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A B S T R A C T

We present a theory for coupled deformation and liquid permeation in polymer gels, allowing
for large strains and rotations in conjunction with sharp interfaces separating regions of high
and low polymer volume fraction. The theory is applied to pressure-driven liquid flow through
a gel-filled rectangular channel, with the aim of investigating how the elastic and osmotic
properties of the gel influence the resulting permeation process. Apart from streamwise flow
in the direction of the applied pressure drop, the permeation process may involve transverse
flow if the elastic response of the gel allows the normal stress acting on a plane parallel to the
channel walls to be affected by the shear stress acting on the same plane. For certain elastic
energy densities, including those of neo-Hookean and Mooney type, liquid permeation takes
place exclusively in the direction of the applied pressure drop. Otherwise, spanwise permeation
driven by the contribution to the normal stress distributed on planes parallel to the channel
walls is also present. In contrast to the downstream flow, the transverse flow is transient
and is accompanied by changes in composition leading to a nonuniform polymer distribution
across the channel and thereby influencing the downstream flow profile. By analyzing the
instantaneous response of the gel, we determine the driving force for the transverse flow
and show that for strain-stiffening networks the transverse motion of the interstitial liquid is
directed inward from the channel walls and that the polymer network motion spreads outward
from the center of the channel toward the walls. The opposite occurs for strain-slackening
networks. By analyzing the steady-state response, we demonstrate that the applied pressure
gradient leads to nonuniform transverse distributions of polymer chains than can be continuous
or discontinuous. Discontinuous distributions occur for an effective osmotic response involving
attractive interactions and are accompanied by the formation of regions of high and low polymer
volume fraction separated by sharp interfaces. Finally, we provide illustrative examples for a
gel whose elastic and osmotic responses are modeled by the Gent elastic energy density and
the Flory–Huggins mixing energy density, respectively.
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1. Introduction

A polymer gel is a two-component material composed of a cross-linked polymer network and a liquid that fills the interstitial
pace of the network. These materials display unusual and complex behavior due to the coupling between large network distortions
nd liquid permeation. This interplay gives rise to very interesting and complex behaviors, including volumetric phase transition.
hese and other phenomena are discussed elsewhere in the literature. See, for instance, the recent contributions by Dimitriyev et al.
2019), Hennessy et al. (2020), Dušek and Dušková-Smrčková (2020), and Sakai (2020), and the references therein.

In this paper, we present a theory for polymer gels that incorporates the coupling between large strains and rotations, liquid
ermeation, and interface motion. We begin by introducing the basic balances of the theory, namely standard force balance, network
ontent conservation, liquid content balance, and configurational force balance. Thereafter, we introduce a constitutive theory
onsistent with a free-energy imbalance which — in a setting involving only deformation, liquid permeation, and interface motion

combines and ensures the satisfaction of the first and second laws of the thermodynamics.
The bulk constitutive theory developed here is suitable for network elasticity and is based on the classical assumption that the

olid and liquid components of a polymer gel are incompressible, from which we derive the condition needed to ensure that local
hanges of volume and liquid content must accommodate each other. The deformation gradient and the liquid content density at
material point are consequently not independent but rather related by a condition that we call ‘liquid-induced compressibility’.

Under this condition, a gel behaves like a compressible elastic solid whenever its liquid content is allowed to change and like an
incompressible elastic solid otherwise. We treat the liquid-induced compressibility condition as an internal constraint that must
be maintained by reactions with null dissipation rate. Accordingly, we find that the stress is constitutively assigned to within a
pressure-like contribution that is proportional to the chemical potential of the liquid. Moreover, we find that the chemical potential
is given by the sum of two parts, one reactive and other active. An equivalent result was obtained by the present authors (Duda
et al., 2010) on the basis of a multiplicative decomposition of the deformation gradient into elastic and liquid-induced parts. A
similar kind of internal constraint is provided by the temperature-dependent compressibility constraint in which a continuum body
is incompressible under isothermal conditions and compressible otherwise. In this case, as Trapp (1971) and Gurtin and Podio-
Guidugli (1973) show, the reactions necessary to maintain such internal constraint are characterized by an arbitrary pressure-like
field determining the reactive parts of the stress and entropy. We also introduce the decomposition of the total stress in a gel into
network and liquid components. The former component consists of elastic and osmotic contributions and the latter is determined
by the interstitial liquid pressure, which is defined as the pressure that the liquid would have if the network was absent and it had
the same chemical potential it has in the gel. We also find that the interstitial liquid flow is driven by the gradient of the interstitial
liquid pressure.

The interfacial constitutive theory hinges on the assumption that the motion and chemical potential of the liquid are continuous.
This leads to a localized version of the free-energy imbalance that involves the Eshelby stress tensor, which in turn can be
decomposed into network and liquid contributions. Of these, only the former contribution enters the free-energy imbalance. Instead
of discussing the most general constitutive theory compatible with the interfacial free-energy imbalance, we consider a theory
appropriate to situations in which interface motion does not involve dissipation. In combination with the configuration force balance,
this yields the well-known Maxwell coexistence condition.

The governing equations of the theory are obtained by combining the corresponding basic balances and the constitutive relations.
These equations can be formulated in different but equivalent forms depending on the choice of the unknown quantities. As is
suitable for isotropic gels, we adopt a formulation in which the basic unknowns determine the network motion, the interstitial
liquid pressure, and the interface motion. The liquid pressure provides a two-way coupling between mechanics and permeation
since it appears simultaneously in the mechanical force and liquid content balances. The governing equations are presented in both
referential and spatial forms, with the latter applied to investigate liquid permeation through a gel-filled channel. Specifically, we
study the liquid flow through a gel slab of uniform composition placed between two infinite parallel walls and driven by a pressure
drop. We address this problem by adopting an approach similar in spirit to that employed by Coleman et al. (1966) to investigate
the plane Poiseuille flow of incompressible liquids. Accordingly, we stipulate that the motion experienced by the gel network has
the form of an inhomogeneous shearing in the direction of the applied pressure drop followed by an inhomogeneous stretching in
the direction perpendicular to the channel walls. We also allow for the possibility that the state of the gel at a given time may
involve the presence of a pair of planar interfaces symmetrically located with respect to the central plane of the channel. As a
result, the governing equations of the theory simplify to a system involving time-dependent functions of the space variable along
the spanwise direction, except for the pressure that also varies along the streamwise direction, and interface locations that vary only
in time. In accord with these equations, liquid permeation occurs in response to inhomogeneities in the shear and normal network
stress distributed on the planes parallel to the channel walls and, hence, can take place along two directions only, one parallel
and other perpendicular to the direction of the imposed pressure drop. Contrary to the parallel component of the flow, which is
proportional to the applied pressure drop and, hence, is always present, any transverse flow that arises has a transient nature and
depends sensitively on the constitutive response of the network. Moreover, it must be accompanied by network motion to ensure the
satisfaction of the liquid-induced compressibility constraint, thereby triggering changes in the composition of gel until steady state
is reached and the transverse flow ceases. Using these equations, we address aspects of the instantaneous and steady-state responses
of the gel to a suddenly applied pressure drop.

We investigate the instantaneous response with the purpose of establishing the conditions under which transverse liquid flow
tends to occur, as described by the component of the pressure gradient in the direction normal to the channel walls. Since there is
2

insufficient time for liquid permeation to occur in this regime, we show that the gel behaves like an incompressible elastic body
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undergoing an inhomogeneous shear deformation compatible with the distribution of the amount of shear across the channel. It
transpires that the instantaneous response of the gel is determined by its elastic properties and involves simple shear only. We
obtain the amount of shear by the solving, at each shearing plane, the constitutive equation giving the shear stress, which is known,
as a function of the amount of shear. After introducing sufficient conditions for the existence and uniqueness of solutions to this
problem, we conclude that whenever the normal network stress increases with the amount of shear the interstitial liquid is directed
from the walls toward the center of the channel. The opposite occurs when the normal network stress decreases with the amount
of shear. If the shear stress is unaffected by the amount of shear, there is no tendency for the liquid to flow. This is the case for
neo-Hookean and Mooney models for elastic networks.

Regarding the steady-state response, where both elastic and osmotic properties are active, our purpose is to describe the profile
eached by the only nonvanishing component of the liquid flux, namely the component in the direction of, and proportional to,
he applied pressure drop. Bearing in mind that the proportionality factor is determined by the liquid mobility response, which in
urn is an increasing function of the stretch in the direction perpendicular to the channel walls, the problem amounts to obtaining
he profile for that stretch. Assuming that the constitutive relation giving the shear stress as a function of the stretch and amount
f shear can be inverted for the amount of shear, we arrive at a set of equations to be solved for the stretch distribution. These
quations include the extra interfacial condition equivalent to the Maxwell equal area rule expressed in terms of the partial Legendre
ransform of the free-energy density with respect to the shear stress. We establish a necessary condition for a solution to present
nterfaces across which the stretch exhibits a jump discontinuity. This condition hinges upon the nonmonotonicity of the constitutive
xpression that determines the normal network stress. This leads us to address two cases separately, with and without interfaces,
ccording to whether the profile for the stretch is or is not smooth. We also provide illustrative examples by using the Gent and
lory–Huggins models for elastic and mixing contributions to the free-energy density.

The problem of liquid flow through a gel-filled channel under steady-state conditions was investigated by Cogan and Keener
2005) using a description of the gel system distinct from ours. In fact, treating a gel as a mixture of two immiscible components,
amely an elastic polymer network and a Newtonian fluid, Cogan & Keener used mixture theory to derive a set of equations that
ccounted for network deformation, fluid motion, and polymer diffusion within the gel. In their investigation, interfaces emerged by
nalyzing the mentioned equations in the singular limit as the polymer ‘‘diffusion coefficient’’ tends to zero. In contrast, we conceive
gel as a single continuum body consisting of an elastic polymer network hosting an interstitial liquid and used the framework of
odern continuum mechanics to derive a set of equations accounting for network deformation, fluid motion, and interface motion
ithin the gel. To analyze the short-term transition response, we apply methods similar to those used by Zhang and Rajagopal

1992) and Saccomandi (2004) in studies of how an applied pressure drop may induce an inhomogeneous state of shear in an
ncompressible and isotropic elastic slab. Given the prominence of the pressure-induced channel flow problem for understanding
he behavior of liquids, we believe that this may also apply to gels. In a gel-filled channel, the pressure drop drives the flow of the
nterstitial liquid through the deformable polymer network, which otherwise adheres to the channel walls. This analogous problem
as been addressed within the theory of porous media by several authors. See, for instance, Levick (1987), Yang et al. (2002), and
uy et al. (2011), whose works do not consider the deformability of the polymer network. As Nakagaki and Guy (2008) and Guy
t al. (2011) observe, liquid flow through a gel-filled channel is a subject of considerable interest for various biological materials.
ee also the review by Mogilner and Manhart (2018). More recently, Loessberg-Zahl et al. (2019) used microfluidic devices to study
low through gels.

Recognizing the unique behavior of polymer gels stemming from the interplay of large deformation, fluid permeation, and volume
ransition, we believe that the present work may find applications in many fields. One such field is biology in view of two concurrent
bservations:

• the intracellular and extracellular spaces in living systems are generally occupied by gel-like materials such as the cytoplasm
and the interstitium;

• fluid flows are important in a myriad of cellular processes, including the transport of ions and proteins, differentiation,
proliferation, and gene expression.

ee, for instance, the reviews of Mogre et al. (2020) and Wiig and Swartz (2012). Of course, these potential applications may require
he extension of our framework to account for anisotropy and time-dependence of the network response, the multicomponent nature
f the network and interstitial fluid, and other salient factors.

The remainder of this paper is organized as follows. After some essential preliminary material outlined in Section 2, the basic
aws of the theory are formulated in Section 3 and the constitutive theory is presented Section 4. The referential and spatial versions
f the final governing equations are set forth in Section 5 and Section 6, respectively. The problem of pressure-driven liquid flow
hrough a gel-filled channel is formulated and solved in Section 7. A cursory discussion regarding the extension of the present work
o account for network anisotropy and different flow configurations is presented in Section 8. Concluding remarks are contained in
ection 9.

. Preliminaries

We consider a material body  composed by a polymer gel and identified with the region it occupies in a fixed reference
onfiguration. At time 𝑡, the body  is divided into complementary subregions −(𝑡) and +(𝑡) by a sharp interface (𝑡). At each
oint 𝑿 of (𝑡), we write 𝑈 (𝑿, 𝑡) for the scalar normal-velocity of (𝑡) in the direction of the unit normal n(𝑿, 𝑡) directed outward

−

3

rom  (𝑡).
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To describe the shape and composition of  at time 𝑡, we introduce the fields 𝒚, 𝐶𝑝, and 𝐶, which assign to each material point
in ⧵(𝑡) the corresponding spatial location 𝒙 = 𝒚(𝑿, 𝑡), the polymer number density 𝐶𝑝(𝑿, 𝑡), and the liquid number density

(𝑿, 𝑡), with both densities being measured per unit reference volume. These fields are smooth away from and up to the interface
(𝑡) from either side. Whereas the field 𝒚 is assumed to be continuous across the interface, the fields 𝐶𝑝 and 𝐶 may display jump
iscontinuities denoted by [[𝐶𝑝]] and [[𝐶]], where, here and henceforth, [[𝜑]] designates the jump in the field 𝜑 across the interface,
amely

[[𝜑]] =
+
𝜑 −

−
𝜑, (1)

ith
−
𝜑 and

+
𝜑 denoting the respective interfacial limits of 𝜑 on the sides of  out of and into which n points. For later reference,

e also introduce the average of the interfacial limits of 𝜑, namely

⟨⟨𝜑⟩⟩ = 1
2 (

+
𝜑 +

−
𝜑). (2)

Writing 𝑭 = ∇𝒚 for the deformation gradient, we recall that the continuity of 𝒚 across the interface yields the compatibility
conditions (see, for instance, Gurtin et al., 2010 and S̆ilhavỳ, 1997)

[[𝒚̇]] + 𝑈 [[𝑭 ]]n = 0, [[𝑭 ]](𝑰 − n⊗ n) = 𝟎, [[𝑭 𝖢]]n = 𝟎. (3)

here a superposed dot denotes material time differentiation and 𝑭 𝖢 is the cofactor of 𝑭 :

𝑭 𝖢 = (det 𝑭 )𝑭 −⊤. (4)

The composition of a polymer gel is often described in terms of spatial fields 𝜙 and 𝜑 representing, respectively, the network
nd liquid volume fractions. The relation among the variables 𝜙, 𝜑, 𝐶𝑝 and 𝐶 will be discussed later. Throughout this paper, the
ords liquid, fluid, and solvent will be treated as synonymous.

. Balance laws

Whereas changes of shape and composition sustained by  must be consistent with laws of balance for standard forces, network
ontent, and liquid content, interface motion must be consistent with an extra condition — often called the configurational force
alance — which provides a means for incorporating the microphysical processes that govern growth of one phase at the expense
f another. Together with the free-energy imbalance, these laws comprise the kinetic foundation of the theory and are postulated
or arbitrary parts of . A part  of  is a bounded subregion of  with outward unit normal to 𝜕 denoted by 𝒎. For any such
art  of , the standard force balance reads

∫𝜕
𝑺𝒎d𝐴 + ∫

𝒃0 d𝑉 = 𝟎, (5)

here 𝑺 is the first Piola stress and 𝒃0 is the external body force density, while the network and liquid content balances read

d
d𝑡 ∫

𝐶𝑝 d𝑉 = 0 and d
d𝑡 ∫

𝐶 d𝑉 = −∫𝜕
𝑱 ⋅𝒎d𝐴 + ∫

𝑄d𝑉 , (6)

here 𝑱 is the Piola liquid flux, measured relative to the network, and 𝑄 is the external supply of liquid content. Furthermore, the
onfigurational force balance for a part  of  reads

∫∩(𝑡)
(𝑓𝑖 + 𝑓𝑒)d𝐴 = 0, (7)

here 𝑓𝑖 and 𝑓𝑒 are interfacial measures of internal and external configurational force densities. Finally, the law of free-energy
mbalance for  reads

d
d𝑡 ∫

𝜓 d𝑉 ≤ s() +c() +  (), (8)

where 𝜓 is the free-energy density, s and c denote the standard and configurational contributions to the power expended on 
by external agencies, as given by

s() = ∫𝜕
𝑺𝒎 ⋅ 𝒚̇ d𝐴 + ∫

𝒃0 ⋅ 𝒚̇ d𝑉 and c() = ∫∩(𝑡)
𝑓𝑒𝑈 d𝐴, (9)

and  denotes the energy flow that accompanies liquid transport, as given by

 () = −∫𝜕
𝜇𝑱 ⋅𝒎d𝐴 + ∫

𝜇𝑄d𝑉 , (10)

here 𝜇 is the chemical potential of the interstitial liquid. As a reminder, we recall that the quantity 𝑈 appearing in c is the scalar
ormal velocity of the interface .

The following remarks are in order:

• As is evident from (5), we assume from the outset that inertia is negligible. This is consistent with most applications involving
4

polymer gels.
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• The interfacial configurational force densities are power-conjugate to the normal interface velocity and the balance involving
those quantities is postulated for a body part that contains an interface. In Gurtin’s (Gurtin, 1999) treatment of configurational
forces (which is extended by Fried and Gurtin (1999) for problems involving species migration), the configurational force
system involves additional quantities, notably the configurational stress, and the configurational force balance is postulated
for migrating control volumes that contain the interface.

• The basic balances can be derived as consequences of the principle of virtual power following arguments used previously
by the present authors (Duda et al., 2010). To streamline the presentation, we opt here for the standard approach (see, for
instance, Gurtin et al., 2010) and postulate the basic laws in integral forms.

3.1. Bulk versions of the basic laws

The basic laws (5)–(8) are now localized to an arbitrary point which, at a given time 𝑡, is away from the interface (𝑡). This can
e done by using standard arguments for parts  consistent with  ∩𝑆(𝑡) = ∅. In particular, the standard force balance (5), network
ontent balance (6)1, liquid content balance (6)2 localize to

Div𝑺 + 𝒃0 = 𝟎, 𝐶̇𝑝 = 0, and 𝐶̇ = −Div𝑱 +𝑄, (11)

here ‘‘Div’’ is the referential divergence operator, while the free-energy imbalance (8) localizes, with reference to (11)1,3, to

𝜓̇ − 𝑺 ⋅ 𝑭̇ − 𝜇𝐶̇ + 𝑱 ⋅ 𝝃 ≤ 0, (12)

here the symbol 𝝃 has been introduced to denote the gradient of the chemical potential:

𝝃 = ∇𝜇. (13)

.2. Interfacial versions of the basic laws

The basic laws are now localized to an arbitrary point which, at a given time 𝑡, is located on the interface (𝑡). This can be done
y using standard arguments for parts  such that  ∩𝑆(𝑡) ≠ ∅. The interested reader is referred to Gurtin et al. (2010) and S̆ilhavỳ
1997) for details.

In particular, while the standard force balance, network content balance, and liquid content balance localize to

[[𝑺]]n = 𝟎, [[𝐶𝑝]]𝑈 = 0, and [[𝐶]]𝑈 = [[𝑱 ]] ⋅ n, (14)

he configurational force balance (7) localizes to

𝑓𝑖 + 𝑓𝑒 = 0. (15)

n view of (14)2, we henceforth take 𝐶𝑝 to be continuous across the interface .
Furthermore, the free-energy imbalance (8) localizes to

−([[𝜓]] + 𝑓𝑒)𝑈 − [[𝑺⊤𝒚̇]] ⋅ n + [[𝜇𝑱 ]] ⋅ n ≤ 0. (16)

nvoking (3)1, (14)2,3, and (15) and introducing the configurational stress (or Eshelby) tensor

𝜮 = (𝜓 − 𝜇𝐶)𝑰 − 𝑭 ⊤𝑺, (17)

e arrive at a convenient alternative to (16):

−(n ⋅ [[𝜮]]n + [[𝜇]]⟨⟨𝐶⟩⟩ − 𝑓𝑖)𝑈 + [[𝜇]]⟨⟨𝑱 ⟩⟩ ⋅ n ≤ 0. (18)

.3. Spatial versions of the bulk and interfacial balances

For later reference, we recall that the spatial counterparts of the local balances (11) can be written as

div𝑻 + 𝒃 = 𝟎,
𝜕𝑐𝑝
𝜕𝑡

+ div(𝑐𝑝𝒗) = 0, and 𝜕𝑐
𝜕𝑡

+ div(𝑐𝒗) = −div𝒋 + 𝑞, (19)

where ‘‘div’’ is the spatial divergence operator and 𝑻 , 𝒃, 𝑐𝑝, 𝒗, 𝑐, 𝒋, and 𝑞 are spatial fields representing, respectively, the Cauchy
stress, spatial body force density, spatial polymer density, spatial velocity, spatial liquid content density, Cauchy liquid flux, and
external supply of liquid. Furthermore, the following relations between referential and spatial quantities hold

𝑺 = 𝑻𝑭 𝖢, 𝒃0 = (det 𝑭 )𝒃, 𝒗 = 𝒚̇, 𝐶𝑝 = (det 𝑭 )𝑐𝑝, 𝐶 = (det 𝑭 )𝑐, 𝑱 = (𝑭 𝖢)⊤𝒋, 𝑄 = (det 𝑭 )𝑞. (20)

On using 𝑠 to denote the spatial interface, defined for each time 𝑡 by

𝑠(𝑡) = {𝒚(𝑿, 𝑡),𝑿 ∈ (𝑡)}, (21)

the spatial counterparts of (14) for an arbitrary point on 𝑠 can, moreover, be written as
5

[[𝑻 ]]m = 𝟎, [[𝑐𝑝]]𝑢 = [[𝑐𝑝𝒗]] ⋅m, and [[𝑐]]𝑢 = [[𝑐𝒗]] ⋅m + [[𝒋]] ⋅m, (22)
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where m and 𝑢, the spatial counterparts of the unit normal n and scalar normal velocity 𝑈 of the referential interface , are given
by

m =
⟨⟨𝑭 𝖢

⟩⟩n

|⟨⟨𝑭 𝖢
⟩⟩n|

and 𝑢 − ⟨⟨𝒗⟩⟩ ⋅m = 𝑈⟨⟨|𝑭 ⊤m|⟩⟩. (23)

The condition (3)3 requiring that 𝑭 𝖢n be continuous across the interface has been used to express m in terms of n and 𝑢− ⟨⟨𝒗⟩⟩ ⋅m
in terms of 𝑈 . To see this, it suffices to show that the standard relation

m =
±
𝑭 𝖢n

|

±
𝑭 𝖢n|

(24)

between n and m is equivalent to (23)1. Specifically, as a consequence of (3)3, we have that
+
𝑭 𝖢n =

−
𝑭 𝖢n =

±
𝑭 𝖢n = ⟨⟨𝑭 𝖢

⟩⟩n (25)

nd, thus, that

|

+
𝑭 𝖢n| = |

−
𝑭 𝖢n| = |

±
𝑭 𝖢n| = |⟨⟨𝑭 𝖢

⟩⟩n|. (26)

ence the equivalence between (23)1 and (24) follows. On the other hand, (23)2 is a direct consequence of the standard relation

𝑢 = 𝑈 |

±
𝑭 ⊤m| +

±
𝒗 ⋅m (27)

etween 𝑢 and 𝑈 . The interested reader is again referred to Gurtin et al. (2010) and S̆ilhavỳ (1997) for a detailed presentation of
he arguments involved in the foregoing derivations.

. Constitutive theory

The basic laws introduced previously hold for any material body composed of two components, one solid-like that is conserved
nd other liquid-like that is free to move through solid component. We next introduce specific constitutive assumptions often used
o describe polymer gels, in which the solid- and liquid-like components are given by the polymer network and interstitial liquid,
espectively. We present a constitutive theory compatible with the local consequences (12) and (18) of the free-energy imbalance
8), considering first bulk quantities and next interfacial quantities.

.1. Bulk constitutive theory

Bearing in mind that our aim is to develop a coupled theory between shape and composition changes appropriate for gels
hose polymer network is elastic, we assume that the constitutive response at a given material point of a gel is determined by the
eformation gradient, liquid content density, and liquid flux at the same material point. We also adopt the classical assumption
hat both components of a gel are incompressible and on the basis this assumption derive the standard condition stating that
ocal volume variation must be accompanied by local liquid-content variation and, hence, that the gel exhibits liquid-induced
ompressibility. In other words, the gel behaves like a compressible solid whenever its liquid content is allowed to change and
ike an incompressible solid otherwise. The deformation gradient and the liquid content density at a material point are therefore
ot independent but rather are related by a requirement that we refer to as the liquid-induced compressibility condition. We treat the
aid condition as an internal constraint that must be maintained by reactions whose associated dissipation rate is null. Accordingly,
e show that the stress is constitutively assigned to within a pressure-like contribution determined by the chemical potential of the

nterstitial liquid, which in turn is given by the sum of two parts, one reactive and other active. Whereas the reactive contribution
o the chemical potential is arbitrary, a constitutive equation for the active part must be prescribed and two such prescriptions are
iscussed: one for which the active part of the chemical potential is identically zero and other for which it is prescribed in manner
imilar to the unconstrained case, namely as if the deformation gradient and liquid content density were independent variables. An
quivalent result was obtained by the present authors (Duda et al., 2010) using the multiplicative decomposition of the deformation
radient into elastic and liquid-induced components. A similar kind of internal constraint is provided by the temperature-dependent
ompressibility constraint in which a continuum body is incompressible under isothermal conditions and compressible otherwise.
s shown by Trapp (1971) and Gurtin and Podio-Guidugli (1973), the reactions necessary to maintain such internal constraint are
nder such conditions characterized by an arbitrary pressure-like field determining the reactive components of the Cauchy stress
nd the specific entropy.

