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ABSTRACT

We study the rheology of a two-fluid emulsion in semiconcentrated conditions; the solute is Newtonian while the solvent is an inelastic
power-law fluid. The problem at hand is tackled by means of direct numerical simulations using the volume of fluid method. The analysis is
performed for different volume fractions and viscosity ratios under the assumption of negligible inertia and zero buoyancy force. Several car-
rier fluids are considered encompassing both the shear-thinning and thickening behaviors. We show that the effective viscosity of the system
increases for shear-thickening fluids and decreases for the shear-thinning ones for all the viscosity ratios considered. The changes in the
emulsion viscosity are mainly due to modifications of the coalescence in the system obtained by changing the carrier fluid property: indeed,
local large and low shear rates are found in the regions between two interacting droplets for shear-thickening and thinning fluids, respec-
tively, resulting in increased and reduced local viscosity which ultimately affects the drainage time of the system. This process is independent
of the nominal viscosity ratio of the two fluids and we show that it can not be understood by considering only the mean shear rate and vis-
cosity of the two fluids across the domain, but the full spectrum of shear rate must be taken into account.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063180

I. INTRODUCTION

Emulsions are mixtures of two or more liquids that are partially or
totally immiscible. They are present in many biological and industrial
applications such as waste treatment, oil recovery, and pharmaceutical
manufacturing and are also relevant in the field of colloidal science
where the accuracy and the control of the production process of func-
tional materials rely on the knowledge of the complex microstructure of
the suspension.1 In this work, we focus on the rheology of biphasic
emulsions by means of direct numerical simulations. The study of two-
phase flows has recently become of utmost importance related to the
ongoing COVID-19 pandemic, caused by airborne transmission of
virus-containing saliva droplets transported by human exhalations2–5

The study of rheology is motivated by the many fluids in nature
and industrial applications which exhibit non-Newtonian behavior,
i.e., a nonlinear relation between the shear stress and the shear rate;
the relation between these macroscopic behaviors and the microstruc-
ture is often studied assuming suspensions of objects in a Newtonian
solvent with dynamic viscosity l. Einstein6 was the first to provide a
closure for the effective viscosity le of dilute rigid particle suspensions

with vanishing inertia and showed theoretically that le is a linear func-
tion of the particle volume fractionU,

le ¼ l 1þ 5
2
U

� �
: (1)

Nonrigid and deformable objects, such as deformable particles,7 cap-
sules,8 and droplets9 behave differently because of their deformation
and in the latter case also coalescence and breakup. Taylor10 extended
Eq. (1) by introducing the viscosity ratio between the two phases k
(defined as the disperse phase over the matrix phase viscosity), thus
obtaining

le ¼ l 1þ 5
2
U
kþ 2

5
kþ 1

0
@

1
A
; (2)

which for a unit viscosity ratio reduces to

le ¼ l 1þ 7
4
U

� �
: (3)
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Pal11,12 derived expressions to evaluate the effective viscosity of
infinitely dilute and concentrated emulsions using the effective
medium approach. These relations assume limiting cases to model
surface tensions effects (either going to zero or infinite) and thus direct
numerical simulation is a valuable tool to overcome these limitations.

Zhou and Pozrikidis13 simulated numerically two-dimensional
emulsions and their work was later extended to three-dimensional
flows by Loewenberg and Hinch.14 Their results revealed the complex-
ity of emulsions rheology, with pronounced shear-thinning and large
normal stresses associated with an anisotropic microstructure resulting
from the alignment of deformed drops in the flow direction. More
recently, Srivastava et al.15 also investigated the inertial effects on
emulsions and found that while in the absence of inertia emulsions
display positive first and negative second normal stress differences, a
small amount of inertia alters their signs with the first normal stress
difference becoming negative and the second one positive. The sign
change is caused by the increasing drop inclination in the presence of
inertia, which in turn directly affects the interfacial stresses. These pre-
vious studies were focused only on deforming droplets, without taking
into account coalescence and breakup, which however plays a key role
in the rheological behavior of emulsions and are the main elements
distinguishing emulsions from particle suspensions.

The effect of coalescence was tackled numerically more recently
by Rosti et al.9 and De Vita et al.16 who showed that the effective vis-
cosity le of a droplet suspension can be properly described by extend-
ing Eq. (1) to the second order similar to what proposed by Batchelor
and Green17 for dilute particle suspensions, i.e.,

le ¼ l0 1þ c1Uþ c2U
2

� �
; (4)

where c1 and c2 are fitting parameters depending on the viscosity ratio
k and capillary number Ca. While c2 is positive in the case of rigid par-
ticles, indicating that the effective viscosity always grows with the vol-
ume fraction [c1 is positive consistently with Eqs. (1) and (2)], on the
other hand, c2 is negative for droplets, and thus le is a concave func-
tion of U, i.e., le has a maximum for an intermediate value of U and
then decreases with the volume fraction. The volume fraction for
which the maximum is reached decreases with the viscosity ratio k
and le is again a convex function of U in the case of droplets when the
coalescence of the solute phase is suppressed;16 in this case, their
behavior resembles what found for deformable particles,18 thus con-
firming that coalescence is a key mechanism that can dramatically
change the rheology of emulsions. The role of coalescence in a turbu-
lent channel flow has been recently investigated numerically by
Cannon et al.19

