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Abstract: Animal faecal contamination of surface waters poses a human health risk, as they may
contain pathogenic bacteria or viruses. Of the numerous animal species residing along surface
waterways in Australia, macropod species are a top contributor to wild animals’ faecal pollution
load. We characterised the gut microbiota of 30 native Australian Eastern Grey Kangaroos from six
geographical regions (five kangaroos from each region) within South East Queensland in order to
establish their bacterial diversity and identify potential novel species-specific bacteria for the rapid
detection of faecal contamination of surface waters by these animals. Using three hypervariable
regions (HVRs) of the 16S rRNA gene (i.e., V1–V3, V3–V4, and V5–V6), for their effectiveness in
delineating the gut microbial diversity, faecal samples from each region were pooled and microbial
genomic DNA was extracted, sequenced, and analysed. Results indicated that V1–V3 yielded a
higher taxa richness due to its larger target region (~480 bp); however, higher levels of unassigned
taxa were observed using the V1–V3 region. In contrast, the V3–V4 HVR (~569 bp) attained a
higher likelihood of a taxonomic hit identity to the bacterial species level, with a 5-fold decrease in
unassigned taxa. There were distinct dissimilarities in beta diversity between the regions, with the
V1–V3 region displaying the highest number of unique taxa (n = 42), followed by V3–V4 (n = 11)
and V5–V6 (n = 8). Variations in the gut microbial diversity profiles of kangaroos from different
regions were also observed, which indicates that environmental factors may impact the microbial
development and, thus, the composition of the gut microbiome of these animals.

Keywords: gut microbiota; diversity profiling; macropods; 16S rRNA

1. Introduction

Faecal contamination of environmental waterways from warm-blooded animals is
one of the leading causes of surface water degradation and risk to human health through
a proliferation of zoonotic pathogens [1]. Understanding these animals’ possible faecal
contribution is vital for water quality and catchments management from a Water Indus-
try perspective. Wild, agricultural, and domestic animals may contaminate waterways
through direct defecation into surface waters. Through transport in surface runoff during
rainfall events [2,3], wild animals, who commensally exist alongside agricultural animals
in open farmland acreages, contribute to the microbial load of adjacent surface waters [4].
Kangaroos (Macropus spp.) are considered to be the most prevalent Australian wild animal,
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with their population estimated to comprise between 25–50 million individuals across
Australia [4]. Kangaroos commonly occur in regions that are inhabited and used by live-
stock and humans, and which include surface waters that are used as a drinking water
source. As a ruminant animal, the kangaroo has been identified as hosting several human
pathogens within their gut microbiota, with the potential to cause zoonotic harm to humans
in rare cases [5,6]

Due to the diversity of gut microbiota and complex bacterial signatures between
animals and humans, microbial source tracking (MST) methods have been developed to
identify bacterial taxa that may be novel in order to distinguish animals that contribute
to freshwater faecal pollution [7]. As animal faecal contamination is less distinguishable
as a point source, identifying the faecal pollution’s source once it enters the waterway
is difficult [8]. Recent advances in MST methods, such as high-throughput sequenc-
ing (HTS) technologies, have allowed us to discover novel microorganisms associated
with the host species by characterising the gut microbial populations of humans and an-
imals [8,9]. This technology has dramatically improved the taxonomic classification of
prokaryotes, mainly through the use of the ~1500 bp, 16S rRNA gene of the bacterial ribo-
some. While utilising the full-length 16S rRNA gene to characterise bacterial communities
is considered to be the gold standard for the full taxonomic resolution of any sample,
using one of the nine hypervariable regions (HVR) of the 16S rRNA gene allows for more
cost-effective analyses [10–12]. However, limitations surround this HTS method, as there is
no single region of the 16S gene that has been identified to date that can accurately represent
its entire length or mimic its resolving power [10,13]. This has led to further research into
the taxonomic classification method utilising other validation methods [14–17].

Before HTS, most researchers used Sanger sequencing to characterise bacterial com-
munities, a process which often required time-consuming methods, such as cloning or
bacterial isolation, before sequencing [18]. However, Sanger sequencing also allowed for
“Meta” analyses of a sample, allowing for longer reads which were often greater than
500 base pairs. [19]. The increased speed, reduced cost, simpler protocols, and comparable
read lengths of HTS have allowed this technology to supersede Sanger sequencing [20].
Regardless of the sequencing method, the results are represented in operational taxonomic
units (OTUs), which usually identify an organism to the genus or species level [21,22].