.1.1. Internal constraint
Given a bulk part  of , we write vol( , 𝑡) for the volume of its deformed image 𝑡 = 𝒚( , 𝑡) at time 𝑡:

vol( , 𝑡) = ∫𝑡
d𝑣, (28)
6

e now introduce constitutive assumptions concerning to the composition of :
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1. The volume vol( , 𝑡) occupied by an arbitrary bulk part  at time is equal to the sum

vol( , 𝑡) = volp( , 𝑡) + volf ( , 𝑡), (29)

of the volumes

volp( , 𝑡) = ∫𝑡
𝜙(𝒙, 𝑡)d𝑣 and volf ( , 𝑡) = ∫𝑡

𝜑(𝒙, 𝑡)d𝑣 (30)

occupied by the polymer network and the interstitial liquid, respectively.
2. The contributions volp( , 𝑡) and volf ( , 𝑡) to vol( , 𝑡) can be written as

volp( , 𝑡) = ∫𝑡
𝜐𝑝𝑐𝑝(𝒙, 𝑡)d𝑣 and volf ( , 𝑡) = ∫𝑡

𝜐𝑐(𝒙, 𝑡)d𝑣, (31)

where 𝜐𝑝 > 0 and 𝜐 > 0 are given constants.

Since  is an arbitrary part of , we see from (29)–(31) that

𝜙 + 𝜑 = 1, 𝜙 = 𝜐𝑝𝑐𝑝, and 𝜑 = 𝜐𝑐. (32)

The first of (32), which is often called the saturation condition, expresses the assumption that the network is maximally impregnated
by liquid.

We assume hereinafter that  = 𝒚(, 0), namely that the reference configuration is the configuration occupied by the body at
the instant 𝑡 = 0. This being the case, we find from (11)2, (20)4, and (32)2 that 𝜙 is determined by 𝜙0 and det 𝑭 by

𝜙 =
𝜙0

det 𝑭
, (33)

here 𝜙0(𝐗) ∶= 𝜐𝑝𝐶𝑝(𝐗, 0) is the polymer volume fraction in the reference configuration. On the other hand, we infer from (20)5,
32)3, and (33) that the alternative condition

det 𝑭 = 𝜙0 + 𝜐𝐶 (34)

olds. On combining (33) and (34), we obtain a relation between the compositional variables 𝜙 and 𝐶:

𝜙 =
𝜙0

𝜙0 + 𝜐𝐶
. (35)

The relation (35) allows us to choose either 𝐶 or 𝜙 to measure composition according to convenience. Due to our decision to identify
the reference configuration with the initial configuration, evaluating (35) at 𝑡 = 0 yields

𝜙0 + 𝜐𝐶0 = 1, (36)

where 𝐶0 is the liquid content density at time 𝑡 = 0; hence, (34) can be written as

det 𝑭 = 1 + 𝜐(𝐶 − 𝐶0). (37)

Under the constitutive assumptions adopted thus far, (33), (34), and (37) are equivalent to the network content conservation
(11)2. Further, (33), (34), and (37) provide a useful connection between the local volume change as measured by det 𝑭 to the
composition as measured by 𝜑 and 𝐶. In particular, (34) shows that local volume changes undergone by a gel are due to changes
n the liquid content only. We treat (34) as an internal constraint, which we call the mechanical incompressibility constraint or the
liquid-induced compressibility condition’.

.1.2. Constitutive variables and dissipation principle
Using the consequence

𝑭 𝖢 ⋅ 𝑭̇ = 𝜐𝐶̇ (38)

of computing the material time derivative of the mechanical incompressibility constraint (34) in (12), we find that the local
free-energy inequality can be expressed as

𝜓̇ − 𝑷 ⋅ 𝑭̇ + 𝝃 ⋅ 𝑱 ≤ 0, (39)

where

𝑷 = 𝑺 +
𝜇
𝜐
𝑭 𝖢 (40)

is the effective measure of Piola stress that is power-conjugate to the rate 𝑭̇ at which the deformation gradient 𝑭 changes with
respect to time.

Guided by the inequality (39), we select (𝑭 ,𝑱 ) and (𝜓,𝑷 , 𝝃) as lists of independent and dependent constitutive variables,
respectively, and prescribe constitutive equations for 𝜓 , 𝝃, and 𝑷 through

𝜓 = 𝜓̄(𝑭 ,𝑱 ), 𝑷 = 𝑷̄ (𝑭 ,𝑱 ), and 𝝃 = 𝝃̄(𝑭 ,𝑱 ), (41)
7
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with 𝜓̄ , 𝑷̄ , and 𝝃̄ being the constitutive response functions for 𝜓 , 𝑷 , and 𝝃. These functions must be consistent with the free-energy
nequality (39). Following the Coleman–Noll procedure, it can thus be shown that the following conditions must hold:

• The constitutive response functions 𝜓̄ and 𝑷̄ are independent of 𝑱 , and satisfy

𝜕𝜓̄(𝑭 ,𝑱 )
𝜕𝑱

= 𝟎 and 𝑷̄ (𝑭 ) =
𝜕𝜓̄(𝑭 )
𝜕𝑭

. (42)

• The constitutive response function 𝝃̄ must obey the internal dissipation inequality

𝝃̄(𝑭 ,𝑱 ) ⋅ 𝑱 ≤ 0 (43)

for all choices of 𝑭 and 𝑱 .

Notice that according to (40), (41)2 and (42)2, the Piola stress 𝑺 is given by

𝑺 =
𝜕𝜓̄(𝑭 )
𝜕𝑭

−
𝜇
𝜐
𝑭 𝖢 (44)

and is, thus, the sum of two parts, the effective stress 𝑷 that arises from the free-energy of the gel and a contribution involving the
pressure-like factor 𝜇∕𝜐 that arises from the mechanical incompressibility constraint (34).

4.1.3. Active and reactive components of 𝑺 and 𝜇
The foregoing development does not recognize the presence of the reactions needed to maintain the mechanical incompressibility

constraint (34). To address this issue, we adopt a treatment that parallels the one provided by Capriz (1989) within the context of
continua with microstructure.

Specifically we assume that 𝜓 , 𝑺, 𝜇, and 𝝃 admit additive decompositions

𝜓 = 𝜓r + 𝜓a, 𝑺 = 𝑺r + 𝑺a, 𝜇 = 𝜇r + 𝜇a, 𝝃 = 𝝃r + 𝝃a, (45)

nto reactions 𝜓r , 𝑺r , 𝜇r , and 𝝃r and actions 𝜓a, 𝑺a, 𝜇a, and 𝝃a. Using (45)2,3 in (40), we see that the effective stress 𝑷 also admits
such a decomposition, namely

𝑷 = 𝑷 r + 𝑷 a, (46)

with 𝑷 r and 𝑷 a being given by

𝑷 r = 𝑺r +
𝜇r
𝜐
𝑭 𝖢 and 𝑷 a = 𝑺a +

𝜇a
𝜐
𝑭 𝖢. (47)

Whereas the reactions 𝜓r , 𝑺r , 𝜇r , and 𝝃r must be powerless in that sense that they obey

𝜓̇r − 𝑷 r ⋅ 𝑭̇ + 𝝃r ⋅ 𝑱 = 0 (48)

for all choices of 𝑭̇ and 𝑱 , the actions 𝜓a, 𝑺a, 𝜇a, and 𝝃a can serve as dependent constitutive variables to which constitutive relations
must be assigned. Moreover, the actions must satisfy the reduced inequality

𝜓̇a − 𝑷 a ⋅ 𝑭̇ + 𝝃a ⋅ 𝑱 ≤ 0 (49)

that follows from (39), (45), and (48).
We now explore the consequences of (48). Taking into account that 𝑭̇ and 𝑱 can be varied independently, we see from (48) tha

𝜓̇r ≡ 0, 𝑷 r ≡ 𝟎, 𝝃r ≡ 𝟎. (50)

With the recognition that the free-energy density 𝜓 can be determined only up to an additive constant and dropping the subscript
‘‘a’’ on 𝜓a, 𝑷 a, and 𝝃a, we deduce that (39) and (49) are equivalent and, hence, that (42) and (43) hold. Furthermore, we see from
(47)1 and (50)2 that the reactive components 𝑺r and 𝜇r of the Piola stress 𝑺 and the chemical potential 𝜇 are given by

𝑺r = −𝜛𝑭 𝖢 and 𝜇r = 𝜐𝜛, (51)

where 𝜛 is a scalar field that serves to ensure that the constraint (34) of mechanical incompressibility is maintained.
Referring to (42)2, (46) and (47)2, we find that

𝑺a +
𝜇a
𝜐
𝑭 𝖢 =

𝜕𝜓̄(𝑭 )
𝜕𝑭

(52)

and thus conclude that the constitutive equations determining 𝑺a and 𝜇a must be assigned in conformity with (52). Two possible
choices, along with the corresponding representations for 𝑺 and 𝜇, are discussed next.
8
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4.1.4. Representations for 𝑺 and 𝜇
We are free to choose any constitutive relations for 𝑺a and 𝜇a that do not violate (52). Here, we describe two simple alternatives:

1. Consistent with (52), our first choice for 𝑺a and 𝜇a is

𝑺a =
𝜕𝜓̄(𝑭 )
𝜕𝑭

and 𝜇a ≡ 0. (53)

Combining (45)2, (51), (52), and (53), we conclude that the Piola stress 𝑺 and the chemical potential 𝜇 of the interstitial
liquid are given by

𝑺 =
𝜕𝜓̄(𝑭 )
𝜕𝑭

−𝜛𝑭 𝖢 and 𝜇 = 𝜐𝜛. (54)

2. We next suppose that the free-energy density 𝜓 is provided constitutively as a function of 𝑭 and 𝐶. Then, we can use the
mechanical incompressibility constraint (34) to infer that

𝜓̄(𝑭 ) = 𝜓̂(𝑭 , 𝐶) (55)

and, consequently, that the relation (42)2 between the response functions 𝜓̄ and 𝑺̄ determining the free-energy density 𝜓
and the effective stress 𝑷 can be written as

𝑷 =
𝜕𝜓̄(𝑭 )
𝜕𝑭

=
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝑭

+ 1
𝜐
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝐶

𝑭 𝖢, (56)

which suggests our second choice for 𝑺a and 𝜇a, namely

𝑺a =
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝑭

and 𝜇a =
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝐶

. (57)

Combining (45)2,3, (51), and (57), we conclude that for our second choice the Piola stress 𝑺 and the chemical potential 𝜇 of
the interstitial liquid are given by

𝑺 =
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝑭

−𝜛𝑭 𝖢 and 𝜇 =
𝜕𝜓̂(𝑭 , 𝐶)
𝜕𝐶

+ 𝜐𝜛. (58)

ith reference to (54) and (58), we emphasize that 𝜛 is a problem dependent field that enters the theory to ensure the constraint
34), a role that is completely analogous to that of the pressure in an incompressible solid or liquid. Notice that (58)2 shows that
he chemical potential 𝜇 of the solvent in the gel is given by the sum of an active part obtained by differentiating the free energy 𝜓̂
ith respect to 𝐶, as if 𝑭 and 𝐶 were independent, plus a reactive part that comes from the fact that 𝑭 and 𝐶 are constrained by

he liquid-induced compressibility condition. This second term can be evaluated by using (58)1 and hence accounts for mechanical
ffects on the chemical potential 𝜇 of the interstitial liquid.

It is worth mentioning that the free-energy response of a gel is often, from the outset, written as a function of the deformation
ariable 𝑭 and a measure, whether 𝐶 or 𝜙, of liquid content. Thus, bearing (34) in mind, the alternatives presented above can be
sed to arrive at the same final expressions for 𝑺 and 𝜇. The difference between the two alternatives relies on the interpretation of
. For the remainder of this paper we will adopt the alternative leading to the choice (57) for the active parts of the Piola stress
nd chemical potential and hence to the representation (58) for the total Piola stress and chemical potential.

.1.5. Fluid and osmotic pressures and network stress
The response function 𝜓̂ determining the free-energy density 𝜓 as a function of the deformation gradient 𝑭 and the liquid

oncentration 𝐶 must properly incorporate contributions due to the ‘‘unmixed’’ solid- and liquid-like constituents, the mixing of
hose constituents, and elastic deformation of the solid-like constituent. We therefore assume that 𝜓̂ is of the form

𝜓̂(𝑭 , 𝐶) = 𝜇𝐿0 𝐶 + 𝛹̂ (𝑭 , 𝐶), (59)

here 𝜇𝐿0 is the chemical potential of the pure solvent in a reference liquid state and 𝛹̂ incorporates the contributions to the energetic
esponse due to mixing and network deformation. Notice that since the network content is conserved, the contribution due to the
‘unmixed’’ network strands gives rise to inconsequential additive constant that has accordingly been omitted.

We now explore some consequences of the decomposition (59). By (57), it follows that the active parts of the Piola stress 𝑺 and
chemical potential 𝜇 of the interstitial liquid are such that

𝑺a =
𝜕𝛹̂ (𝑭 , 𝐶)
𝜕𝑭

and 𝜇a − 𝜇𝐿0 =
𝜕𝛹̂ (𝑭 , 𝐶)

𝜕𝐶
. (60)

urther, by (58)2, the chemical potential of the liquid in the gel relative to its chemical potential in the absence of the network,
amely

𝜇 − 𝜇𝐿0 =
𝜕𝛹̂ (𝑭 , 𝐶)

𝜕𝐶
+ 𝜐𝜛, (61)

is the sum of a ‘‘chemical’’ term obtained by differentiating the free energy 𝛹̂ with respect to 𝐶 plus a reactive term originated from
the fluid-induced compressibility constraint. By (58)1, the reactive contribution to the chemical potential accounts for mechanical
effects on the relative chemical potential 𝜇 − 𝜇𝐿.
9
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From the relative chemical potential 𝜇 − 𝜇𝐿0 and its active part 𝜇𝑎 − 𝜇𝐿0 we define quantities 𝑝 and 𝜋 by the relations

𝑝 ∶=
𝜇 − 𝜇𝐿0
𝜐

and 𝜋 ∶= −
𝜇𝑎 − 𝜇𝐿0

𝜐
= −1

𝜐
𝜕𝛹̂ (𝑭 , 𝐶)

𝜕𝐶
. (62)

Granted that the chemical potential 𝜇𝐿 of a liquid at pressure 𝑝𝐿 in the absence of the network is equal to 𝜇𝐿 = 𝜇𝐿0 + 𝜐𝑝𝐿, we may
interpret 𝑝 and −𝜋 as the pressures the interstitial liquid alone would have in states with 𝜇𝐿 = 𝜇 and 𝜇𝐿 = 𝜇𝑎, respectively. A related
quantity is the activity 𝑎 of the interstitial liquid in the gel defined by the standard relation ln 𝑎 = (𝜇 − 𝜇𝐿0 )∕(𝑘𝐵𝑇 ), where 𝑘𝐵 is the
Boltzmann constant and 𝑇 the absolute temperature. The definition (62)2 of 𝜋 also resembles the definition of osmotic pressure in
the context of polymer solutions, as discussed for instance by Flory (1953). Motivated by these considerations, here and henceforth
we refer to 𝑝 as the liquid pressure and to 𝜋 as the osmotic pressure.

By (61) and (62), we write the reaction 𝜛 as

𝜛 = 𝑝 + 𝜋, (63)

which together with (58)1 allows us to express the Piola stress 𝑺 as

𝑺 = 𝑺n − 𝑝𝑭 𝖢, (64)

where 𝑺n has the form

𝑺n =
𝜕𝛹̂ (𝑭 , 𝐶)
𝜕𝑭

− 𝜋𝑭 𝖢. (65)

From (20)1, (64), and (65), we see that the Cauchy stress 𝑻 takes the form

𝑻 = 𝑻 n − 𝑝𝑰 , (66)

where 𝑻 n = 𝑺n(𝑭 𝖢)−1. Building upon the interpretation of 𝑝 as the interstitial fluid pressure, (62)–(64) show that the Piola stress
tensor 𝑺 can be decomposed as the sum of two contributions, one due to the network other due to the fluid. Whereas 𝑺n is due to
distortions of the network, −𝑝𝑭 𝖢 is due to pressurization of the interstitial fluid. Moreover, the network stress 𝑺n has two origins,
one elastic and other due to mixing. A similar interpretation holds true for the decomposition (66) of the Cauchy stress 𝑻 .

Strictly speaking, the quantity 𝜋 introduced above is the chemical part of the osmotic pressure. Indeed, as observed by the present
authors (Duda et al., 2010), the osmotic pressure 𝛱 can be seen as the difference between the hydrostatic stress 𝑝𝐺 = −(tr𝑻 )∕3 in
he gel and the liquid pressure 𝑝. Thus, by (65) and (66),

𝛱 = − 1
3 tr𝑻 n = − 1

3 tr𝑻 a + 𝜋, (67)

where the relation 𝑻 n = 𝑻 a−𝜋𝑰 between the network and active parts, 𝑻 n and 𝑻 a, of the Cauchy stress 𝑻 has been used. This shows
that −tr𝑻 a∕3 and 𝜋 are, respectively, the ‘‘mechanical’’ and ‘‘chemical’’ contributions to the osmotic pressure. Another way to see
this is to consider a gel in equilibrium when immersed in a pure liquid solution. Under these conditions, the chemical potential 𝜇 of
the liquid is constant and equal to the ambient chemical potential 𝜇𝑎, which for an environment composed of a pure liquid solution
is equal 𝜇𝐿0 + 𝜐𝑝𝑎, where 𝑝𝑎 is the ambient liquid pressure and, hence, we see from (62)1 that 𝑝 = 𝑝𝑎. If the equilibrium deformation
of the gel is prescribed, 𝛱 = 𝑝𝐺 − 𝑝𝑎 is the extra pressure that must be applied at the boundary of the gel to ensure that the system
is in a state of mechanical equilibrium.

For later reference, we notice with reference to (34) and (62)2 that the osmotic pressure 𝜋 can be expressed as a function of 𝑭
through

𝜋 = 𝜋̂(𝑭 ) ∶= −
𝜕𝛹̂ (𝑭 , 𝜁∕𝜐)

𝜕𝜁
|

|

|𝜁=det 𝑭−𝜙0
. (68)

Moreover, using the mechanical incompressibility constraint (34) to write

𝛹̄ (𝑭 ) ∶= 𝛹̂ (𝑭 , (det 𝑭 − 𝜙0)∕𝜐), (69)

we see from (65) and (68) that the network stress 𝑺n can be expressed as

𝑺n =
𝜕𝛹̄ (𝑭 )
𝜕𝑭

. (70)

4.1.6. A particular constitutive theory
We now present a constitutive theory based on specific choices for the response functions 𝛹̂ and 𝝃̄. Following Flory and Rehner

(1943), we assume that 𝛹̂ , which characterizes the energetic response due to mixing and network elastic deformation is additive
and separable. Accordingly, we write 𝛹̂ as

𝛹̂ (𝑭 , 𝐶) = 𝜓̂𝑒(𝑭 ) + 𝜓̂𝑚(𝐶), (71)

where 𝜓̂𝑒 accounts for the deformation of the network and 𝜓̂𝑚 is the free energy of mixing.1

1 Earlier discussion in support of the decomposition (71) of the free-energy density can be found in the classical treatises by Flory (1953) and Treloar (1975).
10
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For an isotropic elastic response, 𝜓̂𝑒 can depend on 𝑭 only through the principal invariants

𝐼1 = tr𝑩, 𝐼2 =
1
2 (𝐼

2
1 − tr(𝑩2)), 𝐼3 = det 𝑩, (72)

of the left Cauchy–Green tensor 𝑩 = 𝑭𝑭 ⊤. Throughout the literature, two families of elastic models for swollen polymer networks
can be found according to which the third invariant 𝐼3 is accounted for or not, with Flory (1953) and Treloar (1975) being pioneering
representatives of these families. For our purposes, it is enough to assume that 𝜓̂𝑒 has the type

𝜓̂𝑒(𝑭 ) = 𝜓̃𝑒(𝐼1, 𝐼2). (73)

For elastic models described by (73), we see from (65) and (71) that the network contribution (65) to the Piola stress has the
explicit form

𝑺n = 2𝛼1𝑭 + 2𝛼2(𝐼1𝑰 − 𝑩)𝑭 − 𝜋𝑭 𝖢, (74)

where 𝛼1 and 𝛼2 are defined by

𝛼1 =
𝜕𝜓̃𝑒(𝐼1, 𝐼2)

𝜕𝐼1
and 𝛼2 =

𝜕𝜓̃𝑒(𝐼1, 𝐼2)
𝜕𝐼2

(75)

and, thus, generally depend on the scalar invariants 𝐼1 and 𝐼2. This implies, together with (20)1, that the network Cauchy 𝑻 n can
e written as

𝑻 n = 𝑺n𝑭 −𝖢 = 1
det 𝑭

𝑺n𝑭 ⊤ = 2
det 𝑭

(

𝛼1𝑩 + 𝛼2(𝐼1𝑰 − 𝑩)𝑩
)

− 𝜋𝑰 . (76)

We now turn to the constitutive relation (41)3 determining 𝝃 = ∇𝜇 in terms of 𝑭 and 𝑱 and hereinafter assume that it can be
nverted and written as

𝑱 = 𝑱̄ (𝑭 , 𝝃) = −𝑴̂(𝑭 )∇𝜇, (77)

here 𝑴̂ is a positive semidefinite tensor-valued function related to the mobility of the interstitial liquid. The particular choice

𝑴̂(𝑭 ) = 𝑚̂(det 𝑭 )𝑭 −1𝑭 𝖢 (78)

or 𝑴̂ and the attendant relation

𝑱 = −𝑚̂(det 𝑭 )𝑭 −1𝑭 𝖢∇𝜇 (79)

or 𝑱 are suitable for an isotropic gel. Indeed, granted that (78) holds, we see from (20)6 and ∇𝜇 = 𝑭 ⊤grad𝜇 that the Cauchy fluid
lux 𝒋 is given by.2

𝒋 = −𝑚̂(det 𝑭 )grad𝜇. (80)

For later reference, we use (62)1 and rewrite (79) and (80) as

𝑱 = −𝑚̂(det 𝑭 )𝑭 −1𝑭 𝖢∇𝑝 (81)

nd

𝒋 = −𝜐𝑚̂(det 𝑭 )grad 𝑝. (82)

.2. Interfacial constitutive theory

In what amounts to a basic constitutive assumption for the interface, we restrict attention to processes in which the chemical
otential 𝜇 of the interstitial liquid is continuous across the interface , so that

[[𝜇]] = 0. (83)

sing (83) in (18), we find that the interfacial free-energy imbalance simplifies to

(n ⋅ [[𝜮]]n − 𝑓𝑖)𝑈 ≥ 0. (84)

uided by (84), we consider a simple interfacial constitutive theory in which the quantity 𝑓 defined by

𝑓 = n ⋅ [[𝜮]]n − 𝑓𝑖 (85)

serves as a dependent constitutive variable and the scalar normal velocity 𝑈 , to which 𝑓 is power-conjugate, serves as the
independent constitutive variable. Thus, we consider the class of interfacial constitutive relations of the form 𝑓 = 𝑓 (𝑈 ). For the

2 It can be shown that the most general constitutive representation for 𝒋 as function of (𝑭 , grad𝜇) in the isotropic case is 𝒋 = (𝑚0𝑰 + 𝑚1𝑩 + 𝑚2𝑩2)grad𝜇,
where 𝑚 , 𝑚 , and 𝑚 can be expressed as functions of (𝐼 , 𝐼 , 𝐼 , |grad𝜇|, |

√

𝑩grad𝜇|, |𝑩grad𝜇|).
11
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purposes of this work, we will consider that interfacial motion occurs without dissipation and hence choose 𝑓 (𝑈 ) ≡ 0. This choice
assures that (84) holds in all processes and allows us to write (85) as

𝑓𝑖 = n ⋅ [[𝜮]]n. (86)

If the external configurational force density 𝑓𝑒 vanishes, we may supplement the configurational force balance (15) with the
definition (17) of the configurational stress tensor 𝜮 and (86) to find that

[[𝜓 − 𝜇𝐶]] − 𝑺n ⋅ [[𝑭 ]]n = 0. (87)

Then again, combining the mechanical incompressibility condition (34), the defining relation (62)1 for the liquid pressure 𝑝, and
the decomposition (64) of the Piola stress 𝑺, we find that 𝜮 can be written

𝜮 = (𝜓 − 𝜇𝐿0 𝐶)𝑰 − 𝑭 ⊤𝑺n. (88)

From (64), the interfacial force balance (14)1, the requirement (3)3 that 𝑭 𝖢n be continuous across , and the consequence

[[𝑝]] = 0 (89)

of (62)1 and (83), we find that the network stress 𝑺n must be consistent with the traction continuity condition

[[𝑺n]]n = 𝟎. (90)

Using (88) and (90) in (86), we see that (87) takes the alternative form

[[𝜓 − 𝜇𝐿0 𝐶]] − 𝑺nn ⋅ [[𝑭 ]]n = 0. (91)

Several remarks are now in order:

• Like the Piola stress 𝑺, the configurational stress 𝜮, may be decomposed into contributions associated with the network and
the interstitial liquid. Indeed, taking (34), (59), (62)1, and (64) into consideration, we see from (17) that

𝜮 = 𝜮n +𝜮f , (92)

where 𝜮n and 𝜮f defined by

𝜮n = (𝜓 − 𝜇𝐿0 𝐶)𝑰 − 𝑭 ⊤𝑺n and 𝜮f = −𝑝𝜙0𝑰 , (93)

are the contributions the configurational stress 𝜮 associated with the network and the interstitial liquid. From the represen-
tation

𝑓𝑖 = [[𝜓 − 𝜇𝐿0 𝐶]] − 𝑺nn ⋅ [[𝑭 ]]n (94)

that ensues from using the decomposition (92)–(93) in (86), it is evident that the jump in the normal configurational stress
acting on the plane perpendicular to n is determined by the network configurational stress.

• Early derivations of (87), suitable for equilibrium situations and using variational arguments, can be traced back to Robin
(1974) and Larche and Cahn (1978). The condition (87), augmented by the presence of surface tension, was used by Dolbow
et al. (2004) in a study of the kinetics of phase transition in hydrogels. See also Ji et al. (2006), who accounted for thermal
effects and linear transition kinetics.