In this work, we account for the coalescence and study how it
affects the rheology of emulsions adding an additional complexity to
the system by considering non-Newtonian solvents.20,21 Few theoreti-
cal expressions were proposed in the past to predict the rheology of
viscoelastic emulsions.22–24 Palierne23 derived an expression to predict
the shear modulus of emulsions of viscoelastic materials accounting
for the mechanical interactions between inclusions. A different expres-
sion which however provides similar predictions was later derived by
Bousmina24 who extended Kerner's model22 for the flow of composite
elastic media to emulsions of viscoelastic phases with interfacial ten-
sion undergoing small deformations. This model is able to predict
some general features typical of viscoelastic emulsions, such as should-
ers in the storage modulus G0 at low frequency and a long relaxation

time process. However, emulsions with non-Newtonian fluids are
characterized by several peculiar behaviors found experimentally
which are usually difficult to capture with theoretical models; for
example, Mason and Bibette25 were able to produce monodisperse
emulsions using a viscoelastic medium under shear; the authors
showed the possibility of controlling the final droplet size by altering
the shearing conditions and the emulsion viscoelasticity, suggesting
that the monodispersity resulted from the suppression of the capillary
instability until the droplet is sufficiently elongated. A similar study
was later performed by Zhao and Goveas26 who investigated the defor-
mation and breakup of a dilute emulsion with a viscoelastic continu-
ous phase under shear flow. Also, these authors found a size selection
mechanism of the resulting ruptured drops, not found in Newtonian
fluids. To be best of our knowledge, no systematic study of the rheol-
ogy of concentrated emulsions are available in the literature, with only
very few studies focusing on rigid particles suspensions in viscoelastic
media,27–33 and the present work is aimed to fill in this gap.

The paper is structured as follows: in Sec. II, we describe the gov-
erning equations and the numerical method used to numerically solve
them. After discussing the chosen setup, in Sec. III, we present the
results of our simulations and discuss the effect of shear-thinning and
thickening on the rheology of emulsions. Finally, we summarize the
main findings and draw the main conclusions in Sec. IV.

II. METHODOLOGY

We consider a flow with two incompressible viscous fluids sepa-
rated by an interface in a channel with moving walls, i.e., in a plane
Couette geometry. Figure 1(top) shows a view of the geometry consid-
ered in the present analysis, where x, y, and z (x1, x2, and x3) denote
the streamwise, wall-normal, and spanwise coordinates, while u, v, and
w (u1, u2, and u3) denote the corresponding components of the veloc-
ity vector field. The lower and upper impermeable moving walls are
located at y ¼ �h and y¼ h, respectively, and move in the opposite
direction with constant streamwise velocity u ¼ 6Uw, providing a
nominal shear rate _c0 ¼ 2Uw=2h.

To identify the two-fluid phases, we introduce an indicator (or
color) function H. In particular, H¼ 1 in the regions occupied by the
fluid 1 and H¼ 0 otherwise. In this work, we assume fluid 1 to be the
solute (dispersed phase) and fluid 2 to be the solvent (carrier phase).
Since the interface is transported by the fluid velocity, we advect the
indicator function as follows:

@/
@t

þ @uiH
@xi

¼ /
@ui
@xi

; (5)

where / is the cell-averaged value of H also called the volume of fluid
function. The two fluids are governed by the momentum conservation
and the incompressibility constraint and which can be written as one
set of equations incorporating the interface conditions, which read

q
@ui
@t

þ @uiuj
@xj

 !
¼ @rij

@xj
þ fi

@ui
@xi

¼ 0: (6)

Here, q is the fluid density assumed to be the same in the two phases,
rij the Cauchy stress tensors and fi ¼ rjnid � rj@/=@xi is added to
account for the interface condition,34 where r is the interfacial surface
tension coefficient, j and ni the local curvature and unit normal vector
of the interface, and d is the Dirac's delta function at the interface.
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The Cauchy stress tensor rij is defined as rij ¼ �pdij þ 2llDij where
p is the pressure, Dij ¼ ð@ui=@xj þ @uj@xiÞ=2 the strain-rate tensor,
and ll ¼ /l1 þ ð1� /Þl2 the local dynamic viscosity written in a
mixture form as a simple weighted average based on the local value of
/ of the dynamic viscosity in the two phases l1 and l2. The solute
fluid 1 is assumed to be Newtonian, and its dynamic viscosity l1 is a
constant, while the solvent fluid 2 is a non-Newtonian fluid described
by a power-law model where the local value of l2 is a function of the
local shear rate _c l .

