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We demonstrate that the interplay between a nonlinearity and PT symmetry in a periodic potential
results in peculiar features of nonlinear periodic solutions. These include thresholdless symmetry breaking
and asymmetric (multi-)loop structures of the nonlinear Bloch spectrum, persistence of unbroken PT
symmetry even after the gap is closed, nonmonotonic dependence of the PT phase transition on the
defocusing nonlinearity, and enhanced stability of the nonlinear states corresponding to the loop structures.
The asymmetry and the loop structure of the spectrum are explained within the framework of a two-mode
approximation and an effective potential theory and are validated numerically.
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Controlling the properties of propagating waves in
synthetic materials is a topic of fundamental and applied
interest. Traditionally, periodic modulations of parameters
of the guided media is considered as one of the main tools
of such control. More recently, a possibility of combining
nonconservative effects with periodicity of the medium
parameters [1,2], especially when the non-Hermiticity
features parity-time (PT ) symmetry [3,4], has become a
topic of intense study, with a particular interest in optical
settings where they can be realized by periodically modu-
lating a complex dielectric permittivity [5–9]. While the
properties of linear PT -symmetric lattices are, by now,
well understood [10–12], a broad range of applications in
diverse areas of physics have also stimulated studies of the
effects of nonlinearities in PT -symmetric systems [13–15].
If the periodic PT -symmetric potential itself is linear,

the inclusion of nonlinearities has, for example, led to the
description of nonlinear periodic waves [6,16], solitons
[5,6,17–19], and defect modes [20,21]. All these effects
were observed when the underlying linear system is in the
unbroken PT -symmetric phase [3], illustrating that

properties of systems obeying PT symmetry resemble
behavior of Hermitian systems [13].
In linear systems, spontaneous PT symmetry breaking

can be viewed as an instability under a change of
parameters and is signaled by the emergence of complex
eigenvalues in the spectrum. At the same time, instabilities
are also inherent features of nonlinear systems, even
Hermitian ones. Similarly, these instabilities occur through
a transition between phases characterized by pure real and
complex spectra (corresponding to stable and unstable
nonlinear modes), but in this case, for the eigenvalue
problem of small excitations of the nonlinear modes.
The Bogoliubov-de Gennes equations for a Bose-
Einstein condensate (BEC) are a celebrated description
of this and the stability analysis of periodic nonlinear waves
in conservative linear lattices has, for example, been
discussed in [22–25].
The presence of non-Hermiticity in a nonlinear eigen-

value problem is, therefore, an interesting setting to study
the effects of nonlinearity on PT symmetry breaking in
periodic potentials [26], now understood as emergence of
complex eigenvalues of a nonlinear eigenvalue problem
and, also, the opposite effect of non-Hermiticity on the
stability of nonlinear modes. In Hermitian systems, suffi-
ciently strong nonlinearities can lead to a change in the
topology of the spectrum of the respective nonlinear
periodic waves. It was shown, in a series of theoretical
works [27–34], that the nonlinear spectrum of the nonlinear
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Bloch modes in an atomic BEC (a nonlinear Hermitian
eigenvalue problem) can feature a loop structure, whose
presence has also already been experimentally observed
[35–37]. A loop spectrum is also predicted for nonlinear
Bloch states in exciton-polariton condensates [38].
In this Letter, we show that the loop spectrum acquires

new properties in the presence of non-Hermiticity. The
combination of PT symmetry and nonlinearity leads to the
nonlinear Bloch spectrum becoming asymmetric with
respect to Brillouin zone (BZ) center or edges. In the
presence of loops, this asymmetry is reflected in the tilt of
the loops with respect to the BZ edges. In fact, the tilted
loops can connect the relevant bands and, thereby, bridge
the energy gap. However, even in the presence of a closed
gap, the system is still in the unbroken phase, what is
starkly different from cases of linear PT symmetry and
nonlinear PT symmetry without loop structures. In both of
these cases closing the energy gap pushes the system into
the broken phase. Furthermore, the extension of the
unbroken phase is guaranteed by the tilted loops indepen-
dent of the nonlinearity being focusing or defocusing. To
give an intuitive physics picture for understanding the
effects, we present an effective potential theory describing
nonlinear PT phase transition in the absence and presence
of loop structures.
Bearing in mind applications in paraxial optics, we