The nine HVRs of the 16S rRNA gene are within conserved regions, facilitating
primer design and PCR amplification of the target sequences [23]. Previous studies have
utilised only one or two of these regions due to shorter read lengths becoming more
manageable than the total length ~1500 bp gene [24]. Conversely, a larger amplicon size
will reduce misinterpretation of taxa [14,17,25–28]. These variables can make the selection
of the appropriate HVRs troublesome to navigate. Additional considerations include
accuracy in the sequencing platform analysis, filtering of data, and denoising the raw
data using bioinformatics pipeline software, affecting the overall bacterial community
and diversity outcome [29]. Although Australian macropods, including the Eastern Grey
Kangaroo, are common to the South East Queensland (SEQ) region of Australia, there is
very little information about the bacterial diversity of these animals’ gut microbiota [30].
We postulated that selecting an appropriate HVR of the 16S rRNA gene for diversity
profiling of gut microbiota would provide the discriminatory power to identify not only
the same resolution as the full 16S gene, but also the unique bacterial signatures that can be
used to identify the macropods’ source of faecal pollution in waterways.

This study was undertaken in order to evaluate the potential of three popular HVRs
of the 16S rRNA gene (V1–V3, V3–V4 and V5–V6) for detecting the phylogenetic diversity,
species richness, and beta diversity of gut microbiota of Eastern Grey Kangaroos from
six regions within SEQ, Australia. Furthermore, the study’s purpose was to isolate and
identify unique molecular genetic targets in the gut bacterial microbiome of the Eastern
Kangaroo to be ultimately used in tracking their movement and faecal contamination in
recreational water sources.
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2. Materials and Methods
2.1. Collection of Faecal Samples

Thirty individual faecal samples were collected from known Eastern Grey Kangaroo
mob sites across SEQ, Australia (Figure 1). All sites were home to discrete mobs, with no
recently known mixing of populations. Sites included Elanda Point (site 1), Sippy Downs
(site 2), Yaroomba (site 3), Maleny National Park (site 4), Cootharaba (site 5), and Twin
Waters (site 6) (Figure 1). Where possible, fresh faecal samples were collected either
after observing an individual animal defecating or from grounds where the animals were
previously observed. Faecal samples were collected using sterile, wide-mouth sample
containers and transported to the laboratory on ice for subsequent gDNA extraction within
six hours of sampling. The kangaroos from which the faecal samples were collected
were not observed to be of ill health at the time of sampling. Property owners where the
kangaroos reside were also questioned regarding their observations of the mob’s general
health. Faecal scats (>10 g) were taken from the innermost section of the faecal samples;
this internal portion of the scat was used in order to minimise external contaminants.
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Figure 1. Map of Eastern Grey Kangaroo mob sites where faecal samples were collected in the
southeast of Queensland, Australia. Sites in order: Cootharaba, Elanda Point, Yaroomba, Twin Waters,
University of the Sunshine Coast, Maleny National Park.

2.2. DNA Extraction of Faecal Samples

In accordance with the manufacturer’s protocol, DNA extraction of individual fae-
cal samples was carried out using the Qiagen QIAamp Power Faecal DNA kit (Qiagen,
Valencia, CA, USA). The elution of DNA was modified using 150 µL of C6 buffer instead
of the 100 µL that is described in the protocol. The yield and purity of the genomic DNA
were confirmed using NanoDrop Microvolume Quantitation (Thermo Scientific, Waltham,
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MA, USA) and gel electrophoresis. Extracted DNA samples were stored at −20 ◦C until
further analysis could be performed. Extracted DNA from five individual faecal samples
was pooled post-extraction according to the region where the sample was initially collected.
An equal concentration (20 ug/µL) of each faecal sample was used to create the final pooled
sample to ensure equal representation and minimise bias. The pooled gDNA samples
were submitted to the University of Minnesota Genomics Centre (UMGC), USA, for 16S
rRNA amplicon sequencing of the V5–V6 region, while regions V1–V3 and V3–V4 were
sequenced at the Australian Genome Research facility (AGRF), Melbourne, Australia.

