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ABSTRACT
In this work, we present a rigorous mathematical scheme for the derivation of the sth-order perturbative corrections to the solution to
a one-dimensional harmonic oscillator perturbed by the potential Vper(x) = λxα, where α is a positive integer, using the non-degenerate

time-independent perturbation theory. To do so, we derive a generalized formula for the integral I =
+∞
∫
−∞

xα exp(−x2
)Hn(x)Hm(x)dx,

where Hn(x) denotes the Hermite polynomial of degree n, using the generating function of orthogonal polynomials. Finally, the ana-
lytical results with α = 3 and α = 4 are discussed in detail and compared with the numerical calculations obtained by the Lagrange-mesh
method.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059800

I. INTRODUCTION

Approximation methods play a crucial role in quantum
mechanics since the number of problems that are exactly solv-
able is small in comparison to those that must be solved approxi-
mately. To our knowledge, the hydrogen atom, harmonic oscillators,
and quantum particles in some specific potential wells have exact

solutions,1–4 and two cold atoms interacting through a point-like
force in a three-dimensional harmonic oscillator potential5 can also
be solved analytically. Recently, Jafarov et al. reported an exact
solution to the position-dependent effective mass harmonic oscil-
lator model.6 Because of this, approximation methods have been
developed early since the dawn of quantum mechanics. One of
the essential approximation methods is the perturbation theory
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(PT) established by Schrödinger in 1926.7 Later, it was immedi-
ately used to interpret the LoSurdo–Stark effect of the hydrogen
atom by Epstein.8 Although the PT is not well convergent at higher-
order corrections,1–3,9,10 many more efficient approximation meth-
ods have been developed to treat quantum-mechanically complex
problems,11 it is still a paramount and elementary approximation
method in quantum physics. For instance, the PT contributes signif-
icantly to quantum optics and quantum field theory, as discussed in
Ref. 12. For this reason, the PT is usually presented clearly and dis-
cussed in detail in quantum mechanics textbooks for undergraduate
students.1–3,9

The one-dimensional harmonic oscillator is not only a rich
pedagogical example for approximation theories in quantum
mechanics13–24 but also an excellent candidate for numerical25,26 and
analytical or algebraic methods,6,27–30 owing to its simple calcula-
tion and exact solution. Moreover, the one-dimensional harmonic
oscillator potential has also played a key role in studies of ultra-
cold atomic quantum gases for the last two decades.5,31–51 Moshinsky
and Smirnov52 provided a deep review of the role of quantum har-
monic oscillators in modern physics. In standard quantum mechan-
ics textbooks,1–3 a one-dimensional anharmonic oscillator is usu-
ally presented as an application of PT because the solutions can
be constructed based on the exact solution to a one-dimensional
harmonic oscillator. The two perturbative potentials that are usu-
ally considered are Vper(x) = λx and Vper(x) = λx4. It is common
to present the calculation of the first- and second-order correc-
tions of the energy; however, the corrections to the wave function
are usually not provided in detail.1–3 Moreover, physicists have also
studied the generalized case Vper(x) = λx2β, where β is a positive
integer. The case β = 2 has been studied using the WKB method,53

the intermediate Hamiltonian,54 the Padé approximation,55–57 the
Heisenberg matrix mechanics,58 and the variational perturbation.59

In addition, the cases β = 3 and β = 4 were studied in Refs. 60 and 61,
and the considered potential of the harmonic oscillator is V(x) = x2

instead of V(x) = 0.5x2. The authors intended to establish efficient
methods to solve the problem mathematically, regardless of their
physical meaning. Recently, the problem has been extended to sex-
tic (x6) and decatic (x10) potentials using polynomial solutions62,63

and a polynomial perturbative potential.64 Interestingly, we real-
ized that in the above-mentioned works, the authors only consid-
ered even values of the power of x, while the odd cases have not
been studied. It is also interesting to note that the wave function
was not considered in the above-mentioned articles. Essentially,
the applications of the one-dimensional anisotropic oscillator can
be found in chemistry, in which the perturbative potential is used
to study the vibration in molecules.65–69 In addition, the pertur-
bative potential λx4 has recently been used to model the Brown-
ian motion of particles in optical tweezers.70 Consequently, it is
necessary to compute the approximated wave function and the
energy of a one-dimensional harmonic oscillator perturbed by
the potential Vper(x) = λxα for arbitrary eigenstates with arbitrary
values of α.