consider the scaled nonlinear Schrödinger (NLS) equation

iψ z ¼ Hlinψ þ cjψ j2ψ ; Hlin ¼ −
1

2
∂2
x þ VðxÞ: ð1Þ

Here, ψ is the dimensionless field amplitude, z is the
propagation distance measured in the units 4n0l=λ0, x is
the transverse coordinate in the units of l=π, n0 is the
refractive index of the homogeneous medium modulated
by the complex grating ΔnðxÞ with the period l, and λ0
is the light wavelength. The optical potential is defined
by VðxÞ ¼ −8ðl2=λ2Þn0ΔnðxÞ and in the chosen scaling
satisfies the properties VðxÞ ¼ PT VðxÞ ¼ V�ð−xÞ ¼
Vðxþ πÞ. The real-valued nonlinear coefficient
c ¼ −4πn0n2P0l, with n2 being the Kerr nonlinearity
and P0 being the power of the incident light, describes
either defocusing (c > 0) or focusing (c < 0) media.
Typical physical parameters correspond to wavelengths
λ0 on the order of one micron, grating periods of about
ten microns, and grating amplitudes on the order of 10−3

(see, e.g., [39]). We are interested in solutions of the form
ψðz; xÞ ¼ eiβkzþikxϕkðxÞ, often referred to as nonlinear
Bloch waves, where βk is a propagation constant, k is
the Bloch vector, and ϕkðxÞ is a periodic function,
ϕkðxÞ ¼ ϕkðxþ πÞ, solving the stationary NLS equation

βkϕkþHkϕkþcjϕkj2ϕk¼0; Hk¼−
1

2
ð∂xþ ikÞ2þVðxÞ:

ð2Þ

We are interested in studying the dependence of stationary
solutions on the nonlinearity parameter c when fixing
the normalization of the (nonlinear) eigenmodes as
hϕk;ϕki ¼ 1, where the internal product defined by
hf; gi ¼ ð1=πÞ R π

0 f�ðxÞgðxÞdx.
Thresholdless nonlinear symmetry breaking.—The real

part of the spectrum of the linear eigenvalue problem
β̃kϕ̃k þHkϕ̃ðxÞ ¼ 0 is symmetric [7–9], i.e., β̃k ¼ β̃−k
[hereafter we use the tilde to denote the solutions of the
underlying linear problem, i.e., of (2) at c ¼ 0]. However,
even an infinitesimal nonlinearity (c ≠ 0) breaks this
symmetry and leads to βk ≠ β−k. This can be shown by
considering the bifurcation of a nonlinear family of
periodic solutions from the linear one. Setting jcj ≪ 1,
we look for the nonlinear solution of (2) in the form of

expansions βk¼ β̃kþcβð1Þk þ��� and ϕk¼ ϕ̃kþcϕð1Þ
k þ���.

Defining the eigenstates φk of the Hermitian conjugate
H†

k and assuming that the spectrum of Hk is free from
exceptional points, we, thus, have a biorthogonal basis
fφk; ϕ̃kg∶ hφk; ϕ̃k0 i ¼ 0 for k ≠ k0. Now, suppose that,
for a given Bloch vector k, the eigenvalue β̃k is real.
Then, one can choose φk ¼ ϕ̃�

k and compute

βð1Þk ¼ hϕ̃�
k; jϕ̃kj2ϕ̃ki=hϕ̃�

k; ϕ̃ki. SinceH−k ≠ Hk, and hence,

ϕ̃−k ≠ ϕ̃k, we conclude that, in a generic case, βð1Þk ≠ βð1Þ−k .
While this last condition does not exclude the possibility of

an accidental coincidence of βð1Þk and βð1Þ−k , the equality
of the propagation constants at k and −k would require
exact coincidence of corrections in all orders of the
expansion. This leads us to the conclusion that βk ≠ β−k.
It is worth noting that, if Hk is Hermitian, i.e., if VðxÞ is
real, then one can set φk ¼ ϕ̃�

−k ¼ ϕ̃k. This choice replaces
the biorthogonal basis by the standard basis of the Bloch
states fϕ̃kg, and one recovers the known result that

