that sensory states represented by nodes are independent from those represented by other

nodes, which may represent mutually uncorrelated sensory stimuli [6,7] or assemblies of local

and sparse place cells. We initialized the activity of the LAM network with one of the assigned

memory patterns (trigger stimulus), and simulated the dynamics of the network for sufficiently

long time until the network converged to an attractor state (S1 Fig). We regard the activity pat-

tern at the end of each simulation as a neural representation of the node corresponding to the

trigger stimulus (trigger node). For each attractor state, we calculated an index called as pattern

overlap to evaluate the degree of retrieval of each memory pattern:

mm ¼
1

NV

XN

i¼1

~xmi xi: ð7Þ

This index measures the degree of overlap between embedded memory patterns and activ-

ity patterns in the model (large positive values indicate significant activation of the memory

pattern). Pattern overlaps have been traditionally used in the analysis of memory recall in Hop-

field-type models [13,20,35] because the dynamics and energy of the model can be described

by the function of pattern overlaps instead of neural activities. Furthermore, we calculated the

correlations between attractor patterns obtained from different trigger stimuli.

LAM converged to various attractor patterns depending on the trigger nodes and the value

of auto-associative weight α. Generally, the maximum pattern overlaps of attractors had large

positive values in the parameter region α>−1 (Fig 2D, 2I and 2N), indicating that memory

recall occurred in this region. When α had large positive values (global inhibition was domi-

nant), attractors locally represented one or a few nodes in the graph (Fig 2B and 2G, right) and

attractor patterns reached from different trigger nodes were uncorrelated with each other (Fig

2C and 2H, right). These attractors correspond to the retrieval of individual memories

observed by conventional Hopfield-type models. In contrast, when α is closer to -1 (local inhi-

bition is dominant), multiple memory patterns are active in the attractor states. Quantitatively,

the average number of active patterns is maximum at α�−1 and decreases as α increases (Fig

2E, 2J and 2O; for the definition of active patterns, see Methods: Simulations of the network

model). Especially at α�−1, distributions of pattern overlap represent large communities in

graphs (Fig 2B and 2G, left), and accordingly, the pattern correlation between attractor pat-

terns is high within each community (Fig 2C, 2H and 2M, left). When α took an intermediate

value, LAM represented a mesoscale community in the four-room graph (Fig 2L, right). This

result demonstrates that LAM generates mixed representations for communities in hetero-

associative links by partially recalling multiple memory patterns simultaneously in attractor

states. Accordingly, representations (attractor patterns) for nodes within a community are

highly correlated, which agrees with the results of previous experiments [6,7].

Additionally, we checked the effect of parameter settings on the model behavior in the sim-

ulation of the four-room graph. First, we changed the number of neurons N from the original

setting of N = 10000, and the model behaviors were qualitatively the same for N = 5000, 15000,

20000 but significantly impaired at N = 1000 (S2 Fig). This indicates that Nmust be large

enough for the network to work stably, which is the same property as conventional Hopfield-

type models [11,12,35]. In addition, we tested the change in sparsity p (0.05 and 0.2) and it did

not change the qualitative results (S3 Fig).
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The theoretical relationship between LAM and graph Laplacian

We analyzed the mathematical mechanism behind the representations of LAM and found that

the representations are related to the graph Laplacian (GL). GL is a matrix defined from a

graphical structure and its eigenvectors are used for various applications. One popular applica-

tion is graph segmentation (also called community detection) because it has been shown that

the signs of elements in GL eigenvectors indicate optimal two-fold segmentation of a graph

[27,28] (examples are shown in Fig 3A, 3B and 3C). GL eigenvectors provide segmentation at

various levels depending on their eigenvalues (a small eigenvalue corresponds to coarse resolu-

tion with large communities); thus, combinations of multiple eigenvectors provide multi-level

segmentation. This property is used for image segmentation [27,28]. In another aspect, GL

eigenvectors is also used for nonlinear dimensionality reduction [29], which provides low-

dimensional representations for nodes (data points) in which the structure is represented

through similarity. As for the connection to neural representations, GL eigenvectors become

grid-like code in the homogenous space, and their distortion caused by inhomogeneity fits

with the experimental observation of grid cells, and predictive spatial representations in the

hippocampus can be eigendecomposed into GL eigenvectors [10]. For the definition of GL

Fig 3. The relationship between Graph Laplacian eigenvectors and LAM. (A) Fiedler vector (GL eigenvector with the second

smallest eigenvalue) for the graph in Schapiro et al. (2013). (B) Fiedler vector for karate-club network. (C) The comparison of

pattern overlaps in LAM (α = −0.9) and Fiedler vector for the four-room graph. (D) A schematic diagram showing that pattern

overlaps in LAM (α = −0.5) is mostly explained by the combination of multiple GL eigenvectors with small eigenvalues. (E-G) The

explained variance ratio in linear regressions of pattern overlaps by various numbers of GL eigenvectors. The color indicates the

value of α. In each condition, we plotted the average value of the explained variance ratio of attractors reached from all trigger

stimuli. (E) Results from the graph by Schapiro et al. (2013). (F) Results for the karate-club network. (G) Results for the four-room

graph.

https://doi.org/10.1371/journal.pcbi.1009296.g003
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and a brief review of its mathematical properties, see Methods: Definition and mathematical

properties of graph Laplacian.

We performed a formal theoretical analysis to show the relationship between LAM and GL.