The equations of motion are solved on a uniform staggered fixed
Eulerian grid where the fluid velocity components are located on the
cell faces and all other variables (density, viscosity, pressure, stress, and
volume of fluid) at the cell centers. The time integration is performed
with a fractional-step method based on the second-order
Adams–Bashforth scheme. The indicator function H needed to cap-
ture the interface between the two fluids is found following the multi-
dimensional tangent of hyperbola for interface capturing (MTHINC)
method proposed by Ii et al.35 and transported with the volume of
fluid method. More details on the numerical implementation can be
found in Rosti et al.9

A. Non-Newtonian fluid model

Fluids that exhibit a nonlinear behavior between the shear stress
and the shear rate are called non-Newtonian and, in particular, fluids
whose response does not depend explicitly on time but only on the
present shear rate are denoted generalized Newtonian fluids. When
the shear stress increases more than linearly with the shear rate, the

fluid is called dilatant or shear-thickening, whereas in the case of
opposite behavior, i.e., when the shear stress increases less than linearly
with the shear rate, the fluid is called pseudoplastic or shear-thinning.
Several models have been developed to capture the different behaviors
of various non-Newtonian fluids and in the current study, we focus on
the simple inelastic power-law models, where the local viscosity of the
fluid is a function of the sole local value of shear rate. A relation that
can be used to summarize the behaviors previously described for com-
plex fluids is

lpl ¼ K _cl
n�1; (7)

where n is the flow index and K is the fluid consistency index. A
Newtonian behavior is recovered when n¼ 1 and K ¼ l, while values
of the flow index above and below unity, n> 1 and n<1, denote
shear-thickening and shear-thinning fluids, respectively. The consis-
tency index K measures how strong the fluid responds to the imposed
deformation rate but it is not possible to compare different values of K
for fluids with different flow indexes n because its dimension is a func-
tion of n itself. In general, the local viscosity of the non-Newtonian
fluid increases with _c l for shear-thickening fluids, while it reduces for
shear-thinning ones, which means that the fluidity of shear-thickening
fluids reduces increasing the shear rate, while the opposite is true for
shear-thinning fluids. In the previous relation, the local shear rate _c l is
the second invariant of the strain-rate tensor Dij and is computed by
its dyadic product, i.e., _c l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DijDij

p
.36 The viscosity of a power-law

shear-thinning fluid becomes infinite for null shear rate; to overcome
this numerical issue, the Carreau fluid model is used instead in which
the local viscosity is computed as

FIG. 1. (Top) sketch of the computational domain. (Bottom) top view (x-z plane) of the computational domain with droplets shown in blue and the flow in the vertical direction.
The left, middle, and right panels show the instantaneous configuration of the droplets suspended in a shear-thinning n¼ 0.5, Newtonian n¼ 1, and shear-thickening n¼ 1.5
fluid, respectively, at t � 25_c�1

0 .
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lca ¼ l1 þ l0 � l1ð Þ 1þ k _c lð Þ2
� �ðn�1Þ=2

: (8)

In this equation, l1 and l0 indicate the lower and upper limits of
fluid viscosity at infinite and zero shear rates. The flow index n charac-
terizes the behavior of the fluid: for n<1, the fluid is shear-thinning
and the material time constant k represents the degree of shear-
thinning. More details on the Carreau and power-low models can be
found in Ref. 37.

B. Setup

We consider a two-phase system in a Couette flow consisting of a
suspension of droplets, see Fig. 1. The droplets are initially spherical
with radius R and are randomly distributed in the computational
domain, which is a rectangular box of size 16R� 10R� 16R in the
stream, wall-normal and spanwise directions. The computational
domain is discretized with a uniform Cartesian grid with 16 grid
points per initial droplet radius R (i.e., 160 grid points per channel
height 2h). Note that, the actual resolution of the droplets dynamic
improves as droplets coalescence and grow in size. The suspended
fluid is Newtonian with uniform constant viscosity l1, while three dif-
ferent kinds of carrier fluids are studied: Newtonian fluids with viscos-
ity l2 ¼ �l, shear-thickening fluids with viscosity l2 ¼ lpl defined by
Eq. (7), and shear-thinning fluids with viscosity l2 ¼ lca defined by
Eq. (8). The flow index n is varied in the range 0:25–1:75 and we
choose to define the three fluids such that the viscosity at the applied
reference shear rate _c0 is the same in all of them, i.e., �l. Thus, the
parameter K in the power-law fluid is determined by imposing
�l ¼ lplð _c0Þ (yielding K ¼ �l _c1�n

0 ), and similarly, the Carreau fluid
model parameter k is found by imposing �l ¼ lcað _c0Þ. Note that, in
our simulations with the Carreau model, we have fixed the ratio
l0=l1 to 104. Figure 2 shows the rheology of all the carrier fluids con-
sidered in the present study. We vary the volume fractions of the

solute phaseU (defined as h/ixyz with the brackets indicating the aver-
age operator) in the range 0–0:3 and we consider two different viscos-
ity ratios k ¼ l1=�l equal to 1 and 0.01. The surface tension coefficient
r is fixed, such that the droplets have an initial capillary numbers
Ca ¼ �l _c0R=r equal to 0.2. Finally, the Reynolds number Re ¼
q _c0R2=�l is fixed to 0.1, so that we can consider the inertial effects
negligible.