2.3. 16S rRNA Amplification and Miseq Sequencing

Amplicon sequencing of the HVRs was sequenced utilising the Illumina MiSeq plat-
form (San Diego, CA, USA) with two × 300 base pairs paired-end chemistry. Sequencing
and library preparation was undertaken with the Australian Genome Research Facility,
Brisbane, Australia and was performed in real-time using the MiSeq Control Software
(MCS) v2.6.2.1 and Real-Time Analysis (RTA) v1.18.54, MiSeq instrument computer. Se-
quencing primers and reagents are described elsewhere [31] (Table 1). Resultant reads
were subjected to quality control assessment ‘FASTQC’ (V3) and trimmed using the ‘Trim-
momatic’ adaptor trimming pre-processing tool (V0.39) [32]. The source libraries, se-
quencing primers, reagents, equipment, and pipelines were conducted as mentioned
previously [33,34]. Primer sets used to amplify the HVRs of the 16S rRNA gene are shown
in Table 2. KAPA HiFidelity Hot Start Polymerase was used for PCR amplification that
utilised the following cycling conditions: 95 ◦C for 5 min, followed by 25 cycles at 98 ◦C
for 20 s, 55 ◦C for 15 s, and 72 ◦C for 1 min. Illumina adapter and barcode sequences
were added with an additional ten cycles of PCR using the dual index method [35]. Am-
plicons were gel purified, pooled, and paired-end sequenced at a read length of 300 nt
on the Illumina MiSeq platform (Illumnia, Inc., San Diego, CA, USA). Region V5–V6
Amplicon sequencing was performed by the University of Minnesota Genomics Centre
(http://genomics.umn.edu/ accessed 15 June 2018) using standard workflows and the
Q.C. program as described above [7].

Table 1. Primers sequences used in this study for amplification of three hypervariable regions.

Region Name Primer Name Primer Sequence Length Reference

V1–V3
27F AGAGTTTGATCMTGGCTCAG 480 bp [36]519R GWATTACCGCGGCKGCTG

V3–V4
341F CCTAYGGGRBGCASCAG 569 bp [37]806R GGACTACNNGGGTATCTAAT

V5–V6
784F RGGATTAGATACCC 280 bp [7,38]1064R CGACRRCCATGCANCACCT

Table 2. Taxonomic composition of the most abundant bacterial phyla when tested for three HVRs (V1–V3, V3–V4, and
V5–V6) of the 16S rRNA genes.

Taxa (Phylum) V1–V3 Mean Taxa (Phylum) V3–V4 Mean Taxa (Phylum) V5–V6 Mean

Proteobacteria 49.65% Firmicutes 47.39% Firmicutes 45.14%
Firmicutes 28.07% Proteobacteria 29.25% Proteobacteria 19.55%

Bacteroidetes 12.02% Bacteroidetes 14.50% Bacteroidetes 18.18%

2.4. Bioinformatic Analysis of Data

The processing of raw sequence 16S rRNA data used Quantitative Insights into Mi-
crobial Ecology (QIIME2), an open source, a metagenomic bioinformatic pipeline analysis
tool [39]. This bioinformatic methodology was also mentioned elsewhere [40]. Samples
were indexed into categories that aligned with a metadata file. Samples were first sub-

http://genomics.umn.edu/
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jected to joining forward and reverse reads using artefact ‘Paired-End Sequences with
Quality’ [39]. The joined reads were denoised and filtered of reads compromising the
final output. The ‘DADA2 denoise-paired’ artefact trimmed forward and reverse primer
ends of the amplicons and truncated the length of the region from the sequence reads [39].
Utilising a denoising algorithm also removed error in PCR recombination (chimeras), and
a sequencing identity algorithm that removed reads with less than a 97% similarity cut-
off. The resultant output QZA files underwent a ‘Feature table Merge’ of the denoised
amplicon data to be analysed downstream. Sequence alignment, mask/filter alignment,
and production of phylogenetic tree files were created. Biases were removed by ‘alpha
rarefaction’ in order to accommodate and filter only quality reads at their maximum read
length depths. Finally, the taxonomic assignment was undertaken with an open reference
database, ‘SILVA-132-99 classifier’, for its regularly updated, quality-controlled resource
data [41]. Phylogenetic diversity profiling was carried out in order to determine relative
abundance -of bacterial genera between populations in different samples.

Exported taxonomy files were converted to the BIOM format for subsequent output
analysis into the open-source metagenomic data facilitation software CALYPSO [42]. Data
Filtering removed samples with short sequence read counts (<1000 sequence reads) and
OTUs with low abundance (<1%). Furthermore, only the top 3000 taxa were included and
filtered by mean. Data were normalised by dividing the number of sequence reads by the
total number of reads within each sample by total sum normalisation (TSS).