Here, we use symmetric normalization of hetero-associative weights (H ¼ D� 1
2AD� 1

2), which

yields the same results as those shown above (S4 Fig). Then, we can define the energy function

of the model as:

E ¼ �
1

NV

XN

i¼1

XN

j¼1

wijxixj: ð8Þ

As in the conventional Hopfield model [11], the dynamics of LAM monotonically decrease

this energy (S5 Fig). Although the decrease in this energy in each step is rigorously guaranteed

only when we use sequential updates of neural activities [11], updates in Eq (1) also decreases

the energy at the population level because two updates fall into the same dynamical equation

by mean-field approximation [23]. Considering a vector of pattern overlaps m = (m1,. . .,mP)T

(pattern overlap vector), and the vector rescaled by the degree matrix ~m ¼ D� 1
2m, then the

energy function can be rewritten as

E ¼ ~mTL ~m þ ðaþ 1Þ½� ~mTD ~m þ gV � 1ðm0Þ
2
�; ð9Þ

where L is the GL for the hetero-associative link structure (the state-transition graph), andm0

is the mean activity level in the network. Here we find the minimization of ~mTL ~m under the

constraint of ~mTD ~m. This is the same objective as graph segmentation [27] and graph-based

dimensionality reduction [29], for which GL eigenvectors provide optimal solutions. There-

fore, we can expect that GL eigenvectors appear in the rescaled pattern overlap vector ~m after

the energy minimization of the LAM. Furthermore, we determined that a GL eigenvector with

an eigenvalue λk is activated in the pattern overlap vector under the condition λk<α+1 (see

Methods: Analysis of the energy function of LAM). Noting that the minimum eigenvalue of

GL is always zero and a smaller eigenvalue corresponds to coarser graph segmentation, this

result indicates that representations of the largest community (the eigenvector with the second

smallest eigenvalue, which is called the Fiedler vector) appear in LAM when α is slightly higher

than -1. As α increases, eigenvectors with higher eigenvalues are also activated; thus, it is

expected that the represented communities will become smaller. This analysis fits with the

results shown in the previous section, especially the similarity between pattern overlaps in α�1

and Fiedler vectors (Fig 3A, 3B and 3C). Although this analysis of the energy function depends

on the symmetricity of synaptic weights, we also derived the same activation thresholds of GL

eigenvectors through Turing instability analysis for complex networks [37], which does not

require such constraints on connectivity (see Methods: Turing instability analysis of LAM).

Therefore, we can expect similar transient dynamical properties for LAM with asymmetric

connections although the existence of attractors is not guaranteed in that case.

Alternatively, we can also interpret energy minimization as a combination of two conflict-

ing optimizations. First, the minimization of ~mTL ~m is equivalent to the minimization of the

differences between pattern overlapsmμ for two strongly connected nodes [29]. This results in

smoothing (or diffusion) on the graph, which leads to non-sparse solutions, observed as mixed

representations of multiple memory patterns. Second, the term � ~mTD ~m is the same as the

conventional Hopfield model, which leads to the activation of a single memory pattern. Mini-

mization of the mean activitym0 also helps to create sparse activity patterns. Therefore, the lat-

ter part of the energy function acts for sparsification, that is, a reduction in the number of

active memory patterns. In summary, the energy function is composed of two components for
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smoothness and sparsity, and the value α+1 determines the trade-off. If α<−1, the effect of

sparsification vanishes; thus, no pattern is preferentially active. The number of active memory

patterns is maximized when α is slightly higher than -1 because of the strong smoothing effect.

As α increases in the region α>−1, the number of activated patterns gradually decreases and

the model approaches to the conventional Hopfield model. This intuitive interpretation also

fits the actual behavior of the model.

To quantitatively validate the relationship between representations in LAM and GL eigen-

vectors, we performed linear regression of pattern overlaps in LAM (shown in Fig 2) using var-

ious numbers of GL eigenvectors, and calculated the variance explained (the schematic is

shown in Fig 3D). Eigenvectors were chosen from those with small eigenvalues to those with

large eigenvalues (when two eigenvectors were used, the smallest and the second smallest

eigenvalues were chosen). The results show that the pattern overlaps in LAM with α�−1 were

mostly explained by small numbers of GL eigenvectors with small eigenvalues, and eigenvec-

tors with large eigenvalues were gradually recruited as α increased (Fig 3E, 3F and 3G). This

result is consistent with our theoretical analyses and demonstrates the mathematical mecha-

nism behind the representations in LAM.

Segmentation of various graph structures

So far, we have tested the model behavior using relatively simple and regular graphical struc-

tures. We then checked whether LAM could extract communities in various hierarchically

organized graphs. We used the stochastic block model (SBM) [38,39] to generate random

graphs with hierarchical community structures (Fig 4A). The detailed procedure is described

in “Generation of random graphs” in the Methods section. We embedded the generated graph

structure in LAM and obtained its attractor patterns using the same procedure and the same

parameter settings as in the simulations shown in Fig 2. Depending on the value of α, LAM

extracted communities at different hierarchical levels (Fig 4B and 4C). We evaluated the

explained variance of pattern overlaps by GL eigenvectors and found the same tendency as in

the non-random graphs analyzed in Fig 3, where the contributions of GL eigenvectors with

higher eigenvalues increased as α increased (Fig 4D). We quantified the similarity of the

attractor patterns obtained at each hierarchical level of the communities. We calculated an

average pattern correlation at each level by collecting node pairs belonging to the same com-

munity at level h but to different sub-groups at level (h+1) (the latter condition was not applied

if level h was the bottom level). As shown in Fig 4E, the average pattern correlations were high

at all levels of communities when α was close to -1. As α increased, the average correlations at

level 1 (the top level) dropped first, and those at levels 2 and 3 followed in this order, indicating

the emergent representations of hierarchical communities that are parameter dependent. We

varied the values of the parameters, that is, the number of nodes, the degree of hierarchy, the

number of communities at each hierarchy level, and random seeds for sampling the structures

and patterns. We observed the same tendency regardless of the settings of the random graphs

(S6 and S7 Figs). These results show that LAM can generate multiscale representations of com-

munity structures embedded in random graphs in which we destroy the structural regularity

while retaining the bias in connection probabilities, which defines the communities.