The goal of this study is to present a systematic and complete
treatment of the sth-order perturbative corrections to the solution
to a one-dimensional harmonic oscillator perturbed by the poten-
tial Vper(x) = λxα. To achieve this goal, we derived a formula for
I = ∫

+∞
−∞ xα exp(−x2

)Hn(x)Hm(x)dx, with Hn(x) being the Her-
mite polynomial of degree n. Our scheme is based on the so-called

generating functions of orthogonal polynomials.71 Because the
potential depends solely on the spatial coordinate and the states are
non-degenerate, the non-degenerate time-independent PT is used
to derive the corrections to the wave function and energy. Note that
our results can be used for arbitrary eigenstates of a one-dimensional
anharmonic oscillator with an arbitrary power coefficient α.
This is significantly different from previous works, as discussed
above.

The remainder of this paper is organized as follows: Sec. II
briefly outlines the time-independent PT for non-degenerate states.
Section III presents the main results and discussion. Finally, conclu-
sions are presented in Sec. IV. For simplicity, we use atomic units in
which h = m = ω = 1 throughout this study. In addition, the notation
Xα

n,s denotes the sth-order perturbation correction to the physical
quantity X in the state with the quantum number n and the power
coefficient α.

II. NON-DEGENERATE TIME-INDEPENDENT
PERTURBATION THEORY AND THE 2s + 1 RULE

This section presents the time-independent PT for non-
degenerate states and a recurrence relation to obtain higher-order
corrections to the wave function and energy. We followed the
procedure of Fernandez.9 The Schrödinger equation describing a
one-dimensional quantum system is as follows:

Ĥψn = Enψn, (1)

where Ĥ is the Hamiltonian operator and En is the eigenvalue corre-
sponding to the eigenfunction ψn. The Hamiltonian can be split into
two parts,

Ĥ = Ĥ0 + λĤ′, (2)

with Ĥ0 being the Hamiltonian operator, whose eigenvalues and
eigenfunctions are analytically solvable and satisfy the equation

Ĥ0ψn,0 = En,0ψn,0, (3)

and Ĥ′ being sufficiently small and considered as a small perturba-
tion with parameter λ. The Taylor formula is used to expand the
energy and the eigenfunction of the Hamiltonian Ĥ as a function of
perturbation parameter λ,

En =
∞
∑

s=0
En,sλs,ψn =

∞
∑

s=0
ψn,sλs, (4)

where s is the order of the perturbative correction. Substituting
Eq. (4) into Eq. (1), we obtain a recurrence equation expressing the
relation between the corrections to the eigenfunction ψn,s and the
energy En,s as follows:

[Ĥ0 − En,0]ψn,s =
s

∑

j=1
En,jψn,s−j − Ĥ′ψn,s−1. (5)

The perturbation correction to the wave function, ψn,s, is then
expanded as a linear combination of the eigenfunctions of the
non-perturbative Hamiltonian, Ĥ0, as follows:

ψn,s = ∑
m

cmn,sψm,0, (6)
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where cmn,s = ⟨ψm,0∣ψn,s⟩ is the expanding coefficient. Substituting
Eq. (6) into Eq. (5) and then integrating over the whole space after
multiplying both sides by ψ∗m,0 yield

[Em,0 − En,0]cmn,s =
s

∑

j=1
En,jcmn,s−j −∑

k
Ĥ′mkckn,s−1, (7)

where Ĥ′mk = ⟨ψm,0∣Ĥ′∣ψk,0⟩. For non-degenerate states, Em,0 ≠ En,0
if and only if m ≠ n, we can derive the general expression for the
correction to the energy by letting m = n in Eq. (7); hence, we obtain

En,s = ⟨ψn,0∣Ĥ′∣ψn,s−1⟩ −
s−1

∑

j=1
En,jcnn,s−j. (8)