• Using (59), (69), and (70) in (91) yields a condition,

[[𝜓̄(𝑭 )]] −
𝜕𝜓̄(𝑭 )
𝜕𝑭

n ⋅ [[𝑭 ]]n = 0, (95)

which is formally identical to the wildly imposed Maxwell relation for two-phase elastic bodies, as discussed, for instance, by
Gurtin (1999), S̆ilhavỳ (1997), and the references therein. It is well known that the Maxwell relation appears as a consequence
of one of the following assumptions: stationarity of the first variation of the total potential energy with respect to variations
of the interface position, stability of equilibria, and dissipation-free interfacial motion.

• To the best of our knowledge, the first derivation of (95) for polymer gels was provided by Sekimoto and Kawasaki (1989) as a
consequence of the stationarity of the first variation of the total free-energy of a two-phase gel body with respect to variations
of the interface position. Implicit in their treatment was the use of the constraint (34) allowing a two-phase gel body to
be treated as a two-phase elastic body. Although the derivation of Sekimoto & Kawasaki was performed under equilibrium
conditions, the relation (95) has subsequently been used even outside equilibrium and in that context has been referred to as
the ‘‘local equilibrium coexistence condition’’. See, for instance, Doi (2009).

• With reference to compatibility condition (3)3 for 𝑭 𝖢n, the mechanical incompressibility constraint (34), the decomposition
(59) of the response function 𝜓̂ , the relation (63) determining the reaction 𝜛 to (34), and the expressions (64) and (65) for
the Piola and network stresses 𝑺 and 𝑺n, we obtain an alternative to the Maxwell relation (95) in which the dependence upon
the liquid content 𝐶 remains explicit and the influence of incompressibility is evident:

[[𝛹̂ (𝑭 , 𝐶)]] − 𝜕𝛹̂ (𝑭 , 𝐶)
𝜕𝑭

n ⋅ [[𝑭 ]]n − 𝜐𝜛[[𝐶]] = 0. (96)

• The representation (17) for the Eshelby stress 𝜮 may be seen as a finite-strain extension of that obtained by Gurtin and
Voorhees (1993) (see also Fried and Gurtin, 1999), when specialized to interfaces without structure.
12
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5. Referential versions of the governing equations

The governing equations of the theory are obtained by combining the basic balances and constitutive relations, in bulk and on the
nterface. In this section, we present those equations for the particular constitutive theory, pertaining to isotropic gels, introduced
n Section 4.1.6. For simplicity, external supplies of standard body force, liquid, and configurational forces are neglected:

𝒃0 = 𝟎, 𝑄 = 0, and 𝑓𝑒 = 0. (97)

Along with the bulk and interface equations, boundary conditions describing mechanical and permeation interactions between the
solid and the environment must also be formulated and applied. Here, we suppose that for a material point located at the boundary
𝜕, with outward unit normal 𝜕, between the solid and the environment:

• Mechanical conditions: either the Piola traction 𝑺𝒏 or the motion 𝒚 is prescribed;
• Permeation conditions: either the Piola normal flux 𝑱 ⋅𝒏 or the chemical potential 𝜇 — or, by virtue of (62)1, the fluid pressure
𝑝 — is prescribed.

We choose the motion 𝒚, polymer volume fraction 𝜙, fluid pressure 𝑝, and interface location  as the unknown variables and
write the governing equations in a manner that reflects this choice. This set of unknown variables is often used to formulate the
equations of gel dynamics; see, for instance, Doi (2013). Provided some identifications are carried out, the final equations so obtained
may be interpreted as describing fluid permeation in finite-strained poroelastic bodies, an idea explored in detail by Anand (2015)
in a context where the strains and rotations are infinitesimal. It is worth mentioning that polymer gels have often been described
as poroelastic bodies, irrespective of the physical differences between these two type of materials. The issue of coupling large
deformation and fluid permeation with the context of poroelasticity remains a topic of intense research given its importance for
both scientific and technological applications. For a recent discussion on the subject matter see MacMinn et al. (2016).

5.1. Bulk equations

The bulk equations of theory consist of the standard force balance, the network content balance, and the liquid content balance
as presented in (11) in conjunction with the expression (64) determining the Piola stress 𝑺 in terms of the network stress 𝑺𝑛 and
he liquid pressure 𝑝, as defined by (62)1, and the expression (81) determining the Piola flux 𝑱 . Recalling that (11)2 and (33) are
quivalent and using (34) to eliminate 𝐶 from (11)3, these equations can be expressed as

Div(𝑺n − 𝑝𝑭 𝖢) = 𝟎,

𝜙 det 𝑭 = 𝜙0,

̇det 𝑭 = −𝜐Div𝑱 ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(98)

here, with reference to (74) and (81), the network Piola stress 𝑺n and Piola fluid flux 𝑱 are given by

𝑺n = 2𝛼1𝑭 + 2𝛼2(𝐼1𝑰 − 𝑩)𝑭 − 𝜋𝑭 𝖢 and 𝑱 = −𝜐𝑚̂(det 𝑭 )𝑭 −1𝑭 𝖢∇𝑝. (99)

n writing (99)1, we recall that 𝛼1 and 𝛼2 are determined by the deformation gradient 𝑭 through (75). Additionally, while 𝜋 is most
rimitively a function of 𝐶, the mechanical incompressibility constraint (33) allows us to treat it as a function of 𝑭 , as demonstrated
n (68). Keeping in mind that 𝜐𝑱 is the referential volumetric flux of interstitial fluid, (98)3 states, in referential terms, that local
olumes changes are caused by the volumetric flux of the interstitial fluid.

.2. Interfacial equations

From (14), (33), (59), and (91), the equations at the interface  take the form

[[𝑺n]]n = 𝟎,

[[det 𝑭 ]]𝑈 − [[𝜐𝑱 ]] ⋅ n = 0,

[[𝛹 ]] − 𝑺nn ⋅ [[𝑭 ]]n = 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(100)

here 𝑺n and 𝑱 are given by (99) and, with reference to (59) and (71), 𝛹 is given by

𝛹 = 𝜓̃𝑒(𝐼1, 𝐼2) + 𝜓̂𝑚((det 𝑭 − 𝜙0)∕𝜐). (101)

n writing (100)1, we have used the continuity of 𝑭 𝖢n (see (3)3) and 𝑝 across  to eliminate the pressure contribution. In this regard,
we recall that the continuity of 𝑝 stems from the assumption that the chemical potential 𝜇 is continuous across  and the relation
62) determining 𝑝 in terms of 𝜇. We have also used (34) to replace 𝐶 by det 𝑭 in (100) and (101).
13

1 2



Journal of the Mechanics and Physics of Solids 155 (2021) 104566F.P. Duda et al.

m

F
w
t
(
e

6

a

o
m

6. Spatial versions of the governing equations

6.1. Bulk equations

The spatial counterparts of the referential governing equations (98)–(99) are obtained on combining (19), (20), and (66). We
ay write these equations as

div(𝑻 n − 𝑝𝑰) = 𝟎,

𝜙 det 𝑭 = 𝜙0,

div(𝜐𝒋 + 𝒗) = 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(102)

where, with reference to (76) and (82), the network Cauchy stress 𝑻 n and the Cauchy fluid flux 𝒋 are given by

𝑻 n =
2

det 𝑭

(

𝛼1𝑩 + 𝛼2(𝐼1𝑰 − 𝑩)𝑩
)

− 𝜋𝑰 and 𝒋 = −𝜐𝑚̂(det 𝑭 )grad 𝑝. (103)

The equations of gel dynamics presented by Doi (2009) can be obtained from (102) and (103). Specifically, by standard arguments
of continuum mechanics, (102)2 is equivalent to the evolution equation

𝜕𝜙
𝜕𝑡

+ div(𝜙𝒗) = 0 (104)

for the polymer volume fraction 𝜙. Additionally, upon introducing the solvent velocity 𝒗𝑠 through the relation

𝒋 = 𝑐(𝒗𝑠 − 𝒗) (105)

and recalling that, by (32), 𝑐𝜐 = 1 − 𝜙, (102)3 and (103)2 can be recast as

div((1 − 𝜙)𝒗𝑠 + 𝜙𝒗) = 0 and 𝒗𝑠 − 𝒗 = −𝜅grad 𝑝, (106)

where 𝜅 is defined by

𝜅 = 𝜅̂(𝜙) ∶=
𝑚̂(𝜙0∕𝜙)
1 − 𝜙

. (107)

rom (106)2 it is evident that permeation velocity 𝒗𝑠 − 𝒗 is proportional to the pressure gradient grad 𝑝, a relation that is known
ithin the theory of porous media as Darcy’s law. The quantity 𝜅 given in (107) is a non-negative function of 𝜙 which is related to

he permeability. Finally, the equations of gel dynamics presented by Doi (2009) are obtained from (102) and (103) by replacing
102)2, (102)3, and (103)2 by (104), (106)1, and (106)2, respectively. Supplementing these equations by the purely kinematical
volution equation

𝜕𝑩
𝜕𝑡

+ (grad𝑩)𝒗 = (grad 𝒗)𝑩 + 𝑩(grad 𝒗)⊤ (108)

for 𝑩 yields a system of equations for 𝜙, 𝒗, 𝒗𝑠, and 𝑝.

.2. Interface equations

The spatial counterparts of the interfacial conditions (100), which hold on the spatial image 𝑠 of  obtain on combining (22),
(23)1, (66), and (91). We may write these equations as

[[𝑻 n]]m = 𝟎,

[[𝜙]]𝑢 − [[𝜙𝒗]] ⋅m = 0,

[[𝜐𝒋 + 𝒗]] ⋅m = 0,

[[𝛹 ]] − 𝑻 nm ⋅
[[ 𝜙0𝑩
𝜙m ⋅ 𝑩m

]]

m = 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(109)

where m and 𝑢, as defined by (23), represent the unit normal to m, the spatial scalar normal velocity of 𝑠 and 𝑻 n and 𝒋 are given
by (103), and we have used the consequences

[[𝑭 ]]n
|𝑭 𝖢n|

=
[[ 𝑩
det 𝑭

𝑭 𝖢n

|𝑭 𝖢n|

]]

=
[[𝜙𝑩
𝜙0

]]

⟨⟨𝑭 𝖢
⟩⟩n

|⟨⟨𝑭 𝖢
⟩⟩n|

+
⟨⟨𝜙𝑩
𝜙0

⟩⟩ [[𝑭 𝖢]]n
|𝑭 𝖢n|

=
[[𝜙𝑩
𝜙0

]]

m (110)

nd

m ⋅ 𝑩m = |𝑭 ⊤m|

2 = 𝑭 ⊤𝑭 𝖢n

|𝑭 𝖢n|
⋅
𝑭 ⊤𝑭 𝖢n

|𝑭 𝖢n|
= det 𝑩

|𝑭 𝖢n|
2
=

𝜙2
0

𝜙2
|𝑭 𝖢n|

2
(111)

f (3)3, (23)1, and (33) to derive (109)4 from the referential form (100)3 of configurational force balance. The latter derivation
akes no use of the constitutive relations (71) and (76) determining the free-energy density 𝛹 and the Cauchy network stress 𝑻 n
14

and, hence, holds independent of the elastic properties of the gel.
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Fig. 1. Schematic of the channel flow problem: A gel placed between two infinitely long, stationary, impermeable, and parallel walls separated by a gap 𝑑
is forced by a pressure drop in the streamwise direction. Material points identified with their locations before the application of the pressure difference move
as indicated by the corresponding (brown) displacement vectors and liquid permeation at their corresponding spatial locations takes place as indicated by
the components of the (blue) flux vectors. The outermost materials points do not move since the gel is presumed to be fixed to the walls. Material points
symmetrically located with respect to the central line remain so after the application of the pressure drop, and liquid flow may take place in both streamwise
and spanwise directions.

7. Pressure-driven flow through a gel-filled channel

We next apply the system of equations comprised by (102), (103), and (109) to study the behavior of a gel of uniform composition
placed between two flat walls and subjected to a pressure drop, as depicted in Fig. 1. Specifically, we consider the space between
two infinitely long impermeable parallel walls separated by a gap 𝑑 and completely filled by a gel that adheres to the channel walls.
The gel is taken to be initially in a stress-free state with polymer volume fraction constant and equal to 𝜙0. A fixed pressure drop is
then applied to the system, causing the gel to deform and the interstitial liquid to flow through the network. Our primary objective
is to investigate how the elastic and osmotic responses of the gel interact to determine its transient and state–state behaviors.

Our investigation will proceed in steps, in a manner similar to that used by Coleman et al. (1966) in their study of the channel
flow of a general incompressible fluid. We begin by introducing an Ansatz concerning the form of the deformation field and interface
location and orientation. Stipulating that our Ansatz satisfies the governing equations, we next arrive at a set of equations to be
solved for the various unknown quantities that are needed to completely specify a solution to our problem.

7.1. Ansatz

Considering a gel situated between and fixed to two infinite parallel walls and subjected to an applied pressure drop, we introduce
the following kinematical assumptions:

1. Each material plane parallel to the channel walls undergoes a rigid motion characterized by the composition of two
translations, one along the direction of the applied pressure drop and other in the direction orthogonal to the channel walls.
The magnitudes of these translations are allowed to vary from material plane to material plane. In particular, the material
planes in contact with the channel walls remain fixed.

2. Each pair of material planes that is symmetrically located with respect to the central plane between the channel walls
experience the same displacement in the direction of the applied pressure drop but opposite displacements in the direction
orthogonal to the walls.

3. The central material plane translates only along the direction of the applied pressure drop.

To expresses the foregoing assumptions mathematically, we introduce a right-handed Cartesian coordinate system with the 𝑥-
axis being parallel to the direction of decreasing pressure, the 𝑦-axis orthogonal to the channel walls, and 𝑧-axis orthogonal to the
(𝑥, 𝑦)-plane. We suppose that all fields are independent of 𝑧. Additionally, we take the channel walls to be located at 𝑦 = 0 and
𝑦 = 𝑑. With this choice of coordinates, the state reached by the gel at time 𝑡 due to an imposed pressure drop is such that:

• The components of the inverse deformation mapping 𝒚−1 take the form

𝑋 = 𝑥 + 𝑓 (𝑦, 𝑡), 𝑌 = 𝑦 + 𝑔(𝑦, 𝑡), 𝑍 = 𝑧, (112)

where (𝑋, 𝑌 ,𝑍) are the referential coordinates of a gel particle, and 𝑓 and 𝑔 entering (112)1 and (112)2 are to be determined.
• Consistent with the requirement that the gel is fixed to the channel walls at 𝑦 = 0 and 𝑦 = 𝑑, 𝑓 and 𝑔 obey the conditions

𝑓 (0, 𝑡) = 𝑓 (𝑑, 𝑡) = 0 and 𝑔(0, 𝑡) = 𝑔(𝑑, 𝑡) = 0. (113)

• The functions 𝑓 and 𝑔 entering (112) obey the symmetry relations with respect to the central line 𝑦 = 𝑑∕2 between the channel
walls:

𝑓 (𝑦, 𝑡) = 𝑓 (𝑑 − 𝑦, 𝑡) and 𝑔(𝑦, 𝑡) = −𝑔(𝑑 − 𝑦, 𝑡), 0 ≤ 𝑦 ≤ 𝑑. (114)
15
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It is evident that the requirements itemized above express the foregoing assumptions on the motion undergone by the gel due to an
applied pressure drop.3

We also allow for the possibility that the state of the gel may involve the presence of planar interfaces symmetrically located
ith respect to the central plane of the channel. Specifically, if such planar interfaces are present at time 𝑡, we denote their positions

relative to the plane 𝑦 = 𝑑∕2 by

𝑦 = 𝑤(𝑡) and 𝑦 = 𝑑 −𝑤(𝑡), with 0 < 𝑤(𝑡) < 𝑑∕2. (115)

In absence of interfaces, the continuous functions 𝑓 and 𝑔 are smooth on the entire interval (0, 𝑑). Otherwise, they are piecewise
smooth, meaning that they are smooth on the sub-intervals (0, 𝑤), (𝑤, 𝑑∕2), and (𝑑 −𝑤, 𝑑).

We next explore the implications of our assumptions on relevant kinematic quantities as well as on the network stress.

.1.1. Kinematic quantities
Suppose that 𝑡 is fixed and consider that 𝑦 ∈ [0, 𝑑], with 𝑦 ≠ 𝑤(𝑡) and 𝑦 ≠ 𝑑 − 𝑤(𝑡). A direct calculation using (112) yields that

he matrix representation of 𝑭 relative to the underlying coordinate frame is given by

[𝑭 ] =

⎡

⎢

⎢

⎢

⎣

1 𝛾 0

0 𝜆 0

0 0 1

⎤

⎥

⎥

⎥

⎦

, (116)

here 𝛾 and 𝜆 are given by

𝛾 ∶= −
𝜕𝑓
𝜕𝑦

(

1 +
𝜕𝑔
𝜕𝑦

)−1
and 𝜆 ∶=

(

1 +
𝜕𝑔
𝜕𝑦

)−1
. (117)

The matrix representations of 𝑩 = 𝑭𝑭 ⊤ and 𝑭 𝖢 relative to the underlying coordinate frame are thus

[𝑩] =

⎡

⎢

⎢

⎢

⎣

1 + 𝛾2 𝛾𝜆 0

𝛾𝜆 𝜆2 0

0 0 1

⎤

⎥

⎥

⎥

⎦

and [𝑭 𝖢] =

⎡

⎢

⎢

⎢

⎣

𝜆 0 0

−𝛾 1 0

0 0 𝜆

⎤

⎥

⎥

⎥

⎦

. (118)

From (118)1, the principal scalar invariants of 𝑩 are given by

𝐼1 = 2 + 𝛾2 + 𝜆2, 𝐼2 = 1 + 𝛾2 + 2𝜆2, 𝐼3 = 𝜆2. (119)

With reference to (116), we infer that 𝑭 has the form of a superposition of a simple shear of amount 𝛾 and a uniaxial extension
with stretch 𝜆, which, by (114), satisfy the conditions

𝛾(𝑦, 𝑡) = −𝛾(𝑑 − 𝑦, 𝑡) and 𝜆(𝑦, 𝑡) = 𝜆(𝑑 − 𝑦, 𝑡). (120)

From (120)1, we see that the amount of shear vanishes at 𝑦 = 𝑑∕2, that is,

𝛾(𝑑∕2, 𝑡) = 0. (121)

Referring to the boundary conditions in (113)2, which stem from the assumption that the gel adheres to the channel walls at 𝑦 = 0
and 𝑦 = 𝑑, and using (117)1, we find that the stretch 𝜆 must satisfy the integral condition

∫

𝑑

0

d𝑦
𝜆(𝑦, 𝑡)

= 𝑑, (122)

hich, by symmetry, is equivalent to

∫

𝑑∕2

0

d𝑦
𝜆(𝑦, 𝑡)

= 𝑑
2
. (123)

We now obtain the Cartesian components of 𝒗 away from any interfaces that may be present. Using the classical relation
= −𝑭 (𝜕𝒚−1∕𝜕𝑡), in conjunction with (116) and (117), we find that

𝑣𝑥 = −𝛾
𝜕𝑔
𝜕𝑡

−
𝜕𝑓
𝜕𝑡
, 𝑣𝑦 = −𝜆

𝜕𝑔
𝜕𝑡
, and 𝑣𝑧 = 0, (124)

3 To verify the stated assertion, let (𝑦0 , 𝑡) be the set of material points occupying the plane 𝑦 = 𝑦0 ∈ [0, 𝑑] in the deformed configuration at time 𝑡. According
to (112), this set occupies the plane 𝑌 = 𝑌0, with 𝑌0 = 𝑦0 + 𝑔(𝑦0 , 𝑡), in the reference configuration. Moreover, (𝑦0 , 𝑡) undergoes a plane and rigid displacement,
with 𝑋 and 𝑌 components given by −𝑓 (𝑦0 , 𝑡) and −𝑔(𝑦0 , 𝑡), respectively. This observation lead us to conclude that: (i) the set (𝑑∕2, 𝑡) is displaced along the

-direction only since, by (114)2, 𝑔(𝑑∕2, 𝑡) = 0; (ii) the material sets (0, 𝑡) and (𝑑, 𝑡) remain unaltered since, by (113), 𝑓 and 𝑔 vanish at 𝑦 = 0 and 𝑦 = 𝑑;
iii) the material sets (𝑦1 , 𝑡) and (𝑦2 , 𝑡), with 0 < 𝑦1 < 𝑦2 < 𝑑, slide with respect to each other without fixing distance between them; iv) the material sets
(𝑦0 , 𝑡) and (𝑑 − 𝑦0 , 𝑡) undergo the same displacement in the 𝑋-direction but opposite displacements in the 𝑌 -direction, as (114) shows. The latter implies

hat the planes occupied by (𝑦0 , 𝑡) and (𝑑 −𝑦0 , 𝑡) in the reference configuration are equidistant from the central plane. Thus, (𝑦0 , 𝑡) and (𝑑 −𝑦0 , 𝑡) occupy
lanes in the reference configuration and the deformed configuration, respectively, that are symmetrically located with the respect to the central plane, while
16

he corresponding separation may change.
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where 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 are, respectively, the components of the velocity field 𝒗 in the directions of increasing 𝑥, 𝑦, and 𝑧. Using (114)
nd (120), we conclude that

𝑣𝑥(𝑦, 𝑡) = 𝑣𝑥(𝑑 − 𝑦, 𝑡) and 𝑣𝑦(𝑦, 𝑡) = −𝑣𝑦(𝑑 − 𝑦, 𝑡). (125)

urther, using the relation div 𝒗 = 𝑭̇ ⋅ 𝑭 −⊤, we find that

div 𝒗 =
𝜕𝑣𝑦
𝜕𝑦

= ̇ln 𝜆 (126)

Keeping in mind our assumption that inertia is of negligible importance, we do not present the acceleration field.
If interfaces are present at 𝑦 = 𝑤(𝑡) and 𝑦 = 𝑑 −𝑤(𝑡) as described in (115), we use the unit normal m to (𝑥, 𝑧)-plane, oriented in

the direction of increasing 𝑦, to denote their common unit. In view of this convention, we observe for later reference that the scalar
normal velocities of the interfaces at 𝑦 = 𝑤(𝑡) and 𝑦 = 𝑑 −𝑤(𝑡) are given by

𝑢(𝑤(𝑡), 𝑡) = 𝑤̇(𝑡) and 𝑢(𝑑 −𝑤(𝑡), 𝑡) = −𝑤̇(𝑡), (127)

respectively. Thus, the layers of the gel closest to the walls bounding the channel therefore thicken at the expense of the inner layer
surrounding the central plane of the channel if 𝑤̇ > 0 and the opposite occurs when 𝑤̇ < 0.

7.1.2. The network stress
Combining (103)1, (118)1, and (119), we conclude that the matrix representation relative to the underlying coordinate frame of

the Cauchy network stress 𝑻 n reads

[𝑻 n] =

⎡

⎢

⎢

⎢

⎣

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 𝜎𝑧

⎤

⎥

⎥

⎥

⎦

, (128)

with 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, and 𝜏𝑥𝑦 given by

𝜎𝑥 = 2
𝜆
(𝛼1(1 + 𝛾2) + 𝛼2(1 + 𝛾2 + 𝜆2)) − 𝜋̂(𝜆),

𝜎𝑦 = 2𝜆(𝛼1 + 2𝛼2) − 𝜋̂(𝜆),

𝜎𝑧 =
2
𝜆
(𝛼1 + 𝛼2(1 + 𝜆2 + 𝛾2)) − 𝜋̂(𝜆),

𝜏𝑥𝑦 = 2𝛾(𝛼1 + 𝛼2),

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(129)

where, recalling (75), 𝛼1 and 𝛼2 are given by

𝛼1 = 𝛼̂1(𝛾, 𝜆) ∶=
𝜕𝜓̃𝑒(𝐼1, 𝐼2)

𝜕𝐼1
and 𝛼2 = 𝛼̂2(𝛾, 𝜆) ∶=

𝜕𝜓̃𝑒(𝐼1, 𝐼2)
𝜕𝐼2

, (130)

with 𝐼1 and 𝐼2 determined in terms of 𝛾 and 𝜆 by (119)1 and (119)2. Since 𝜋̂(𝜆) appears only in the expressions (129)1–3, we see the
osmotic pressure affects only the normal stresses and that the shear stress is completely determined by the elastic response of the
network and the same goes for the normal stress differences.

Anticipating that the constitutive equations for 𝜎𝑦 and 𝜏𝑥𝑦 will be of prominent importance in the subsequent development, we
find it convenient to recast (129)2,4 as

𝜎𝑦 = 𝜎̂(𝛾, 𝜆) ∶= 2(𝛼̂1(𝛾, 𝜆) + 2𝛼̂2(𝛾, 𝜆))𝜆 − 𝜋̂(𝜆), 𝜏𝑥𝑦 = 𝜏(𝛾, 𝜆) ∶= 𝐺̂(𝛾, 𝜆)𝛾, (131)

where 𝐺̂ defined in accord with

𝐺̂(𝛾, 𝜆) = 2(𝛼̂1(𝛾, 𝜆) + 𝛼̂2(𝛾, 𝜆)) (132)

is the generalized shear modulus at (𝛾, 𝜆). Further, defining 𝜑̂ by

𝜑̂(𝛾, 𝜆) = 𝜓̃𝑒(2 + 𝛾2 + 𝜆2, 1 + 𝛾2 + 2𝜆2) + 𝜓̂𝑚((𝜆 − 𝜙0)∕𝜐), (133)

we note that 𝜎̂ and 𝜏 are given by

𝜎̂(𝛾, 𝜆) =
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝜆

and 𝜏(𝛾, 𝜆) =
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝛾

. (134)

Henceforth, we will require that the elastic response of the gel complies with the Baker–Ericksen inequality, which implies that
̂ (𝛾, 𝜆) > 0 for 𝛾 ≠ 0 (see Appendix A), and that the infinitesimal generalized shear modulus 𝐺̂(0, 𝜆) is positive. As a consequence of
hese assumptions, the generalized shear modulus 𝐺̂(𝛾, 𝜆) > 0 must always be positive, so that

𝐺̂(𝛾, 𝜆) > 0 (135)

or any (𝛾, 𝜆) of interest.
We finalize this subsection with two remarks to which we will later return:
17
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• In conjunction with (131)2, (135) implies that for each 𝜆, 𝜕𝜏(⋅, 𝜆)∕𝜕𝛾 > 0 in a neighborhood of (0, 𝜆), and, hence, that 𝜏(⋅, 𝜆)
is invertible in that same neighborhood. However, if we consider only situations in which interfaces arise due to volume
transitions (see, for instance, Dušek and Dušková-Smrčková, 2020 and Doi, 2013), we find (see Appendix B) that 𝜏(⋅, 𝜆) is
invertible for all choices of 𝛾 rather than only in a neighborhood of 𝛾 = 0. This makes it permissible to replace 𝛾 by 𝜏𝑥𝑦 as the
independent constitutive variable, a possibility that will be explored in several occasions throughout this paper.