Topological changes of droplets such as coalescence and breakup
are treated here naturally without any additional model, since with the
volume of the fluid method these happen naturally when the distance
between two interface falls within a grid cell. However, this means that
the coalescence and breakup processes can be strongly influenced by
the grid size resolution; a detailed discussion of this matter is reported
in the Appendix. Note also that, the parameters are chosen similar to
that of previous works that can be found in the literature to ease com-
parisons.7,9,16,18 Finally, the numerical code used in the present work
has been tested and validated in the past in several works for laminar
and turbulent flows of single and multiphase systems.18,33,38–41

III. RESULTS

We study the rheology of a droplet suspension immersed in
power-law fluids and compare the results with those obtained in a
Newtonian fluid. To do so, we start our rheological analysis by consid-
ering the effective viscosity le which is the viscosity of a Newtonian
fluid that gives the same shear stress at the nominal shear rate and is
thus defined as

le ¼
hrw12ixz;t

_c0
; (9)

where rw12 is the shear component of the stress tensor evaluated at the
walls. In general, we expect the rheology of a two-fluid system to be a
function of the Reynolds number Re, the capillary number Ca, the vis-
cosity ratio k, the solute volume fraction U, the confinement ratio
2R=2h, and the non-Newtonian property of the carrier fluid here
summarized by the power-law index n. In the present work, we limit
our analysis to inertialess flows, i.e., Ren 1, the capillary number Ca
is not varied and fixed to a value such that a single droplet of size R
subject to the applied shear rate _c0 does not break up, and the domain
size is chosen such that confinement effects are negligible. Thus, we
can simplify the analysis to le � FðU; k; nÞ.

Figure 3 shows the effective viscosity le as a function of the drop-
let volume fraction U for two different viscosity ratio k and for three
different power-law indexes n. In the Newtonian carrier fluid (black
color), the behavior is the same observed by De Vita et al.:16 when the
viscosity of the two fluids is the same, i.e., k¼ 1, the effective viscosity
le first grows with the volume fraction similarly to a rigid particle sus-
pension, then reaches a maximum value for an intermediate U, and
then starts decreasing again. When the viscosity of the dispersed phase
is reduced, i.e., k decreases, the volume fraction for which the maxi-
mum effective viscosity is reached reduces, and for a sufficiently low k
the maximum is reached at U � 0 and the effective viscosity curve
decreases with U. Note that, the effective viscosity le can be even
smaller than the carrier fluid one �l in the case of k < 1. The nonmo-
notonic behavior of le with U is a direct consequence of the limiting
behavior forU ! 0 andU ! 1 where le is equal to l2 and l1 by defi-
nition.9 When the carrier fluid is non-Newtonian the situation is fur-
ther modified. In general, for all the power-law index n and viscosity

FIG. 2. Local viscosity of the carrier fluid l2 normalized by the reference
Newtonian value �l2 as a function of the local shear rate _c l normalized by the refer-
ence value _c0. The green, blue, dark blue, black, brown, red, and orange colors are
used to distinguish fluids with different flow index n equal to 0.25, 0.5, 0.75, 1, 1.25,
1.5, and 1.75, respectively, while the solid and dashed lines are used to distinguish
power law and Carreau fluids.
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ratio k considered in the present study, we observe that the nonmono-
tonic behavior is preserved and that the effective viscosity le is larger
for shear-thickening fluids with n> 1 and smaller for shear-thinning
fluids with n<1 than their Newtonian counterparts with n¼ 1. The
difference in le between the Newtonian and non-Newtonian fluids
grows with the volume fraction U, and larger differences are evident
between the Newtonian and shear-thinning fluids than what was
observed with the shear-thickening fluid for both the viscosity ratio k
considered. These changes of le with n are qualitatively similar to
what was observed for a rigid particle suspension immersed in a
power-law carrier fluid,32 except for the nonmonotonicity of the vis-
cosity curve which is due to the coalescence mechanism in the emul-
sions and absent in particle suspensions.