The normalization condition ⟨ψn∣ψn⟩ = 1 results in a constraint on
the correction to the wave function,

s

∑

j=0
⟨ψn,j∣ψn,s−j⟩ = δs0. (9)

Finally, in the case of m ≠ n, we can derive the expanding coefficients
for the correction to the wave function as follows:

cmn,s =
1

En,0 − Em,0

⎛

⎝
∑

k
Ĥ′mkckn,s−1 −

s

∑

j=1
En,jcmn,s−j

⎞

⎠

(10)

and

cnn,1 = 0, cnn,s = −
1
2

s−1

∑

j=1
∑

m
cmn,jcmn,s−j, s > 1 (11)

for the case of m = n. Substituting s = 1 into Eq. (8) derives the for-
mula for the first-order correction to the energy, which is the average
of the perturbation potential with respect to the eigenfunction ψn,0,

En,1 = ⟨ψn,0∣Ĥ′∣ψn,0⟩, (12)

and the expanding coefficient for the first-order correction to the
wave function is then derived as follows:

cmn,1 =
⟨ψm,0∣Ĥ′∣ψn,0⟩

En,0 − Em,0
. (13)

Obtaining the second-order correction to the energy is also straight-
forward. It is obtained as follows:

En,2 = ⟨ψn,0∣Ĥ′∣ψn,1⟩ = ∑
m≠n

∣⟨ψm,0∣Ĥ′∣ψn,0⟩∣
2

En,0 − Em,0
. (14)

These results can be found in standard quantum mechanics text-
books.1–3 To derive higher-order corrections to the energy, it is obvi-
ous that one can use the recurrence given by Eq. (8). However, there
is another way to quickly compute the corrections to the energy.
It is called the 2s + 1 rule, in which, once we know the s order of
the correction to the wave function, we are allowed to compute the
corrections to the energy up to the 2s + 1 order. For the detailed
derivation of the rule, one should refer to the textbook.9 Below, we
list the formula for the third-, fourth-, and fifth-order corrections to
the energy used for calculations in Sec. III,

En,3 = ⟨ψn,1∣Ĥ′ − En,1∣ψn,1⟩, (15)

En,4 = ⟨ψn,2∣Ĥ′ − En,1∣ψn,1⟩ − En,2(⟨ψn,2∣ψn,0⟩ + ⟨ψn,1∣ψn,1⟩), (16)

En,5 = ⟨ψn,2∣Ĥ′ − En,1∣ψn,2⟩ − En,2(⟨ψn,1∣ψn,2⟩ + ⟨ψn,2∣ψn,1⟩). (17)

III. RESULTS AND DISCUSSION
A. Derivation of the sth-order perturbative corrections
to the solution to a one-dimensional anharmonic
oscillator

The Schrödinger equation describing a one-dimensional har-
monic oscillator induced by a perturbation potential λxα is

(−
1
2

d2

dx2 +
1
2

x2
+ λxα)ψαn(x) = Eαnψ

α
n(x), (18)

where λ is the strength of the external field, which gives rise to
the perturbation, and α is a positive integer. In the absence of
the perturbation, Eq. (18) is the well-known equation describing a
one-dimensional harmonic oscillator with a wave function

ψ0
n,0(x) = An exp(−

x2

2
)Hn(x), (19)

where An =
1√

2nn!
√
π

is the normalization constant, n is the quantum

number, and Hn(x) is the Hermite polynomial of degree n, and the
energy is given by

E0
n,0 = n +

1
2

. (20)

Since Eq. (18) cannot be analytically solvable, the PT is then cho-
sen to approximate the solutions. As discussed above, the first-order
correction of the wave function is given by the following equation:

ψαn,1(x) = ∑
m≠n

cmn,1ψ0
m,0(x), (21)

where

cmn,1 =
⟨ψ0

m,0∣x
α
∣ψ0

n,0⟩

En,0 − Em,0
(22)

is the expanding coefficient of the first-order correction to the wave
function. Making use of Eq. (A12) (see the Appendix), we obtain the
following equation:

⟨ψ0
m,0∣x

α
∣ψ0

n,0⟩ =

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

n!m!2n−ℓAnAm

(m − α + 2k + ℓ)!