• By (134), 𝜕𝜎̂∕𝜕𝛾 ≡ 0 if and only if 𝜕𝜏∕𝜕𝜆 ≡ 0, which means that the normal stress response 𝜎̂ is unaffected by the amount
of shear 𝛾 whenever shear stress response 𝜏 is unaffected by the stretch 𝜆, and vice versa. For this condition to hold, it is
necessary and sufficient that 𝜑̂ be an additive and separable function of 𝛾 and 𝜆, that is, that 𝜑̂ can be written in the form
𝜑̂(𝛾, 𝜆) = 𝜑̂𝛾 (𝛾) + 𝜑̂𝜆(𝜆) for single-valued functions 𝜑̂𝛾 and 𝜑̂𝜆. Equivalently, by (133), the response for the free energy density
𝜓̂𝑒 must have the form

𝜓̃𝑒(𝐼1, 𝐼2) = 𝑐1𝐼1 + 𝑐2𝐼2 + 𝑞1(𝐼2 − 2𝐼1) + 𝑞2(𝐼2 − 𝐼1), (136)

for some constants 𝑐1 and 𝑐2, and functions 𝑞1 and 𝑞2.4 It is noteworthy that both neo-Hookean and Mooney models for nonlinear
elastic networks comply with (136).

.2. Governing equations

We next specialize the spatial versions (102), (103), and (109) of the bulk and interfacial governing equations in accord with
he assumptions described in Section 7.1, the ultimate goal being to obtain a system of equations for 𝑓 , 𝑔, 𝑝, and 𝑤.

We consider separately each of the basic equations augmented with the pertinent constitutive information and boundary
onditions. Whenever necessary, we make use of our choice of m as the unit vector oriented in the direction of increasing 𝑦.

.2.1. Polymer content conservation
From (116), we see that det 𝑭 = 𝜆 and hence (102)2 can be replaced by a relation between the stretch 𝜆 and polymer volume

raction 𝜙 of the form

𝜆𝜙 = 𝜙0, (137)

rom which we infer that 𝜙, like 𝜆, depends on 𝑦 and 𝑡 alone. As a consequence of (137), we see that the composition of the gel, as
escribed by the polymer volume fraction 𝜙, is fully determined by the stretch 𝜆. Turning to the interface, we see that, after taking
125) and (127) into account, the condition (109)2 takes the form

[[𝜙]]𝑤̇ + [[𝜙𝑣𝑦]] = 0. (138)

.2.2. Mechanical force balance
According to (128) and (129), the components of the network stress 𝑻 n are determined by 𝛾 and 𝜆 and hence are functions of 𝑦

nd 𝑡 only. In this case, (102)1 reduces to
𝜕𝜎𝑦
𝜕𝑦

−
𝜕𝑝
𝜕𝑦

= 0,
𝜕𝜏𝑥𝑦
𝜕𝑦

−
𝜕𝑝
𝜕𝑥

= 0,
𝜕𝑝
𝜕𝑧

= 0. (139)

Next, bearing in mind that m is oriented in the direction of increasing 𝑦 and using (128), we next deduce that (109)1 requires that
normal stress 𝜎𝑦 the shear stress 𝜏𝑥𝑦 satisfy

[[𝜎𝑦]] = 0 and [[𝜏𝑥𝑦]] = 0 (140)

and, thus, must be continuous at 𝑦 = 𝑤 and 𝑦 = 𝑑 −𝑤.
Conditions (139) and (140) have important implications: from (139)1,3, we see that the pressure 𝑝must be linear in 𝑥, independent

of 𝑧, and continuous at 𝑦 = 𝑤 and 𝑦 = 𝑑 −𝑤, from which we conclude that the difference 𝜎𝑦 − 𝑝 must be of the form

𝜎𝑦(𝑦, 𝑡) − 𝑝(𝑥, 𝑦, 𝑡) = 𝑘1(𝑡)𝑥 + 𝑘2(𝑡), −∞ < 𝑥 <∞, 0 ≤ 𝑦 ≤ 𝑑, 𝑡 ≥ 0 (141)

for some choice of time-dependent functions 𝑘1 and 𝑘2; moreover, using (141) in (139)1 while recognizing from (121) and (129)4
that 𝜏𝑥𝑦 vanishes at 𝑦 = 𝑑∕2, we see that it must be of the form

𝜏𝑥𝑦(𝑦, 𝑡) = 𝑘1(𝑡)
(𝑑
2
− 𝑦

)

, 0 ≤ 𝑦 ≤ 𝑑, 𝑡 ≥ 0. (142)

The following remarks are in order:

4 The condition 𝜕𝜎̂∕𝜕𝛾 ≡ 0 is equivalent to the second order partial differential equation

𝜕2𝜓̃𝑒(𝐼1 , 𝐼2)
𝜕𝐼21

+ 3
𝜕2𝜓̃𝑒(𝐼1 , 𝐼2)
𝜕𝐼1𝜕𝐼2

+ 2
𝜕2𝜓̃𝑒(𝐼1 , 𝐼2)

𝜕𝐼22
= 0

for 𝜓̃ , the most general solution of which has the form (136).
18
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• By (141), the total normal stress 𝜎𝑦 − 𝑝 acting on planes parallel to the channel walls does not vary from plane to plane. Any
variation of the network part of that normal stress must therefore be compensated by a variation of the corresponding fluid
part.

• If 𝑘1(𝑡) > 0 for a given time 𝑡, then, by (142), the total shear stress 𝜏𝑥𝑦 acting on planes parallel to the channel walls varies
linearly with the plane position, attaining its maximum and minimum at the planes in contact with the lower and upper walls,
respectively. The locations of the maxima and minima switch if 𝑘1(𝑡) < 0.

Following Coleman et al. (1966), we now discuss how the time-dependent functions 𝑘1 and 𝑘2 can be obtained and show that
𝑘1 can be identified with the applied pressure drop per unit length. To this end, we consider a gel slab lying between the planes
𝑥 = 𝑥1 and 𝑥 = 𝑥2, with 𝑥2 > 𝑥1, and observe that 𝑘1 obeys the relation

𝑘1 =
1

𝑑(𝑥2 − 𝑥1) ∫

𝑑

0
((𝜎𝑥 − 𝑝)|𝑥=𝑥2 − (𝜎𝑥 − 𝑝)|𝑥=𝑥1 )d𝑦 (143)

obtained by using (141) and recalling that 𝜎𝑥 = (𝜎𝑥 − 𝜎𝑦) + 𝜎𝑦 and that 𝜎𝑥 and 𝜎𝑦 are independent of 𝑥. The integral term of (143)
represents total applied force, per unit length in the direction normal to the (𝑥, 𝑦)-plane, at time 𝑡, in the 𝑥-direction, imposed on
he gel slab. Thus, (143) shows that 𝑘1 is the time varying applied force per unit volume in the direction of the interstitial fluid
low, that is, the driving force that produces the flow. In view of (141) one can see that 𝑘1(𝑡), the negative of the pressure gradient
n the direction of the fluid flow at time 𝑡, is given by (𝑝(𝑥1, 𝑦, 𝑡) − 𝑝(𝑥2, 𝑦, 𝑡))∕(𝑥2 − 𝑥1) and hence can be identified with the pressure
rop per unit length at that time. Otherwise, 𝑘2 can be obtained if the normal thrust per unit area at a point of one of the bounding
alls, which is equal to the normal stress 𝜎𝑦 − 𝑝 at that point, is known as function of 𝑡.

We finalize the discussion regarding the mechanical force balance by adding the following remarks:

• In view of (141) and (142), we find from the mechanical force balance that the components 𝜎𝑦 − 𝑝 and 𝜏𝑥𝑦 of the total stress
𝑻 n − 𝑝𝑰 are determined by the time-dependent functions 𝑘1 and 𝑘2. Moreover, we see from (141) that

𝜎𝑥(𝑦, 𝑡) − 𝑝(𝑥, 𝑦, 𝑡) = 𝜎𝑥(𝑦, 𝑡) − 𝜎𝑦(𝑦, 𝑡) + 𝑘1(𝑡)𝑥 + 𝑘2(𝑡),

𝜎𝑧(𝑦, 𝑡) − 𝑝(𝑥, 𝑦, 𝑡) = 𝜎𝑧(𝑦, 𝑡) − 𝜎𝑦(𝑦, 𝑡) + 𝑘1(𝑡)𝑥 + 𝑘2(𝑡),

}

(144)

for −∞ < 𝑥 < ∞, 0 ≤ 𝑦 ≤ 𝑑, 𝑡 ≥ 0, and, thus, that to determine 𝜎𝑥 − 𝑝 and 𝜎𝑧 − 𝑝 requires knowledge of 𝑘1 and 𝑘2 and, in
addition, of the normal stress differences 𝜎𝑥 − 𝜎𝑦 and 𝜎𝑧 − 𝜎𝑦. The situation is completely analogous to that encountered by
Coleman et al. (1966) within the context of the channel flow of incompressible fluids.

• By (129), the normal stress differences 𝜎𝑥 − 𝜎𝑦 and 𝜎𝑧 − 𝜎𝑥 can be expressed as

𝜎𝑥 − 𝜎𝑦 =
( 1 + 𝛾2 − 𝜆2

𝛾𝜆

)

𝜏𝑥𝑦 and 𝜎𝑥 − 𝜎𝑧 =
2𝛾2𝛼̂1(𝛾, 𝜆)

𝜆
. (145)

We show in Appendix A that (145)1 and (145)2 hold for any isotropic gel of type considered here and therefore comprise
universal relations for such gels.

.2.3. Fluid content balance
We begin by obtaining the components of the solvent flux 𝒋 in the underlying Cartesian frame. Recalling from (139)3 that 𝑝 is

ndependent of 𝑧, and from (116) that det 𝑭 = 𝜆, we see from (103)2 that the streamwise, spanwise, and transverse components of
he solvent flux 𝒋 are given by

𝚥𝑥 = −𝜐𝑚̂(𝜆)
𝜕𝑝
𝜕𝑥
, 𝚥𝑦 = −𝜐𝑚̂(𝜆)

𝜕𝑝
𝜕𝑦
, and 𝚥𝑧 = 0. (146)

However, from (141), we see that the conditions in (146) can be expressed alternatively as

𝚥𝑥 = 𝜐𝑚̂(𝜆)𝑘1, 𝚥𝑦 = −𝜐𝑚̂(𝜆)
𝜕𝜎𝑦
𝜕𝑦

, and 𝚥𝑧 = 0. (147)

Since 𝜆 and 𝜎𝑦 depend at most on 𝑦 and 𝑡, we infer from (147) that the nontrivial components 𝚥𝑥 and 𝚥𝑦 of 𝒋 can also depend at most
on 𝑦 and 𝑡. The analogous finding applies moreover to the streamwise and spanwise components of 𝒗, as is evident from (124), and
on this basis, we infer that (102)3 reduces to

𝜕(𝜐𝚥𝑦 + 𝑣𝑦)
𝜕𝑦

= 0, (148)

hich in combination with (126) leads to the requirement that

̇ln 𝜆 = −
𝜕(𝜐𝚥𝑦)
𝜕𝑦

(149)

hold throughout the channel, excepting the interfaces at 𝑦 = 𝑤 and 𝑦 = 𝑑 − 𝑤. Turning to those interfaces and recalling that m is
oriented in the direction of increasing 𝑦, we deduce from (109) and (124)3 that the condition

[[𝜐𝚥 + 𝑣 ]] = 0 (150)
19
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is met at 𝑦 = 𝑤 and 𝑦 = 𝑑 −𝑤, which in conjunction with (124) leads to the finding that the condition

[[𝜐𝚥𝑦]] =
[[

𝜆
𝜕𝑔
𝜕𝑡

]]

(151)

is also met at 𝑦 = 𝑤 and 𝑦 = 𝑑 − 𝑤. Integrating (148) and using the continuity condition (150), we thus conclude that 𝜐𝚥𝑦 + 𝑣𝑦
depends at most on 𝑡. Since the channel walls are impermeable and the gel adheres to them, we infer that 𝚥𝑦 = 0 and 𝑣𝑦 = 0 at 𝑦 = 0
nd 𝑦 = 𝑑 and, hence, that the condition

𝜐𝚥𝑦 + 𝑣𝑦 = 0 (152)

ust apply throughout the channel. Thus, we deduce that fluid flow in the 𝑦-direction must be accompanied by the motion of the
etwork in the opposing direction.

We finalize this subsection by emphasizing the most salient results obtained thus far:

• According to (147)1, the pressure drop forces the interstitial fluid to flow along its direction of application. Moreover, the
corresponding flow depends on the stretch 𝜆 through the response function 𝑚̂(𝜆) determining the mobility of the liquid. It is
natural to expect that 𝑚̂(𝜆) decreases with the polymer volume fraction and hence, by (137), 𝑚̂(𝜆) increases with 𝜆. Thus, the
higher the stretch, the higher the fluid flow in the direction of the pressure drop.

• As (147)2 shows, the applied pressure drop can also drive interstitial fluid flow in the direction perpendicular to the channel
walls. However, this occurs indirectly thorough the gradient of the network normal stress 𝜎𝑦, with the consequence that the
interstitial fluid flows from higher to lower values of 𝜎𝑦. By (152), any such flow must be accompanied by the network motion
in the opposite direction and ceases to exist when the steady state is reached since 𝑣𝑦 = 0 vanishes at that stage of the process.
We therefore infer that 𝜎𝑦 must be homogeneous under steady-state conditions.

• When a pressure drop is applied to a gel placed between two fixed walls, mechanical equilibrium, which is attained
instantaneously if inertial effects are negligible assumed herein, imposes the linear profile for 𝜏𝑥𝑦 and the relation between
𝜎𝑦 and 𝑝 presented in (141)–(142). In particular, (141)–(142) show that for all time: 𝜏𝑥𝑦 and is completely specified by the
applied pressure drop, as is 𝜕𝑝∕𝜕𝑥, which provides the driving force for fluid flow in the 𝑥-direction; 𝜕𝑝∕𝜕𝑦, which provides the
driving force for fluid flow in the 𝑦-direction, is equal to 𝜕𝜎𝑦∕𝜕𝑦. When the pressure drop is applied suddenly, 𝜏𝑥𝑦 and 𝜕𝑝∕𝜕𝑥
are time-independent whereas 𝜎𝑦 and 𝑝 generally evolve with time.

7.2.4. Configurational force balance
Referring to (118)1, (128), and (137), we find that the interface condition (109)4 simplifies to

[[𝛹 ]] − 𝜎𝑦[[𝜆]] − 𝜏𝑥𝑦[[𝛾]] = 0, (153)

where, recalling (71), (73), (101), (131), and (134), 𝛹 , 𝜎𝑦, and 𝜏𝑥𝑦 are given by

𝛹 = 𝜑̂(𝛾, 𝜆), 𝜎𝑦 = 𝜎̂(𝛾, 𝜆) =
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝜆

, and 𝜏𝑥𝑦 = 𝜏(𝛾, 𝜆) =
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝛾

, (154)

with 𝜑̂ defined according to (133).

7.2.5. Summary of the governing equations
We now gather the equations we will use to describe the behavior of a gel placed between two fixed walls under the action of an

applied pressure drop. These consist of (117), (124)2, (137), (138), (141), (142), (152), and (153), augmented by the constitutive
relations (146) and (154)2 for 𝜎𝑦, 𝜏𝑥𝑦, and 𝛹 and 𝑗𝑦, respectively. Due to symmetry, only the lower half 0 ≤ 𝑦 ≤ 𝑑∕2 of the channel
need be considered. Specifically, we consider

𝜎𝑦 = 𝑝 + 𝑘1𝑥 + 𝑘2,

𝜏𝑥𝑦 = 𝑘1
(𝑑
2
− 𝑦

)

,

𝑣𝑦 + 𝑣𝚥𝑦 = 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(155)

for all 0 < 𝑦 ≤ 𝑑∕2 and 𝑡 > 0,

𝜆
(

1 +
𝜕𝑔
𝜕𝑦

)

= 1,

𝛾
(

1 +
𝜕𝑔
𝜕𝑦

)

= −
𝜕𝑓
𝜕𝑦
,

𝑣𝑦 = −𝜆
𝜕𝑔
𝜕𝑡
,

𝜆𝜙 = 𝜙0,

𝜎𝑦 = 𝜎̂(𝛾, 𝜆),

𝜏𝑥𝑦 = 𝜏(𝛾, 𝜆),

𝚥𝑦 = −𝜐𝑚̂(𝜆)
𝜕𝑝
𝜕𝑦
,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(156)
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for all 0 < 𝑦 < 𝑤 and 𝑤 < 𝑦 < 𝑑∕2 and 𝑡 > 0, and

[[𝜙]]𝑤̇ + [[𝜙𝑣𝑦]] = 0,

[[𝛹 ]] − 𝜏𝑥𝑦[[𝛾]] − 𝜎𝑦[[𝜆]] = 0,

}

(157)

for 𝑦 = 𝑤 and 𝑡 > 0.
The system (155)–(157) must be supplemented with appropriate boundary and initial conditions. The first set of conditions,

which follow from the boundary and symmetry conditions (113) and (114), are given by

𝑓 (0, 𝑡) = 0,

𝜕𝑓 (𝑦, 𝑡)
𝜕𝑦

|

|

|

|𝑦= 𝑑
2

= 0,

𝑔(0, 𝑡) = 0,

𝑔
(𝑑
2
, 𝑡
)

= 0,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(158)

or all 𝑡 ≥ 0. As for the second set of conditions, we assume that the initial state of the gel is taken as the state prior to the application
f the pressure drop, in which case the gel is assumed to be characterized by a uniform composition described by the constant value
0 of the polymer volume fraction. Thus, the initial conditions are given by

𝑔(𝑦, 0) = 0,

𝑤(0) = 𝑤0,

}

(159)

or all 0 ≤ 𝑦 ≤ 𝑑∕2, with 0 ≤ 𝑤 ≤ 𝑑∕2. Since interfaces are of course absent in the initial state of the gel, it seems sensible to assume
hat a new phase may initiate at either 𝑤0 = 0 or 𝑤0 = 𝑑∕2. This means that a new phase may appear in two privileged locations,
amely at the gel surface which is contact to the channel wall or inside the gel in the center of the channel.5 It is therefore possible
o use the system of equations described above to investigate the kinetics of phase transition by assuming that the interface may
ppear either at 𝑦 = 0 or at 𝑦 = 𝑑∕2. An analysis of this kind is outside the scope of the present work but will be addressed elsewhere.

Given the applied pressure drop per unit length 𝑘1, the polymer volume fraction 𝜙0 in the reference state, the volume 𝜐 occupied
y a fluid molecule, and the constitutive responses 𝜑̂, from which 𝜏, 𝜎̂, and 𝛹 are obtained, and 𝑚̂, the system (155)–(157),
upplemented with the boundary and initial conditions (158) and (159), yield a system of equations to be solved for 𝑓 , 𝑔, 𝜙, and
, all of which vary with position and time, and 𝑤, which varies only on time. Additionally, the pressure 𝑝 is determined to within
he time-dependent function 𝑘2.

At this juncture, it is worth highlighting some features depicted by the system (155)–(157) that are associated with the response
unctions 𝜏 and 𝜎̂:

(i) An immediate calculation using (155) and (156) allows us to conclude that 𝑔 must obey the equation

𝜆
𝜕𝑔
𝜕𝑡

= −𝜐2𝑚̂(𝜆)
( 𝜕𝜎̂(𝛾, 𝜆)

𝜕𝛾
𝜕𝛾
𝜕𝑦

+
𝜕𝜎̂(𝛾, 𝜆)
𝜕𝜆

𝜕𝜆
𝜕𝑦

)

(160)

for all 0 < 𝑦 < 𝑤 and 𝑤 < 𝑦 < 𝑑∕2 and 𝑡 > 0. This implies that the system (155)–(157) admits the trivial solution characterized
by 𝑔 ≡ 0 only if the constitutive response function 𝜎̂ determining the network stress 𝜎𝑦 is unaffected by the amount of shear
𝛾, that is, whenever 𝜕𝜎̂∕𝜕𝛾 ≡ 0. In this case, (155)–(157) reduces to a system for the quantities 𝑓 and 𝑤. This is the situation
found for the family of elastic energy densities of the form (136), which includes both neo-Hookean and Mooney models
for nonlinear elastic networks. In this case, the gel undergoes a inhomogeneous shear deformation while the fluid permeates
exclusively along the direction of the applied pressure drop. Further, that trivial solution is unstable whenever 𝜕𝜎̂∕𝜕𝜆 < 0 at
𝜆 = 1, since in this case a small and smooth perturbation of 𝑔 ≡ 0 grows without limit over time, as shown in Appendix E.

(ii) Under the proviso that 𝜏𝑥𝑦 can be treated as an independent constitutive variable, the system (155)–(157) can be reformulated
in such way that 𝑔, 𝜙, 𝑝, and 𝑤 can be solved for independent of 𝑓 , which in turn is obtained from the knowledge of 𝑔 and
𝑤, as shown in Appendix E. Consistent with previous remarks, this is exactly the situation encountered in the present paper
because here interfaces emerge exclusively due of volume transitions. Consequently, the mapping 𝜏(⋅, 𝜆) can be inverted for
each 𝜆, thereby allowing the replacement of 𝛾 by 𝜏𝑥𝑦 as the independent constitutive variable, as shown in Appendix B.

7.3. Instantaneous and steady-state responses

From here onward, we suppose that 𝑘1 satisfies

𝑘1 = constant > 0 (161)

5 This kind of consideration is often found in both theoretical and experimental studies on the kinetics of volume phase transition in gels. See, for instance,
21
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and is applied instantaneously at 𝑡 = 0. We then next investigate two limiting responses of the gel, namely the instantaneous and
teady responses exhibited in the limits as time goes to zero and infinity, respectively.

We assume that the instantaneous response is characterized by the insufficient time for the fluid to flow in the direction
erpendicular to plates and hence replace (156)3 and (157)1 by 𝑣𝑦 ≡ 0 and 𝑤̇ ≡ 0, respectively. On the other hand, the steady

response corresponds to time-independent solutions of (155)–(157), which in turn imply that 𝑣𝑦 ≡ 0 and 𝑤̇ ≡ 0. Notice that although
the conditions on 𝑣𝑦 and 𝑤 defining the instantaneous and steady responses are the same, they are distinct in nature and consequently
have different implications. As a matter of fact:

• The conditions 𝑣𝑦 = −𝜐𝑗𝑦 ≡ 0 and 𝑤̇ ≡ 0 defining the instantaneous response originate from the assumption that immediately
after the application of the pressure drop fluid flow in the direction perpendicular to the plates is insignificant regardless
the driving force 𝜕𝑝∕𝜕𝑦 that is instantaneously generated. Under this condition, there is not enough time for the initial
composition of the gel to change, with the consequence that the gel behaves like an incompressible elastic solid undergoing
an inhomogeneous shear deformation.

• On the other hand, the conditions 𝑣𝑦 ≡ 0 and 𝑤̇ ≡ 0 defining the steady response come from the assumption that, with the
passage of time, 𝜕𝑝∕𝜕𝑦 decays until it eventually vanishes and, thus, fluid flow ceases. Under this condition, the gel behaves
like a compressible elastic solid undergoing an inhomogeneous shear deformation upon which an inhomogeneous stretch is
superimposed.

In Appendix F, we show that the instantaneous response can be seen as a first order approximation of the gel response for very
hort times, wherein the observation time scale 𝑡𝑜 is much smaller than 𝑡∗, the intrinsic time scale associated with fluid transport.
he latter can be estimated by

𝑡∗ =
𝜆𝑐𝑑

2𝜐2𝑚𝑐𝑎𝑐
, (162)

where 𝜆𝑐 , 𝑚𝑐 , and 𝑎𝑐 are characteristic sizes for 𝜆, 𝑚̂, and 𝜕𝑝∕𝜕𝑦. On the other hand, the steady response can be viewed as a first
rder approximation of the gel response for very long times, wherein the observation time scale 𝑡𝑜 is much greater than the intrinsic
ime scale 𝑡∗.

.3.1. Instantaneous response
We now seek to describe the behavior of the gel immediately after the sudden application of pressure drop per unit length

1 > 0, that is, in the limit 𝑡 → 0+, by using (155)–(156). We assume that the instantaneous response does not involve interfaces.
he conditions in (157) are therefore not germane under this limit.