Based on the relationship with GL, we also tested graph-based image segmentation by

LAM, which is a well-established application of GL [27]. We assigned a random binary pattern

to each pixel and defined hetero-associative links between pixels based on spatial proximity

and similarity of RGB values, similar to a previous study [27]. LAM (containing 30000 neu-

rons) successfully extracted large segments corresponding to a GL eigenvector when the auto-

associative weight α was close to −1 (Fig 5). When α was increased, the LAM extracted
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relatively small segments (Fig 5). This result shows that LAM is also applicable to non-ideal

graphs constructed from real-world data.

Finding subgoals by graph-based representations and novelty detection

One of the important applications of GL eigenvectors is to find appropriate subgoals for hier-

archical reinforcement learning [8,9]. In this framework, sets of primitive actions (options) are

optimized through learning to reach the subgoals. Desirable subgoals are “bottlenecks”, which

are shared by many trajectories on the state-transition graph. GL eigenvectors have been used

Fig 4. Representations of LAM for a random graph with a hierarchical community structure. (A) A structure of an

example random graph (400 nodes) and three hierarchical levels of communities. (B) Pattern overlaps of attractors in LAM.

(C) Pattern correlation matrices between attractors in LAM. (D) The explained variance ratio in linear regressions of

pattern overlaps by various numbers of GL eigenvectors. The color indicates the value of α. (E) Average pattern correlations

between attractor patterns of node pairs in each hierarchy. A level-h pair is in the same level-h community and not in the

same level-(h+1) community if h<H.

https://doi.org/10.1371/journal.pcbi.1009296.g004
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to identify bottlenecks through graph segmentation. We tested whether representations in

LAM can also be used for subgoal finding by comparing the results between LAM and GL.

To identify the bottlenecks, we calculated the “novelty index” of each node, which measures

the expected changes of representations caused by the movements from a node to surrounding

nodes (for the mathematical definition, see Methods: Definition of the novelty index for sub-

goal finding). In hierarchical reinforcement learning, subgoals are treated as pseudo-rewards

for agents. It is biologically natural to treat novelty as a pseudo-reward because dopamine cells

are activated by not only reward but also novelty [40]. With GL, we constructed low-dimen-

sional representations of nodes from GL eigenvectors with low eigenvalues (Laplacian eigen-

map)[29]. On the other hand, with LAM, the activity patterns in the attractor states were

directly used as representations.

Fig 5. Image segmentation by LAM. (A) Conversion of images into a weighted graph. We regarded each pixel as a node and

determined link weights by spatial proximity and similarity of RGB values. (B,E) Original hi-resolution images used for the

segmentation task. We used down-sampled images for the construction of graphs. (C,F) Pattern overlaps obtained after the

simulation of LAM with different values of α. (D,G) Representative GL eigenvectors corresponding to segments obtained by

LAM.

https://doi.org/10.1371/journal.pcbi.1009296.g005
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With GL, the novelty index successfully detected the nodes located at the bottlenecks (door-

ways) between distinct compartments (Fig 6A). Furthermore, the sensitivity of bottleneck

detection was controlled by the dimension of representation vectors, and the use of a single

eigenvector with a small eigenvalue (Fiedler vector) extracted the narrowest bottlenecks, and

higher dimensional representations enabled the detection of other bottlenecks. We obtained

an equally good performance with LAM (Fig 6B). In LAM, the auto-associative weight α regu-

lates the number of active GL eigenvectors in representations; hence, it changes the sensitivity

of bottleneck detection. This result demonstrates that novelty detection in LAM enables multi-

resolution subgoal finding comparable to GL eigenvectors. The idea of using novelty has been

suggested in the literature on hierarchical reinforcement learning [36] but LAM provides a

more biologically plausible mechanism based on a neural network.

Chunked sequential activities in asymmetric LAM

So far, we have analyzed attractor patterns in LAM with symmetric links. Next, we show the

dynamic properties of asymmetric LAM. We constructed an asymmetric LAM with a ring-

shaped graph in which link weights were slightly stronger in one direction than in the opposite

direction (Fig 7A). We simulated the neural activity while continuously changing the value of

the auto-associative weight α (Fig 7B, top). The network generated a sequential activity in

which embedded memory patterns were consecutively retrieved at a variable speed (Fig 7B, bot-

tom). Rapid state transitions occurred at specific moments when the value of α became negative

and close to -1 (Fig 7D), at which the distribution of pattern overlaps was maximally expanded

(Fig 7C). This result indicates that negative auto-associative weights in asymmetric LAM not

only generate macroscopic representations for large communities but also increase the sensitiv-

ity to asymmetricity in link weights and facilitate sequential transitions across memories.

Fig 6. Subgoal finding by novelty detection with representations in LAM. (A) Subgoal finding using low-dimensional (1, 2,

or 3) representations constructed from graph Laplacian eigenvectors. The color indicates the novelty index for each node. (B)

Subgoal finding using representations in LAM obtained by different values of α.

https://doi.org/10.1371/journal.pcbi.1009296.g006
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Motivated by this dynamic property and the relationship between LAM and GL, we exam-

ined whether the sequential activities in asymmetric LAM are chunked according to the com-

munities in hetero-associative links. For the simulations, we specifically focused on the

hippocampal theta sequences in which chunking was experimentally observed [32]. We

assumed a virtual animal running on a ring-shaped track, and modeled the hippocampus of

the animal by asymmetric LAM with a ring-shape hetero-associative link structure (Fig 8A).