βð1Þk ¼ βð1Þ−k , i.e., in this case the nonlinearity does not break
the symmetry of the spectrum.
Shallow lattice regime.—Spontaneous nonlinear sym-

metry breaking can be explicitly illustrated in the limit of a
shallow lattice in the weakly nonlinear regime where the
two-mode approximation [27] is valid. To this end, we
address the known potential [5,6,9,11,39]

VðxÞ ¼ V

�
cos2ðxÞ þ i

V0

2
sinð2xÞ

�
; ð3Þ

that in the linear limit (at c ¼ 0) supports unbroken [β̃k is
real for k ∈ ½−1; 1Þ] and broken (β̃k acquires complex
values in the BZ) PT -symmetric phases for V0 < 1 and
V0 > 1, respectively. If V ≪ 1 and c ¼ Vc0 where jc0j ∼ 1,
the spectrum near the band edge at k ¼ 1þ Vδ, where Vδ
is a small displacement of quasimomentum from the BZ
edge, can be described by accounting only for two modes
resonantly coupled by the Bragg scattering. Respectively,
in the unbroken phase, we look for a Bloch state of the form
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ϕkðxÞ ≈ a−1e−2ix þ a0 where a0;−1 are real constants
satisfying a20 þ a2−1 ¼ 1. Defining a ¼ ða−1; a0ÞT (T stands
for transpose), we obtain the nonlinear eigenvalue
problem hðaÞa ¼ δa, where the effective non-Hermitian
Hamiltonian is given by hðaÞ ¼ νσ3 þ ð1=4Þðσ1V0 þ iσ2Þ−
ðc0=2Þσ3a†σ3a (here, σ1;2;3 are the Pauli matrices) and
ν ¼ −½ð2β þ 1Þ=Vþ Vδ2 þ 3c0 þ 1�=2. The dispersion
relation is obtained in the form [40]

ν4 þ ν3c0 þ ν2
�
c02

4
− δ2 −

1

16
þ V2

0

8

�
− ν

c0

16
ð1 − V2

0Þ

þ V2
0

16

�
V2

0

16
− δ2 −

1

16

�
þ V0c0δ

16
−
c02

64
¼ 0; ð4Þ

which forV0 ¼ 0 recovers the result of [27]. This expression
contains several important results. First, in the linear limit
of c0 ¼ 0, the resulting quartic equation has two real-
valued solutions at δ ¼ 0 which define the energy gap
Egap ¼ Vð1 − V2

0Þ1=2=2. Thus, we recover the well-known
result that the gap is closed at V0 ¼ 1. Second, if either
V0 ¼ 0 (Hermitian case) or c ¼ 0 (linear case), the
dispersion relation is symmetric, i.e., the propagation con-
stant depends on δ2. If, however, cV0 ≠ 0 one can see that
β0ðδÞ ≠ β0ð−δÞ, whichmeans that the symmetrywith respect
to the center of theBZ is broken. Thus, in agreementwith the
above considerations in a deep lattice, we conclude that the
spontaneous symmetry breaking of the dispersion relation
requires the simultaneous presence of a nonlinearity and
non-Hermiticity. Third, at c0 ¼ cb, where

cb ¼
V0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8V2

0 þ 1
p

− 4V2
0 þ 1Þ

2½2ð1 − V2
0Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8V2

0 þ 1
p

− 2V2
0 − 1Þ�1=2 ; ð5Þ

there exist one simple and one triple root of (4). This
occurs at

δ2b ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8V2

0 þ 1

q
− 2V2

0 − 1Þ=½32ð1 − V4
0Þ�; ð6Þ

with signðδÞ ¼ signðcÞ, and means that cb is the bifurcation
point at which a loop appears in the spectrum. Notice that,
unlike in the Hermitian case [27,30–32,34], the loop now
bifurcates from a point shifted away from the BZ edge.
At jc0j > cb there exist four real solutions of (4) for a given δ
in the vicinity of δb, corresponding to the loop. Finally,
solving (4) with respect to δ for a given ν, one finds that the
roots δð1;2Þ exist only for ν2 ≥ 1=4ð1 − V2