For very short times, there is insufficient time for the fluid to flow and hence the gel composition is static. Hence, 𝜙(⋅, 0+) ≡ 𝜙0
nd, by (156)1, 𝜆(⋅, 0+) ≡ 1, from which, with reference to (117)2, it follows that 𝑔(⋅, 0+) ≡ 0. The instantaneous response of the gel
herefore involves an inhomogeneous shear deformation described by the unknown function 𝑓 (⋅, 0+), which in view of (117)2 and
113)1, can be expressed in terms of the function 𝛾(⋅, 0+) giving the amount of shear for very short times. To obtain 𝛾 = 𝛾(⋅, 0+), we
ust invert the equation

𝜏(𝛾(𝑦), 1) = 𝑘1
(𝑑
2
− 𝑦

)

, 0 ≤ 𝑦 ≤ 𝑑
2
, (163)

obtained by combining (155)2 and (156)2. In this connection, it is useful to notice that since the right-hand side of (163) take values
on the interval [0, 𝑘1𝑑∕2] and 𝜏(𝛾, 1) = 𝐺̂(𝛾, 1)𝛾, with 𝐺̂(𝛾, 1) > 0, 𝛾(𝑦, 0+) takes values on the interval [0, 𝛾𝑚), where 𝛾𝑚 > 0 denotes
he liming value of the amount of shear.6

We now discuss the existence and uniqueness of solutions 𝛾 = 𝛾(⋅, 0+) to (163). For each 0 ≤ 𝑦 ≤ 𝑑∕2, (163) has a solution
(𝑦, 0+) ≥ 0 provided that the interval [0, 𝑘1𝑑∕2] be contained in the image set of 𝜏(⋅, 1). Bearing in mind that 𝜏(0, 1) = 0, we see that
condition sufficient to ensure that this occurs for any 𝑘1 > 0 is that

lim
𝛾→𝛾𝑚

𝜏(𝛾, 1) = ∞. (164)

he corresponding solution will be unique if 𝜏(𝛾, 1) = 𝐺̂(𝛾, 1)𝛾 depends monotonically on 𝛾, which is equivalent, since 𝐺̂(𝛾, 1) > 0,
o stipulating that the inequality

𝜕𝜏(𝛾, 1)
𝜕𝛾

> 0 (165)

olds for all 𝛾 ∈ [0, 𝛾𝑚). In this case, for each 0 ≤ 𝑦 ≤ 𝑑∕2, the solution 𝛾(𝑦, 0+) of (163) can be written as

𝛾(𝑦, 0+) = 𝛾̃(𝜏(𝑦), 1), with 𝜏(𝑦) = 𝑘1
(𝑑
2
− 𝑦

)

, (166)

here 𝛾̃(⋅, 1) is the inverse of 𝜏(⋅, 1). Notice that(165) and (166) imply that 𝛾(𝑦, 0+) decreases with 𝑦 on the interval [0, 𝑑∕2], with its
aximum and minimum values being attained at 𝑦 = 0 and 𝑦 = 𝑑∕2, respectively. The following remarks are in order:

6 We allow 𝛾 to be finite to account for elastic models that incorporate limiting chain extensibility effects. Otherwise, 𝛾 may tend to infinity.
22
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• Conditions (164) and (165) were introduced by Horgan et al. (2002) and Saccomandi (2004), who showed that they are
satisfied by the power-law elastic model introduced by Knowles (1977) with the provision that the stiffening parameter 𝑛 be
strictly greater than 1∕2, and by the limiting-chain extensibility elastic model proposed by Gent (1996). See Appendix A for
details.

• The existence and uniqueness conditions (164) and (165) are equivalent, respectively, to the conditions

lim
𝛾→𝛾𝑚

𝐺̂(𝛾, 1) > 0 and 𝜕𝐺̂(𝛾, 1)
𝜕𝛾

𝛾 + 𝐺̂(𝛾, 1) > 0, 0 ≤ 𝛾 ≤ 𝛾𝑚. (167)

These conditions are satisfied for elastic materials for which 𝜕𝐺̂(𝛾, 1)∕𝜕𝛾 > 0, that is, for strain-stiffening elastic materials.

We now turn to the calculation of the instantaneous pressure field 𝑝(⋅, 0+). First, we observe that, by (156)5, the normal stress
𝜎𝑦 must satisfy the condition

𝜎𝑦(𝑦, 0+) = 𝜎̂(𝛾(𝑦, 0+), 1), (168)

with 𝛾(⋅, 0+) given by (163). By (155)1, this implies that 𝑝(⋅, 0+) must be such that

𝑝(𝑥, 𝑦, 0+) = 𝜎̂(𝛾(𝑦, 0+), 1) − 𝑘1𝑥 − 𝑘2(0+). (169)

Under the validity of conditions (164) and (165), we have shown that the instantaneous gel response to a suddenly-applied
pressure drop is such that the gel undergoes an inhomogeneous shear deformation with amount of shear 𝛾 = 𝛾(⋅, 0+) given by (163),
which by its turn determines the network normal stress 𝜎𝑦 and pressure 𝑝 by (168) and (169), respectively.

The above-mentioned expressions for 𝜎𝑦 and 𝑝 can next be used to show that

𝜕𝑝
𝜕𝑦

=
𝜕𝜎𝑦
𝜕𝑦

= −𝑘1
𝜕𝜎̂(𝛾, 1)
𝜕𝛾

𝜕𝛾̃(𝜏, 1)
𝜕𝜏

, (170)

from which, bearing in mind that 𝑘1 > 0 and 𝜕𝛾̃∕𝜕𝜏 > 0, we arrive at the relation

sgn
( 𝜕𝑝
𝜕𝑦

)

= −sgn
( 𝜕𝜎̂(𝛾, 1)

𝜕𝛾

)

, (171)

here ‘‘sgn’’ defined such that sgn(𝑢) = 𝑢∕|𝑢| for any 𝑢 ≠ 0 is the sign function. Bearing in mind that −𝜕𝑝∕𝜕𝑦 is the driving force for
iquid flow in the 𝑦-direction, we thus conclude that:

• If 𝜕𝜎̂(𝛾, 1)∕𝜕𝛾 > 0 for each 𝛾 satisfying 0 ≤ 𝛾 < 𝛾𝑚, then the normal network stress 𝜎𝑦 decreases monotonically from its maximum
value at 𝑦 = 0 to its minimum value at 𝑦 = 𝑑∕2. In this case, the flow of liquid in the spanwise direction is directed from the
boundary walls toward the center of the channel.

• If 𝜕𝜎̂(𝛾, 1)∕𝜕𝛾 = 0 for each 𝛾 satisfying 0 ≤ 𝛾 < 𝛾𝑚, then the normal network stress 𝜎𝑦 is constant. In this case, there is no flow
of liquid in the spanwise direction.

• If 𝜕𝜎̂(𝛾, 1)∕𝜕𝛾 < 0 for each 𝛾 satisfying 0 ≤ 𝛾 < 𝛾𝑚, then the normal network stress 𝜎𝑦 increases monotonically from its minimum
value at 𝑦 = 0 to its maximum value at 𝑦 = 𝑑∕2. In this case, the flow of liquid in the spanwise direction is directed from the
center of the channel toward the boundary walls.

For elastic energies that depend on 𝐼1 only, which define the class of the generalized neo-Hookean elastic materials, it follows
rom (131)1 and (132) that

𝜎̂(𝛾, 1) = 𝐺̂(𝛾, 1) − 𝜋̂(1). (172)

nd, thus, that 𝜕𝜎̂(𝛾, 1)∕𝜕𝛾 = 𝜕𝐺̂(𝛾, 1)∕𝜕𝛾. For such materials, the discussion above can therefore be given in terms of the response
unction 𝐺̂(⋅, 1) that determines the generalized shear modulus.

The essential results concerning the short-time response of the gel can be summarized as follows:

1. The shear stress 𝜏𝑥𝑦 requires the generation of an inhomogeneous profile for the shear amount 𝛾 which, like 𝜏𝑥𝑦, decreases
monotonically on the lower half of the channel, with maximum and minimum values attained at 𝑦 = 0 and 𝑦 = 𝑑∕2,
respectively.

2. The normal network stress 𝜎𝑦 is determined, modulo a constant, by the amount of shear 𝛾 via the elastic response of the
gel. For instance, if the elastic response is such 𝜎𝑦 increases monotonically with 𝛾, the corresponding profile is such that 𝜎𝑦
decreases monotonically on the interval [0, 𝑑∕2]. In this case, liquid flow in the 𝑦-direction will be driven towards the center of
the channel. Otherwise, if 𝜎𝑦 decreases monotonically with 𝛾, the corresponding profile is such 𝜎𝑦 increases monotonically on
the interval [0, 𝑑∕2] and liquid flow in the 𝑦-direction will be driven towards the fixed walls of the channel. If 𝜎𝑦 is unaffected
by 𝛾, the 𝜎𝑦 profile is constant and hence there will be no driving force for liquid flow in the 𝑦-direction.

3. For generalized neo-Hookean elastic materials, the flow of liquid in the spanwise direction is directed towards the channel
center and towards the channel walls for strain-stiffening and strain-slackening elastic materials, respectively.
23
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7.3.2. Steady-state response
We now use (155)–(157) to investigate the steady-state behavior of the gel. In this limit, which is achieved as 𝑡 → ∞, all

uantities are time-independent. Thus, in particular, the time derivative of 𝑔 vanishes in steady state and we see from (156)3 that
𝑦 = 0. Furthermore, we see from (155)3 that 𝚥𝑦 = 0. Hence, with reference to (156)7 and (155)1, we find that 𝜕𝑝∕𝜕𝑦 = 𝜕𝜎𝑦∕𝜕𝑦 = 0
way from the interface. Recalling the continuity condition (140)2, we conclude from (155)1,2 that at steady state 𝜎𝑦 and 𝜏𝑥𝑦 must

obey

𝜎𝑦(𝑦) = 𝜎∗ and 𝜏𝑥𝑦(𝑦) = 𝑘1
(𝑑
2
− 𝑦

)

, 0 ≤ 𝑦 ≤ 𝑑
2
, (173)

here 𝜎∗, like 𝑘1, is constant. Thus, to characterize the steady state in the smooth case, we must obtain the normal network stress
∗ and, for each 𝑦 ∈ [0, 𝑑∕2], the shear strain 𝛾(𝑦) and the stretch 𝜆(𝑦) from the conditions

𝜎̂(𝛾(𝑦), 𝜆(𝑦)) = 𝜎∗ and 𝜏(𝛾(𝑦), 𝜆(𝑦)) = 𝑘1
(𝑑
2
− 𝑦

)

(174)

arising from (156)5,6, (173), and the previously derived integral condition (123) for the stretch, which we repeat here for
convenience:

∫

𝑑∕2

0

d𝑦
𝜆(𝑦, 𝑡)

= 𝑑
2
. (175)

Additionally, if interfaces are present, it is necessary to determine their locations, as well as the limiting values of 𝛾 and 𝜆 from
each side of the interfaces, and to ensure satisfaction of the continuity conditions

[[𝜎̂(𝛾(𝑤), 𝜆(𝑤))]] = 0, [[𝜏(𝛾(𝑤), 𝜆(𝑤))]] = 0, (176)

which follow (156)5,6, (173), and (174), and the configurational force balance

[[𝜑̂(𝛾(𝑤), 𝜆(𝑤))]] − 𝜎̂(𝛾(𝑤), 𝜆(𝑤))[[𝜆(𝑤)]] − 𝜏(𝛾(𝑤), 𝜆(𝑤))[[𝛾(𝑤)]] = 0, (177)

which follows from (157)2, (173), and (174). Therefore, when interfaces are present, the system (173)–(177) consists of eight
conditions for determining 𝛾 and 𝜆 as functions of the spanwise coordinate 𝑦, the normal stress 𝜎∗, the location 𝑤 of the interface
in the lower half channel (and, thus, the location 𝑑 −𝑤 of the interface in the upper half channel), and the corresponding limiting
values,

±
𝛾 and

±
𝜆, (178)

of 𝛾 and 𝜆. Otherwise, when interfaces are not present, (173)–(175) provide three conditions for determining 𝜆, 𝛾, and 𝜎∗. In either
case, having determined 𝛾 and 𝜆, (113) and (117) can be used to evaluate 𝑓 and 𝑔.

We now specialize the system (174)–(177) to situations in which the shear stress response 𝜏(⋅, 𝜆) is invertible as a function of 𝛾 for
each admissible choice of 𝜆, in which case the shear stress 𝜏𝑥𝑦 can be treated as an independent constitutive variable. See Appendix E
for additional discussion. Recalling that both 𝜏𝑥𝑦 and 𝛾 are non-negative in the lower half of the channel, we accordingly assume
that the response function 𝜏(⋅, 𝜆) obeys the conditions

lim
𝛾→𝛾𝑚

𝜏(𝛾, 𝜆) = ∞ and 𝜕𝜏(𝛾, 𝜆)
𝜕𝛾

> 0 (179)

for all 𝛾 ∈ [0, 𝛾𝑚) each admissible 𝜆, with the limiting value 𝛾𝑚 possibly depending on 𝜆. Under these conditions, the relation
𝑥𝑦 = 𝜏(𝛾, 𝜆) can be inverted for 𝛾 for any 𝜏𝑥𝑦 ≥ 0, and, thus, in particular, for any 𝜏𝑥𝑦 satisfying 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2. Introducing the
artial inverse 𝛾̃ of 𝜏, we can therefore write

𝛾 = 𝛾̃(𝜏𝑥𝑦, 𝜆) (180)

or any 𝜏𝑥𝑦 ≥ 0. We can thus consider 𝜏𝑥𝑦 as an independent constitutive variable and define functions 𝜑̃ and 𝜎̃ of 𝜏𝑥𝑦 and 𝜆 throug

𝜑̃(𝜏𝑥𝑦, 𝜆) ∶= 𝜑̂(𝛾̃(𝜏𝑥𝑦, 𝜆), 𝜆) and 𝜎̃(𝜏𝑥𝑦, 𝜆) ∶= 𝜎̂(𝛾̃(𝜏𝑥𝑦, 𝜆), 𝜆). (181)

t is also convenient to introduce a function 𝛷̃ of 𝜏𝑥𝑦 and 𝜆 through the relation

𝛷̃(𝜏𝑥𝑦, 𝜆) = 𝜑̃(𝜏𝑥𝑦, 𝜆) − 𝜏𝑥𝑦𝛾̃(𝜏𝑥𝑦, 𝜆), (182)

hich can be identified as the negative of the partial Legendre transformation of 𝜑̃ with respect to 𝜏𝑥𝑦. Direct calculations then
show 𝛷̃ serves as a potential for the functions 𝜎̃ and 𝛾̃ defined in (181):

𝜎̃(𝜏𝑥𝑦, 𝜆) =
𝜕𝛷̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
, 𝛾̃(𝜏𝑥𝑦, 𝜆) =

𝜕𝛷̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜏𝑥𝑦

. (183)

ith these definitions, we replace (173) and (174) by

𝜎̃(𝜏𝑥𝑦(𝑦), 𝜆(𝑦)) = 𝜎∗ and 𝜏𝑥𝑦(𝑦) = 𝑘1
(𝑑
2
− 𝑦

)

, (184)

with 𝑦 belonging to (0, 𝑑∕2] ⧵ {𝑤}. Additionally, we may use (180)–(182) to express (176)–(177) in the form

𝜎̃
(

𝑘
(𝑑 −𝑤

)

,
+
𝜆
)

= 𝜎 , 𝜎̃
(

𝑘
(𝑑 −𝑤

)

,
−
𝜆
)

= 𝜎 , 𝛷̃
(

𝑘
(𝑑 −𝑤

)

,
+
𝜆
)

− 𝛷̃
(

𝑘
(𝑑 −𝑤

)

,
−
𝜆
)

= 𝜎 (
+
𝜆 −

−
𝜆). (185)
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Granted knowledge of the field 𝜆, we may use (180) to determine the field 𝛾. The following remarks are in order:

• Using (A.8) and (A.9), we find that the conditions appearing in (179) are satisfied for the power-law model of Knowles (1977)
for any choice of the power 𝑛 satisfying 𝑛 > 1∕2 and also for the limiting-chain extensibility elastic model of Gent (1996).

• Recalling from (156)4 that 𝜆 = 𝜙0∕𝜙, we see that 𝜆 must take values in the interval (𝜙0,∞), with 𝜆→ 𝜙0 as 𝜙 → 1 and 𝜆 → ∞
as 𝜙 → 0. For a model such as Gent’s (Gent, 1996) that incorporate limiting chain extensibility, 𝜆 takes values in the interval
(𝜙0, 𝜆𝑚) instead, where the limiting value 𝜆𝑚 <∞ for the stretch 𝜆 may depend on 𝛾 and hence on the shear stress 𝜏𝑥𝑦.

• From (185)1,2, we find that interfaces cannot be present if 𝜎̃(𝜏𝑥𝑦, ⋅) depends monotonically on its argument for all choices of
𝜏𝑥𝑦.

• From (183)1, we find that (185)3 can be written as

∫

+
𝜆

−
𝜆
𝜎̃
(

𝑘1
(𝑑
2
−𝑤

)

, 𝜆
)

d𝜆 = 𝜎∗(
+
𝜆 −

−
𝜆), (186)

from which we deduce that the configurational force balance yields the Maxwell equal area rule and identify 𝜎∗ as the Maxwell
stress. See Appendix D.

• By the chain rule, (181)2, and (184), we obtain the identity
𝜕𝜎̃(𝜏𝑥𝑦(𝑦), 𝜆)

𝜕𝜆
|

|

|𝜆=𝜆(𝑦)

𝜕𝜆(𝑦)
𝜕𝑦

= 𝑘1
𝜕𝜎̃(𝜏, 𝜆)
𝜕𝜏

|

|

|𝜏=𝜏𝑥𝑦(𝑦)
, 𝑦 ≠ 𝑤. (187)

Granted that 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜆 > 0 for 0 ≤ 𝑦 < 𝑤 and 𝑤 < 𝑦 ≤ 𝑑∕2, we thus see that the sign of 𝜕𝜆∕𝜕𝑦 is determined by the sign of
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜏𝑥𝑦. In particular, if 𝜎̃ is independent of 𝜏𝑥𝑦, so that 𝜕𝜎̃∕𝜕𝜏𝑥𝑦 ≡ 0, then 𝜆 is such that 𝜕𝜆∕𝜕𝑦 ≡ 0. As already remarked,
this condition holds for the family of elastic energy densities of the type (136), a family that includes both neo-Hookean and
Mooney models for nonlinear elastic networks.

From the foregoing discussion, it is evident that the properties of the response function 𝜎̃ are central to the nature of the solutions
of (185). If, for instance, 𝜎̃(𝜏𝑥𝑦, ⋅) is a monotonic function of 𝜆, the interface conditions in (185) are vacuous and, hence, can be
disregard altogether. Under these circumstances, the stretch profile is smooth. Otherwise, a stretch profile exhibits a discontinuity
corresponding to the presence of an interface at 𝑦 = 𝑤 only if 𝜎̃(𝜏𝑥𝑦, ⋅) is a nonmonotonic function of 𝜆 for some admissible choice
of 𝜏𝑥𝑦. This lead to the need to consider two situations according to whether or not the stretch profile is continuous.

Henceforth, we assume that 𝜎̃(𝜏𝑥𝑦, ⋅) complies the conditions

lim
𝜆→𝜙0

𝜎̃(𝜏𝑥𝑦, 𝜆) = −∞ and lim
𝜆→𝜆𝑚

𝜎̃(𝜏𝑥𝑦, 𝜆) = ∞, (188)

which may be seen as a result of the following provisions involving the osmotic 𝜋̂ and elastic 𝜎̃𝑒 contributions to 𝜎̃:

• The osmotic contribution 𝜋̂ to 𝜎̃ tends to ∞ as 𝜆 tends to 𝜙0 and remains bounded as 𝜆 tends to 𝜆𝑚.
• For each admissible value of 𝜏𝑥𝑦, the elastic contribution 𝜎̃𝑒(𝜏𝑥𝑦, ⋅) to 𝜎̃ tends to ∞ as 𝜆 tends to 𝜆𝑚 and remains bounded as 𝜆

tends to 𝜙0.

These stipulations assure that, given 𝜏𝑥𝑦, the equation 𝜎̂(𝜏𝑥𝑦, 𝜆) = 𝜎∗ has a solution 𝜆, generally dependent on 𝜏𝑥𝑦, for any choice of
𝜎∗. A detailed discussion of this matter is provided in Appendix C.

Further, we assume that (179) holds and hence base the subsequent development on (175), (184), and (185). We consider
continuous and discontinuous solutions of those equations. Solutions are continuous only if 𝜎̃(𝜏𝑥𝑦, ⋅) is monotonic for each 𝜏𝑥𝑦
satisfying 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2 but are discontinuous in the absence of that monotonicity requirement.

7.3.2.1. Continuous solutions. For smooth solutions, the stretch 𝜆 is completely determined by solving (184) subject to (175). To
obtain such a solution, we begin by observing that, since 𝜎̃(𝜏𝑥𝑦, ⋅) is monotonic for each 𝜏𝑥𝑦 satisfying 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2 and (188)
holds, the equation 𝜎̃(𝜏𝑥𝑦, 𝜆) = 𝑘 be inverted to give 𝜆 as a function of 𝜏𝑥𝑦 for any choice of 𝑘. In other words, there exists a function
𝜆̃ such that

𝜆 = 𝜆̃(𝜏𝑥𝑦, 𝑘) (189)

for any choice of 𝑘. For each 𝜏𝑥𝑦 in 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2, the function 𝜆̃(𝜏𝑥𝑦, ⋅) is the inverse of 𝜎̃(𝜏𝑥𝑦, ⋅). This being the case, 𝜆 and 𝜎∗
must be found by solving the integral equation

∫

𝑑∕2

0

d𝑦
𝜆̃(𝜏𝑥𝑦(𝑦), 𝑘)

= 𝑑
2
, (190)

with 𝜏𝑥𝑦 being given by (184)2, for 𝜎∗ and then using (184)2 and (189) to determine 𝜆 at each 𝑦 in the interval [0, 𝑑∕2]. Observe
that left-hand side of (190) can be considered as a function, say ℎ, of 𝑘, defined such that

ℎ(𝑘) ∶= ∫

𝑑∕2

0

d𝑦
𝜆̃(𝜏𝑥𝑦(𝑦), 𝑘)

. (191)
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The function ℎ is positive since the integrand is positive. Further, it has following properties:
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1. Since, by virtue of the condition 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜆 > 0 that is met for all 𝜆 of interest (see Appendices B and C), 𝜆̃(𝜏𝑥𝑦, ⋅) is an
increasing function of its argument for each 𝜏𝑥𝑦 satisfying 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2, and, hence, ℎ decreases as 𝑘 increases.

2. Since 𝜆̃(𝜏𝑥𝑦, 𝑘) tends to 𝜙0 < 1 as 𝑘 tends to −∞, ℎ(𝑘) tends to a limit that exceeds 𝑑∕2 as 𝑘 tends to −∞.
3. Since, for models in which chain extensibility is not limited, 𝜆̃(𝜏𝑥𝑦, 𝑘) tends to ∞ as 𝑘 tends to ∞, ℎ(𝑘) tends to a limit that is

less than 𝑑∕2 as 𝑘 tends to ∞.
4. Since, for models in which chain extensibility is limited, 𝜆̃(𝜏𝑥𝑦, 𝑘) tends to 𝜆𝑚(𝜏𝑥𝑦) < 𝜆𝑚(0), with 𝜆𝑚(0) > 1, as 𝑘 tends to ∞,

ℎ(𝑘) tends to a limit that is less than 𝑑∕2 as 𝑘 tends to ∞.

These properties guarantee the existence and uniqueness of solutions to (190) and, using (173)2, deliver a unique expression for 𝜆
through (189). With reference to (187), if 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜏𝑥𝑦 > 0 everywhere, then 𝜆 increases with 𝑦, from its minimum close to the
plate to its maximum in the center of the channel. From 𝜆 = 𝜙0∕𝜙, this is accompanied by polymer accumulation near the channel
walls and depletion near the center of the channel. The opposite takes place if 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜏𝑥𝑦 < 0 everywhere. These results are
consistent with the calculation of the driving force for very short times.

7.3.2.2. Discontinuous solutions. For a discontinuous solution, the unknown stretch 𝜆, constant normal stress 𝜎∗, and the position 𝑤
of the interface in the lower half 0 ≤ 𝑦 ≤ 𝑑∕2 of the channel are governed by (175), (184), and (185). Leaving a detailed analysis
of the issues of existence and uniqueness of solutions to this system of equations to another work, we content ourselves with the
following remarks:

• The interface at 𝑦 = 𝑤 separates the gel occupying the lower half of the channel into two phases, the low-stretch phase within
which 𝜆 takes values in the interval

 ∶= (𝜙0,min{
−
𝜆,

+
𝜆}) (192)

and the high-stretch phase within which 𝜆 takes values in the interval

 ∶= (max{
−
𝜆,

+
𝜆}, 𝜆𝑚). (193)

In view of the relation 𝜆 = 𝜙0∕𝜙, the low- and high-stretch phases correspond to the high- and low-polymer-content phases.
• If the jump [[𝜆]] of the stretch 𝜆 is such that

−
𝜆 <

+
𝜆, then the subsets 0 ≤ 𝑦 < 𝑤 and 𝑤 < 𝑦 ≤ 𝑑∕2 of the lower half of the channel

are filled by the low- and high-stretches phases, respectively. The opposite occurs otherwise.
• If 𝜕𝜎̃∕𝜕𝜆 > 0 and 𝜕𝜎̃∕𝜕𝜏𝑥𝑦 > 0 for all 𝜆 in  ∪ and 𝜏𝑥𝑦 satisfies 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2, then (187) implies that the jump [[𝜆]] of the

stretch 𝜆 is such that
+
𝜆 >

−
𝜆 (194)

and, thus, that the subsets 0 ≤ 𝑦 < 𝑤 and 𝑤 < 𝑦 ≤ 𝑑∕2 of the lower half of the channel are occupied by the low- and
high-stretches phases of the gel and that the stretch 𝜆 is monotonically increasing in both phases.

• If 𝜕𝜎̃∕𝜕𝜆 > 0 and 𝜕𝜎̃∕𝜕𝜏𝑥𝑦 < 0 for all 𝜆 in  ∪ and 𝜏𝑥𝑦 satisfies 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2, then (187) implies that the jump [[𝜆]] of the
stretch 𝜆 is such that

+
𝜆 <

−
𝜆 (195)

and, thus, that the subsets 0 ≤ 𝑦 < 𝑤 and 𝑤 < 𝑦 ≤ 𝑑∕2 of the lower half of the channel are occupied by the high- and
low-stretches phases and that the stretch 𝜆 is monotonically decreasing in both phases.