To understand the change in the effective viscosity curve with n,
we compute the mean shear rate _cm ¼ h/ _c lixyz;t=h/ixyz;t and viscosity
lm ¼ h/llixyz;t=h/ixyz;t in the carrier phase which are shown in
Fig. 4. In the figure, we observe that the mean shear rate exhibits a
behavior similar to the effective viscosity le: _cm grows with the volume
fraction U, then reaches a maximum value and finally decreases for
large U for k¼ 1, while for k < 1, the maximum is reached at lower
volume fraction and for k ¼ 0:01 the mean shear rate decreases for all
U. Also the effect of the flow index is analogous to what was previously
observed for le, and indeed _cm is larger for n> 1 and smaller for n<1
than the Newtonian case with n¼ 1, with larger differences evident for
the shear-thinning fluids. Less trivial is the behavior of the mean vis-
cosity lm; for k � 1, being the shear rate larger than the reference one
_c0, the mean viscosity in the shear-thickening fluid is larger than the
Newtonian one while it is smaller in the shear-thinning fluid, as
expected from the rheology of the fluid previously reported in Fig. 2.
On the other hand, when k < 1, the mean shear rate is actually smaller
than _c0 and thus the behavior of the non-Newtonian fluids is opposite,
with the mean viscosity of the shear-thinning fluid being larger than

the Newtonian one and smaller for the shear-thickening fluid. Thus,
while for k � 1, the mean viscosity and shear rate are both contribut-
ing to increase or decrease the effective viscosity of the suspension,
when k < 1 because of this peculiar behavior, the mean viscosity is
actually counteracting and reducing the effect of the change in mean
shear rate. This reverse trend obviously never happens in a particle
suspension, where the shear rate is always larger than the single-phase
value in the presence of suspended particles and is thus a prerogative
of emulsions.

Notwithstanding the counter-effect of the mean viscosity for
k < 1, the effective viscosity le in the shear-thinning and thickening
fluids is always smaller and larger than in the Newtonian fluid, respec-
tively. In order to understand what is really affecting the emulsion vis-
cosity, we need to study the value of the local shear rate not in terms of
its mean value but by considering its full range of values assumed.
Figure 5 (top) reports the probability density function pdf of the shear
rate _c l in the carrier phase for all the fluids studied with different n and
k and a selected volume fraction U equal to 10%. The graphs show
that a large spectrum of shear rate exists for all the fluids, with the pdf
characterized by a strong peak at its mean value [see Fig. 4(top)]

FIG. 3. Normalized effective viscosity le as a function of the droplets volume frac-
tion U for different fluids and viscosity ratios. The color scheme is the same used in
Fig. 2, with the blue, black, and red colors indicating n¼ 0.5, 1, and 1.5, while the
cross 3 and circle � symbols are used to distinguish k equal to 1 and 0.01,
respectively. The black dashed–dotted and dashed lines are Einstein and Taylor
Eqs. (1) and (3).

FIG. 4. Normalized mean (top) shear rate _cm and (bottom) viscosity lm as a func-
tion of the droplet volume fraction U. The color and symbol schemes are the same
used in Fig. 3, with the blue, black, and red colors indicating n¼ 0.5, 1, and 1.5,
while the cross3 and circle � symbols indicating k¼ 1 and 0.01.
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around the nominal shear rate _c0 and with positive skewness, i.e., with
more high shear rates than low ones. The latter result indicates a
higher probability of finding low local viscosity in a shear-thinning
fluid and of high viscosity in a shear-thickening one, independently of
the viscosity ratio considered. The origin of these high shear rate events
is the droplet interaction. To prove this, we show in Fig. 6 some instan-
taneous visualization of the local viscosity in the solvent and solute
phases. As we can clearly see from the figure, when two droplets inter-
act in a shear-thickening fluid (panels 1 and 3), the local viscosity in
the interstitial region between the two is large independently of the
value of viscosity ratio k considered, thus indicating a local high shear
rate, while on the contrary when the two interacting droplets are sus-
pended in a shear-thinning fluid (panels 2 and 4), the local viscosity in
between is low, thus indicating a local low shear rate. Since the occur-
rence of the high shear rate events is linked to the droplet interactions,
it is a function of the volume fraction U and grows with it, as shown in
Fig. 5(bottom).

The different viscosity found for shear-thickening and thinning
fluids in the interstitial region between two interacting droplets affects
the coalescence mechanism. Chesters42 was the first to develop a theo-
retical framework to study the interaction of droplets. He proposed
that the dynamics of two colliding droplets is an interplay of an exter-
nal flowÐthe driving flowÐresponsible for the collision, and an inter-
nal flowÐthe drainage film between the two dropletsÐresponsible for
the interface deformation and rupture. The former is described in
terms of a collision duration sc, roughly proportional to the inverse of
the shear rate, i.e., sc _c � 1,43 the latter in terms of a drainage time sd
which by scaling analysis can be shown to be proportional to the capil-
lary number Ca of the droplets, i.e., sd _c � Cam where m¼ 4/3 if the
drainage film is assumed to be flat42 or m¼ 1 for a dimpled-film
shape.44 When the collision duration is larger than the drainage time
sc > sd , droplets coalesce whereas in the opposite case sc < sd they
repel. In the former condition, the emulsion is often called attractive,
while in the latter, it is defined as repulsive.45 These ideas are based on
several simplifying hypotheses, with the main ones being almost
spherical droplets and head-on collision; notwithstanding this, the the-
ory proved able to estimate the general coalescence behavior of emul-
sions and we will use it here as well. For all the viscosity ratio
considered, the viscosity in the drainage film between two droplets is
lower in the shear-thinning fluid and larger in the shear-thickening