0Þ, i.e., below the
critical value V0 ¼ 1 there exist three values of ν at which
δð1Þ ¼ δð2Þ. Thus, at these parameters loop crossing occurs,
which is a genuinely non-Hermitian phenomenon.
Loop structure and PT symmetry breaking.—Now, we

proceeded with a full numerical analysis. In Fig. 1, we
show the nonlinear Bloch spectrum for defocusing (upper
row) and focusing (lower row) interactions. For defocusing
(focusing) interactions, one can see the loop bifurcating
from the upper (lower) band, and in the Hermitian case
(V0 ¼ 0), the loop is symmetric with respect to the BZ
center k ¼ 0 and edges k ¼ �1 [see Fig. 1(a1)]. At the
critical point, just before the appearance of a loop, the
spectrum develops a cusp structure, and we show an
example of this in Fig. 1(b1).
In the presence of a complex lattice, V0 ≠ 0, and for

finite nonlinearity, the loop structures lose their symmetry
with respect to either k ¼ 0 or k ¼ �1, which is confirmed
in Figs. 1(a2) and 1(b2). The presence of an imaginary part
in the lattice tilts the loops toward the right (left) sides of
BZ edges for defocusing (focusing) interactions when the
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FIG. 1. The loop structure of the nonlinear Bloch spectrum for defocusing c ¼ 0.5 (upper row) and focusing c ¼ −0.5 [lower row,
(b2)–(b5)] interactions for V ¼ 0.2. Only the highest two Bloch bands are shown. The panels in the upper and lower rows from left to
right correspond to V0 ¼ f0; 0.8; 1.6; 2; 3g and V0 ¼ f0.4; 0.8;1.6; 3; 3.8g, respectively. The panel (b1) shows a cusp under the critical
coefficient cb from Eq. (5). In the shaded areas in panels (a5) and (b5), the spectrum is complex, i.e., PT symmetry is broken.
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sign of V0 is positive, and vice versa [40]. The asymmetry
of the loop structures becomes more pronounced with
increasing values of V0, which ultimately leads to the
loops connecting the respective neighboring bands [see
Figs. 1(a2) and 1(b3)]. One can also see from Figs. 1(a3),
1(a4), 1(b3), and 1(b4) that the areas inside the loops
that connect the lowest two bands shrink with increasing
values of V0. Once the area goes to zero, complex
eigenvalues appear, indicated by the shaded regions in
Figs. 1(a5) and 1(b5) [these regions are beyond the
applicability of the two-mode approximation, as Eq. (4)
does not admit a fourth-order root].
This PT phase transition occurs at a critical strength of

the imaginary part of the lattice, Vc
0, that depends on the

strength of the nonlinearity. This dependence is shown
Figs. 2(a) and 2(b) for two typical values of V. A general
observation is that focusing interactions suppress the PT
phase transition by increasing Vc

0 to values larger than 1
(this recovers the conclusion of Ref. [26]). However, for the
defocusing interactions shown in Figs. 2(a) and 2(b), we
observe two different behaviors. For increasing nonlinear-
ity, Vc

0 initially decreases until it reaches a minimal value,
after which it increases. Further increasing c, therefore,
leads to an increase of Vc

0, which corresponds to an
enhancement of the unbroken PT -symmetric phase (this
effect was not noticed in [26]). In fact, at some value of the
nonlinear coefficient, denoted by cT, the linear threshold
Vc

0 ¼ 1 is restored [see vertical dotted line in Fig. 2(b)],
with the magnitude of the threshold value depending on the

depth of the real lattices as shown in Fig. 2(c). A smaller V
requires a smaller cT to observe the enhancement.
To provide physical insight into the different