These observations suggest an iterative procedure for determining 𝜆, 𝜎∗, and 𝑤. Granted that 𝜕𝜎̃∕𝜕𝜏𝑥𝑦 is everywhere either positive
or negative and that 𝜎̃(𝜏𝑥𝑦, ⋅) is a nonmonotonic function of 𝜆 for all 𝜏𝑥𝑦 ∈ [0, 𝑘1𝑑∕2], that procedure relies on the introduction of
the implicit function 𝑉 ∶ (0, 𝑑∕2) → R whose value 𝑉 (𝜁 ) at 𝜁 ∈ (0, 𝑑∕2) is defined through the following steps:

1. Set 𝜏 = 𝑘1(𝑑∕2 − 𝜁 ) and solve

𝜎̃
(

𝜏, 𝜆𝜁1
)

= 𝜎𝜁∗ , 𝜎̃
(

𝜏, 𝜆𝜁2
)

= 𝜎𝜁∗ , 𝛷̃
(

𝜏, 𝜆𝜁2
)

− 𝛷̃
(

𝜏, 𝜆𝜁1
)

= 𝜎𝜁∗ (𝜆
𝜁
2 − 𝜆

𝜁
1), (196)

for 𝜆𝜁1 , 𝜆𝜁2 , and 𝜎𝜁∗ ;

2. Evaluate the limiting values
±
𝜆𝜁 according to one the following alternatives:

𝜕𝜎̃
𝜕𝜏𝑥𝑦

> 0 ⟹

⎧

⎪

⎨

⎪

⎩

−
𝜆𝜁 = min{𝜆𝜁1 , 𝜆

𝜁
2},

+
𝜆𝜁 = max{𝜆𝜁1 , 𝜆

𝜁
2},

𝜕𝜎̃
𝜕𝜏𝑥𝑦

< 0 ⟹

⎧

⎪

⎨

⎪

⎩

−
𝜆𝜁 = max{𝜆𝜁1 , 𝜆

𝜁
2},

+
𝜆𝜁 = min{𝜆𝜁1 , 𝜆

𝜁
2}.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(197)
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3. Obtain the profile for 𝜆𝜁 by solving

𝜎̃(𝜏𝑥𝑦, 𝜆𝜁 ) = 𝜎𝜁∗ , with 𝜏𝑥𝑦 = 𝑘1
(𝑑
2
− 𝑦

)

, (198)

subject to the following constraints:

𝜕𝜎̃
𝜕𝜏𝑥𝑦

> 0 ⟹

⎧

⎪

⎨

⎪

⎩

𝜙0 < 𝜆𝜁 <
−
𝜆𝜁 , 0 ≤ 𝑦 < 𝜁,

+
𝜆𝜁 < 𝜆𝜁 < 𝜆𝑚, 𝜁 < 𝑦 ≤ 𝑑∕2,

𝜕𝜎̃
𝜕𝜏𝑥𝑦

< 0 ⟹

⎧

⎪

⎨

⎪

⎩

−
𝜆𝜁 < 𝜆𝜁 < 𝜆𝑚, 0 ≤ 𝑦 < 𝜁,

𝜙0 < 𝜆𝜁 <
+
𝜆𝜁 , 𝜁 < 𝑦 ≤ 𝑑∕2.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(199)

4. Evaluate 𝑉 (𝜁 ) by

𝑉 (𝜁 ) = 𝑑 − 2
(

∫

𝜁

0

d𝑦
𝜆𝜁 (𝑦)

+ ∫

𝑑∕2

𝜁

d𝑦
𝜆𝜁 (𝑦)

)

. (200)

These steps can be interpreted as follows. Suppose that the lower half of the deformed gel contains an interface located at
𝑦 = 𝜁 ∈ (0, 𝑑∕2). In this case, the required normal network stress must be equal to 𝜎𝜁∗ as obtained in step 1. By considering steps 2
and 3, one get the information needed to obtain the stretch profile corresponding to 𝜁 , namely its limiting values at and distribution
away from the interface, respectively given by

±
𝜆𝜁 and 𝜆𝜁 . In step 4, we evaluate 𝑉 (𝜁 ), the difference of two contributions distance

between the plates after and before the deformation. The latter is equal to 𝑑 only if 𝜁 is a zero of 𝑉 . Therefore, a solution (𝜆, 𝜎∗, 𝑤)
f (173)–(175) and (185) corresponds to a zero of the function 𝑉 .

.4. An example

We hereinafter consider a gel with elastic properties described by the Gent (1996) model and osmotic properties described by
he Flory–Huggins model, delineated, for instance, by Doi (2013):

𝜓̃𝑒(𝐼1, 𝐼2) = −
𝐺0𝐽𝑚
2

ln
(

1 −
𝐼1 − 3
𝐽𝑚

)

,

𝜓̂𝑚(𝐶) = 𝑘𝐵𝑇 𝐶 (ln(1 − 𝜙) + 𝜒𝜙) , with 𝜙 =
𝜙0

𝜙0 + 𝜐𝐶
.

⎫

⎪

⎬

⎪

⎭

(201)

n (201), 𝐺0 is the shear modulus at the reference state, 𝐽𝑚 is the phenomenological parameter that accounts for the finite
xtensibility of polymer in the network, 𝑘𝐵 the Boltzmann constant, 𝑇 is the absolute temperature, 𝜐 is the volume occupied by
solvent molecule, and 𝜒 is the Flory–Huggins interaction parameter. As Gent (1996) showed, the neo-Hookean elastic model is

ecovered from (201)1 on passing to the limit as 𝐽𝑚 → ∞.
We now obtain the constitutive responses 𝜏 and 𝜎 for the shear stress 𝜏𝑥𝑦 and the normal stress 𝜎𝑦 corresponding to elastic and

ixing responses given by (201). On using (130), (131), and (201), we conclude that 𝜏 and 𝜎̂ specialize to

𝜏(𝛾, 𝜆) =
𝐺0𝐽𝑚𝛾

𝐽𝑚 − (𝜆2 + 𝛾2 − 1)
(202)

and

𝜎̂(𝛾, 𝜆) =
𝐺0𝐽𝑚𝜆

𝐽𝑚 − (𝜆2 + 𝛾2 − 1)
− 𝜋̂(𝜆), (203)

where the mixing contribution 𝜋̂ to the osmotic pressure is given by

𝜋̂(𝜆) = −
𝑘𝐵𝑇
𝜐

(ln(1 − 𝜙) + 𝜙 + 𝜒𝜙2)||
|𝜙=𝜙0∕𝜆

. (204)

A direct calculation shows that (202) obeys the conditions (165) and (179). Thus, for each 𝜆 and 𝜏𝑥𝑦, we can invert 𝜏𝑥𝑦 = 𝜏(𝛾, 𝜆)
for 𝛾 and write

𝐺0𝐽𝑚𝛾̃(𝜏𝑥𝑦, 𝜆)

𝐽𝑚 − (𝜆2 + 𝛾̃2(𝜏𝑥𝑦, 𝜆) − 1)
= 𝜏𝑥𝑦 (205)

as the implicit definition of 𝛾̃. Another direct calculation shows that 𝜎̃(𝜏𝑥𝑦, 𝜆) = 𝜎̂(𝛾̃(𝜏𝑥𝑦, 𝜆), 𝜆) complies with the limits

lim
𝜆→𝜙0

𝜎̃(𝜏𝑥𝑦, 𝜆) = −∞, lim
𝜆→𝜆𝑚

𝜎̃(𝜏𝑥𝑦, 𝜆) = +∞, (206)

where 𝜆𝑚 is solution of the equation

𝜆2𝑚 + 𝛾̃2(𝜏𝑥𝑦, 𝜆𝑚) = 𝐽𝑚 + 1 (207)

and obeys

𝜙0 < 𝜆𝑚 < ∞. (208)
27
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7.4.1. Instantaneous response
We recall that the instantaneous response is such that 𝜆 ≡ 1 and the gel undergoes an inhomogeneous shear.
On using (202) and (203), we conclude that 𝜕𝜏(𝛾, 1)∕𝜕𝛾 > 0 and 𝜕𝜎̂(𝛾, 1)∕𝜕𝛾 > 0. Hence, as already discussed, 𝛾 and 𝜎𝑦 are

decreasing functions for 0 ≤ 𝑦 ≤ 𝑑∕2. The driving force 𝜕𝑝∕𝜕𝑦 = 𝜕𝜎𝑦∕𝜕𝑦 for liquid flow in the spanwise direction is therefore
negative, indicating a tendency for liquid to flow from the walls toward the center of the channel and, correspondingly, for polymer
accumulation and depletion to occur close to and far from the channel walls, respectively.

Through the combination of (166) and (205), we find that instantaneous profile of the shear strain 𝛾 in the lower half of the
channel is such that 𝛾(𝑑∕2, 0+) = 0 and

𝛾(𝑦, 0+) =
−𝐽𝑚 +

√

𝐽 2
𝑚 + 𝑘̄21(1 − 2𝑦̄)𝐽𝑚

𝑘̄1(1 − 2𝑦̄)
for 0 ≤ 𝑦 < 𝑑

2
, (209)

where 𝑘̄1 and 𝑦̄ are defined by

𝑘̄1 =
𝑘1𝑑
𝐺0

and 𝑦̄ =
𝑦
𝑑
. (210)

rom (209), we see that the maximum amount of shear 𝛾max is given by

𝛾max =
−𝐽𝑚 +

√

𝐽 2
𝑚 + 𝑘̄21𝐽𝑚

𝑘̄1
, (211)

which, as expected, tends to
√

𝐽𝑚 as 𝑘̄1 tends to ∞. Furthermore, we find from (166), (202), and (203) that the driving force for
ransverse flow of the interstitial liquid can be expressed as

𝜕𝑝
𝜕𝑦

= −
2𝑘1𝛾
𝐽𝑚 + 𝛾2

. (212)

From (209) and (212), we see that as 𝐽𝑚 → ∞ the profiles for the amount of shear 𝛾 becomes linear and the driving force 𝜕𝑝∕𝜕𝑦
vanishes identically; these results are consistent with the recovery from (201)1 of the neo-Hookean elastic model as 𝐽𝑚 → ∞.

7.4.2. Steady-state response
In the presence of interfaces that separate the gel into low- and high-polymer content phases, the steady-state profiles for the

stretch 𝜆 and amount of shear 𝛾 are discontinuous unless the response 𝜎̃(𝜏𝑥𝑦, ⋅) is monotonic for every 𝜏𝑥𝑦 in the interval [0, 𝑘1𝑑∕2].
We next discuss the ways in which the parameters 𝜙0, 𝐺, 𝐽𝑚, 𝑘𝐵𝑇 , 𝜐, and 𝜒 entering the definitions (201)1 and (201)2 of 𝜓̃𝑒 and

𝜓̂𝑚 influence the monotonicity properties of 𝜎̃. A closer examination of the partial derivative 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜆 allows us to introduce a
function 𝜒 of 𝜏𝑥𝑦 and 𝜆 which is parameterized by 𝜙0, 𝐽𝑚, 𝑘𝐵𝑇 ∕𝜐𝐺 and whose expression is a bit cumbersome and, hence, is omitted
here. From the structure of 𝜒 , we deduce that

𝜒 < 𝜒(𝜏𝑥𝑦, 𝜆) ⟺
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
> 0,

𝜒 = 𝜒(𝜏𝑥𝑦, 𝜆) ⟺
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
= 0,

𝜒 > 𝜒(𝜏𝑥𝑦, 𝜆) ⟺
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
< 0.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(213)

The conditions in (213) amount to the requirement that 𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)∕𝜕𝜆 and 𝜒(𝜏𝑥𝑦, 𝜆) be of opposite sign. Relevant aspects of the
behavior of the function 𝜒 are discussed below. For convenience, the results are plotted and discussed in terms of the polymer
volume fraction 𝜙 = 𝜙0∕𝜆.

In Fig. 2, we exhibit the behavior of 𝜒 for increasing values of 𝜏𝑥𝑦, starting from 𝜏𝑥𝑦 = 0, 𝜙0 = 0.1, 𝐽𝑚 = 10., and 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100.
For each representative value of 𝜏𝑥𝑦, a corresponding solid curve, provided by the graph of 𝜒 , separates the 𝜙-𝜒 plane into two
complementary regions, below (𝜒 < 𝜒(𝜏𝑥𝑦, 𝜙0∕𝜙)) and above (𝜒 > 𝜒(𝜏𝑥𝑦, 𝜙0∕𝜙)) the curve, for which 𝜕𝜎̃(𝜏𝑥𝑦, 𝜙0∕𝜙)∕𝜕𝜙 < 0 and
𝜕𝜎̃(𝜏𝑥𝑦, 𝜙0∕𝜙)∕𝜕𝜙 > 0, respectively. For each 𝜏𝑥𝑦, a corresponding dashed curve indicates the existence of a critical value of 𝜒 , denoted
by 𝜒𝑐 (𝜏𝑥𝑦), below which 𝜕𝜎̃(𝜏𝑥𝑦, 𝜙0∕𝜙)∕𝜕𝜙 < 0 for all admissible 𝜙. Notice that 𝜒𝑐 (𝜏𝑥𝑦) increases with 𝜏𝑥𝑦 and that its minimum value
𝜒𝑐 is attained at 𝜏𝑥𝑦 = 0. Otherwise, for 𝜒 > 𝜒𝑐 (𝜏𝑥𝑦), the corresponding horizontal line intercepts the graph of 𝜒(𝜏𝑥𝑦, ⋅) at two
points, (𝜙1(𝜏𝑥𝑦), 𝜒) and (𝜙2(𝜏𝑥𝑦), 𝜒), with 𝜙1(𝜏𝑥𝑦) < 𝜙2(𝜏𝑥𝑦). The corresponding normal stresses are 𝜎1(𝜏𝑥𝑦) = 𝜎̃(𝜏𝑥𝑦, 𝜙0∕𝜙1(𝜏𝑥𝑦)) and
𝜎2(𝜏𝑥𝑦) = 𝜎̃(𝜏𝑥𝑦, 𝜙0∕𝜙2(𝜏𝑥𝑦)).

Recalling that 𝜆 = 𝜙0∕𝜙, an immediate conclusion drawn the foregoing discussion is that the parameter 𝜒 , as expected, plays an
important role in determining the behavior of 𝜎̃(𝜏𝑥𝑦, ⋅). In particular:

• If 𝜒 < 𝜒𝑐 (𝜏𝑥𝑦), 𝜎̃(𝜏𝑥𝑦, ⋅) is strictly increasing on (𝜙0, 𝜆𝑚) for each admissible value of 𝜏𝑥𝑦.
• If 𝜒 > 𝜒𝑐 (𝜏𝑥𝑦), 𝜎̃(𝜏𝑥𝑦, ⋅) is strictly increasing on (𝜙0, 𝜆𝐿(𝜏𝑥𝑦)), strictly decreasing on (𝜆𝐿(𝜏𝑥𝑦), 𝜆𝐻 (𝜏𝑥𝑦)), and again strictly increasing

on (𝜆𝐻 (𝜏𝑥𝑦), 𝜆𝑚), where 𝜆𝐿(𝜏𝑥𝑦) = 𝜙0∕𝜙2(𝜏𝑥𝑦) and 𝜆𝐻 (𝜏𝑥𝑦) = 𝜙0∕𝜙1(𝜏𝑥𝑦).
28
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Fig. 2. (𝜒, 𝜙)-diagram for several values of 𝜏𝑥𝑦, 𝜙0 = 0.1, 𝐽𝑚 = 10, and 𝑘𝐵𝑇 ∕𝜐𝐺 = 100. For a given choice of 𝜏𝑥𝑦, the corresponding curve separates the diagram into
wo complementary regions, below and above the curve, within which 𝜕𝜎̃(𝜏𝑥𝑦 , 𝜙0∕𝜙)∕𝜕𝜙 < 0 and 𝜕𝜎̃(𝜏𝑥𝑦 , 𝜙0∕𝜙)∕𝜕𝜙 > 0, respectively. For each 𝜏𝑥𝑦, a corresponding

dashed curve indicates the existence of a critical value of 𝜒 below which 𝜕𝜎̃(𝜏𝑥𝑦 , 𝜙0∕𝜙)∕𝜕𝜙 < 0 for all admissible 𝜙. Notice, in particular, that, as indicated by
the dashed red line, there is a critical value 𝜒𝑐 of 𝜒 below which 𝜕𝜎̃(𝜏𝑥𝑦 , 𝜙0∕𝜙)∕𝜕𝜙 < 0 for any value of 𝜏𝑥𝑦 and, hence, for which 𝜎̃(𝜏𝑥𝑦 , ⋅) is a monotonically
decreasing function of 𝜙 independent of the value of 𝜏𝑥𝑦. Since the curves coalesce for 𝜙 ≳ 0.7, the monotonicity of 𝜎̃(𝜏𝑥𝑦 , ⋅) is independent of 𝜏𝑥𝑦 for sufficiently
dense polymer networks.

Fig. 3. Polymer volume fraction 𝜙∕𝜙0 versus the dimensionless vertical coordinate 𝑦∕𝑑 for 𝜙0 = 0.1, 𝐽𝑚 = 10, 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100, 𝜒 = 0.2, and various choices of
1𝑑∕𝐺0.

.4.3. Polymer volume fraction profile
We next consider the problem of determining the spanwise distribution of the polymer volume fraction 𝜙 for given input values of

ressure drop 𝑘1. In so doing, we consider two complementary cases according to whether 𝜒 < 𝜒𝑐 (𝜏𝑥𝑦) and 𝜒 > 𝜒𝑐 (𝜏𝑥𝑦). Henceforth,
e take 𝜙0 = 0.1, 𝐽𝑚 = 10, and 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100, whereby 𝜒𝑐 ≈ 0.6851. The selected parameter values are physically viable but are

hosen only for illustrative purposes.
In our first example, we take 𝜒 = 0.2 < 𝜒𝑐 (𝜏𝑥𝑦) ≈ 0.6851 and solve (190) for several values of 𝑘1𝑑∕𝐺0. The results obtained are

epicted in Fig. 3, which shows the polymer fraction distributions 𝜙∕𝜙0 = 1∕𝜆 versus the dimensionless vertical coordinate 𝑦∕𝑑
etween the channel walls for increasing values of 𝑘1𝑑∕𝐺0. Notice that the polymer content in the center of the channel diminishes
29

increases) as 𝑘1𝑑∕𝐺0 increases (diminishes).
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Fig. 4. Polymer volume fraction 𝜙∕𝜙0 versus the dimensionless vertical coordinate 𝑦∕𝑑 for 𝜙0 = 0.1, 𝐽𝑚 = 10, 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100, 𝜒 = 1.0, and various choices of
1𝑑∕𝐺0.

For our second and final example, we take 𝜒 = 1.0 > 𝜒𝑐 (𝜏𝑥𝑦) ≈ 0.6851 and seek the profiles for the polymer volume fraction 𝜙
orresponding to several values of 𝑘1𝑑∕𝐺0. To achieve this goal, we must solve (173)–(175) and (185) for 𝜆 𝜎∗, 𝑤. We construct a
olution (185) by using the scheme described in Sub Section 7.3.2.2.

In Fig. 4, we display the polymer fraction distributions for increasing values of 𝑘1𝑑∕𝐺0, finding that the channel is divided into
hree regions, a central region with a lower polymer volume and two thin regions near the channel walls with a much higher
olymer concentration. The figure also shows that the polymer content in the center of the channel decreases as 𝑘1𝑑∕𝐺0 increases
nd, concomitantly, that the solvent content in the center of the channel increases as 𝑘1𝑑∕𝐺0 decreases.

Finally, we discuss the profile for the ratio 𝑗∞𝑥 ∕𝑗0𝑥 between the steady and instantaneous components 𝑗∞𝑥 and 𝑗0𝑥 of the liquid flux
n the streamwise direction. By (147)1, 𝑗∞𝑥 ∕𝑗0𝑥 = 𝑚̂(𝜆)∕𝑚̂(1) and hence our discussion requires the specification of the constitutive
esponse 𝑚̂ for 𝑚. Here, we assume the power-law relation 𝑚̂(𝜆) = 𝐶𝜆3∕2 for 𝑚̂, where 𝐶 is a positive constant,7 which in turn implies
hat 𝑗∞𝑥 ∕𝑗0𝑥 = 𝜆3∕2 = (𝜙0∕𝜙)3∕2. In Fig. 5, we plot 𝑗∞𝑥 ∕𝑗0𝑥 for 𝜙0 = 0.1, 𝐽𝑚 = 10, 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100, 𝑘1𝑑∕𝐺0 = 10 and two distinct values
f 𝜒 , namely 𝜒 = 0.1 (blue line) and 𝜒 = 1.0 (brown line). For comparison, the reference profile 𝑗𝑥∕𝑗0𝑥 = 1 (green line) achieved
uring the short-time response since there 𝜙 ≈ 𝜙0 is also included in the figure. From Fig. 5, we see that the streamwise liquid flux
𝑥 evolves from a flat profile 𝑗0𝑥 to a curved profile 𝑗∞𝑥 which can exhibit discontinuities for sufficiently large values of 𝜒 . In this
ase, the flow in the central part of channel is much larger than the flow close to the channel plates. This result is consistent with
ne obtained by Cogan and Keener (2005) with a gel model different from ours.

In some works on liquid flow through gels (see, for instance, Levick, 1987 and Loessberg-Zahl et al., 2019), the steady-state
treamwise velocity profile is taken to be uniform (i.e., plug flow). Our findings show that this can occur only for specific elastic
odels for the polymer network, such as the neo-Hookean and Mooney models, in which case the polymer concentration remains
nchanged regardless of the applied pressure drop, namely 𝜙 = 𝜙0 for all times. Otherwise, the applied pressure drop is sustained
y an inhomogeneous network normal stress distribution which in turn drives changes in the polymer concentration leading to a
onuniform streamwise flow profile. The relevance and implications of this result remain yet to be explored. It is noteworthy that
nonuniform flow profile can be obtained by any other mechanism leading to changes in the polymer concentration. This point is

xemplified by the work of Guy et al. (2011), who considered changes in polymer concentration caused by reformation/breakage
f the network induced by fluid flow.

. A cursory discussion of anisotropic gel networks

We have emphasized general results for isotropic gel networks described under the Flory–Rehner hypothesis of additivity and
eparability of the elastic and mixing contributions to the free-energy density of such a material. Those results can be generalized
o account for network anisotropy by allowing the elastic former contribution to be dependent on additional anisotropic invariants.
uch dependence gives rise to concomitant contributions to the stress. For transversely isotropic networks,8 with preferred direction

7 Bearing in mind that 𝜆 = 𝜙0∕𝜙, this relation can be justified by considering that: (i) the permeability of gels is often discussed in terms of a measured
uantity, say 𝜉, called friction coefficient, which according Tokita and Tanaka (1991) can be described by 𝜉 = 𝜉0𝜙3∕2, with 𝜉0 > 0; (ii) the mobility 𝑚 and the
riction coefficient 𝜉 are related by 𝜐2𝑚 = 1∕𝜉. See Drozdov et al. (2016) for pertinent discussion.

8 Transverse isotropy is commonly used to model the behavior of compliant matrices reinforced with stiff polymeric filaments, a pursuit relevant to the study
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Fig. 5. Distribution of ratio 𝑗∞𝑥 ∕𝑗0𝑥 between 𝑗∞𝑥 and 𝑗0𝑥 , the steady and instantaneous components of the liquid flux in the main direction, across the channel
for 𝜙0 = 0.1, 𝐽𝑚 = 10, 𝑘𝐵𝑇 ∕𝜐𝐺0 = 100, 𝑘1𝑑∕𝐺0 = 10, and two values of 𝜒 , namely 𝜒 = 0.2 (blue line) and 𝜒 = 1.0 (brown line). For reference, the distribution
corresponding to the instantaneous profile (𝑗𝑥∕𝑗0𝑥 = 1) is also represented (green).

n the reference configuration defined by the unit vector 𝒆0, the additional invariants are given by 𝐼4 ∶= 𝒆 ⋅ 𝒆 and 𝐼5 ∶= 𝑩𝒆 ⋅ 𝒆, with
𝒆 = 𝑭𝒆0. The corresponding network stress 𝑻 n is then given by

𝑻 n =
2

det 𝑭

(

𝛼1𝑩 + 𝛼2(𝐼1𝑰 − 𝑩)𝑩 + 𝛼4𝒆⊗ 𝒆 + 𝛼5(𝒆⊗ 𝑩𝒆 + 𝑩𝒆⊗ 𝒆)
)

− 𝜋𝑰 , (214)

here 𝛼4 and 𝛼5 denote the derivatives of the elastic free energy density with respect to the additional invariants 𝐼4 and 𝐼5,
respectively. For generalization of our channel flow problem in which 𝒆0 is aligned with the direction of the applied pressure drop,
it can be shown that 𝐼4 = 1, 𝐼5 = 1 + 𝛾2, and that the matrix of 𝑻 n retains the form

[𝑻 n] =

⎡

⎢

⎢

⎢

⎣

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 𝜎𝑧

⎤

⎥

⎥

⎥

⎦

, (215)

but with 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, and 𝜏𝑥𝑦 now given by

𝜎𝑥 = 2
𝜆
(𝛼1(1 + 𝛾2) + 𝛼2(1 + 𝛾2 + 𝜆2) + 𝛼4 + 2𝛼5(1 + 𝛾2)) − 𝜋̂(𝜆),

𝜎𝑦 = 2𝜆(𝛼1 + 2𝛼2) − 𝜋̂(𝜆),

𝜎𝑧 =
2
𝜆
(𝛼1 + 𝛼2(1 + 𝜆2 + 𝛾2)) − 𝜋̂(𝜆),

𝜏𝑥𝑦 = 2𝛾(𝛼1 + 𝛼2 + 𝛼5).

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(216)

Of the network stress components 𝜎𝑦 and 𝜏𝑥𝑦 that explicitly enter the analysis of the channel flow problem, it is evident from (129)
that only 𝜏𝑥𝑦 is affected directly by the transverse symmetry. We therefore suspect that the channel flow analysis can be conducted
for the transversely isotropic case with very minor modifications. It would of course be of interest to further generalize the problem
to allow for a deviation between the referential alignment 𝒆0 and the channel walls.

We envisage that an immediate application of the present theory regards the study of general flow problems, including the
pressure-induced flow through an infinite gel-filled pipe with circular cross-section. In this case, we would use the same procedure
adopted in this paper based in the Ansatz

𝑋 = 𝑥 + 𝑓 (𝑟, 𝑡), 𝑅 = 𝑟 + 𝑔(𝑟, 𝑡), 𝛩 = 𝜃, (217)

where (𝑅,𝛩,𝑋) and (𝑟, 𝜃, 𝑥) are the cylindrical coordinates of a gel particle in the reference and actual configurations, respectively.