We simulated the neural activities of LAM with a fixed parameter α = −0.9 while regularly

stimulating a cell assembly encoding the current location of the animal. Using this procedure,

we generated repeated sequential activities along the ring which resembled theta sequences

(Fig 8B).

In this model, we tested three hetero-associative link structures (see S8 Fig for details of

structures). In a uniform ring structure without chunks (Fig 8C), sequential activities propa-

gated homogenously (Fig 8F and 8I). When the structure had local bottlenecks (Fig 8D),

sequential propagation was constrained at the bottlenecks (Fig 8G and 8J). This result is analo-

gous to that of the symmetric LAM with a four-room graph (Fig 2K). Finally, when the struc-

ture was chunked by local over-representations (Fig 8E) which were implemented as densely

connected nodes, sequential propagation was also chunked at over-represented locations and

the representations strongly correlated within chunks (Fig 8H and 8K). These effects resemble

the chunking of theta sequences observed in animal experiments (Fig 8L) [32]. Although both

the bottleneck model and the over-representation model exhibited chunking effects, the over-

representation model was particularly consistent with the experimental observation because

theta sequences were segmented at salient landmarks and rewards [32] which are over-repre-

sented by hippocampal place cells [41,42]. This result demonstrates that LAM provides a uni-

fied mechanism for graph-based representations [6,7] and chunking of sequential activities

[32].

Discussion

In this paper, we proposed Laplacian associative memory (LAM), an extension of Hopfield-

type network models to compute community structures in hetero-associative links. While

structural segmentation has been attempted by hierarchical networks with different time

Fig 7. Parameter-dependent sequential activities in asymmetric LAM. (A) A ring structure of hetero-associative links for the

simulation of asymmetric LAM. Hetero-associative weights were biased towards one direction. (B) The time course of α (top)

and pattern overlaps (bottom) in the simulation of asymmetric LAM. Negative pattern overlaps were truncated to zero. (C) Peak-

aligned mean pattern overlap distributions in different ranges of α. (D) Mean speed of the peak shift of the pattern overlap

distribution in different ranges of α.

https://doi.org/10.1371/journal.pcbi.1009296.g007
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Fig 8. Chunked sequential activities in asymmetric LAM. (A) Schematics for the simulation setting. (B) Patten overlaps of

simulated neural activities in the uniform model. The red dotted line indicates the actual location of the virtual animal. (C-E)

Schematics of the hetero-associative link structure. A uniform ring (C), a ring chunked with local bottlenecks (D), and a ring
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constants [43], our model provides a novel framework for multiscale information processing

in a single network and accounts for experimentally observed graph-based representations

[6,7]. Furthermore, we showed that LAM with asymmetricity can generate chunked sequential

activities that reproduce experimentally observed chunking of theta sequences [32]. Notably, a

model parameter crucial for segmentation can be interpreted as the strength ratio of local

(assembly specific) and global (non-specific) inhibitory feedback. This interpretation offers a

novel insight into the computational roles of inhomogeneous neuromodulations of interneu-

ron circuits, which has been the focus of recent experimental studies [30,31].

We interpreted the model parameter α which controls the scale of the representation as a

balance between global and local inhibition (Eq (3)). In light of the recent experimental evi-

dence, we further speculate on the specific circuit mechanisms that regulate the parameter α.

In the visual cortex, somatostatin-expressing (SOM) interneurons and parvalbumin-express-

ing (PV) interneurons are considered to serve as anatomically global and local inhibitory feed-

back, respectively [44]. Furthermore, the cholinergic activation of vasoactive intestinal

peptide-expressing (VIP) interneurons selectively inhibits SOM interneurons, which changes

the balance between SOM and PV interneurons [30,31]. Therefore, it seems reasonable to

hypothesize that acetylcholine elicits a local-inhibition-dominant (PV-dominant) state in cor-

tical circuits and hence generates the macroscopic representations corresponding to large

communities. This hypothesis is consistent with the computational model of cortical inference

in which acetylcholine signals uncertainty [45] because acetylcholine creates mixed and

ambiguous representations over many states. However, our model offers a novel prediction

that the uncertainty of the inference (expansion of probabilistic distributions) is constrained

by communities in the graph structure behind the experience. Our hypothesis also predicts

that the malfunctioning of PV interneurons results in a deficit of processing uncertainty and

macroscopic information, and difficulty of transition between states. This may be consistent

with symptoms of schizophrenia and its likely cause [46–48]. These possibilities should be pur-

sued by more specific and detailed modeling and fitting of the experimental data.

We used graph-based representations in LAM for the subgoal findings in HRL [8,9].

Another way to perform reinforcement learning with graph-based representations is to use a

successor representation [49]. Successor representation provides a prediction of near-future

state occupancy from current states, which is useful for value estimation, and has been shown

to be consistent with many experimental findings in hippocampal information representations

[10], including representational similarity within community structures shown in this study.

The representations in our model share similar properties with successor representation as its

eigendecomposition yields GL eigenvectors [10] and modifying the timescale of representation

results in changing eigenvalues. Therefore, we expect a theoretical connection between the

successor representation and our model. However, we note that our model directly exhibits

the Fiedler vector in α�−1, but the successor representation cannot provide such representa-

tion in any parameter setting (see Methods: eigenvalues of successor representations). There-

fore, in the current form, there is a small quantitative difference between the representations

in our model and the successor representation; hence, our model does not directly support

chunked with local over-representation (E). The details are shown in S8 Fig. (F-H) Mean pattern overlaps at each actual location of a

virtual animal in the simulation of a uniform model (F), a bottleneck model (G), and an over-representation model (h). We

truncated negative pattern overlaps to zero in these figures. (I-K) Correlations between mean pattern overlaps at different locations

in the simulation of a uniform model (I), a bottleneck model (J), and an over-representation model (K). The white dotted lines in G,

H, J, and K indicate chunk borders (bottlenecks or over-representations). (L) Experimental data showing segmentation of decoded

spatial representations in theta sequences. The labels indicate landmarks on the track. SOM: start of maze, T1 and T2: turns, TC: top

corner, F1 and F2: feeders, BC: bottom corner. The image in L was reproduced with permission from ref. [32], Springer Nature.

https://doi.org/10.1371/journal.pcbi.1009296.g008
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value estimation. However, the advantage of our model is the clear interpretation of the cir-

cuit-level mechanism in contrast that the circuit-level dynamics for computing successor

representation are still unknown. Which model better explains the experimental observations

and whether our network model (with some modifications) exhibits successor representation

is an interesting open problem.