FIG. 5. (Top) the probability density function pdf of the local shear rate _c l in the
carrier phase for different carrier fluids at U ¼ 10%. (Bottom) the probability den-
sity function pdf of the shear rate _c l in the carrier phase for different volume frac-
tions U in a shear-thickening fluid with k¼ 1. The color and symbol schemes in
the figures are the same used in Fig. 3, with the blue, black, and red colors indicat-
ing n¼ 0.5, 1, and 1.5, while the cross 3 and circle � symbols indicating k¼ 1
and 0.01. Also, the solid, dashed, and dotted lines in the bottom figure are used to
distinguish U ¼ 5%, 10%, and 20%.

FIG. 6. Instantaneous side view visualization of the droplets (solid black line) and color contour of the local viscosity in the two phases ll=�l. The color scale goes from 0.6 to
1.4; the first two panels correspond to k¼ 1 and the last two to k ¼ 0:01. For each set of k, the first panel is the shear-thickening fluid case and the second one is the shear-
thinning fluid case.
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one than their Newtonian counterpart; because of this change, the
capillary number Ca relevant for the collision is smaller/larger in the
shear-thinning/thickening fluid than in the Newtonian case with a
consequent decrease/increase in the drainage time sd. Thus, Chester's
theory predicts an increase in the coalescence in shear-thinning fluids
and a decrease in the shear-thickening ones. Note however that, if one
considers only the mean value lm reported in Fig. 4, then these results
would be opposite for the cases with k < 1. To disentangle this oppo-
site result, we quantify the droplets coalescence in our simulations by
measuring the mean total surface area S in all the considered fluids,
reported in Fig. 7 (top). Note that, a reduction of surface area indicates
droplet merging and thus a reduction of the number of droplets. As
shown in the figure, the surface area decreases with the droplet volume

fraction U, thus indicating the merging of small droplets into large
ones, and as expected is larger in the cases with unit viscosity ratio
k¼ 1 than in those with k ¼ 0:01.16 When considering different flu-
ids, i.e., different power-law index n, we clearly observe that when the
fluid is shear-thickening the surface area S is always larger than in the
Newtonian case, while on the contrary when the fluid is shear-
thinning S is smaller than in the Newtonian case. This result is consis-
tent with the prediction based on Chester's theory when using the local
viscosity in the region in between droplets, i.e., the right tale of the pdf
of the shear rate in Fig. 5 (top), while it does not agree when consider-
ing only the mean shear (viscosity) value in Fig. 4. It is thus important
to consider the full spectrum of available shear rates in the domain
when studying power-law fluids and theory and models uniquely
based on mean values would result in wrong predictions.

Figure 7 (botttom) shows how the droplets redistribute across the
domain for the different fluids analyzed. Two representative volume
fractions are considered, a dilute case with U ¼ 0:1 and the most con-
centrated case studied with U ¼ 0:3. In general, we observe that drop-
lets tend to concentrate in the middle of the domain away from the
walls. The migration of a droplet away from the wall in a shear flow
was predicted theoretically by Magnaudet et al.46 who provided an
analytical expression for the migration velocity; in our case, coales-
cence further enhances the concentration at the channel centerline in
agreement with previous numerical studies in the literature.9,16,47,48

Indeed, the concentration in the center of the domain is larger when
the viscosity ratio k is small, due to the tendency of droplets to merge
and form large conglomerates, while this is reduced for large values of
k where the coalescence process is slowed down. In the latter case, we
also find a reminiscence of the formation of wall-parallel layers as typi-
cally found in rigid particle suspensions which tend to form particle
layers. When changing the carrier fluid property, we note that for
shear-thickening fluids the concentration is always less peaked than in
the shear-thinning case, thus further confirming the reduced level of
coalescence and a more rigid-like behavior of the droplets. The pres-
ence of the suspended droplets and their distribution in the channel
affects the shear rate, which differs from a single-phase flow where it is
constant, shows a strong inhomogeneity across the wall-normal direc-
tion, as reported in the inset of Fig. 7(bottom).