9. Summary and discussion

A theory for the interplay between large deformation, fluid permeation, and propagation of coherent interfaces in polymer gels
was developed and then applied to the problem pressure-driven fluid permeation through a gel slab between two fixed impermeable
infinite parallel walls. The theory was formulated by combining fundamental balances with thermodynamical consistent constitutive
relations. In this regard, the salient features of the theory are:
31
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1. Introduction of a configurational force system to account for the power expenditure associated with interface motion.
2. Consideration of an aggregate incompressibility condition as an internal constraint maintained by reactions whose associated

dissipation rate is null.
3. Incorporation of a constitutive theory suitable for elastic polymer networks and interfaces that propagate without dissipation.

Our treatment of the internal constraint allowed us to conclude that the stress is constitutively assigned to within a pressure-like
contribution determined by the chemical potential of the interstitial liquid. That chemical potential is, in turn, the sum of reactive and
active parts. Whereas the reactive part of the chemical potential is problem dependent, the active part is prescribed by a constitutive
relation. Two such prescriptions were discussed. For one of these, the active part of the chemical potential vanishes identically.
For the other, it is prescribed in manner similar to the unconstrained case, namely as if the deformation gradient and fluid content
density were independent variables. Using the latter prescription, we introduced a decomposition of the stress into two components:
a network component consisting of elastic and osmotic contributions; an interstitial component described in terms of the pressure
the interstitial liquid would have in the absence of the network. The aforementioned the decomposition of the stress resembles
Terzaghi’s (Terzaghi, 1943) principle in poromechanics, which encompasses the notion that the total stress in a liquid infused porous
material is the sum of two parts, one associated with porous scaffold and the with the liquid. Notice, however, that here the notion of
interstitial liquid pressure, rather than being primitive, was derived from the notion of chemical potential and is, in this sense, akin to
the chemical-thermodynamic concepts of activity and fugacity introduced by Lewis and Randall (1923). The interfacial constitutive
theory was built on the premise that the motion and chemical potential of the liquid are continuous across an interface. This led to
a inequality involving the Eshelby stress tensor which, like the total stress, was decomposed into components associated with the
network and the interstitial liquid. Instead of discussing the most general thermodynamically consistent constitutive theory for the
interface, we considered a theory appropriate for situations in which interface motion does not generate dissipation. In combination
with the configurational force balance, this specialization yields the well-known Maxwell coexistence condition.

The final governing equations of the theory were obtained by combining the fundamental balances and the thermodynamically
ompatible constitutive relations. These equations can be formulated in different but equivalent forms depending on the choice of
rimary unknown quantities. We placed emphasis on a formulation suitable for isotropic gels and where the basic unknowns are
he network motion, the pressure of the interstitial liquid, and the interface motion, with the liquid pressure providing a two-way
oupling between mechanics and permeation. The governing equations were presented in both referential and spatial forms, with
he latter applied to investigate fluid permeation through a gel-filled channel. Specifically, we investigated liquid flow through a
el slab of uniform composition placed between two fixed infinite parallel walls, to which the gel adheres, and forced by a pressure
rop. This problem was addressed by adopting an approach similar in spirit to that employed by Coleman et al. (1966) to investigate
hannel flow, or plane Poiseuille flow, of incompressible fluids. Accordingly, we stipulated that the motion experienced by the gel
etwork has the form of an inhomogeneous shearing in the direction of the applied pressure drop followed by an inhomogeneous
tretching in the direction perpendicular to the walls of the channel. We also allowed for the possibility that the state of the gel at a
iven time may involve the presence of planar interfaces symmetrically located with respect to the central plane between the walls
f the channel. The governing equations of the theory consequently simplified to a system of equations involving time-dependent
unctions of the spanwise coordinate, except that the pressure that also varies in the streamwise direction and the interface location
epends on time only.

The following picture emerged from our analysis: When a gel fixed between two impermeable walls at rest is forced by a suddenly
pplied pressure drop, mechanical equilibrium is attained instantaneously since inertia is neglected. The corresponding state of stress
s such that the inhomogeneity of the normal network stress acting on material planes parallel to the channel walls drives motion of
he interstitial liquid in the direction normal to the walls. That motion is in turn must accompanied by motion of the network in the
pposite direction. This process continues until the network normal stress becomes homogeneous and a steady state is reached. For
ery short times, the gel behaves like an incompressible elastic solid since there is insufficient time for the liquid to flow. Hence,
he short-time, or instantaneous, response of the gel is determined by its elastic properties and involves simple shear only. On the
ther hand, the long-time, or steady state, response of the gel is influenced by the elastic and osmotic properties of the gel.

Through the analysis of the instantaneous response, we exposed the tendency of the liquid to flow in the spanwise direction. We
oncluded that the interstitial liquid will flow from the channel walls towards the center of the channel whenever the normal network
tress increases with the amount of shear, as is the case of strain-stiffening generalized neo-Hookean elastic models. The opposite
ccurs when the normal network stress decreases with the amount of shear, as in the case of strain-slackening generalized neo-
ookean elastic models. If the shear stress is unaffected by the amount of shear, as in the case of neo-Hookean and Mooney elastic
odels, there will be no tendency toward spanwise flow. Our investigation of the steady-state response was aimed at describing

he profile reached by the only non-null component of the liquid flux, namely the component in the direction of and proportional
o the applied pressure drop. Bearing in mind that the proportionality factor is determined by the liquid mobility, which increases
ith the stretch in the spanwise direction, we sought to obtaining the profile for that stretch. Assuming that the constitutive relation
iven the shear stress as a function of the stretch and the amount of shear can be inverted for the amount of shear, we arrived at
et of equations to be solved for the stretch distribution. As a consequence of this assumption, the configurational force balance is
quivalent to the Maxwell equal area rule written for the partial of Legendre transform of free-energy density with respect to the
hear stress. We established a necessary condition for presence of an interface across which the stretch displays a jump discontinuity.
his condition hinges on the non-monotonicity of the constitutive equation for normal network stress. This led us to address two
eparate cases, with and without interfaces, according to which the profile for the stretch is continuous or not.

We also provided illustrative examples by using the Gent and Flory–Huggins models for elastic and mixing contributions to
he free-energy of the gel. The analysis of the instantaneous response showed that the interstitial liquid tends to flow inward
32
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from the channel walls towards the center of the channel. This was corroborated by the steady-response which displays polymer
accumulation and depletion, and, hence, lower and higher flow intensity, in the outermost and innermost regions of the channel.
We also showed that there is a critical value for the Flory interaction parameter below of which the profile for the stretch in the
direction perpendicular to the channel walls is smooth.
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ppendix A. The elastic and osmotic responses

.1. General relations

It is evident from (129)–(130) that the components of the network stress 𝑻 n are determined by the elastic response functions 𝛼̂1
and 𝛼̂2 and the osmotic response function 𝜋̂. Whereas the shear stress 𝜏𝑥𝑦 involves elastic contributions only, the normal stresses 𝜎𝑥,
𝜎𝑦, and 𝜎𝑧 incorporate elastic and osmotic contributions. Granted that 𝛾 ≠ 0, the expressions (129)1–3 for 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 can be used
to express 𝛼̂1, 𝛼̂2, and 𝜋̂ as

𝛼̂1(𝛾, 𝜆) =
𝜆(𝜎𝑥 − 𝜎𝑧)

2𝛾2
,

𝛼̂2(𝛾, 𝜆) =
((𝜆2 − 1)(𝜎𝑥 − 𝜎𝑧) − 𝛾2(𝜎𝑦 − 𝜎𝑧))𝜆

2𝛾2(1 + 𝛾2 − 𝜆2)
,

𝜋̂(𝜆) =
((𝛾2 + 𝜆2 − 1)(𝜎𝑥 − 𝜎𝑧) − 2𝛾2(𝜎𝑦 − 𝜎𝑧))𝜆2

𝛾2(1 + 𝛾2 − 𝜆2)
− 𝜎𝑦.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(A.1)

From (A.1), we see that, while 𝛼̂1, 𝛼̂2, and 𝜋̂ depend on the normal stress differences 𝜎𝑥 − 𝜎𝑧 and 𝜎𝑦 − 𝜎𝑧, 𝜋̂ depends in addition on
he normal stress 𝜎𝑦. Furthermore, from (129)1,2,4 we obtain a relation,

𝜎𝑥 − 𝜎𝑦 =
( 1 + 𝛾2 − 𝜆2

𝜆𝛾

)

𝜏𝑥𝑦, (A.2)

that hold for every isotropic gel and hence is universal for that class of materials. A similar relation

𝜆2𝜎𝑥 − 𝜎𝑦 = 𝜏𝑥𝑦𝛾 + 2
𝜕𝜓̃𝑒(𝐼1, 𝐼2)

𝜕𝐼2
𝜆(𝜆2 − 1) (A.3)

also holds, but only for the class of gels whose elastic energies do not depend on the second invariant 𝐼2. For 𝜆 = 1, (A.1)–(A.2)
reduce to the classical relations obtained for simple shear deformation of homogeneous, isotropic elastic bodies. See, for instance,
Gurtin et al. (2010). A relation similar to (A.2) was obtained by Wineman and Gandhi (1984).
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A.2. The generalized shear modulus

We now make some observations regarding the positivity of the response for generalized shear modulus (132):

• For (𝛾, 𝜆) ≠ (1, 0), this assumption follows from the classical Baker–Ericksen inequality. A calculation involving (118)1, (128),
(129), and (131)2, leads to the conclusion 𝐺̂ satisfies the equation

𝐺̂(𝛾, 𝜆) = 𝜆
(𝜎1 − 𝜎2
𝜆21 − 𝜆

2
2

)

, (A.4)

where 𝜎1 and 𝜎2 are the in-plane principal stresses associated with the principal stretches 𝜆1 and 𝜆2 given by

𝜆21,2 =
1 + 𝛾2 + 𝜆2

2
±

√

( 1 + 𝛾2 − 𝜆2
2

)2
+ 𝜆2𝛾2. (A.5)

From (A.5), we see that 𝜆1 = 𝜆2 if and only if 𝜆 = 1 and 𝛾 = 0. For elastic energies obeying the classical inequalities postulated
by Baker & Ericksen in Baker and Ericksen (1954), the right-hand side of (A.4) must be positive whenever 𝜆1 ≠ 𝜆2, from which
it follows that 𝐺̂(𝛾, 𝜆) > 0 for (𝛾, 𝜆) ≠ (1, 0).

• For each fixed choice of 𝜆, the condition 𝐺̂(𝜆, 0) > 0 implies that 𝜕𝜏(𝛾, 𝜆)∕𝜕𝛾 > 0 at 𝛾 = 0. Granted that 𝜕𝜏(𝛾, 𝜆)∕𝜕𝛾 is continuous,
𝜏(𝛾, 𝜆) must therefore be a strictly increasing function of 𝛾 in some neighborhood of 𝛾 = 0, and, hence, can be inverted for
𝛾 in that neighborhood. However, it may happen that 𝜏(⋅, 𝜆) ceases to be monotonically increasing if 𝛾 exceeds a certain
value. It is well known within the context of nonlinear elasticity that an isotropic and incompressible material cannot sustain
equilibrated shear deformations involving coexistent phases unless its shear stress depends nonmonotonically on the amount of
shear. See, for instance, Rajagopal and Wineman (1984), Fosdick et al. (1986), and Fosdick and MacSithigh (1986). However,
such situations were not considered here.

We finalize the present discussion by providing two models for the elastic contribution 𝜓̂𝑒 to the free energy response 𝜓̂ . These
re the power-law and limiting-chain extensibility models proposed by Knowles (1977) and Gent (1996), wherein 𝜓̂𝑒 are given,
espectively, by

𝜓̂𝑒(𝐼1, 𝐼2) =
𝐺0
2𝑏

[(

1 + 𝑏
𝑛
(𝐼1 − 3)

)𝑛
− 1

]

, 𝐺0 > 0, 𝑛 > 0, 𝑏 > 0, (A.6)

and

𝜓̂𝑒(𝐼1, 𝐼2) = −
𝐺0
2
𝐽𝑚 ln

(

1 −
𝐼1 − 3
𝐽𝑚

)

, 𝐺0 > 0, 𝐽𝑚 > 0. (A.7)

In (A.6) and (A.7), 𝐺0 is the infinitesimal shear modulus. In (A.7), finite values of 𝐽𝑚 models= limited chain extensibility by strongly
penalizing values of 𝐼1 − 3 that approach 𝐽𝑚. The generalized shear moduli corresponding to (A.6) and (A.7) are given by

𝐺̂(𝛾, 𝜆) = 𝐺0

( 𝑏
𝑛
(𝛾2 + 𝜆2 − 1) + 1

)𝑛−1
(A.8)

and

𝐺̂(𝛾, 𝜆) =
𝐺0𝐽𝑚

𝐽𝑚 − (𝛾2 + 𝜆2 − 1)
, (A.9)

respectively. Notice that the generalized shear modulus (A.9) for the Gent model (A.7) is always positive. On the other hand, the
generalized shear modulus (A.8) corresponding to the power-law model (A.6) is positive if and only 𝑛 and 𝑏 are such that

𝑏(𝛾2 + 𝜆2) + 𝑛 − 𝑏 > 0 (A.10)

for all admissible 𝜆 and 𝛾. Thus, between the power-law model (A.6) and the Gent model (A.7), (A.6) allows for equilibria involving
coexisting phases if (A.10) is violated.

Bearing in mind that 𝜆 can take values in the interval (𝜙0,∞) and that 𝛾 ≥ 0, we infer that (A.10) is equivalent to

𝑛 ≥ 𝑏(1 − 𝜙2
0). (A.11)

Thus, the generalized shear modulus is positive for all admissible 𝜆, 𝛾, and 𝜙0 if and only if 𝑛 > 𝑏. This condition appears as a result
of the compressibility since in the incompressible case 𝐺̂(𝛾, 1) > 0 for any value of 𝑛 > 0 and 𝑏 > 0.

Appendix B. A necessary condition for the occurrence of interfaces

We now introduce a necessary condition for a solution of (155)–(157) to allow for the presence of an interface across which the
amount of shear 𝛾 and stretch 𝜆 exhibit jump discontinuities. The negative of this condition suffices for the occurrence of smooth
solutions of (155)–(157). The mentioned condition is written in terms of the elastic and mixing responses of a gel.

We therefore suppose that, at a given time 𝑡, there is an interface located at 𝑦 = 𝑤(𝑡). The network stresses 𝜎𝑦 and 𝜏𝑥𝑦 are
continuous across the interface, with the corresponding values denoted by 𝜎∗ and 𝜏∗. By (156)5 and (156)6, these stress components
are related to the limiting values of 𝛾 and 𝜆 from each side of the interface by

𝜎 = 𝜎̂
(+
𝛾,

+
𝜆
)

= 𝜎̂
(−
𝛾,

−
𝜆
)

and 𝜏 = 𝜏
(+
𝛾,

+
𝜆
)

= 𝜏
(−
𝛾,

−
𝜆
)

. (B.1)
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Thus, the presence of an interface requires that
(−
𝛾,

−
𝜆
)

≠
(+
𝛾,

+
𝜆
)

. Otherwise the deformation gradient would be continuous. Hence, the
possibility of an interface across which the deformation gradient displays jump discontinuity is ruled out whenever the mapping
𝝈̂ ∶= (𝜏, 𝜎̂) is globally invertible on its domain of definition,9 namely

 ∶= {(𝛾, 𝜆) | 𝛾 ≥ 0 and 𝜆 > 𝜙0}. (B.2)

We now introduce a sufficient condition for the globally invertibility of 𝝈̂. Towards this end, we begin by noticing that, by (134),
the ‘‘gradient’’ of 𝝈̂ is equal to the Hessian matrix of 𝜑̂:

⎡

⎢

⎢

⎢

⎣

𝜕𝜏
𝜕𝛾

𝜕𝜏
𝜕𝜆

𝜕𝜎̂
𝜕𝛾

𝜕𝜎̂
𝜕𝜆

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝜑̂
𝜕𝛾2

𝜕2𝜑̂
𝜕𝛾𝜕𝜆

𝜕2𝜑̂
𝜕𝛾𝜕𝜆

𝜕2𝜑̂
𝜕𝜆2

⎤

⎥

⎥

⎥

⎥

⎦

=∶ 𝑯 . (B.3)

On invoking results presented by Bernstein and Toupin (1962), it can be shown that if 𝑯 is positive definite on , then 𝜑̂ is strictly
convex there, which implies that the ‘‘gradient’’ of 𝜑̂ is globally invertible. From the above, we conclude that the positive-definiteness
of 𝑯 on  is sufficient for global invertibility of the mapping 𝝈̂ and hence rules out the possibility of interfaces. Equivalently, the
on-positive definiteness of the Hessian matrix 𝑯 on  is necessary for the existence of interfaces. At this juncture, the following
emarks are salient:

• That the non-positive definiteness of the Hessian matrix of 𝜑̂ is necessary to the existence of interfaces may be seen as a
specialization of general results established by Rosakis (1990) within the context of elastostatics.

• After a lengthy calculation, it can be shown that the Hessian matrix of 𝜑̂ is positive definite if and only if the acoustic tensor
𝑸(𝑭 , 𝒆2) in the direction of 𝒆2 parallel to the 𝑦-axis at 𝑭 of the form (116), which can defined by

𝑸(𝑭 , 𝒆2)𝒂 = (𝐷𝑺̂n(𝑭 )[𝒂⊗ 𝒆2])𝒆2,

for every vector 𝒂, where𝐷𝑺̂n(𝑭 ) is the derivative of the network stress response at 𝑭 , is positive definite. Again, this result may
be seen as a specialization of those established in Rosakis (1990). Notice that the definition of 𝑸(𝑭 , 𝒆2) was given intrinsically
as in S̆ilhavỳ (1997).

• Within the context finite elasticity, the positive definiteness of the acoustic tensor 𝑸(𝑭 ,𝒏) for every 𝑭 and direction 𝒏 is
equivalent to the requirement that the strain energy response of an elastic material satisfies the strong ellipticity condition.
See, for instance, Rosakis (1990).

We now seek for conditions under which the Hessian matrix 𝑯 fails to be positive definite on . Towards this end, we begin by
bserving that 𝑯 is globally positive definite if and only if the conditions

𝜕𝜏
𝜕𝛾

> 0 and 𝜕𝜏
𝜕𝛾
𝜕𝜎̂
𝜕𝜆

− 𝜕𝜏
𝜕𝜆

𝜕𝜎̂
𝜕𝛾

> 0 (B.4)

hold simultaneously on . If at least one these conditions is violated, 𝑯 fails to be positive definite on . Our attention in this paper is
limited to situations in which the presence of interfaces stems from volume transition, as considered by Dušek and Dušková-Smrčková
(2020) and Doi (2013), among others. This type of transition is driven by changes in the polymer-solvent affinity and hence by the
mixing response of the gel. Since, by (131), only the normal stress response 𝜎̂ is affected by the mixing response, the condition
(B.4)1 is always satisfied on  and hence failure of the positive definiteness of 𝑯 can occur only through the violation of (B.4)2 on
. We thus arrive at the sought necessary condition for the existence of interfaces:

𝜕𝜏
𝜕𝛾
𝜕𝜎̂
𝜕𝜆

− 𝜕𝜏
𝜕𝜆

𝜕𝜎̂
𝜕𝛾

≤ 0 (B.5)

at some points of . Notice that since (B.4)1 is always satisfied on , the function 𝜏(⋅, 𝜆) can be inverted for any admissible 𝜆 and
ence we can introduce the response function 𝜎̃ defined by 𝜎̃(𝜏, 𝜆) = 𝜎̂(𝛾̃(𝜏, 𝜆), 𝜆), where 𝜏 = 𝜏(𝛾, 𝜆) and 𝛾 = 𝛾̃(𝜏, 𝜆). Thus, after a
imple calculation, we can conclude that (B.4)2 is equivalent to the requirement that

𝜕𝜎̃
𝜕𝜆

> 0 (B.6)

old for all admissible pairs (𝜏, 𝜆) and that (B.5) is satisfied at (𝛾̄ , 𝜆̄) if and only if
𝜕𝜎̃
𝜕𝜆

≤ 0 (B.7)

olds at (𝜏, 𝜆̄), where 𝜏 = 𝜏(𝛾̄ , 𝜆̄). Additional discussion pertaining to the response function 𝜎̃ is presented next.

9 The definition of  given above follows from (131)2, (155)2, and (156)4 together with the fact that 𝜏𝑥𝑦 ≥ 0 in the lower-half of the channel and that
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Appendix C. The response function 𝝈̃

The properties of the response function 𝜎̃ have crucial effects on the problem under consideration in this paper. Some of the
most relevant properties will be discussed below. Without further notice, we recall that 𝜏𝑥𝑦 must satisfy 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2.

We begin by considering the domain and range of 𝜎̃(𝜏𝑥𝑦, ⋅). First, we observe that, according to (156)4, 𝜆 can take values in the
interval (𝜙0,∞), with 𝜆 → 𝜙0 as 𝜙 → 1 and 𝜆→ ∞ as 𝜙 → 0. In the presence of limiting chain extensibility effects, 𝜆 takes values in
the interval (𝜙0, 𝜆𝑚) instead, where 𝜆𝑚 <∞, the limiting value for the stretch 𝜆, may depend on 𝛾, and hence on 𝜏𝑥𝑦. Moreover, we
consider that 𝜎̃(𝜏𝑥𝑦, ⋅) obeys the conditions

lim
𝜆→𝜙0

𝜎̃(𝜏𝑥𝑦, 𝜆) = −∞ and lim
𝜆→𝜆𝑚

𝜎̃(𝜏𝑥𝑦, 𝜆) = ∞, (C.1)

which may be justified by recalling that, in view of (131)1 and (181)2, 𝜎̃(𝜏𝑥𝑦, ⋅) is the sum of two contributions, one elastic and other
osmotic, that is,

𝜎̃(𝜏𝑥𝑦, 𝜆) = 2𝜆(𝛼̃1(𝜏𝑥𝑦, 𝜆) + 2𝛼̃2(𝜏𝑥𝑦, 𝜆))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜎̃𝑒(𝜏𝑥𝑦 ,𝜆)

−𝜋̂(𝜆), (C.2)

and assuming that the following conditions hold:

• The osmotic pressure 𝜋̂(𝜆) tends to ∞ as 𝜆 tends to 𝜙0 and remains bounded as 𝜆 tends to 𝜆𝑚.
• The elastic contribution 𝜎̃𝑒(𝜏𝑥𝑦, 𝜆) tends to ∞ as 𝜆 tends to 𝜆𝑚 and remains bounded as 𝜆 tends to 𝜙0.

Consider a given 𝜏𝑥𝑦 ≥ 0. As for the monotonicity properties of 𝜎̃(𝜏𝑥𝑦, 𝜆), we consider the following possibilities:

(i) 𝜎̃(𝜏𝑥𝑦, ⋅) is a monotonically increasing function of 𝜆, that is,

𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜆

> 0. (C.3)

(ii) 𝜎̃(𝜏𝑥𝑦, ⋅) is non-monotonic, with

𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜆

> 0 on (𝜙0, 𝜆𝑚) ⧵ [𝜆𝐿, 𝜆𝐻 ] and
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
< 0 on (𝜆𝐿, 𝜆𝐻 ), (C.4)

where 𝜆𝐿 and 𝜆𝐻 , with 𝜙0 < 𝜆𝐿 < 𝜆𝐻 < 𝜆𝑚, are solutions of the equation

𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜆

= 0. (C.5)

Notice that, like 𝜆𝑚, 𝜆𝐿 and 𝜆𝐻 may depend on 𝜏𝑥𝑦, but this dependency is omitted here for the sake of simplicity.

For the purposes of the present work, we stipulate that the elastic part 𝜎̃𝑒 of 𝜎̃ is such that, for each 𝜏𝑥𝑦,

𝜕𝜎̃𝑒(𝜏𝑥𝑦, 𝜆)
𝜕𝜆

> 0 (C.6)

for all 𝜆 ∈ (𝜙0, 𝜆𝑚). In this way, the loss of monotonicity of 𝜎̂(𝜏𝑥𝑦, ⋅) is caused by the osmotic pressure response 𝜋̂ since, by (C.2),
(C.3) is equivalent to

𝜕𝜎̃𝑒(𝜏𝑥𝑦, 𝜆)
𝜕𝜆

>
𝜕𝜋̂(𝜆)
𝜕𝜆

. (C.7)

rom this we can conclude the following:

• According to the classical theory of polymer solutions as presented, for instance, by Doi (2013), the properties of the osmotic
pressure reflect the effective interaction between polymer molecules comprising the network. When the effective interaction
is repulsive, the osmotic pressure increases monotonically with 𝜙 and hence, since 𝜆 = 𝜙0∕𝜙, 𝜕𝜋̂∕𝜕𝜆 < 0 for all 𝜆. Otherwise,
when the effective interaction is attractive, the osmotic pressure first decreases with 𝜙, hence 𝜕𝜋̂∕𝜕𝜆 > 0, and then increases
with 𝜙 and hence 𝜕𝜋̂∕𝜕𝜆 < 0. Thus:

◦ If the effective interaction between polymer molecules is repulsive, then 𝜎̃(𝜏𝑥𝑦, ⋅) is a monotonic function of 𝜆 for any
𝜏𝑥𝑦.

◦ If 𝜎̃(𝜏𝑥𝑦, ⋅) is non-monotonic, then the effective interaction between polymer molecules is attractive.

