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Generalized Euler-Lotka equation for correlated cell divisions
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Cell division times in microbial populations display significant fluctuations that impact the population growth
rate in a nontrivial way. If fluctuations are uncorrelated among different cells, the population growth rate is
predicted by the Euler-Lotka equation, which is a classic result in mathematical biology. However, cell division
times can be significantly correlated, due to physical properties of cells that are passed through generations. In
this Letter, we derive an equation remarkably similar to the Euler-Lotka equation which is valid in the presence
of correlations. Our exact result is based on large deviation theory and does not require particularly strong
assumptions on the underlying dynamics. We apply our theory to a phenomenological model of bacterial cell
division in E. coli and to experimental data. We find that the discrepancy between the growth rate predicted by
the Euler-Lotka equation and our generalized version is relatively small, but large enough to be measurable by
our approach.
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Microbial populations in steady, nutrient-rich conditions
tend to grow exponentially. Their exponential growth rate �

can be taken as a proxy for the population fitness and is
therefore a biologically important quantity. In a population
of cells dividing at regular times τ , the population size at a
time T multiple of τ is N (T ) = N (0)2T/τ , so that � = ln 2/τ .
In practice, cell division times of microbial populations sig-
nificantly fluctuate, so that the division time τi of a given
individual i must be considered as a random quantity. As
a consequence, the growth of N (T ) is stochastic. In these
situations, we can still define an exponential growth rate by

� = lim
T →∞

1

T
ln N (T ). (1)

For independent, identically distributed cell division times τi,
the exponential growth rate converges to a deterministic value
and can be computed as a solution of the celebrated Euler-
Lotka equation

2 〈e−�τ 〉τ = 1, (2)

where we denote the average over the distribution p(τ ) of
the division times by 〈 f (τ )〉τ = ∫

dτ p(τ ) f (τ ). We use this
notation also for discrete variables, with the integral appro-
priately replaced by a sum. Equation (2) is a classic result
in mathematical biology. A recent experimental study has
tested its prediction by tracking individual cell divisions in
a microfluidic device [1]. Besides microbial populations, the
Euler-Lotka equation finds important applications in epidemi-
ology, where the factor 2 is replaced by the reproductive
number R0 [2].

Experimental studies have revealed that fluctuations in mi-
crobial cell features are correlated among generations [3–5].
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These correlations are caused by properties of cells that are
passed from mother to daughter. These properties can be phys-
ical such as cell mass, or biological such as gene expression.
Their fluctuations are often controlled to preserve homeosta-
sis, i.e., a stable state of cells across generations. For example,
experimental and theoretical studies provided evidences for an
“adder” mechanism, in which cells attempt at growing their
mass by a constant amount before dividing [4,6,7].

Regardless of the underlying mechanism, generalizing
Eq. (2) to correlated cell divisions has proven to be a hard
problem. One relatively simple case is the “Markovian” sce-
nario where a cell division time conditionally depends only
on that of her mother. Expressions for the growth rate in these
cases have been derived in classic works by Powell [8] and
Lebowitz and Rubinow [9] (see also [10,11]). Alternative ap-
proaches estimate the growth rate by comparing the outcome
of sampling the population forward in time with retrospective
sampling, in which individuals in the final population are
traced back to their ancestors [12–15]. A recent study links
the exponential growth rate � to the asymptotic distribution
of the number of cell divisions � among lineages [16] using
large deviation theory. This approach has the advantage of
neither requiring the Markovian assumption, nor retrospective
sampling.

In this Letter, we introduce a generalized Euler-Lotka
equation [Eq. (2)] which is valid for correlated cell division
times:

lim
�→∞

1

�
ln

〈
e−�

∑�
i=1 τi

〉
{τi}

= − ln 2, (3)

where 〈· · · 〉{τi} denotes an average over sequences {τi} =
τ1, τ2, . . . , τ� of cell division times in independent lineages.
If the τis were uncorrelated, then the left-hand side of
Eq. (3) reduces to the cumulant generating function ln〈eqτ 〉τ ,
and therefore Eq. (3) becomes equivalent to the traditional
Euler-Lotka equation [Eq. (2)]. Equation (3) only requires as
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FIG. 1. Population dynamics represented as a lineage tree. (a) A
microbial population grows in time from a single cell. Nodes (circles)
denote cell division events. Lengths of branches denote the cell
division times τis. One lineage is represented with a thick orange
line. In this case, the population is let to evolve until a fixed time T .
(b) Lineage tree in an alternative ensemble, in which lineages are let
to evolve until they have accumulated exactly � = 4 cell divisions.

hypotheses that population dynamics is at steady state and the
sum of the τis across a lineage satisfies a large deviation prin-
ciple with a convex rate function, which in practice are rather
mild assumptions (see, e.g., Secs. 3.5.6 and 4.4 of Ref. [17]).
Equation (3) can therefore be used to compute the population
growth rate from individual lineages in rather general settings.