Finally, we analyze in more details how the results change with
the power index n. The top left panel of Fig. 8 reports the effective vis-
cosity le as a function of n for the two viscosity ratio k investigated
and for a fixed volume fraction U ¼ 0:2. The figure shows that le
grows monotonically with n for both the viscosity ratio tested.
Furthermore, the figure also suggests that the rate of change of the
effective viscosity is approximately independent of k. This is proved in
the top right panel of the figure, where we report the effective viscosity
le divided by the corresponding effective viscosity of the Newtonian
case lNewte (i.e., n¼ 1). The two curves obtained for different viscosity
ratio k well collapse into a single curve, whose expression can be
obtained with a simple numerical fit as

le ¼ lNewte 0:801þ 0:256n� 0:058n2ð Þ: (10)

The fit is also reported in the figure with a black line showing a good
level of agreement with the results of our simulations. This result
provides the important conclusion that the effective viscosity of an
emulsion in a power-law fluid can be well predicted with Eq. (10)
knowing only the effective viscosity for the Newtonian configuration.

FIG. 7. (Top) the total surface area S normalized with its initial value S0 as a func-
tion of the droplet volume fraction U. The color and symbol schemes in the figures
are the same used in Fig. 3, with the blue, black, and red colors indicating n¼ 0.5,
1, and 1.5, while the cross 3 and circle � symbols indicating k¼ 1 and 0.01.
(Bottom) averaged wall-normal concentration profile /l ¼ h/ixz;t . The red and
blue colors distinguish the cases with the shear-thickening n¼ 1.5 and shear-
thinning n¼ 0.5 carrier fluid, and the solid and dashed lines the two viscosity ratios
k¼ 1 and 0.01. Two representative volume fractions are considered, U ¼ 0:1 and
0.3. The inset figure shows the wall-normal distribution of the mean shear rate for
the case with the highest volume fraction, / ¼ 0:3.
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When we study the mean values of the shear rate _cm and of the vis-
cosity lm the result is quite different. In particular, while the mean
shear rate _cm still grows monotonically with n, its rate of change is
enhanced by lower values of the viscosity ratio k. This is a consequence
of the enhanced coalesce of the droplets arising from the combined
effect of the low viscosity ratio and of the shear-thinning property of
the fluid. The mean viscosity lm increases with n for the unit viscosity
ratio case k¼ 1 while it decreases for the case with k ¼ 0:01. These
results further show that the largest variations of mean viscosity are
found in the case with low viscosity ratio k while much smaller varia-
tions are evident as k grows.

We conclude our investigation by showing in Fig. 9 the first and
second normal stress differences of the system, defined as

N 1 ¼ hr11 � r22i
�l _c0

; (11a)

N 3 ¼ hr22 � r33i
�l _c0

: (11b)

From the figure, we observe that the magnitude of both the normal
stress differences grows with the flow index n. The first normal stress

FIG. 8. (Top left) normalized effective viscosity le, (top right) ratio of the effective viscosity le with the Newtonian effective viscosity lNewte (bottom left) mean shear rate _cm
and (bottom right) viscosity lm as a function of the flow index n. All cases are at U ¼ 0:2 and the cross3 and circle � symbols are used to distinguish the cases with k equal
to 1 and 0.01, respectively. The black line in the top right figure is a numerical fit to the data in the form of le ¼ lNewte ð0:801þ 0:256n� 0:058n2Þ.

FIG. 9. Normalized first and second normal stress difference N 1 and N 2 as a
function of the flow index n. All cases are at U ¼ 0:2 and the cross 3 and circle �
symbols are used to distinguish the cases with k equal to 1 and 0.01, respectively.
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differenceN 1 is greater than zero, i.e., r11 > r22, and thus droplets are
elongated in the direction of the flow and compressed in the wall-
normal direction. On the other hand, the second normal differenceN 2

is always negative. WhileN 1 substantially reduces for k ¼ 0:01; N 2 is
mostly unaffected by the viscosity ratio.

IV. CONCLUSIONS

We study the rheology of a two-fluid emulsion in semiconcen-
trated conditions with the solute being a Newtonian fluid and the sol-
vent an inelastic power-law fluid. The problem is studied numerically
by the volume of the fluid method. Different volume fractions and vis-
cosity ratios are considered together with several carrier fluids exhibit-
ing both shear-thinning and thickening behaviors. We do not vary the
capillary number which is fixed to a value such that a single droplet
subject to the applied shear rate does not break up, in order to focus
our attention on the droplet coalescence mechanism.

First, we study how the effective viscosity of the system changes
with the different carrier fluid properties. We show that the effective
viscosity grows with the volume fraction of the dilute phase, reaches a
maximum, and then decreases with it beyond a certain concentration;
this critical concentration corresponding to the maximum effective
viscosity reduces when decreasing the viscosity ratio. The general
behavior remains mostly unaltered when considering power-law flu-
ids, except for an increase in effective viscosity for shear-thickening
fluids and a decrease for the shear-thinning ones.