behaviors of Vc
0 in the two regimes, we recall that, in

the linear case, the phase transition is determined by
the relation between the amplitudes of the real and
imaginary parts of the lattice. However, in the presence
of a nonlinearity, one can consider an effective potential,
Veff ¼ Vcos2ðxÞ þ cjϕkðxÞj2, which means one now has to
consider the difference of the amplitudes of the effective
real lattices potential Veff and the imaginary lattice. In the
weakly nonlinear regime, V cos2ðxÞ dominates Veff , which
leads to a preference to localize the density in the lattice
sites. However, increasing the defocusing interactions,
c > 0 leads to an extension of the density in space, which
reduces the depth of the effective lattice potential. Thus,
the effective lattice is weakened by the defocusing inter-
actions, and the PT symmetry breaking threshold
decreases [see Figs. 2(a) and 2(b)]. On the other hand, a
focusing interaction (c < 0) tends to increase the effective
lattice amplitude and, hence, results in an increase of the
PT symmetry breaking threshold. In the opposite limit of
strong nonlinearity, the linear lattice becomes a small
correction to Veff ∝ cjϕkðxÞj2. Independent of the sign of
c, the effective lattice becomes much larger than the
imaginary one, and the PT symmetry is restored inde-
pendently of whether the interactions are focusing or
defocusing.
On experimental observation.—To experimentally

observe the reported asymmetry of the loop spectrum,
one can focus on two features of the system. First, the
reported states feature transverse currents [see, e.g., the
phases in Fig. 3(b)] dependent on the strength of the gain
and loss responsible for thePT -symmetric landscape of the
dielectric permittivity. Second, in systems with defocusing
interactions, the Bloch states around the BZ edges in the
lowest Bloch band are modulationally unstable in the
absence of spectral loops (this was shown for nonlinear
Bloch modes in BECs [16,22,41–45]). The loops can
stabilize nearby Bloch states. We have examined the
stability of the Bloch states in the presence of asymmetric
loop structures using the standard linear stability analysis.
A typical result is shown in Fig. 3(a), where the Bloch
states that are found to be stable (unstable) are represented
by thick red (thin blue) lines. Notice that the stability of
nonlinear states is confirmed for opposite propagating
waves corresponding to the same Bloch wave number k
but having different depth of the density modulations
[illustrated in Fig. 3(b)]. To confirm the stability in the
direct propagation, we calculated the evolution of Bloch
states, like the ones illustrated in Fig. 3(b), perturbed at the
input by noise of order of 10% of the mode amplitude. The
case examples of such evolution are shown in Figs. 3(c) and
3(d). In panel 3(d), we observe stable evolution of a Bloch
state [labeled by “c” in Fig. 3(a)] over very long distances,
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whereas an unstable mode [labeled by “d” in Fig. 3(a)]
quickly loses its structure as shown Fig. 3(d). Note that the
stable regimes in Fig. 3(a) are not symmetric with respect to
the BZ edge at k ¼ 1, which is due to the asymmetry of the
loop structure.
In conclusion, we have shown that the simultaneous

presence of a nonlinearity and PT symmetry of a linear
periodic potential leads to unusual properties of nonlinear
Bloch states. The nonlinear Bloch spectrum allows for
thresholdless symmetry breaking, that does not occur if
only one of the above factors is present. We have shown that,
for sufficiently large nonlinearities, the spectrum acquires
loop structures, which can bridge the energy gap and connect
the highest two Bloch bands without a PT phase transition
occurring. In the vicinity of the points from which the loops
originate, the periodic solutions in the case of defocusing
nonlinearity are stable and feature transverse currents, what
make them experimentally observable.

We acknowledge useful discussions with Yong Xu.
This work was supported by the Okinawa Institute of
Science and Technology Graduate University. Y. Z. is
supported by the National Natural Science Foundation of
China (Grants No. 11974235 and No. 11774219) and
Shanghai Municipal Science and Technology Major Pro-
ject (Grant No. 2019SHZDZX01-ZX04). B.W. is sup-
ported by the National Key R&D Program of China (Grants
No. 2017YFA0303302 and No. 2018YFA0305602),
National Natural Science Foundation of China (Grant

No. 11921005), and Shanghai Municipal Science and
Technology Major Project (Grant No. 2019SHZDZX01).
V. V. K. acknowledges financial support from the
Portuguese Foundation for Science and Technology
(FCT) under Contracts No. UIDB/00618/2020 and
No. PTDC/FIS-OUT/3882/2020.

*yongping11@t.shu.edu.cn
†vvkonotop@fc.ul.pt

[1] M. V. Berry, Lop-sided diffraction by absorbing crystals,
J. Phys. A 31, 3493 (1998).