We consider a microbial population initially constituted
of a single individual. The population grows in time by a
sequence of cell divisions. We represent the genealogy of the
population by a tree, whose nodes are cell division events and
branches are times between consecutive cell divisions [see
Fig. 1(a)].

We now introduce the concept of a lineage. A lineage is
identified by an individual in the population at time T comple-
mented by its past history, i.e., the number � of cell divisions
separating it from the individual at time zero and the sequence
of cell division times {τi} of all its ancestors [see Fig. 1(a)].
Following Refs. [16,18], we now imagine to randomly select
a lineage by starting from the initial individual and picking at
each division one of the two newborns with equal probability.
With this procedure, a lineage that includes � cell divisions is
chosen with probability 2−�. We approximate the probability
that this randomly selected lineage includes � cell division
events by the empirical frequency p(�; T ) ≈ 2−�N (�; T ),
where N (�; T ) is the number of lineages with � cell divisions
at time T . Since N (T ) = ∑

� N (�; T ), we obtain

N (T ) ≈ 〈2�〉�. (4)

Substituting this expression into the definition of the exponen-
tial growth rate, Eq. (1), we find

� = lim
T →∞

1

T
ln〈2�〉�. (5)

At variance with Eq. (4), Eq. (5) is an exact equality, as the
empirical frequencies 2−�N (�; T ) converge to p(�; T ) in the
limit T → ∞ [16,19].

To make further progress, we introduce some ideas from
large deviation theory [17]. Large deviation theory describes
the leading behavior of probability distributions when a pa-
rameter (like the time T in our case) becomes large. In large
deviation theory, variables such as �, whose average is pro-

portional to T , are called extensive. We associate with �

the intensive variable δ = �/T , whose average tends to a
constant for large T . The large deviation principle for δ is
expressed by

p(δ) � e−T I (δ) (δ). (6)

The function I (δ)(δ) is called the rate function. We use the
notation I (δ) to stress that I is the rate function associated with
the distribution of the variable δ. The symbol “�” denotes the
leading exponential behavior; it can be seen as a shorthand for
I (δ) = − limT →∞[ln p(δ)]/T .

An alternative way of studying asymptotic fluctuations of
intensive random variables is via the scaled cumulant gener-
ating function, defined by

ψ (δ)(q) = lim
T →∞

1

T
ln〈eqT δ〉δ. (7)

The Gartner-Ellis theorem states that, if the rate function is
convex, it is related with the scaled cumulant generating by a
Legendre-Fenchel transform

I (δ)(δ) = sup
q

[qδ − ψ (δ)(q)]. (8)

Since the Legendre-Fenchel transform is an involution, it also
holds that ψ (δ)(q) = supδ [qδ − I (δ)(δ)].

We now return to Eq. (4) and briefly summarize the main
result of Ref. [16]. Assuming that δ satisfies a large deviation
principle, we obtain

� = lim
T →∞

1

T
ln

∫
dδeT [δ ln 2−I (δ) (δ)]. (9)

In the limit T → ∞, the integral can be evaluated with the
method of steepest descent, obtaining

� = sup
δ

[δ ln 2 − I (δ)(δ)]. (10)

Equation (10) is the central result of Ref. [16]. An alternative
way to obtain it is to directly identify the expression of the
scaled cumulant generating function in Eq. (5):

� = ψ (δ)(ln 2). (11)

Equation (10) then follows by expressing the scaled cumulant
generating function in terms of the rate function by means of
the Gartner-Ellis theorem.