× Γ(k +
1
2
)δm,n+α−2(k+ℓ), (23)

where δm,n denotes the Kronecker delta, satisfying

δm,n =

⎧
⎪⎪
⎨
⎪⎪
⎩

1, m = n,

0, m ≠ n.
(24)

By substituting Eq. (23) into Eq. (21), the first-order correction to
the wave function for arbitrary states is obtained by
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ψαn,1(x) = ∑
m≠n

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

n!m!2n−ℓAnAm

(m − α + 2k + ℓ)!

×

Γ(k + 1
2)

(n −m)
ψ0

m,0(x)δm,n+α−2(k+ℓ). (25)

The first-order correction to the energy is then computed by the
following equation:

Eαn,1 = ⟨ψ
0
n,0∣x

α
∣ψ0

n,0⟩. (26)

Combining the known wave function of a one-dimensional har-
monic oscillator and Eq. (A12), the first-order correction to the
energy is obtained by

Eαn,1 =

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

n!2−ℓ

(n − α + 2k + ℓ)!

×

Γ(k + 1
2)

√

π
δn,n+α−2(k+ℓ). (27)

It is interesting to note that En,1 is non-zero only if

k + ℓ =
α
2

, (28)

owing to the mathematical property of the Kronecker delta. Because
k and ℓ are integers, the above equation has the solutions for even
α solely. This means that in the case of odd α, the first-order cor-
rection to energy always equals to zero. Therefore, the anharmonic
oscillator does not feel the presence of the external field in this case if

only the first-order approximation is considered. Therefore, it is nec-
essary to compute higher-order corrections to the energy. Regard-
ing the second-order correction of energy, it can be computed
as follows:

Eαn,2 = ⟨ψ
0
n,0∣x

α
∣ψαn,1⟩. (29)

By substituting Eqs. (19) and (25) into Eq. (29), we obtain the
following equation:

Eαn,2 = ∑
m≠n

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

×
n!m!2n−ℓAnAm

(m − α + 2k + ℓ)!
Γ(k + 1

2)

(n −m)
δm,n+α−2(k+ℓ)

×

+∞

∫

−∞
ψ0

m,0(x)ψ
0
n,0(x)dx. (30)

Once again, the integral can be treated by making use of Eq. (A12),

+∞

∫

−∞
ψ0

m,0(x)ψ
0
n,0(x)dx =

k′≤α/2
∑

k′=0

α−2k′

∑

ℓ′=0
(
α

2k′
)(

α − 2k′

ℓ′
)

×
n!m!2n−ℓ′AnAm

(m − α + 2k′ + ℓ′)!
Γ(k′ +

1
2
)

× δm,n+α−2(k′+ℓ′). (31)

Substituting back into Eq. (30), the general second-order correction
to the energy is obtained as follows:

Eαn,2 = ∑
m≠n

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)

2
(
α − 2k

ℓ
)

2
(n!m!)222(n−ℓ)A2

nA2
m

(m − α + 2k + ℓ)!2
(n −m)

Γ(k +
1
2
)

2δm,n+α−2(k+ℓ). (32)

Using Eq. (15), the third-order correction to the energy for arbitrary states could be derived as follows:

Eαn,3 = ⟨ψ
α
n,1∣x

α
− Eαn,1∣ψ

α
n,1⟩ = ∑

m1≠n
∑

m2≠n

k1≤α/2
∑

k1=0

α−2k1

∑

ℓ1=0

k2≤α/2
∑

k2=0

α−2k2

∑

ℓ2=0
(
α

2k1
)(

α − 2k1

ℓ1
)(

α
2k2
)(

α − 2k2

ℓ2
)

×

n!m1!Γ(k1 +
1
2)Γ(k2 +

1
2)

(m1 − α + 2k1 + ℓ1)!(n −m1)π
√

π
δm1 ,n+α−2(k1+ℓ1)