[2] C. M. Bender, G. V. Dune, and P. N. Meisinger, Complex
periodic potentials with real band spectra, Phys. Lett. A 252,
272 (1999).

[3] C. M. Bender and S. Boettcher, Real Spectra in Non-
Hermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[4] C. M. Bender, Making sense of non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[5] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Optical Solitons in PT Periodic Potentials,
Phys. Rev. Lett. 100, 030402 (2008).

[6] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Analytical solutions to a class of nonlinear
Schrödinger equations with PT -like potentials, J. Phys. A
41, 244019 (2008).

[7] S. Longhi, Bloch Oscillations in Complex Crystals with PT
Symmetry, Phys. Rev. Lett. 103, 123601 (2009).

[8] S. Longhi, Spectral singularities and Bragg scattering in
complex crystals, Phys. Rev. A 81, 022102 (2010).

[9] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, PT -symmetric optical lattices, Phys.
Rev. A 81, 063807 (2010).

[10] P. Djakov and B. S. Mityagin, Instability zones of periodic
1-dimensional Schrödinger and Dirac operators, Russ.
Math. Surv. 61, 663 (2006).

[11] B. Midya, B. Roy, and R. Roychoudhury, A note on the PT
invariant periodic potential VðxÞ ¼ 4 cos2 xþ 4iV0 sin 2x,
Phys. Lett. A 374, 2605 (2010).

[12] E.-M. Graefe and H. F. Jones, PT -symmetric sinusoidal
optical lattices at the symmetry-breaking threshold, Phys.
Rev. A 84, 013818 (2011).

[13] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in PT -symmetric systems, Rev. Mod. Phys. 88,
035002 (2016).

[14] S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev,
C. Lee, and Y. S. Kivshar, Nonlinear switching and solitons
in PT -symmetric photonic systems, Laser Photonics Rev.
10, 177 (2016).

[15] Parity-Time Symmetry and its Applications, edited by D.
Christodoulides and J. Yang, Springer Tracts in Modern
Physics Vol. 280 (Springer, Berlin, 2018), https://www
.springer.com/gp/book/9789811312465#aboutAuthors.

[16] F. K. Abdullaev, V. V. Konotop, M. Salerno, and A. V. Yulin,
Dissipative periodic waves, solitons, and breathers of the
nonlinear Schrödinger equation with complex potentials,
Phys. Rev. E 82, 056606 (2010).

0.4 0.6 0.8 1.0 1.2 1.4 1.6

-2.5

-2.0

-1.5

1.000 1.008

-1.80

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.9

1.0

1.1

0

2

4

e

z

(d)(c)

(b)(a)

d

c

z

S
pe

ct
ru

m

k

-10

0

10

0 2000 4000 6000 8000 10000

-10

0

10

0 100 200 300 400 500 600 700

xx

P
ro

fil
e

of
B

lo
ch

st
at

e

x

Phase
Density

FIG. 3. Loop protected modulational stability for a system with
c ¼ 1.2, V ¼ 0.2, and V0 ¼ 0.4. (a) Bloch spectrum around BZ
edge k ¼ 1. Nonlinear states corresponding to the thick red (thin
blue) lines are modulationally stable (unstable). The inset shows
details of the point k ¼ 1. (b) Densities and phases of Bloch states
at k ¼ 1 shown over one period. The solid (dashed) lines
correspond to the Bloch state labeled by “c” (“e”) in (a). (c),
(d) Nonlinear evolution of Bloch states with 10% random noise
added initially into the Bloch states. In (c), the stable Bloch state
at k ¼ 1 corresponds to the one labeled by “c” in (a). In (d), the
unstable Bloch state at k ¼ 1.2 corresponds to the one labeled by
“d” in (a). Note the difference in length scales z in (c),(d).