Application of this theory requires knowledge of the
asymptotic distribution of �, or its intensive counterpart δ.
However, in analogy with the Euler-Lotka equation [Eq. (2)],
it would be desirable to express � in terms of the distribu-
tion of division times and its correlations. To this aim, we
consider a case in which, rather than letting the population
grow until a given time T , each lineage is let to grow until
it has accumulated exactly � cell divisions [see Fig. 1(b)].
In this alternative ensemble, � is fixed whereas T fluctuates
among lineages. In this case, we consider T as an extensive
random variable, since its average grows linearly with the
fixed large parameter �. We similarly associate with T the
intensive variable t = T/�. We expect t to satisfy as well a
large deviation principle:

p(t ) � e−�I (t ) (t ). (12)
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In the language of probability theory and in particular of
queuing theory, �(T ) is called a counting process and T (�)
its inverse. A useful result [20] states that the rate functions of
their associated intensive variables, δ and t , respectively, are
related by

I (δ)(x) = xI (t )(1/x). (13)

Note that this is the result that one would obtain by simply
applying the rule for a change of variable in the large deviation
form of the probability distribution.

We now substitute this result into Eq. (10), obtaining

� = sup
δ

{
δ

[
ln 2 − I (t )

(
1

δ

)]}
, (14)

and, by applying the Gartner-Ellis theorem,

� = sup
δ

{
δ

[
ln 2 − sup

q

(q

δ
− ψ (t )(q)

)]}

= sup
δ

inf
q

[δ ln 2 − q + δψ (t )(q)]. (15)

We assume that the function in square brackets smoothly
depends on δ and q and therefore compute the supremum
and infimum by simply taking derivatives. The extremality
condition with respect to δ is expressed by

ψ (t )(qinf ) = − ln 2. (16)

Substituting this condition back into Eq. (15) yields � =
−qinf , so that we rewrite Eq. (16) as

ψ (t )(−�) = − ln 2. (17)

Upon substituting the definition of the scaled cumulant gener-
ating function, Eq. (7), into Eq. (17), we obtain the generalized
Euler-Lotka equation [Eq. (3)], as anticipated.

Taking the derivative in Eq. (15) with respect to q results in

δmax d

dq
ψ (t )(q)

∣∣∣∣
q=−�

= 1. (18)

This equation relates the dominant value of δ with the statis-
tics of the division times and provides another facet to the
generalized Euler-Lotka theory. Equation (18) is best inter-
preted in the simple case of uncorrelated cell divisions, where
it reduces to δmax = 〈τe−�τ 〉−1. If � � 1, the dominant value
of γ is simply its average value, i.e., the inverse of the average
division time. However, for quickly growing population, the
dominant value of δ becomes significantly larger than this
value, as cells that reproduce faster contribute more to pop-
ulation growth.

To illustrate our result, we consider a phenomenological
model of bacterial growth inspired by the adder principle [4].
In the model, each bacterial cell grows in length at a rate α.
The rate α is generated by the formula

α = α0 + c(αM − α0) + σα (1 − c2)ξ, (19)

where αM is the value of α of the mother of the considered
cell. The parameters α0 and σα are the average and variance of
the distribution of α, respectively. The variable ξ is a Gaussian
random variable with zero average and unit variance. The
parameter c controls the degree of correlations between the
growth rate of mothers and daughters.
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FIG. 2. Estimates of the growth rate � in the adder model of
Ref. [4] obtained by the direct definition given in Eq. (1), by the
generalized Euler-Lotka equation (3) (GEL), and by the conven-
tional Euler-Lotka equation (2) (EL). In both panels, parameters
of the growth rate distribution are α0 = 0.0255 min−1 and σα =
0.0027 min−1. The inherited length fraction f is distributed accord-
ing to a Gaussian with mean f0 = 0.5 and standard deviation σ f =
0.03. The added length l follows a lognormal distribution with mean
l0 = 3.21 μm and standard deviation σl = 0.54 μm. (a) Growth rates
of mothers and daughters are uncorrelated (c = 0). (b) Growth rates
of mothers and daughters are positively correlated (c = 0.5). In both
panels, we average over nlin = 5000 lineages and plot the results as
a function of the number of cell divisions � in each lineage. In all
panels, simulations are repeated 20 times; error bars denote standard
deviations computed from these realizations. Details on the direct
numerical estimate of � are presented in the Supplemental Material
[21].