Host-specific microbial richness was estimated using Alpha diversity matrices Chao1,
ACE, Shannon’s diversity, and Simpson’s diversity indices. Distance relationships between
microbial community groups were performed using Bray-Curtis [43]. Distance matrices
by beta diversity measurements were visualised by Principle Coordinate Analysis (PCoA)
using CALYPSO [42]. Unique taxa and incidence mapping comparing each of the three
regions tested were calculated by group analysis at the genus level in order to identify
unique and shared taxa between HRVs [42,44].

2.5. Statistical Analyses

Statistical analysis was performed using Graph Pad Prism software version 9.01 for
Windows (GraphPad Software, San Diego, CA, USA). Differences between the bacterial
richness obtained from the three HVRs were determined using the Kruskal-Wallis anal-
ysis of variance (ANOVA) and the values were considered statistically significant where
p < 0.05.

3. Results
3.1. Sequence Data Summary and Depth

Illumina sequencing of each of the three HVRs resulted in: 1,962,938 demultiplexed
sequence reads for the V1–V3 region; 997,779 sequence reads for region V3–V4; and
271,184 reads for region V5–V6. Post rarefication filtering to 10,000 reads per sample
was employed before alpha diversity metrics were analysed. Chao1 and ACE bacterial
richness indices showed a significantly higher bacterial richness in region V1–V3 out of all
three regions (p < 0.05) (Figure 2). Shannon’s and Simpson’s diversity indices displayed a
significantly broader diversity within the V1–V3 region (Figure 2).

3.2. Taxonomic Composition by Hypervariable Region

The most abundant OTUs within the three HVRs of the 16S rRNA gene were identified
as belonging to phyla Proteobacteria, Firmicutes and Bacteroidetes, which comprised up to
91% of the total bacterial coverage (Table 2). Proteobacteria was the predominant phyla
in HVR V1–V3 (49.7%) and Firmicutes was predominant in HVR V3–V4 (47.4%) and
V5–V6 (45.1%). Bacteroides, a known contributor to the upper portion of all mammalian’s
gastrointestinal tracts [45], was also present as the third most abundant bacterial phyla
within all three HVRs tested (Table 2).



Microorganisms 2021, 9, 1721 6 of 14Microorganisms 2021, 9, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 2. Group visualisation of taxa abundances across three chosen hypervariable regions of the 

16S rRNA gene. The top 300 most abundant genera were utilised for visualisation of shared and 

exclusive genera. 

3.2. Taxonomic Composition by Hypervariable Region 

The most abundant OTUs within the three HVRs of the 16S rRNA gene were identi-

fied as belonging to phyla Proteobacteria, Firmicutes and Bacteroidetes, which comprised 

up to 91% of the total bacterial coverage (Table 2). Proteobacteria was the predominant 

phyla in HVR V1–V3 (49.7%) and Firmicutes was predominant in HVR V3–V4 (47.4%) 

and V5–V6 (45.1%). Bacteroides, a known contributor to the upper portion of all mamma-

lian’s gastrointestinal tracts [45], was also present as the third most abundant bacterial 

phyla within all three HVRs tested (Table 2). 

The highest proportion of unclassified bacterial OTUs was observed in HVR V3–V4 

(58.5%). In comparison, HVRs V1–V3 and V5–V6 displayed much lower unclassified 

OTUs, 21.7% and 33.2%, respectively (Figure 3). 

The top 40 genera underwent incidence analysis to determine if all three regions were 

able to detect any of the given genera. Of the top 40 genera, 95% were sensitive to being 

detected by two out of the three HVRs (Figure 4). 

Figure 2. Group visualisation of taxa abundances across three chosen hypervariable regions of the
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exclusive genera.

The highest proportion of unclassified bacterial OTUs was observed in HVR V3–V4
(58.5%). In comparison, HVRs V1–V3 and V5–V6 displayed much lower unclassified OTUs,
21.7% and 33.2%, respectively (Figure 3).

Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 15 
 

 

 

 

Figure 3. Microbial community composition at the genus level, within the three hypervariable regions of the 16S rRNA gene. 

 Region of 16S rRNA Gene 

Genus V1–V3 V3–V4 V5–V6 

Tyzzerella_4       

Streptomyces       

Sphingomonas       

Solibacillus       

Ruminococcus_2       

Ruminococcus_1       

Ruminococcaceae_UCG002       

Ruminococcaceae_NK4A214_group       

Ruminiclostridium_9       

Roseomonas       

Pygmaiobacter       

Providencia       

Prevotellaceae_UCG001       

Phascolarctobacterium       

Parasutterella       

Parabacteroides       

p1088a5_gut_group       

Olsenella       

Mogibacterium       

Methanocorpusculum       

Mailhella       

Lactococcus       

Lactobacillus       

Kurthia       

Fusobacterium       

Figure 3. Microbial community composition at the genus level, within the three hypervariable regions of the 16S rRNA gene.