PHYSICAL REVIEW LETTERS 127, 034101 (2021)

034101-5

https://doi.org/10.1088/0305-4470/31/15/014
https://doi.org/10.1016/S0375-9601(98)00960-8
https://doi.org/10.1016/S0375-9601(98)00960-8
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1088/1751-8113/41/24/244019
https://doi.org/10.1088/1751-8113/41/24/244019
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevA.81.022102
https://doi.org/10.1103/PhysRevA.81.063807
https://doi.org/10.1103/PhysRevA.81.063807
https://doi.org/10.1070/RM2006v061n04ABEH004343
https://doi.org/10.1070/RM2006v061n04ABEH004343
https://doi.org/10.1016/j.physleta.2010.04.046
https://doi.org/10.1103/PhysRevA.84.013818
https://doi.org/10.1103/PhysRevA.84.013818
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1002/lpor.201500227
https://doi.org/10.1002/lpor.201500227
https://www.springer.com/gp/book/9789811312465#aboutAuthors
https://www.springer.com/gp/book/9789811312465#aboutAuthors
https://www.springer.com/gp/book/9789811312465#aboutAuthors
https://doi.org/10.1103/PhysRevE.82.056606


[17] X. Zhu, H. Wang, L.-X. Zheng, H. Li, and Y.-J. He, Gap
solitons in parity-time complex periodic optical lattices with
the real part of superlattices, Opt. Lett. 36, 2680 (2011).

[18] S. Nixon, L. Ge, and J. Yang, Stability analysis for solitons
in PT -symmetric optical lattices, Phys. Rev. A 85, 023822
(2012).

[19] S. Nixon, Y. Zhu, and J. Yang, Nonlinear dynamics of wave
packets in parity-time-symmetric optical lattices near the
phase transition point, Opt. Lett. 37, 4874 (2012).

[20] K. Zhou, Z. Guo, J. Wang, and S. Liu, Defect modes in
defective parity-time symmetric periodic complex poten-
tials, Opt. Lett. 35, 2928 (2010).

[21] Z. Lu and Z.-M. Zhang, Defect solitons in parity-time
symmetric superlattices, Opt. Express 19, 11457 (2011).

[22] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz,
and K. Promislow, Stability of repulsive Bose-Einstein
condensates in a periodic potential, Phys. Rev. E 63,
036612 (2001).

[23] J. C. Bronski, L. D. Carr, R. Carretero-González, B.
Deconinck, J. N. Kutz, and K. Promislow, Stability of
attractive Bose-Einstein condensates in a periodic potential,
Phys. Rev. E 64, 056615 (2001).

[24] G. L. Alfimov and A. I. Avramenko, Coding of nonlinear
states for the Gross–Pitaevskii equation with periodic
potential, Physica (Amsterdam) 254D, 29 (2013).

[25] G. L. Alfimov, P. P. Kizin, and D. A. Zezyulin, Gap solitons
for the repulsive Gross-Pitaevskii equation with periodic
potential: Coding and method for computation, Disc. Cont.
Dyn. Sys. B 22, 1207 (2017).

[26] Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev,
Nonlinearly Induced PT Transition in Photonic Systems,
Phys. Rev. Lett. 111, 263901 (2013).

[27] B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling,
Phys. Rev. A 61, 023402 (2000).

[28] J. Liu, L. Fu, Bi-Y. Ou, S. G. Chen, D.-Il Choi, B. Wu,
and Q. Niu, Theory of nonlinear Landau-Zener tunneling,
Phys. Rev. A 66, 023404 (2002).

[29] E. J. Mueller, Superfluidity and mean-field energy loops:
Hysteretic behavior in Bose-Einstein condensates, Phys.
Rev. A 66, 063603 (2002).

[30] D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith,
Loop structure of the lowest Bloch band for a Bose-Einstein
condensate, Phys. Rev. A 66, 013604 (2002).

[31] M. Machholm, C. J. Pethick, and H. Smith, Band structure,
elementary excitations, and stability of a Bose-Einstein
condensate in a periodic potential, Phys. Rev. A 67,
053613 (2003).

[32] B. T. Seaman, L. D. Carr, and M. J. Holland, Nonlinear
band structure in Bose-Einstein condensates: Nonlinear
Schrödinger equation with a Kronig-Penney potential, Phys.
Rev. A 71, 033622 (2005).

[33] I. Danshita and S. Tsuchiya, Stability of Bose-Einstein
condensates in a Kronig-Penney potential, Phys. Rev. A 75,
033612 (2007).

[34] G. Watanabe, S. Yoon, and F. Dalfovo, Swallowtail Band
Structure of the Superfluid Fermi Gas in an Optical Lattice,
Phys. Rev. Lett. 107, 270404 (2011).