In asymmetric LAM, we found that negative auto-associative weights facilitate sequential

transitions across memory patterns. Previously, we had found that negative auto-association

significantly increased the sensitivity of correlated attractors to external perturbation [23]. We

speculate that the changes in the propagation speed presented here depend on a similar mech-

anism. If the auto-association is strongly positive, attractors are stable and invulnerable to

directional biases in link weights. However, as α approaches -1, the attractors are gradually

instabilized and become sensitive to weight biases and external perturbations. This property

suggests that macroscopic representations are dynamic in the brain, and are unlikely to serve

as robust working memory as conventional attractor networks [20,24,25].

We found that both local bottlenecks and over-representations induce chunking of sequen-

tial activities in asymmetric LAM. The over-representation model is particularly interesting

because it accounts for the role of salient landmarks and rewards that are over-represented by

place cells [41,42]. We may be able to apply a ring-shaped structure with two over-representa-

tions for modeling the typical experiments in which animals run back and forth on a 1-D track

to obtain rewards at both ends, considering that many place cells are direction-selective in

such experimental settings [50]. In contrast, to the best of our knowledge, the effect of bottle-

necks on hippocampal sequential activity has not been tested experimentally. An adequate

design of bottlenecks does not seem to be trivial in spatial navigation tasks because animals

may recognize spatial bottlenecks as salient landmarks that would be over-represented in the

brain. A proper design of the task structure requires careful control of the saliency of each

state.

The simple model based on the asymmetric LAM produced sequential activities similar to

chunked hippocampal theta sequences [32] (Fig 8). However, hippocampal circuits generate

more complex oscillatory dynamics, which are also likely to contribute to segmentation. For

instance, in hippocampal replays of spatial trajectories, a boundary of chunks (a bifurcating

point) in the spatial structure is locked to troughs of LFP power in concatenated sharp-wave

ripples [33]. Furthermore, hippocampal circuits repeat convergence to and divergence from

discrete attractors every gamma cycle during sharp-wave ripples[16]. Our simplified model

cannot address the relationship between complex oscillatory dynamics and segmentation. A

detailed network model involving realistic spiking neurons and inhibitory circuits is necessary

to study such a relationship.

In this work, we manually tuned the values of parameters such as the number of neurons N,

sparsity p, and additional inhibition γ. While the relationship between individual parameters

and the performance of the conventional Hopfield models has been theoretically investigated

[12,35,51,52], we have not fully understood the parameter dependence of the performance of

LAM. Further theoretical analyses of the model are required to determine optimal parameter

setting. Such an investigation may reveal the existence of other interesting states of the model

that were not addressed in this study.

Previously, the processing of hierarchical knowledge was implemented in associative mem-

ory models by embedding artificially correlated memory patterns [53]. Such models success-

fully reproduced the dynamics of hierarchical information processing in the temporal visual

cortex [54,55]. The relationship between our model with hetero-associative links and the previ-

ous model with correlated memory patterns is currently unclear, and worth exploring. If simi-

lar graphical computation is possible with correlated memory patterns, the brain may perform
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graphical computation based not only on temporal association (hetero-associative links in our

model) but also on semantic similarity between items (correlation between memory patterns).

However, we emphasize that our finding that associative memory networks can autonomously

compute mathematically well-defined communities in complex graphs was not known, because

previous models tested only simple structures and negative auto-association was not considered.

The mechanism proposed in this paper provides a novel method for solving an arbitrary

eigenvalue problem by using associative memory models. In the present model, we con-

structed hetero-associative weights from the normalized adjacency matrices of the graphs.

However, the proposed dynamical mechanism to solve the eigenvalue problem is generic and

does not depend on this specific condition. For example, if we employ a covariance matrix

between encoded variables for a hetero-associative weight matrix, a network is theoretically

expected to perform principal component analysis. Because eigenvalue problems ubiquitously

appear in applied mathematics and machine learning, other computational methods may also

be mapped to brain functions through a similar mechanism. Our model suggests much more

powerful computing ability of associative memory models than previously thought and may

provide a bridge between artificial intelligence and brain science.

Methods

Definition and mathematical properties of graph Laplacian

Let us assume a symmetric graph that has an adjacency matrix A whose element Aij denotes the

existence of an edge with 0 and 1 (unweighted graphs) or the weight of the edge (weighted

graphs) between node i and node j. We also define a degree matrix D, in which the diagonal ele-

ments are degrees (the number of edges connected to each node) di = ∑jAij and other elements

are zero. The graph Laplacian is a matrix defined as L= D−A. There are two ways of normaliza-

tion: a symmetric one Lsym ¼ D� 1
2LD� 1

2 ¼ I � D� 1
2AD� 1

2 and an asymmetric one Lasym = D−1L =

I−D−1A (I is an identity matrix). These two matrices have similar properties qualitatively [28].