• It can be shown that (C.6) holds for elastic materials of the power-law type (A.6) if 𝑛 > 1∕2 as well for any elastic material of
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Appendix D. Solving 𝝈̃(𝝉𝒙𝒚 , 𝝀) = 𝝈𝒚 for 𝝀

For the ensuing discussion, we drop the subscripts from 𝜎𝑦 and 𝜏𝑥𝑦 for simplicity and consider a gel cube of unit dimensions,
with faces parallel to Cartesian axes, undergoing the deformation (cf. (112))

𝑥 = 𝑋 + 𝛾𝑌 , 𝑦 = 𝜆𝑋, 𝑧 = 𝑍, (D.1)

where (𝑋, 𝑌 ,𝑍) and (𝑥, 𝑦, 𝑧) are the coordinates of a gel particle in the undeformed and deformed configurations, respectively. This
deformation corresponds to stretch 𝜆 > 0 superimposed to a simple shear of amount 𝛾. The cube is immersed in incompressible
and pure fluid bath and subject to the normal stress 𝜎 − 𝑝𝑎 and 𝜏 in the face 𝑌 = 1, where 𝑝𝑎 is fluid pressure in environment and
𝜏 the applied shear stress, which henceforth is supposed to be given as a fixed value. Alternatively, we may think of (D.1) as the
deformation achieved by a gel slab placed between two parallel walls, one fixed and impermeable at 𝑌 = 0 and other movable and
permeable to the fluid at 𝑌 = 1.

As Duda et al. (2010) show, to characterize the equilibrium states we must find critical points of the net potential energy which
in the present case is given, modulo a inconsequential constant, by

 (𝛾, 𝜆) = 𝜑̂(𝛾, 𝜆) − 𝜏𝛾 − 𝜎(𝜆 − 1). (D.2)

Thus, equilibrium states are characterized by

𝜎 = 𝜎̂(𝛾, 𝜆) ∶=
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝜆

,

𝜏 = 𝜏(𝛾, 𝜆) ∶=
𝜕𝜑̂(𝛾, 𝜆)
𝜕𝛾

.

⎫

⎪

⎬

⎪

⎭

(D.3)

If, given 𝜆, we suppose that 𝜏(⋅, 𝜆) is invertible with inverse 𝛾̃(⋅, 𝜆), we can express the net potential energy as a function of 𝜆 and 𝜏
through

̃ (𝜏, 𝜆) = 𝛷̃(𝜏, 𝜆) − 𝜎(𝜆 − 1), (D.4)

where 𝛷̃(𝜏, 𝜆) = 𝜑̂(𝛾̃(𝜏, 𝜆), 𝜆) − 𝜏𝛾̃(𝜏, 𝜆) is the negative of the partial Legendre transform of 𝜑̂ with respect to 𝜏. The critical points of
̃ are obtained by solving

𝜎 = 𝜎̃(𝜏, 𝜆) ∶=
𝜕𝛷̃(𝜏, 𝜆)
𝜕𝜆

,

𝛾 = 𝛾̃(𝜏, 𝜆) ∶=
𝜕𝛷̃(𝜏, 𝜆)
𝜕𝜏

.

⎫

⎪

⎬

⎪

⎭

(D.5)

We now consider the following problem: Given 𝜎, solve

𝜎 = 𝜎̃(𝜏, 𝜆) (D.6)

or 𝜆, with the shear stress 𝜏 ≥ 0 treated as a fixed parameter. Observe that the stated problem is equivalent to the problem of
inding equilibrium configurations of elastic bars subjected to dead loads (see, for instance, the monographs by Ericksen, 1998 and
beyaratne and Knowles, 2006).

As in the one-dimensional case, two possibilities are considered here: (i) 𝜎̂ is a monotonically increasing function of 𝜆; (ii) 𝜎̂ is
onotonically increasing in (𝜙0, 𝜆𝐿), monotonically decreasing on (𝜆𝐿, 𝜆𝐻 ), and monotonically increasing on (𝜆𝐻 , 𝜆𝑚), with 𝜆𝐿 and
𝐻 obtained by solving

𝜕𝜎̃(𝜏, 𝜆)
𝜕𝜆

= 0. (D.7)

In view of (188), there always exists a solution (D.6) for a given 𝜎. This solution is unique provided that 𝜎̃ depends monotonically
n 𝜆. When 𝜎̃ is non-monotonic, we have the following alternatives:

• one solution if 𝜎 < 𝜎̃(𝜏, 𝜆𝐿) or 𝜎 > 𝜎̃(𝜏, 𝜆𝐻 );
• two solutions if 𝜎 = 𝜎̃(𝜏, 𝜆𝐿) or 𝜎 = 𝜎̃(𝜏, 𝜆𝐻 );
• three solutions if 𝜎̃(𝜏, 𝜆𝐿) < 𝜎 < 𝜎̃(𝜏, 𝜆𝐻 ).

In this case, the solution 𝜆∗ is said to correspond to low- and high-stretch phases if 𝜆 < 𝜆𝐿 and 𝜆 > 𝜆𝐻 , respectively. If it is stipulated
that a solution 𝜆∗ must be an absolute minimizer of ̃ , which is equivalent to requirement that the inequality

𝛷̃(𝜆∗, 𝜏) − 𝜎𝜆∗ ≤ 𝛷̃(𝜏, 𝜆) − 𝜎𝜆 (D.8)

holds for all 𝜆, such solution must be such that:

• 𝜆∗ < 𝜆𝑀1 when 𝜎 < 𝜎𝑀 ,
• 𝜆∗ > 𝜆𝑐2 when 𝜎 > 𝜎𝑀 ,

∗ 𝑀 𝑀
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• 𝜆 ∈ {𝜆1 , 𝜆2 } when 𝜎 = 𝜎𝑀 ,
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where 𝜆𝑀1 , 𝜆𝑀2 , and 𝜎𝑀 , are such that

𝜎𝑀 = 𝜎̂(𝜏, 𝜆𝑀1 ) = 𝜎̃(𝜏, 𝜆𝑀2 ),

𝛷̃(𝜏, 𝜆𝑀1 ) − 𝜎𝑀𝜆𝑀1 = 𝛷̃(𝜏, 𝜆𝑀2 ) − 𝜎𝑀𝜆𝑀2 .

}

(D.9)

The latter conditions are the Maxwell equal area rule and 𝜎𝑀 is the Maxwell stress.

Appendix E. Reformulation of the governing equations

We recall that (155)–(157) furnish a system of equations to be solved for 𝑓 , 𝑔, 𝜆, 𝛾, 𝜙, 𝜎𝑦, 𝑤, and 𝑝, with the latter quantity being
determinate to within a time-dependent part. The quantities given are the applied pressure drop per unit length 𝑘1, the polymer
volume fraction 𝜙0 in the reference state, the volume 𝜐 occupied by a fluid molecule, and the constitutive responses 𝜓̂ — from
which 𝜏 and 𝜎̂ are derived — and 𝑚̂. The resulting system must be supplemented with appropriate boundary and initial conditions
(158) and (159).

We now reformulate the aforementioned system of equations for situations where the shear stress 𝜏𝑥𝑦 can be treated as an
independent constitutive variable. In this case, the appropriate energy potential is given 𝛷̃, from which 𝛾̃ and 𝜎̃ are derived by

𝛾̃ = 𝜕𝛷̃
𝜕𝜏𝑥𝑦

and 𝜎̃ = 𝜕𝛷̃
𝜕𝜆

.

Thus, bearing in mind that

𝜏𝑥𝑦 = 𝑘1
(𝑑
2
− 𝑦

)

(E.1)

for all 0 ≤ 𝑦 ≤ 𝑑∕2 and that 𝑘1, 𝜙0, 𝜐, 𝛷̃, and 𝑚̂ are given, the problem of obtaining 𝑓 , 𝑔, 𝛾, 𝜆, 𝑣𝑦, 𝜙, 𝜎𝑦, and 𝑤 can be solved in
steps as follows:

Step 1: Obtain 𝑔, 𝜆, 𝑣𝑦, 𝜙, 𝜎𝑦, and 𝑤 by solving

𝜆 =
(

1 +
𝜕𝑔
𝜕𝑦

)−1
,

𝑣𝑦 = −𝜆
𝜕𝑔
𝜕𝑡
,

𝜆𝜙 = 𝜙0,

𝜎𝑦 = 𝜎̃(𝜏𝑥𝑦, 𝜆),

𝑣𝑦 = 𝜐2𝑚̂(𝜆)
𝜕𝜎𝑦
𝜕𝑦

,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(E.2)

for all 0 < 𝑦 < 𝑤 and 𝑤 < 𝑦 < 𝑑∕2, and

[[𝜙]]𝑤̇ + [[𝜙𝑣𝑦]] = 0,

𝜎̃(𝜏∗,
−
𝜆) = 𝜎∗,

𝜎̃(𝜏∗,
+
𝜆) = 𝜎∗,

[[𝛷̃(𝜏𝑥𝑦, 𝜆)]] − 𝜎∗[[𝜆]] = 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(E.3)

for 𝑦 = 𝑤, where 𝜎∗ = 𝜎𝑦(𝑤) and 𝜏∗ = 𝜏𝑥𝑦(𝑤). These equations must be supplemented by the boundary and initial conditions
𝑔(0, 𝑡) = 𝑔(𝑑∕2, 𝑡) = 0 and 𝑔(𝑦, 0) = 0 for 𝑔 as well as by the initial condition 𝑤(0) = 0 for 𝑤 under the proviso that an interface
initiates at the channel walls.

Step 2: Obtain 𝑓 and 𝛾 by solving

𝛾 = 𝜆
𝜕𝑓
𝜕𝑦
,

𝛾 = 𝛾̃(𝜏𝑥𝑦, 𝜆),

⎫

⎪

⎬

⎪

⎭

(E.4)

for all 0 < 𝑦 < 𝑤 and 𝑤 < 𝑦 < 𝑑∕2, and

−
𝛾 = 𝛾̃(𝜏∗,

−
𝜆),

+
𝛾 = 𝛾̃(𝜏∗,

+
𝜆),

⎫

⎪

⎬

⎪

⎭

(E.5)

for 𝑦 = 𝑤, where 𝜎∗ = 𝜎𝑦(𝑤) and 𝜏∗ = 𝜏𝑥𝑦(𝑤). These equations must be supplemented by the boundary conditions for 𝑓
stating that its value and 𝑦-derivative vanish at 𝑦 = 0 and 𝑦 = 𝑑∕2 for any time.
38
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Notice that, by using (E.2), one can conclude that 𝑔 obeys a reaction–diffusion-like equation of the form

𝜕𝑔
𝜕𝑡

= 𝐷̃(𝜏𝑥𝑦, 𝜆)
𝜕2𝑔
𝜕𝑦2

+ 𝑟(𝜏𝑥𝑦, 𝜆), (E.6)

here 𝐷̂(𝜏𝑥𝑦, 𝜆) and 𝑟(𝜏𝑥𝑦, 𝜆) are given by

𝐷̃(𝜏𝑥𝑦, 𝜆) ∶= 𝜐2𝑚̂(𝜆)𝜆
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)

𝜕𝜆
and 𝑟(𝜏𝑥𝑦, 𝜆) ∶= 𝑘1𝜐

2𝑚̂(𝜆) 1
𝜆
𝜕𝜎̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜏𝑥𝑦

. (E.7)

When 𝜎̃ is independent of 𝜏𝑥𝑦, it is easy to see that 𝑔0 ≡ 0 satisfies (E.6) as well as the boundary and initial conditions 𝑔0(0, 𝑡) =
𝑔0(𝑑∕2, 𝑡) = 0 and 𝑔0(𝑦, 0) = 0 for all 0 < 𝑦 < 𝑑∕2 and 0 < 𝑡 < ∞. This corresponds to a trivial solution of (E.2) and (E.3). To assess
the stability of this solution with respect to small perturbations, we linearize (E.6) around 𝑔0 and get that a small perturbation 𝑔̃
has to satisfy the linear diffusion equation

𝜕𝑔̃
𝜕𝑡

= 𝐷
𝜕2𝑔̃
𝜕𝑦2

, (E.8)

where 𝐷 is given by

𝐷 = 𝜐2𝑚̂(1)
𝜕𝜎̃(𝜆)
𝜕𝜆

|

|

|

|𝜆=1
. (E.9)

When 𝐷 is negative, (E.8) is a backward-diffusion equation (see, for instance, Novick-Cohen, 2008). In this case, a non-trivial solution
f (E.8) grows without bound over time, showing that the solution 𝑔0 is unstable whenever 𝜕𝜎̃∕𝜕𝜆 < 1 at 𝜆 = 1.

Appendix F. Time scale associated with liquid transport and the responses for very short and long times

The purpose of this section is two-fold: i) identify an intrinsic time scale associated with liquid transport in the direction
perpendicular to the channel plates; ii) use this time scale to characterize the very short- and long-time responses of the gel. For
the sake of simplicity and without loss of generality, we suppose that no interfaces are present and base our analysis on the system
of equations

𝜆 =
(

1 +
𝜕𝑔
𝜕𝑦

)−1
,

𝑎 = −𝑘1𝜁 (𝜏𝑥𝑦, 𝜆) + 𝜂̃(𝜏𝑥𝑦, 𝜆)
𝜕𝜆
𝜕𝑦
,

𝜆
𝜕𝑔
𝜕𝑡

= −𝜐2𝑚̂(𝜆)𝑎,

𝜏𝑥𝑦 = 𝑘1
(𝑑
2
− 𝑦

)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(F.1)

or all 0 < 𝑦 < 𝑑∕2 and 𝑡 > 0, where 𝜁 and 𝜂̄ are given by

𝜁 ∶= 𝜕𝜎̃
𝜕𝜏𝑥𝑦

and 𝜂̃ ∶= 𝜕𝜎̃
𝜕𝜆
. (F.2)

We have considered the pressure gradient in the 𝑦-direction 𝑎 = 𝜕𝑝∕𝜕𝑦 = 𝜕𝜎𝑦∕𝜕𝑦 as a primary variable and introduced 𝜁 and 𝜂̃ to
simplify notation. The conditions in (F.1), which follow directly from (E.1) and (E.2), comprises a system of equations for 𝑔, 𝜆, and
𝑎. This system has a trivial solution given by 𝑔 ≡ 0, 𝜆 ≡ 1, and 𝑎 ≡ 0 if and only if 𝜁 ≡ 0, which is tantamount to say that the normal
network stress 𝜎𝑦 is unaffected by the shear stress 𝜏𝑥𝑦 and hence by the applied pressure drop 𝑘1. In the sequel, we rule out the
possibility of a trivial solution.

To reach the goals set at the beginning of this section, we use the standard scaling procedure (see, for instance, Lin and Segel,
1988) as applied to (F.1). Accordingly, we begin by introducing the following dimensionless quantities:

• Independent variables:

𝑦̄ =
𝑦
𝑦𝑐
, 𝑡 =

𝑦
𝑡𝑐
, (F.3)

where 𝑦𝑐 and 𝑡𝑐 are characteristic length and time;
• Dependent variables:

𝑔̄(𝑦̄, 𝑡) =
𝑔(𝑦𝑐 𝑦̄, 𝑡𝑐 𝑡)

𝑔𝑐
, 𝜆̄(𝑦̄, 𝑡) =

𝜆(𝑦𝑐 𝑦̄, 𝑡𝑐 𝑡)
𝜆𝑐

, and 𝑎̄(𝑦̄, 𝑡) =
𝑎(𝑦𝑐 𝑦̄, 𝑡𝑐 𝑡)

𝑎𝑐
, (F.4)

where 𝑔𝑐 , 𝜆𝑐 , and 𝑎𝑐 are characteristic values for 𝑔, 𝜆, and 𝑎;
• Shear stress:

𝜏𝑥𝑦 =
𝜏𝑥𝑦
𝜏𝑐
, (F.5)

where 𝜏 is a characteristic value for the shear stress 𝜏 ;
39

𝑐 𝑥𝑦



Journal of the Mechanics and Physics of Solids 155 (2021) 104566F.P. Duda et al.

f
t

a

w
s

w

a

r

N

• Constitutive responses:

𝜁 (𝜏𝑥𝑦, 𝜆̄) =
𝜁 (𝜏𝑐𝜏𝑥𝑦, 𝜆𝑐 𝜆̄)

𝜁𝑐
, 𝜂̄(𝜏𝑥𝑦, 𝜆̄) =

𝜂(𝜏𝑐𝜏𝑥𝑦, 𝜆𝑐 𝜆̄)
𝜂𝑐

, and 𝑚̄(𝜆̄) =
𝑚̂(𝜆𝑐 𝜆̄)
𝑚𝑐

, (F.6)

where 𝜁𝑐 , 𝜂𝑐 , and 𝑚𝑐 are characteristic values for response functions 𝜁 , 𝜂̃, and 𝑚̂.

With the quantities introduced above, we can write the dimensionless version of (F.1) as

𝜆̄ = 𝜆−1𝑐
(

1 +
𝑔𝑐
𝑦𝑐
𝜕𝑔̄
𝜕𝑦̄

)−1
,

𝑎̄ = −
𝑘1𝜁𝑐
𝑎𝑐

𝜁 (𝜏𝑥𝑦, 𝜆̄) +
𝜂𝑐𝜆𝑐
𝑎𝑐𝑦𝑐

𝜂̄(𝜏𝑥𝑦, 𝜆̄)
𝜕𝜆̄
𝜕𝑦̄
,

𝜆̄
𝜕𝑔̄
𝜕𝑡

= −
𝑡𝑐𝜐2𝑚𝑐𝑎𝑐
𝜆𝑐𝑔𝑐

𝑚̄(𝜆̄)𝑎̄,

𝜏𝑥𝑦 =
𝑘1𝑑
2𝜏𝑐

(

1 −
2𝑦𝑐 𝑦̄
𝑑

)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(F.7)

or all 0 < 𝑦̄ < 𝑑∕(2𝑦𝑐 ) and 0 < 𝑡 < ∞. In the sequel we address the question on how the characteristic scales appearing in (F.7) are
o be selected.

We begin by stating some conditions to be satisfied by the characteristic scales corresponding to the unknown variables 𝑔, 𝜆,
nd 𝑎, and constitutive functions 𝜁 , 𝜂̃, and 𝑚̂. Accordingly, we consider that 𝑔𝑐 , 𝜆𝑐 , and 𝑎𝑐 must be consistent with the conditions

𝑔𝑐 ≥ |𝑔|max, 𝜆𝑐 ≥ 𝜆max, and 𝑎𝑐 ≥ |𝑎|max, (F.8)

here ℎmax denotes the maximum pointwise value of ℎ attained during the gel transition from its initial to the final and steady
tate.10 We also consider that 𝜁𝑐 , 𝜂𝑐 , and 𝑚𝑐 must comply with the conditions

𝜁𝑐 ≥ max
(𝜏𝑥𝑦 ,𝜆)∈

|𝜁 (𝜏𝑥𝑦, 𝜆)|, 𝜂𝑐 ≥ max
(𝜏𝑥𝑦 ,𝜆)∈

|𝜂̃(𝜏𝑥𝑦, 𝜆)|, and 𝑚𝑐 ≥ 𝑚̂(𝜆max) (F.10)

here  = {(𝜏𝑥𝑦, 𝜆) ∶ 0 ≤ 𝜏𝑥𝑦 ≤ 𝑘1𝑑∕2, 𝜆min ≤ 𝜆 ≤ 𝜆max} and 𝜆min is the minimum pointwise value of 𝜆 achieved during the gel
evolution from its initial to the final state. To write (F.10)3, we have used the reasonable assumption that fluid mobility decreases
with the polymer content and hence increases with 𝜆.

We now turn to the characteristic scales selection per se. First, we observe that natural choices for the length and shear-stress
scales are 𝑦𝑐 = 𝑑∕2 and 𝜏𝑐 = 𝑘1𝑑∕2, in which case 𝑦̄ ∈ [0, 1] and 𝜏𝑥𝑦 = 1− 𝑦̄. Further, in view of the fact that 𝑔(𝑦) ≤ 𝑑∕2−𝑦, 𝑔𝑐 = 𝑑∕2 is

legitimate choice for 𝑔𝑐 . We now consider estimates for 𝜆𝑐 , 𝑎𝑐 , 𝜁𝑐 , 𝜂𝑐 , and 𝑚𝑐 . We expect that 𝜆max and 𝜆min, the greatest and lowest
values of the stretch 𝜆 experienced by the gel, are achieved under steady-state conditions at, for definiteness, 𝑦 = 𝑑∕2 and 𝑦 = 0,
respectively. Hence, 𝜆max and 𝜆min can be obtained by solving 𝜎̃(0, 𝜆max) = 𝜎∞ and 𝜎̃(𝜏𝑐 , 𝜆min) = 𝜎∞, where 𝜎∞ is the steady-state
constant value reached by the normal network stress 𝜎𝑦. Since fluid flow in the direction perpendicular to the plates takes place
in response to 𝜕𝜎𝑦∕𝜕𝑦, it is also natural to expect that 𝜎min and 𝜎max, the minimum and maximum values of 𝜎𝑦 attained during the
evolution of the gel up to steady state, are attained as soon as 𝑘1 is applied, that is,

𝜎min = min
0≤𝜏𝑥𝑦≤𝜏𝑐

𝜎̃(𝜏𝑥𝑦, 1) and 𝜎max = max
0≤𝜏𝑥𝑦≤𝜏𝑐

𝜎̃(𝜏𝑥𝑦, 1).

Bearing in mind that 𝜎min < 𝜎∞ < 𝜎max and that 𝜕𝜎̃∕𝜕𝜆 > 0 on its domain of definition, it follows that 𝜆l and 𝜆u, obtained by solving

𝜎̃(𝜏𝑐 , 𝜆l) = 𝜎min and 𝜎̃(0, 𝜆u) = 𝜎max,

are such that 𝜆l < 𝜆min and 𝜆u > 𝜆max. Thus, the choices

𝜆𝑐 = 𝜆u, 𝜁𝑐 = max
(𝜏𝑥𝑦 ,𝜆)∈

|𝜁 (𝜏𝑥𝑦, 𝜆)|, 𝜂𝑐 = max
(𝜏𝑥𝑦 ,𝜆)∈

|𝜂̃(𝜏𝑥𝑦, 𝜆)|, and 𝑚𝑐 = 𝑚̂(𝜆u),

for 𝜆𝑐 , 𝜁𝑐 , 𝜂𝑐 , and 𝑚𝑐 , where now  = {(𝜏𝑥𝑦, 𝜆) ∶ 0 ≤ 𝜏𝑥𝑦 ≤ 𝜏𝑐 , 𝜆l ≤ 𝜆 ≤ 𝜆u}, are consistent with (F.10). Finally, on considering the
easonable assumption that the maximum value of |𝑎| is achieved as soon as 𝑘1 is applied, we come up with the following choice

for 𝑎𝑐 :

𝑎𝑐 = 𝑘1 max
0≤𝜏𝑥𝑦≤𝜏𝑐

|𝜁 (𝜏𝑥𝑦, 1)|.

otice 𝑎𝑐 > 0 only if the condition 𝜁 ≡ 0 does not hold. Otherwise, we would have 𝑎 ≡ 0 as already discussed.

10 Notice that ℎmax is the supremum of the space–time dependent function ℎ on  ∶= {(𝑦, 𝑡) ∶ 0 ≤ 𝑦 ≤ 𝑑∕2, 0 < 𝑡 <∞}, that is,

ℎmax = sup
(𝑦,𝑡)∈

ℎ(𝑦, 𝑡). (F.9)
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With the aforementioned choices, we can rewrite (F.7) as

𝜆̄ = 𝜆−1𝑐
(

1 +
𝜕𝑔̄
𝜕𝑦̄

)−1
,

𝑎̄ = −
𝑘1𝜁𝑐
𝑎𝑐

𝜁 (𝜏𝑥𝑦, 𝜆̄) +
𝜂𝑐𝜆𝑐
𝑎𝑐𝑦𝑐

𝜂̄(𝜏𝑥𝑦, 𝜆̄)
𝜕𝜆̄
𝜕𝑦̄
,

𝜆̄
𝜕𝑔̄
𝜕𝑡

= −
𝑡𝑐
𝑡∗
𝑚̄(𝜆̄)𝑎̄,

𝜏𝑥𝑦 = 1 − 𝑦̄,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(F.11)

for all 0 < 𝑦̄ < 1 and 0 < 𝑡 <∞, where

𝑡∗ =
𝜆𝑐𝑑

2𝜐2𝑚𝑐𝑎𝑐
(F.12)

is the intrinsic time scale we were looking for. We are now in position to discuss the gel behavior for very short and long times
according to which the conditions 𝑡 ∈ (0, 𝑡st ) with 𝑡st ≪ 𝑡∗ and 𝑡 ∈ (𝑡lt ,∞) with 𝑡lt ≫ 𝑡∗ hold. For this, it suffices to consider (F.11)3,
the only equation in which time appears explicitly.

In the first case, after selecting 𝑡𝑐 = 𝑡st it follows from (F.11)3 that

𝜆̄
𝜕𝑔̄
𝜕𝑡

= −𝜀𝑚̄(𝜆̄)𝑎̄ (F.13)

or 𝑡 ∈ (0, 1), where 𝜀 ∶= 𝑡𝑐∕𝑡∗ ≪ 1. Bearing in mind that |𝑚̄(𝜆̄)| ≤ 1, |𝑎̄| ≤ 1, and that 𝜆l∕𝜆𝑐 ≤ 𝜆̄ ≤ 1 on the corresponding domains of
definition, the term preceded by the small parameter 𝜀 in (F.13) can neglected and hence

𝜕𝑔̄
𝜕𝑡

≈ 0 (F.14)

for 𝑡 ∈ (0, 1). On the other hand, for very long times we select 𝑡𝑐 = 𝑡lt and get from (F.11)3 that

𝜀𝜆̄
𝜕𝑔̄
𝜕𝑡

= −𝑚̄(𝜆̄)𝑎̄ (F.15)

or 𝑡 ∈ (1,∞), where now 𝜀 ∶= 𝑡∗∕𝑡𝑐 ≪ 1. Bearing in mind that 𝜆̄ ≤ 1 and that 𝜕𝑔̄∕𝜕𝑡 goes to zero as 𝑡 goes to infinity, one may
onclude that the term preceded by the small parameter 𝜀 in (F.15) can neglected and thus

𝑎̄ ≈ 0 (F.16)

or 𝑡 ∈ (1,∞). Hence, to a first approximation, we may consider that these regimes are described by the instantaneous and steady-state
esponses exhibited by the gel which are, respectively, characterized by the conditions 𝜕𝑔∕𝜕𝑡 ≡ 0 and 𝜕𝑝∕𝜕𝑦 ≡ 0.
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