We show that the mean shear rate exhibit a behavior similar to
the effective viscosity, while the mean viscosity does not. Indeed, the
mean viscosity is less than the nominal one for shear-thinning fluids
and larger than the nominal one for shear-thickening fluids with unit
viscosity ratios and the opposite when the viscosity ratio is reduced.
This is consistent with the values of local shear rates measured in the
domain but in contrast with the value of the effective viscosity. We
explain this contradiction by studying the coalescence efficiency of the
system which is modified by the nature of the carrier fluid. To support
our claim, we show that the local shear rate assumes a very wide range
of values; although its probability density function is peaked at the
mean value, the distribution is strongly skewed exhibiting strong tails
especially for large shear rates. This local high shear rate corresponds
to the regions in between two interacting droplets, thus increases with
the solute volume fraction. As a consequence, local high and low vis-
cosity arises in these regions for shear-thickening and thinning fluids,
respectively, which ultimately affect the coalescence of the droplets.
Indeed, we relate the changes in the emulsion viscosity mainly to mod-
ifications of the coalescence in the system obtained by changing the
carrier fluid property: coalescence is enhanced for shear-thinning flu-
ids and reduced for shear-thickening ones due to modifications of the
drainage time of the system, caused by modifications of the viscosity
in the system. This process is mainly dominated by the power-law
fluid index n, with shear-thinning and thickening fluids exhibiting two
different behaviors which are (qualitatively) independent of the nomi-
nal viscosity ratio of the two fluids; also, this can not be understood by
considering only the mean shear rate and viscosity of the two fluids
across the domain.

Finally, we provide an expression able to successfully estimate the
effective viscosity of the emulsion, as a function of power-law index n
and of the effective viscosity of the emulsion in a Newtonian fluid at
the same volume fraction and viscosity ratio. This is a consequence of

the fact that le grows with n with a rate of change that is approxi-
mately independent of k.

To conclude, our results show that the coalescence efficiency
which strongly affects the system rheology can be controlled by prop-
erly choosing the non-Newtonian property of the carrier fluids. Fully
neglecting droplet merging can lead to erroneous or incomplete pre-
dictions in several flow conditions. In this work we have investigated
limiting cases where the nominal coalescence efficiency is close to
unity; in a real scenario, the coalescence efficiency is likely to have
intermediate values and future works may therefore be devoted to
handling both coalescence and collisions in order to simulate a more
wide range of emulsions. Anyway, the present choice helped to high-
light the importance of coalescence.
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APPENDIX: VERIFICATION OF THE NUMERICAL
METHOD AND OF THE RESULTS

When two droplets approach each other, they may coalesce or
not, with the coalescence happening without the addition of any
nonhydrodynamic force due to the finite (although small) inertia.
Topological changes of droplets, such as coalescence and breakup,
are treated in the present methodology automatically without any
additional model, since with the volume of fluid method these hap-
pen automatically when the distance between two interface falls
within a grid cell. However, this does not mean that the coalescence
process is correctly captured. On the other hand, fully resolving the
coalesce is numerically challenging and not feasible, due to the very
small scales involved, which are order of magnitude smaller than
the characteristic size of the droplets. Notwithstanding the fact that
coalescing events are here numerically driven, due to the finite size
of our grid which will cause droplets to merge, we can verify that
the present simulations still provide meaningful macroscopic
results. To do that, we have proceeded as follows: first, we use the
same setup employed in a previous work where the rheological data
of a Newtonian droplet suspension have been compared with avail-
able experimental measurements;16 next, we have verified that our
grid resolutions are fine enough to provide results which are weakly
dependent on the grid size resolution, by evaluating their changes
when doubling the grid size, and found variations less than 5%.
Note that, while this ensures that the bulk results are accurate, it
does not mean that we are fully capturing the very small dynamics
corresponding to the actual drainage process.

To prove this, Fig. 10 reports the time evolution of the total
surface area for a case with U ¼ 10% and viscosity ratio k ¼ 0:01.
This test was chosen because the surface area is the quantity that is
mostly affected by coalescence, being its changes directly related to
it, and is thus a good indicator to show if coalescence is properly
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resolved; also the case chosen has a low viscosity ratio which is the
one where coalescence is promoted, thus being the most demanding
in terms of resolution. We can observe that after an initial transient
phase where the surface area decreases, i.e., droplets are coalescing,
the system reaches a statistically steady state where the surface area
slightly oscillates around a mean value, indicated by the dashed line
and extracted by time averaging over the second half of the time
signal. The figure reports the same quantity obtained using three
different grid sizes, 8, 16, and 32 grid points per initial droplet
radius R (corresponding to 80, 160, and 320 grid points per chan-
nel height 2 h). We can observe that, although the time-histories are
different, with the coarse grid leading to a faster coalescence than
the finer ones, the steady-state value obtained with the two finer
grids are comparable, while a slightly lower value is obtained for the
coarsest grid. The figure suggests that the grid used in the present
simulations (16 grid points per initial droplet radius R) is appropri-
ate to properly describe the macroscopic phenomenon under
investigation.

We have also similarly tested that the results are independent
of the size of the homogeneous directions x and z and that the wall-
to-wall distance guarantees a low level of confinement similarly to
what was found in previous works.49,50
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