Microorganisms 2021, 9, 1721 7 of 14

The top 40 genera underwent incidence analysis to determine if all three regions were
able to detect any of the given genera. Of the top 40 genera, 95% were sensitive to being
detected by two out of the three HVRs (Figure 4).
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3.3. Taxonomic Composition by Geospatial Region

The taxonomic composition of the faecal microbiota of Kangaroos from the six regions
was compared using the results obtained from each of the three HVRs.

Bacterial OTU abundance was found to vary according to geographical location.
Firmicutes were the predominant phyla within sites 5 (Cootharaba), 1 (Elanda Point),
6 (Twin Waters), and 2 (Yaroomba) for all three HVRs. However, V1–V3 analysis identified
Proteobacteria as the most abundant at sites 4 (Maleny National Park) and 2 (Sippy Downs)
(89.6% and 85.6%, respectively) (Figure 5).
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of the Sunshine Coast, 6—Maleny National Park.
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3.4. Group-Specific Bacterial Communities

Unique taxon differences between HVRs used in this study were conducted using the
permutational multivariate analysis of variance (Figure 2). The V1–V3 HRV of the 16S gene
showed the highest level of unique taxa identified among the three regions (n = 42). The
least unique genera were identified in HVR V5–V6, while all three HVRs shared a total of
43 genera (Figure 2).

3.5. Beta Diversity

Beta diversity profiling identified dissimilarities among bacterial communities within
all three HVRs tested and across geographical sampling sites for the Eastern Grey Kangaroo
populations. PCoA analysis revealed the V3–V4 region as the least differentiating diversity
clustering of all the HVRs tested. Results indicate the most significant geographical
diversity was observed between the ‘University of the Sunshine Coast’ (USC) & ‘Maleny
National Park’ (MNP) sampling sites, when analysing HVR V1–V3. Similarity coefficients
between the composition of the six pooled gut microbiota of EGK using three HVRs
showed a higher similarity among the pooled gut microbiota of Kangaroos within each
HVR analysis than between HVRs (Figure 6). Sample sites were also analysed for similarity;
however, no significant similarity was observed between the six sample sites (Figure 6).
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V3–V4 and V5–V6. Sites are displayed in order: 1—Cootharaba, 2—Elanda Point, 3—Yaroomba,
4—Twin Waters, 5—the University of the Sunshine Coast, 6—Maleny National Park.

For the first time, this research presents insights into the effectiveness of the 16S
rRNA gene sequence analysis to reconstruct phylogenies using three of the nine favoured,
highly conserved regions of the 16S rRNA gene from macropod species Macropus giganteus;
The Eastern Grey Kangaroo. The results of this experiment suggest that the bacterial
phylogenies obtained from the testing of kangaroo gut-faecal material vary depending
on which HRV of the 16S rRNA is analysed. Currently, no single HVR (neither in the
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literature nor from our analysis) can be defined as a standard. Prior research of this
high-throughput sequencing technology using various HRVs described certain regions
as adept at distinguishing bacterial OTUs over others [46]. Our research aligns with
other analyses that suggest that short read HRV’s are not as effective in achieving the
full taxonomic resolution of the full length 16S gene (~1500 bp) [13]. Analysis of gut
microbiota and the diversity of bacteria in faeces may be affected by, but not limited to,
several factors, which include (a) gDNA extraction method applied to faecal samples,
(b) raw data processing, and (c) sequencing depth and microbiota improvement post-
low-frequency sequence removal. Previous studies show that the efficacy of bacterial
phylogenetic derivation may be compromised if the DNA extracted from animal faecal
samples contains ethylenediamine-tetra acetic acid (EDTA) [46]. The use of EDTA has
also increased the abundance of phylogenies such as Proteobacteria and decreased the
abundance of Firmicutes [46]. Results from our study indicate that Proteobacteria are the
predominant bacterial phyla when analysed using HVR V1–V3, while V3–V4 and V5–V6
predominantly identified Firmicutes. This phylogenic shift in the most abundant bacterial
communities is also documented in earlier research [47].