⎡
⎢
⎢
⎢
⎢
⎣

k′≤α/2
∑

k′=0

α−2k′

∑

ℓ′=0
(
α

2k′
)(

α − 2k′

ℓ′
)

m2!2n−m2−ℓ1−ℓ2−ℓ′Γ(k′ + 1
2)

(m2 − α + 2k2 + ℓ2)!(m2 − α + 2k′ + ℓ′)!(n −m2)

× δm2 ,n+α−2(k2+ℓ2)δm2 ,m1+α−2(k′+ℓ′) −
k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

n!2n−m1−ℓ1−ℓ2−ℓΓ(k + 1
2)

(m1 − α + 2k2 + ℓ2)!(n − α + 2k + ℓ)!(n −m1)

× δm1 ,n+α−2(k2+ℓ2)δn,n+α−2(k+ℓ)
⎤
⎥
⎥
⎥
⎥
⎦

. (33)

The wave function of a one-dimensional anharmonic oscil-
lator with first-order correction is given by the following
equation:

ψαn(x) = ψ
α
n,0(x) + λψ

α
n,1(x), (34)

and the corresponding energy with third-order correction is as
follows:

Eαn = Eαn,0 + λEαn,1 + λ
2Eαn,2 + λ

3Eαn,3. (35)

Obviously, the above results can be used to approximate the wave
function and the energy for arbitrary states and arbitrary power α.
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Since the calculation for the higher-order corrections is more tedious
for the general case α, we constrained our calculation for the general
power α at this point. In the following, we discuss two particular
circumstances in which α = 4 and α = 3 in detail and then extend
the calculation to the second-order correction to the wave function
and the fourth- and fifth-order corrections to the energy for these
cases.

B. Typical cases: α = 4 and α = 3
In this section, we discuss two particular circumstances where

α = 4 and α = 3 as two typical examples of PT. In addition, to val-
idate the significance of the higher-order corrections to the energy
obtained in the textbook,9 we calculated the second-order correc-
tion to the wave function for these two cases and then computed
the energy up to the fifth-order approximation. The numerical
results obtained by the Lagrange-mesh method25,26 were then used
as the benchmark to validate the applicable range of the analytically
approximated results.

First, let us discuss the case where α = 4 explicitly. According to
Eq. (25), the first-order correction to the wave function is given by

the following equation:

ψ4
n,1(x) =

1
4
[

1
4

√

(n − 3)4ψ0
n−4,0(x) −

1
4

√

(n + 1)4ψ0
n+4,0(x)

+ (2n − 1)
√

(n − 1)2ψ0
n−2,0(x) − (2n + 3)

×

√

(n + 1)2ψ0
n+2,0(x)], (36)

where (a)n = a(a + 1) ⋅ ⋅ ⋅ (a + n − 1) is the Pochhammer symbol.
The first-, second-, and third-order corrections to the energy are
obtained by using Eqs. (27), (32), and (33), respectively, with α = 4,

E4
n,1 =

3
4
(2n2

+ 2n + 1), (37)

E4
n,2 = −

1
8
(34n3

+ 51n2
+ 59n + 21), (38)

E4
n,3 = (

375
16

n4
+

375
8

n3
+

177
2

n2
+

1041
16

n +
333
16
). (39)

The second-order correction can be derived by the 2s + 1 rule,
which was presented in Sec. II. The calculation shows that

ψ4
n,2(x) =

1
512

√

(n − 7)8ψ0
n−8,0(x) +

1
192
(6n − 11)

√

(n − 5)6ψ0
n−6,0(x) +

1
16
(2n − 7)(n − 1)

√

(n − 3)4ψ0
n−4,0(x)

+
1
2

√

(n − 1)2(−
1

16
n3
−

129
32

n2
+

107
32

n −
33
16
)ψ0

n−2,0(x) +
1
2

√

(n + 1)2(−
1

16
n3
+

123
32

n2
+

359
32

n +
75
8
)ψ0

n+2,0(x)

+
1

16
(2n + 9)(n + 2)

√

(n + 1)4ψ0
n+4,0(x) +

1
192
(6n + 17)