[35] Y.-A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E.
Altman, Many-body Landau-Zener dynamics in coupled
one-dimensional Bose liquids, Nat. Phys. 7, 61 (2011).

[36] S. B. Koller, E. A. Goldschmidt, R. C. Brown, R. Wyllie,
R. M. Wilson, and J. V. Porto, Nonlinear looped band
structure of Bose-Einstein condensates in an optical lattice,
Phys. Rev. A 94, 063634 (2016).

[37] Q. Guan, M. K. H. Ome, T. M. Bersano, S. Mossman, P.
Engels, and D. Blume, Non-Exponential Tunneling Due to
Mean-Field Induced Swallowtails, Phys. Rev. Lett. 125,
213401 (2020).

[38] I. Yu. Chestnov, A. V. Yulin, A. P. Alodjants, and O. A.
Egorov, Nonlinear Bloch waves and current states of exciton-
polariton condensates, Phys. Rev. B 94, 094306 (2016).

[39] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Beam Dynamics in PT Symmetric
Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[40] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.034101 where the
two-mode approximation model is provided analytically.

[41] B. Wu and Q. Niu, Landau and dynamical instabilities of the
superflow of Bose-Einstein condensates in optical lattices,
Phys. Rev. A 64, 061603(R) (2001).

[42] V. V. Konotop and M. Salerno, Modulation instability in
Bose-Einstein condensates in optical lattices, Phys. Rev. A
65, 021602(R) (2002).

[43] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C.
Fort, and M. Inguscio, Observation of Dynamical Instability
for a Bose-Einstein Condensate in a Moving 1D Optical
Lattice, Phys. Rev. Lett. 93, 140406 (2004).

[44] C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and P.
Engels, Spin-Orbit-Coupled Bose-Einstein Condensates in a
One-Dimensional Optical Lattice, Phys. Rev. Lett. 114,
070401 (2015).

[45] M. Stepić, C. Wirth, C. E. Rüter, and D. Kip, Observation
of modulational instability in discrete media with self-
defocusing nonlinearity, Opt. Lett. 31, 247 (2006).

PHYSICAL REVIEW LETTERS 127, 034101 (2021)

034101-6

https://doi.org/10.1364/OL.36.002680
https://doi.org/10.1103/PhysRevA.85.023822
https://doi.org/10.1103/PhysRevA.85.023822
https://doi.org/10.1364/OL.37.004874
https://doi.org/10.1364/OL.35.002928
https://doi.org/10.1364/OE.19.011457
https://doi.org/10.1103/PhysRevE.63.036612
https://doi.org/10.1103/PhysRevE.63.036612
https://doi.org/10.1103/PhysRevE.64.056615
https://doi.org/10.1016/j.physd.2013.03.009
https://doi.org/10.3934/dcdsb.2017059
https://doi.org/10.3934/dcdsb.2017059
https://doi.org/10.1103/PhysRevLett.111.263901
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.66.063603
https://doi.org/10.1103/PhysRevA.66.063603
https://doi.org/10.1103/PhysRevA.66.013604
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.67.053613
https://doi.org/10.1103/PhysRevA.71.033622
https://doi.org/10.1103/PhysRevA.71.033622
https://doi.org/10.1103/PhysRevA.75.033612
https://doi.org/10.1103/PhysRevA.75.033612
https://doi.org/10.1103/PhysRevLett.107.270404
https://doi.org/10.1038/nphys1801
https://doi.org/10.1103/PhysRevA.94.063634
https://doi.org/10.1103/PhysRevLett.125.213401
https://doi.org/10.1103/PhysRevLett.125.213401
https://doi.org/10.1103/PhysRevB.94.094306
https://doi.org/10.1103/PhysRevLett.100.103904
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.034101
https://doi.org/10.1103/PhysRevA.64.061603
https://doi.org/10.1103/PhysRevA.65.021602
https://doi.org/10.1103/PhysRevA.65.021602
https://doi.org/10.1103/PhysRevLett.93.140406
https://doi.org/10.1103/PhysRevLett.114.070401
https://doi.org/10.1103/PhysRevLett.114.070401
https://doi.org/10.1364/OL.31.000247