Illumina sequencing of the three HVRs in our study resulted in region V1–V3 display-
ing a 1.96-fold increase in the sequence read count over region V3–V4 and a seven-fold
increase over region V5–V6. We also found that removing low frequency reads in-silico
aids in a higher sensitivity of bacterial diversity. This removal of singletons decreases
overall error rates, as also described elsewhere [29,48,49]. A loss of ~90% of the original
reads post denoising protocol (DADA2) was observed for HVR V1–V3. This degree of
denoising is a common trait for HVR V1–V3 when undertaking this method, as the original
reads are removed from the analysis due to a failure to merge the paired reads. We used the
forward reads only, as a higher yield in reading outputs can be attained in analysing our
data. However, since single read runs are faster and cheaper, future sequencing projects
using this primer set could use single-end sequencing.

It is acknowledged that the full length of the 16S rRNA gene is more appropriate in
achieving a more definitive resolution of the taxa within a sample [50]. Identification of
errors in amplicon sequencing are attended to by utilising quality filtering bioinformatic
pipeline scripts [39,51,52]. There exists multiple denoising (error correcting) bioinformatic
pipelines for resolving amplicon sequencing variants. By using the bioinformatic post
denoising protocol (DADA2), the identification of PCR chimeras and correcting of sequence
amplicon errors assists in decreasing the resultant unclassified taxa of up to a 97% similarity
cut-off. This aids in a more discriminatory OTU identification [13,53,54].

The predominant bacterial phylogeny within the V1–V3 region was Proteobacteria.
The other two HVRs tested were comprised of communities of Firmicutes as the dominant
phyla. Research published previously indicates a high presence of Proteobacteria, evaluat-
ing the HVR’s ability to quickly identify the bacterial sequences during high-throughput
sequencing in faecal microbiome samples [47,55]. There exists no gold standard for utilising
the correct HVR for the target bacterial community of interest. The sequencing of multiple
regions exists in modern HTS research for a more comprehensive analysis of the sample of
interest [50].

The literature suggests that the HVR preference in modern HTS depends on the micro-
biome source being tested. Analysis of alpha and beta diversity in our study showed that
the V1–V3 region of the 16S rRNA gene held the most significant species richness when
tested for alpha diversity. Conversely, beta diversity results displayed dissimilarity in the re-
gion holding the highest bacterial species between all three HVRs. A greater level of species
richness can translate to a community composition that is not fundamentally similar.

Pitfalls relating to HTS technology pertain to the reproducibility of results using this
technology. Sample processing and the extraction stage are related to the specificity of the
bacteria present post metagenomic analysis. PCR based confirmation steps would hamper
the effectiveness and affordability of attempts to confirm HTS analysis accuracy [56].
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Measures to prevent this could include multiplex PCR which would enable the observable
phyla within a DNA sample to help confirm HTS analysis [57].

This study hopes to show which HRV can be used as a comparative analysis in
substitution of the full length ~1500 bp 16S rRNA gene. Through previous HRV comparison
studies, it is evident that the conditions of a sample and the region of the 16S rRNA greatly
dictate the microbial diversity of a sample. The literature is largely comprised of research
into region comparisons across samples in isolation. It is noticed that through comparison
of taxonomic percentages, not all HRVs display a consistent detection of genera across the
3 regions in this study, even if an equimolar mix of samples were used on the same HRV
primer set [15,58]. Additionally, associated environmental factors such as diet, health and
age can impact an animals bacterial microbiome [59].

It is not currently feasible to creating a database of suitable HRVs to use on a specific
sample, in this case the gut microbiome of an animal species. Variability of any sample
used against any HRV has the potential to differ in sequence variation, no matter how
uniform the samples may be.

4. Conclusions

In conclusion we revealed that the gut microbiota of kangaroos examined in this study
was diverse. However, we could not identify unique taxa as potential kangaroo specific
faecal markers that could be used as a tool for identifying faecal contamination of surface
waters by macropods. Our results did suggest that, depending on which HVR of the 16S
rRNA is used, significant differences in bacterial phylogeny will be obtained, making it
difficult to suggest which bacteria taxa could be nominated for further investigation in
order to pinpoint a candidate for MST purposes. Secondary confirmation methods such
as quantitative PCR and alternative bioinformatic pipeline methods to discover variances
in data could provide a better picture of the bacterial markers specific to these animals.
Nonetheless, we found a combined use of three variable regions of 16S rRNA could
substitute for the use of the entire ~1500 bp gene (the full-length gene). Although this was
a more costly approach to bacterial phylogenetic testing, it is more suitable for a better
understanding of the gut microbial diversity and the unique taxa of macropods. Future
studies are needed to investigate direct comparison of the three HVRs used with samples
analysed along the full length 16s gene.
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