√

(n + 1)6ψ0
n+6,0(x) +

1
512

√

(n + 1)8ψ0
n+8,0(x)

−
1
2
(

65
128

n4
+

65
64

n3
+

487
128

n2
+

211
64

n +
39
32
)ψ0

n,0(x). (40)

Consequently, the fourth- and fifth-order corrections to the energy
are obtained, respectively, as follows:

E4
n,4 = −

10 689
64

n5
−

53 445
128

n4
−

71 305
64

n3
−

80 235
64

n2

−
111 697

128
n −

30 885
128

, (41)

E4
n,5 =

87 549
64

n6
+

262 647
64

n5
+

3 662 295
256

n4
+

2 786 805
128

n3

+
3 090 693

128
n2
+

3 569 679
256

n +
916 731

256
. (42)

Next, we compare the analytically approximated formulas with
numerical calculations to validate the exactness and determine the
applicable range of the approximated formulas. For this purpose, the
relative deviation is given by the following equation:

σ = ∣
Enum − Eana

Enum
∣, (43)

where Enum and Eana are the numerical and analytical results,
respectively. As shown in Fig. 1, in the small λ regime (0 ≤ λ ≤ 0.05),
the approximated formulas match well to the numerical calculation.
In this regime, the tenth-order corrected formula has the lowest
relative deviation, approximately zero. However, the higher-order
formulas diverge rapidly as the perturbative parameter increases.
Nevertheless, in the large λ regime, the first-order corrected
formula has, in general, a smaller relative deviation compared to
others.

Finally, we explicitly present the corrections to the energy and
wave function in the case of α = 3. The first- and second-order cor-
rections to the wave function of this case are given, respectively, as
follows:

ψ3
n,1(x) =

√

2
12

√

(n − 2)3ψ0
n−3,0(x) −

√

2
12

√

(n + 1)3ψ0
n+3,0(x)

+
3
√

2
4

n
√

nψ0
n−1,0(x) −

3
√

2
4
(n + 1)

√

n + 1ψ0
n+1,0(x)

(44)

AIP Advances 11, 085310 (2021); doi: 10.1063/5.0059800 11, 085310-5

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 1. The first row shows the plots of the energy of the ground state and three excited states as a function of perturbative parameter λ with different orders of correction in
the case of α = 4. Meanwhile, the second row depicts the relative deviation between the analytical formulas and the numerical calculation obtained by the Lagrange-mesh
method (black solid line). Note that the tenth-order corrected energy (pink star line) is taken from Ref. 9.

and

ψ3
n,2(x) =

1
144

√

(n + 1)6ψ0
n+6,0(x) +

1
32

√

(n + 1)4(4n + 7)ψ0
n+4,0(x)

+
1

16

√

(n + 1)2(7n2
+ 33n + 27)ψ0

n+2,0(x)

+
1

144

√

(n − 5)6ψ0
n−6,0(x)

+
1

32

√

(n − 3)4(4n − 3)ψ0
n−4,0(x)

+
1

16

√

(n − 1)2(7n2
− 19n + 1)ψ0

n−2,0(x)

−
1
2
(

41
18

n3
+

41
12

n2
+

32
9

n +
29
24
)ψ0

n,0(x). (45)

Straightforwardly, we obtain

E3
n,1 = 0, (46)

E3
n,2 = −

15
4

n2
−

15
4

n −
11
8

, (47)

E3
n,3 = 0, (48)

E3
n,4 = −

705
16

n3
−

2115
32

n2
−

1635
32

n −
465
32

, (49)

E3
n,5 = 0. (50)

Similarly, the analytically approximated formulas were compared
to the numerical calculation. Because the odd-order corrections to

FIG. 2. Same as Fig. 1 but for α = 3.
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the energy are zero, the second- and fourth-order corrections are
considered. The results are depicted in Fig. 2. The comparison shows
that the second- and fourth-order corrected energies are relatively
identical to the numerical results. The deviations of the ground and
first-excited state are less than 1%, while those of higher-excited
states are larger, ∼5%, which is still acceptable.