An important characteristic of the graph Laplacian matrix is that its eigenvectors provide

optimal graph segmentation. Here optimality is defined by the min-cut criterion that prefers a

two-fold division of a graph obtained by cutting the minimum number of edges. It has been

proven that min-cut graph segmentation can be performed by solving the generalized eigen-

value problem Ly = λDy, or equivalently, eigenvectors of normalized graph Laplacian Lsym and

Lasym [27,28]. The sign of each element in the eigenvector y indicates a segment to which each

node should be assigned, and multiple eigenvectors correspond to the two-fold segmentation

at levels, depending on their eigenvalues. The eigenvector with the second smallest eigenvalue

(Fiedler vector) is regarded as the best non-trivial solution which corresponds to the largest

community structure (which achieves minimum cut) in the graph. Eigenvectors with larger

eigenvalues are suboptimal solutions perpendicular to other eigenvectors, and tend to subdi-

vide large communities into subclusters.

Another useful interpretation of graph Laplacian eigenvectors is low-dimensional represen-

tations of nodes in the graph which is called the Laplacian eigenmap [29]. The generalized

eigenvalue problem Ly = λDy gives perpendicular solutions for miny yTLy subject to yTDy = 1

and the eigenvalue indicates the minimized value. Because of the relationship

yTLy ¼
1

2

X

i;j

Aijðyi � yjÞ
2
; ð10Þ

minimization of yTLy can be regarded as assigning values yi to nodes such that strongly con-

nected nodes are represented by close values. In this sense, low-dimensional representations
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constructed from graph Laplacian eigenvectors with low eigenvalues capture the graph struc-

ture through their similarity, which is an appropriate property for nonlinear dimensionality

reduction.

Analysis of the energy function of LAM

Here we consider a symmetric normalization model in which hetero-associative links are con-

structed as H ¼ D� 1
2AD� 1

2. As in the main text, the energy function is

E ¼ �
1

NV

XN

i¼1

XN

j¼1

wijxixj; ð11Þ

We define a pattern overlap

mm ¼
1

NV

XN

i¼1

~xmi xi; ð12Þ

and mean activitym0 ¼ N � 1
PN
i¼1
xi. By substituting wij defined in Eq (2), we can rewrite the

energy function using the pattern overlaps as

E ¼ �
XP

m¼1

XP

v¼1

Hmvm
mmv � a

XP

m¼1

ðmmÞ
2
þ ðaþ 1ÞgV � 1ðm0Þ

2
: ð13Þ

By using the pattern overlap vector m = (m1,. . .,mP)T and symmetric normalized graph

Laplacian Lsym = I−H, the energy function can be written in vector form:

E ¼ mTLsymmþ ðaþ 1Þ½� mTmþ gV � 1ðm0Þ
2
�: ð14Þ

By rescaling m by the degree matrix D as ~m ¼ D�
1
2m, we further obtain

E ¼ ~mTL ~m þ ðaþ 1Þ½� ~mTD ~m þ gV � 1ðm0Þ
2
�; ð15Þ

where L is unnormalized graph Laplacian.

To see the relationship with graph Laplacian eigenvectors more quantitatively, we expand

the overlap vector m by a linear combination of eigenvectors of the symmetric normalized

graph Laplacian ϕk (with corresponding eigenvalues λk) as

m ¼
XP

k¼1

ckϕk: ð16Þ

Then, the energy function can be written as

E ¼ �
XP

k¼1

ðckÞ
2
½aþ 1 � lk� þ gV

� 1ðaþ 1Þðm0Þ
2
: ð17Þ

If γ = 0, the minimization of this energy requires ck6¼0 if λk<α+1, which gives the approxi-

mate threshold for the activation of an eigenvector ϕk in the representation (note that the

actual threshold can be shifted because of γ>0).

Turing instability analysis of LAM

For the analysis, we first replaced the step function Θ(x) in Eq (1) by a differentiable monoton-

ically increasing function f(�x) that converges to Θ(x) in the limit of �!1 (e.g. a logistic
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function f(�x) = (1+exp(−�x))−1). As in the main text, we define the pattern overlap as

mm ¼
1

NV

XN

i¼1

~xmi xi: ð18Þ

From Eqs (1)(2), the dynamics of overlaps can be obtained as

_mr ¼ � mr þ
1

NV

XN

i¼1

~xri f �V � 1
XP

m¼1

XP

v¼1

ðadmv þ HmvÞ
~xmi m

v

 !

ð19Þ

Next, with vectors m = (m1,. . .,mP)T, ~ξ i ¼ ð~x1
i ; . . . ; ~xPi Þ

T
, and the hetero-associative weight

matrix H = (Hμν)1�μ�P.1�ν�P, we obtain a vector representation as

_m ¼ � mþ
1

NV

XN

i¼1

~x ifð�V
� 1~xTi ðaIþHÞmÞ ð20Þ

where I denotes the identity matrix. When N and P are sufficiently large and the memory pat-

terns are random, m = 0 is an equilibrium point for this dynamical equation. Furthermore, in

this condition, the matrix 1

NV

PN
i¼1

~ξ i~ξT
i becomes a correlation matrix for random memory pat-

terns, which can be approximated by an identity matrix. Therefore, we obtain the following

equation by linearizing f(x) around m = 0:

_m ¼ � mþ �V � 1f 0ð0Þ½ðaþ 1ÞI � L�m ð21Þ

Here, we defined L = I−H (either symmetric or asymmetric normalized graph Laplacian).