Each cell is characterized by a length sb at birth and sd

at death. The adder model postulates that the added length
l = sd − sb is roughly constant among cells. After division,
a daughter inherits a fraction f of the mother’s length. We
allow for some variability by taking both f and l as random
variables, whose distributions are estimated from experimen-
tal data [4]. The time between cell divisions is expressed by

τ = 1

α ln(sd/sb)
= 1

α ln(1 + l/sb)
. (20)

To understand the dynamics of this model, we first consider
the simple case in which the growth rate α is uncorrelated
across generations, c = 0. In this case, the adder dynamics
causes negative correlations in cell division times. An intuitive
explanation is that cells that grow to a large size tend to have a
long generation time and to give birth to larger cells. These
larger cells, in turn, tend to have a short generation time
because of the dependence of τ on sb in Eq. (20). Since the
traditional Euler-Lotka equation neglects correlations, we ex-
pect it to overestimate � in this case. This idea is confirmed in
Fig. 2(a), which also shows how the generalized Euler-Lotka
equation correctly estimates the directly measured value of �.

We now move to a case in which growth rates are corre-
lated across generations, c = 0.5. This value is compatible
with observation from E. coli experiments [4]. In this case,
the positive correlations induced by the growth rate tend to
counterbalance those caused by the adder model. As a result,
both the traditional and the generalized Euler-Lotka equations
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FIG. 3. Growth rate � estimated from Eq. (2) and Eq. (17)
from the experiments in [22,23]. The experimental data consist of
a number of lineages equal to 65, 54, and 160 for three different tem-
peratures 25◦C, 27◦C, and 37◦C, respectively. Each of these lineages
includes 70 division events. For the EL estimate, we consider all
division events at each temperature. For the GEL estimate, we use all
sublineages of length � = 20 from all lineages at each temperature.
The inset shows the relative difference between the two estimates.

predict a growth rate that is close to the correct one, although
the traditional Euler-Lotka equation slightly underestimates it
[see Fig. 2(b)].

We now test the generalized Euler-Lotka equation on ex-
perimental data from [22,23]. These experiments tracked a
large number of E. coli lineages at different temperatures. Ap-
plying our approach, we find that the generalized Euler-Lotka
equation predicts a lower growth rate than the traditional
Euler-Lotka equation (see Fig. 3). The differences are on the
order of 1% and suggest that the compensatory mechanisms
observed in Ref. [4] are less effective in the experiments by
[22,23]. A direct inspection of the correlation functions of the
cell division times supports this idea (see the Supplemental
Material [21]).

An advantage of our approach is that it allows us to use
the arsenal of techniques from large deviation theory [17] to
compute the scaled cumulant generating function, and thereby
the growth rate via Eq. (3). For example, we apply our theory
to the Markovian case in which the division time conditionally
depends on the maternal division time only, i.e.,

p(τi|τi−1, τi−2, τi−3, . . . ) = p(τi|τi−1). (21)

In this case, one has

〈eq
∑�

i=1 τi〉 =
∫

dτ1 · · · dτ� pτ1 eqτ�

�∏
i=2

eqτi−1 p(τi|τi−1).

(22)

Equation (22) expresses the generating function as an iter-
ated convolution. This iterated convolution is characterized by
the integral kernel K (τi, τi−1) = eqτi−1 p(τi|τi−1). For large �,
the behavior of the left-hand side of Eq. (22) is dominated
by the leading eigenvalue λ(q) of its integral kernel K . In
particular, the definition of the scaled cumulant generating
function, Eq. (7), implies that

ψ (τ )(q) = ln λ(q). (23)

Combining Eq. (3) and Eq. (23) we obtain 2λ(−�) = 1. Call-
ing φ(τ ) the eigenvector associated with this eigenvalue, we
express this result as

φ(τ ) = 2
∫

dτ ′ e−�τ ′
p(τ |τ ′)φ(τ ′). (24)

Equation (24) is a classic result for the Markovian case
[8,9,24]. The eigenvector φ(τ ) can be interpreted as the dis-
tribution of division times that one would measure over the
whole tree, including cells that have not divided yet at time T
[11].

In conclusion, in this paper we derived the generalized
Euler-Lotka equation [Eq. (3)]. This equation describes the
growth rate of populations where cell divisions occur in a
correlated way. We obtained this result by means of a result
in queuing theory [20] that was recently applied in stochas-
tic thermodynamics [25] and to study enzymes replicating
information [26]. We have demonstrated that our result can
be easily applied to lineage data. A comparison with the
prediction of the traditional Euler-Lotka equation permits to
quantitatively assess the impact of correlations on the pop-
ulation growth rate. Due to these properties, we expect the
generalized Euler-Lotka equation to become a useful tool to
analyze lineages in experimental population dynamics.
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