IV. CONCLUSION
In summary, we have provided a mathematical procedure to

derive the wave function and energy for any arbitrary states of a one-
dimensional anharmonic oscillator with the general perturbation
potential Vper(x) = λxα using the time-independent non-degenerate
PT. Subsequently, the explicit results of two particular cases in which
α = 3 and α = 4 are discussed in detail. In addition, the second-order
correction to the wave function and up to fifth-order correction to
the energy for these cases were computed. The analytical results
were then compared with the numerical solutions obtained using
the Lagrange-mesh method. The comparison indicates that in the
regime in which the perturbation parameter is small, the analytical
results agree well with those obtained numerically and then dramat-
ically diverge as the perturbation parameter increases. The higher-
order corrections to the energy diverge rapidly as the perturbative
parameter increases. In addition, the fifth-order corrected energy
in the case of α = 4 is the same as that printed in Ref. 9; however,
the procedure is more comfortable to approach. The results in the
present article are anticipated to be a useful reference.
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APPENDIX: THE INTEGRAL
I =

+∞

∫
−∞

xα exp(−x2)Hn(x)Hm(x)dx

In this work, the Hermite polynomials of degrees m and n are
expanded by generating function,71 respectively,

g(t, x) =
+∞
∑

n=0
Hn(x)

tn

n!
= exp(−t2

+ 2tx), (A1)

f (z, x) =
+∞
∑

m=0
Hm(x)

zn

m!
= exp(−z2

+ 2zx). (A2)

Then, multiplying both sides of the above two equations by
xα exp(−x2

) and taking the integral from −∞ to +∞, we obtain

+∞
∑

n=0

+∞
∑

m=0

⎡
⎢
⎢
⎢
⎢
⎣

+∞

∫

−∞
xα exp(−x2

)Hm(x)Hn(x)dx
⎤
⎥
⎥
⎥
⎥
⎦

tnzm

n!m!

= exp(2tz)
+∞

∫

−∞
xα exp[−(x − (t + z))2

]dx. (A3)

To simplify the calculation, let us introduce a new variable y = x
− (t + z), and then the right-hand side is rewritten as

A = exp(2tz)
+∞

∫

−∞
[ y + (t + z)]α exp(−y2

)dy. (A4)

The binomial in (A4) is expanded by the binomial formula

[y + (t + z)]α =
α
∑

i=0
(
α
i
)(t + z)α−iyi, (A5)

and hence,

A = exp(2tz)
α
∑

i=0
(
α
i
)(t + z)α−i

+∞

∫

−∞
yi exp(−y2

)dy. (A6)

The integral in Eq. (A6) can be straightforwardly deduced as

+∞

∫

−∞
xk exp(−x2

)dx =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 if k is odd,

Γ(
1 + k

2
) if k is even,

(A7)

therefore solely the integrals with even coefficients i = 2k are
considered

A = exp(2tz)
k≤α/2
∑

k=0
(
α
2k
)Γ(k +

1
2
)(t + z)α−2k. (A8)

It can be seen in (A3) that the value of the integral is the coefficient
of tnzm; thus, we need to find that expanding coefficient. To do so,
we expand

exp(2tz) =
∞
∑

j=0

(2tz)j

j!
(A9)

by the Taylor formula and

(t + z)α−2k
=

α−2k

∑

ℓ=0
(
α − 2k

ℓ
)tℓzα−2k−ℓ (A10)

by the binomial formula. Substituting into (A4), we obtain

A =
+∞
∑

j=0

⎡
⎢
⎢
⎢
⎢
⎣

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)Γ(k +

1
2
)

2j

j!

⎤
⎥
⎥
⎥
⎥
⎦

tj+ℓzα−2k−ℓ+j. (A11)

Combining (A11) and (A3), the desired result is obtained,

+∞

∫

−∞
xα exp(−x2

)Hm(x)Hn(x)dx

=

k≤α/2
∑

k=0

α−2k

∑

ℓ=0
(
α
2k
)(

α − 2k
ℓ
)

n!m!2n−ℓ

(m − α + 2k + ℓ)!

× Γ(k +
1
2
)δm,n+α−2(k+ℓ). (A12)
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