Finally, we expand m with eigenvectors ϕn (n = 1,� � �,P) of matrix L as follows

m ¼
XP

n¼1

dnexpðbntÞϕn ð22Þ

Substituting this into the linearized equation yields

XP

n¼1

½ðaþ 1 � lnÞ�V
� 1f 0ð0Þ � 1 � bn�dnexpðbntÞϕn ¼ 0 ð23Þ

where λn is the eigenvalue of ϕn. This equation has non-trivial solutions (dn6¼0) only if βn = (α
+1−λn)�V−1f0(0)−1, which gives exponential growth rates along each eigenvector around m =

0. If there exists a positive growth rate, the network becomes unstable along the corresponding

eigenvectors; otherwise the network is stabilized at m = 0. In the limit of �!1 (f(�x)!Θ(x)),
the sign of βn is solely determined by the sign of α+1−λn. This result suggests that the overlap

vector m is activated (instabilized) along the k-th eigenvector of the graph Laplacian matrix L

if α>λk−1 (λk is the eigenvalue for the k-th eigenvector).

Simulations of the network model

In the numerical simulations, we used the decomposed asymmetric normalization model

defined by Eq (3) unless specified otherwise. However, we decomposed only the global inhibi-

tion terms because the decomposition of local inhibition did not alter the model behavior.

Therefore, we did not specify the value of αmax in the simulations. We first initialized activities

using one of the memory patterns (xi½0� ¼ x
m

i ) and updated activities using a discretized
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version of Eq (1):

xi½t þ 1� ¼ xi½t� þ Z � xi½t� þY
Xn

j¼1
wijxj½t� þ ei½t�

� �h i
; ð24Þ

where ei[t] is an external input applied in simulations in Fig 8. We used η = 0.01 for simula-

tions with symmetric graphs (Figs 2–6) and η = 0.1 for the simulations of the sequential activi-

ties (Figs 7 and 8). The number of neurons was N = 30000 for image segmentation tasks, and

N = 10000 for all other simulations. The additional inhibition parameter was γ = 0.6 for image

segmentation and simulations of sequential activities, and γ = 0.3 for all the other simulations.

Sparsity p was 0.1 (approximately 10% of neurons are active in each pattern) throughout the

study unless specified otherwise.

Attractor patterns of the network model with symmetric graphs were obtained by simulat-

ing 3,000 time-steps. The simulations of sequential activities in Fig 7 was performed for 10,000

time-steps. Simulations of sequential activities in Fig 8 were performed for 30,000 time-steps

and repeated three times using different random seeds for each setting. We averaged the mean

pattern overlaps at each location and the correlations between mean pattern overlaps over

those three trials. We truncated the negative mean pattern overlaps to zero in this calculation.

We counted the number of active patterns by counting the number of μ that satisfies both

conditionsmμ>0.05 andmm > 1

2
maxm0 mm0 .

Settings for image segmentation

For image segmentation tasks, we took images from pxhere (https://pxhere.com/). We

trimmed and down-sampled the images so that they contained 1000–1500 pixels (e.g.

P�1000). We note that the images shown in the figures are the ones before down-sampling.

We constructed link weights by the same way with Shi & Marik (2000) [27]:

Aij ¼
exp �

kFi � Fjk
2

2

sI
�
kXi � Xjk

2

2

sX

 !

; if kXi � Xjk2
< r

0 ; otherwise

ð25Þ

8
><

>:

where vectors Fi and Xi denote the RGB value (normalized between 0 and 1) and the spatial

location of pixel i, respectively. The parameters were σI = 0.1, σX = 4, r = 5. After setting the val-

ues, we performed asymmetric normalization of the weights to obtain hetero-associative

weights.

Generation of random graphs

We used the stochastic block model (SBM) [38,39] to generate random graphs with commu-

nity structures. In SBM, nodes are separated into several groups and the connection probabili-

ties within and between groups are given by a matrix. For example, a connection probability

matrix for a graph with three groups can be expressed as

0:9 0:1 0:05

0:1 0:9 0:05

0:05 0:05 0:9

0

B
@

1

C
A: ð26Þ

This matrix indicates that the connection probability within the same group is 0.9, the con-

nection probability between groups 1 and 2 is 0.1, and the connection probability is 0.05 for

the other combinations.
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Hierarchical community structures were generated as follows. We set the following parame-

ters: the number of nodes P, number of hierarchiesH, number of divisions at each hierarchyD,

baseline connection probability q, and probability ratio � (�<1). At the root of the hierarchy (level

0), all of P nodes were assigned to a single group. At each of the lower levels, we hierarchically

divided each group intoD subgroups (assignment of each node was uniformly random). Accord-

ingly, there wereDH groups in the bottom level of hierarchy (level H), and we defined SBM for

these bottom-level groups. The connection probability within the same bottom-level group was q,
and connection probabilities between groups in the same upper-level group were decreased pro-

portionally as �H−hq for level h. For example, in the settingH =D = 2, there were four groups at

the bottom level and the connection probability matrix between them was given as

q �q �2q �2q

�q q �2q �2q

�2q �2q q �q

�2q �2q �q q

0

B
B
B
B
@

1

C
C
C
C
A
: ð27Þ

In our simulations, we varied the parameters P,H,D while we fixed two parameters: the

average degree c = 25 and the probability ratio � = 0.1. We chose these values based on the the-

oretical detectability of communities in a simple setting [39]. We derived q from the other

parameters as follows. The expected number of connections from a node within the same bot-

tom-level community is

P
DH
q: ð28Þ

The expected number of connections additionally generated at the hierarchical level h is

ðDH� h � DH� h� 1ÞP
DH

�H� hq: ð29Þ

Therefore, the average degree c satisfies

c ¼
P
DH
qþ

XH� 1

h¼0

DH� h� 1ðD � 1ÞP
DH

�H� h q: ð30Þ

This yields the setting of q in our simulation

q ¼
cDH

P
1þ ðD � 1Þ

XH� 1

h¼0

DH� h� 1�H� h

" #� 1

: ð31Þ

Definition of the novelty index for subgoal finding

When we used GL eigenvectors, we constructed low-dimensional embedding of nodes from

GL eigenvectors with low eigenvalues (Laplacian eigenmap) [29]. We regarded these low-

dimensional vectors as representations of the nodes. We defined similarity between two nodes

s(μ, ν) by cosine similarity between the two representation vectors. The novelty index of node

μ is defined as

NIðmÞ ¼
1

2

X

v

Tm!vð1 � sðm; vÞÞ; ð32Þ

where Tμ!ν denotes the transition probability from μ to ν in a random walk on the graph

(which is equivalent to an element in D−1A). The novelty index NI(μ) spans from 0 to 1 and
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indicates the average expected change of information representations that an agent experi-

ences in a transition from node μ. When we use LAM instead of GL eigenvectors, individual

nodes are represented as attractor patterns triggered by memory patterns corresponding to the

nodes, and similarity s(μ, ν) is the correlation between the two attractor patterns.

Asymmetric Laplacian associative memory and the model of a virtual

animal

To construct asymmetric hetero-associative weights, symmetric graphs were converted into

mutually connected asymmetric weighted graphs. We set the weight of the asymmetric links in

the biased direction (including diagonal connections) to 110, and the weight in opposite direc-

tions to 90. The weight of links horizontal to the biased direction (radial connections) was 100.

After constructing the adjacency matrices, we performed asymmetric normalization as in sym-

metric graphs.

In the simulation in Fig 8, we represented the current location of the virtual animal on the

track by a continuous value z[t] ranging from 0 to 90 which corresponds to 90 nodes in the

uniform ring-shape graph (uniform model). The velocity z[t+1]−z[t] was constant; however,

we resampled the velocity from a range [0.02, 0.04] at the timings determined by the Poisson

process (the mean interval was 1000 time-steps). We determined the index of stimulated pat-

tern by truncating z[t] to an integer. We stimulated the network every 150 time-steps (the uni-

form model and the over-representation model) or 200 time-steps (the bottleneck model). The

amplitude and the length of stimulation were 0.3 and 50 time-steps, respectively.

In the bottleneck and over-representation models, we connected additional nodes at the

side of the uniform ring-shape graph (as shown in S8 Fig). We did not stimulate patterns cor-

responding to additional nodes. We calculated the pattern overlap for each location by averag-

ing the nodes in the central ring and additional nodes at the same location.

Eigenvalues of successor representation

Successor representation is defined for a pair of states s and s0 as

Mðs; s0Þ ¼ E
X1

t¼0

gtIðst ¼ s
0Þjs0 ¼ s

" #

; ð33Þ

where γ is the discount factor. We consider a matrix of successor representation M, transition

probability matrix T, and Lasym = I−T is an asymmetric normalized graph Laplacian. The

eigenvectors and eigenvalues of Lasym are defined as ϕi and l
L
i , respectively. Then, they satisfy

Lasymϕi ¼ l
L
i ϕi: ð34Þ

Using the relationship M = (I−γT)−1 [10,49], we can rewrite this equation with a successor

representation matrix:

Mϕi ¼ ð1þ gðl
L
i � 1ÞÞ

� 1ϕi: ð35Þ

Therefore, the eigenvectors of the successor representation matrix are equivalent to those of

the graph Laplacian, and the eigenvalues are l
M
i ¼ ð1þ gðl

L
i � 1ÞÞ

� 1
. This relationship

becomes l
M
i ¼ ðl

L
i Þ
� 1

in the limit of γ!1, and l
M
i ¼ 1 in the limit of γ!0. Therefore, although

the contribution of the Fiedler vector increases as γ goes to 1, it is impossible to have l
M
i > 0

for only the Fiedler vector if the graph has a sufficiently complex structure and l
L
i is continu-

ously distributed.
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Supporting information

S1 Fig. Time evolutions of pattern overlaps in the simulation setting in Fig 2.

(TIF)

S2 Fig. Simulations of LAM with different numbers of neurons. Pattern overlaps of example

attractors (left) and pattern correlation matrices (right).

(TIF)

S3 Fig. Simulations of LAM with different sparsity parameter p. Pattern overlaps of example

attractors (left) and pattern correlation matrices (right).

(TIF)

S4 Fig. LAM (symmetric normalization model) extracts multi-scale representations for

community structures. (A) Pattern overlaps of example attractor patterns. (B) Correlation

matrices between activity patterns in the attractor states reached from different trigger stimuli

(nodes). (C) Maximum pattern overlaps obtained by various values of α. (D) Numbers of

active patterns obtained by various values of α. (E) The ratio of variance of overlap distribu-

tions explained by various number of graph Laplacian eigenvectors. The color indicates the

value of α. We note that, in C-E, we averaged values from all attractors reached from different

trigger stimuli. (F-J) Results for Karate-club network. (K-O) Results for compartmentalized

rooms.

(TIF)

S5 Fig. The change of the energy function in the simulation of symmetric normalization

model. (A) The graph used in Schapiro et al. (2013). (B)Karate club network. (C) The four-

room graph.

(TIF)

S6 Fig. Explained variance of pattern overlaps by GL eigenvectors for random graphs with

hierarchical community structures. P,H,D are the number of nodes, the number of hierar-

chy, the number of division in each hierarchy, respectively, Two plots in each setting show

results from two different random seeds (different link structures and different memory pat-

terns).

(TIF)

S7 Fig. Average correlations between attractors of node pairs in each hierarchy of random

graphs with hierarchical community structures. P,H, D are the number of nodes, the num-

ber of hierarchy, the number of division in each hierarchy, respectively, Two plots in each set-

ting show results from two different random seeds (different link structures and memory

patterns). A level-h pair is in a same community in level h and not in a same community in

level (h+1) (the latter condition was not applied if h = H).

(TIF)

S8 Fig. Chunked structures of hetero-associative links used for asymmetric LAM.

(TIF)
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