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A B S T R A C T

We consider the implication of allowing the distortion rate in a fluid to be the sum of two
smooth components, both incompatible in the sense that they are not gradients of vector
fields. Whereas one of these components embodies a smooth distribution of slippage, the
other describing the repair needed to ensure that the distortion rate is the gradient of the
velocity field. Our considerations lead to a generalization of the Navier–Stokes equations for
an incompressible fluid. A tensor field which characterizes incompatibility is introduced and a
fundamental equation for its evolution is proposed. Properties of these equations are exemplified
by revisiting the classical problem of pressure-driven flow in a plane, rectangular channel. For a
sufficiently large instantaneously applied pressure drop, a novel action due to the diffusivity 𝜅
associated with the transport of incompatibility is illustrated in addition to the normal diffusive
and dissipative affect of viscosity 𝜈. The steady state of the velocity and incompatibility is
governed by a system of two ordinary differential equations which are fully analyzed and the
resulting fields are determined and discussed. The transient problem is solved numerically and
the graphical results show how these fields are structured in time by diffusion and dissipation
in the channel during the transition from rest to steady state. A precursor laminar flow persists
until a particular time at which the wall shear stress becomes equal to an a priori given cut-
off value that initiates incompatibility at the walls of the channel. This incompatibility diffuses
inward and interacts synergistically with the viscous action present in the channel to flatten the
velocity profile so as to take on a ‘plug flow-like’ appearance, and to redistribute the viscous
dissipation and the dissipation due to incompatibility into boundary layers at the channel walls.

. Introduction

In the kinematics of continua, the instantaneous distortion of a material filament d𝒙 with unit orientation 𝒏 is described by the
elation

ḋ𝒙 = 𝑳d𝒙, (1.1)

here, as explained in A.3, a superposed dot is used to indicate the material time derivative, and where the distortion rate tensor
∶= grad 𝒗 is the gradient of the velocity 𝒗 and is, therefore, said to be compatible. The stretch 𝜆 of the material filament is governed
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̇log 𝜆 = 𝒏 ⋅𝑫𝒏, (1.2)

here 𝑫 is the stretching tensor defined according to

𝑫 ∶= 1
2 (𝑳 +𝑳⊤) ∶= sym𝑳. (1.3)

Also, the interior angle 𝛼 between two material filaments with distinct unit orientations 𝒏1 and 𝒏2 emanating from the same material
point is governed by the relation

(sin 𝛼)𝛼̇ = (𝒏1 ⋅𝑫𝒏1 + 𝒏2 ⋅𝑫𝒏2)𝒏1 ⋅ 𝒏2 − 2𝒏1 ⋅𝑫𝒏2. (1.4)

f at some point and some instant the magnitude |𝑫| of the stretching tensor 𝑫 is sufficiently large relative to some characteristic
requency, we expect on the basis of (1.2) and (1.4) that the rate of stretching 𝜆̇ of the material filament with orientation 𝒏 at
hat point and the rate of shearing 𝛼̇ between the material filaments with orientations 𝒏1 and 𝒏2 will be large relative to that
ame frequency, thus triggering a local reformational change in the existing compatible structure of the fluid, analogous to casual
bservations concerning turbulent flow behavior. We consequently envision a splitting of the compatible distortion rate into an
dditive composition of two incompatible distortion rates, each not expressible as the gradient of a vector field. This supports the
ntuitive notion of smooth distributions of slippage and repair that take place sympathetically and instantaneously at the macroscopic
cale.

Stimulated by the foregoing observations, we explore the implication

𝑳 = 𝜦 + 𝜦̄ ⟹ ḋ𝒙 = 𝑳d𝒙 = 𝜦d𝒙 + 𝜦̄d𝒙, (1.5)

here the two distortion rate tensor fields 𝜦 and 𝜦̄, are smooth but their differential forms are not integrable so they cannot be
xpressed as the gradients of vector fields, as is 𝑳. Thus, while 𝜦 and 𝜦̄ are individually incompatible, it is evident from (1.5) that
he composition 𝜦+ 𝜦̄ must be compatible. It is the relations (1.2) and (1.4), in conjunction with the belief that material filaments
𝒙 of a fluid may respond to severe distortion rates 𝑳 by undergoing a process of reformation based upon the idea of incompatibility
hat motivates this article. Summing-up, we envision an instantaneous splitting of the distortion rate 𝑳 of a generic material filament
nto two complimentary, incompatible and additive distortion rates, one of which is responsible for the presence of incompatibility,
he other being essential for repairing and maintaining the integrity of the fluid, which is expressed by the gradient structure of
. In crystalline solids, lattice defects have been studied extensively as manifestations of incompatible deformation gradients. The
otion of a primitive unit cell, distributed periodically in space, is indispensable in that setting. In fluids, which exhibit no such
rder, there appears to be no credible basis for pursuing analogies to the physics of defective crystals, so we shall not pursue that
ead here.1

We begin, in Section 2, with a discussion of the main hypothesis of this work, namely that under certain flow conditions the
elocity gradient distortion rate 𝑳 may be decomposed additively into two smooth distortion rates, 𝜦 and 𝜦̄ that are not gradients
f vector fields, as is expressed in (1.5). By definition, we associate the distortion rate 𝜦 with an incompatibility that is envisioned
ntuitively as a smooth distribution of local velocity slippage. The distortion rate 𝜦̄ is conceived to be an instantaneous response
o 𝜦 which repairs and preserves the local integrity of the fluid so that the compatible gradient structure of 𝑳 is assured. To more
learly express this notion, we introduce via Stokes’ theorem a related incompatibility tensor

𝑮 ∶= − curl𝜦 (1.6)

s a kinematic descriptor of the incompatibility associated with the distortion rate 𝜦, independent of 𝒗, where the application of
he ‘curl’ operator to a tensor field is made explicit in (A.32)2 (or in its indicial counterpart (A.62)2). In Section 2.1, we develop
he kinematic relations and connections of 𝑮 to the symmetric and skew parts, 𝑫𝛬 and 𝑾 𝛬, of 𝜦, and we determine the specific
onditions that define the incompatibility of these two fields.

In Section 3, we formulate the basic laws governing the dynamics of incompressible fluids with incompatible distortion rates.
fter recalling, in Section 3.1, the classical balance laws for momentum and moment of momentum, we introduce, in Section 3.2,
balance law for the incompatibility 𝑮. This law embodies the requirement that the generation of incompatibility in a material

egion is due to advective and diffusive transfer of incompatibility across the boundary of that region together with an a priori given
xternal volumetric supply. The surfacial diffusive transfer is characterized by an incompatibility flux tensor 𝙅 which is important to
he subsequent development. An alternative, equivalent version of the incompatibility balance involving integration over material
urfaces is presented in Section 3.3. In Sections 3.4 and 3.5, we introduce a thermodynamical setting for the balance of energy
nd a dissipation inequality. The incompatibility 𝑮 is paired with a constant specific moment of inertia 𝜄 > 0 and is included as a
ovel additional source of kinetic energy in expressing the balance of energy, and a tensor 𝜫 that serves as a chemical potential for
ncompatibility is introduced to ensure the correct reckoning of energy transfers associated with the diffusive surface transfer and
olumetric supply of incompatibility.

1 Working by analogy to the continuum description of defects in solids, Acharya and Fosdick (2019) recently provided formal observations on a defect
avier–Stokes system based upon the failure of compatibility. Questions related to fluid behavior which are fundamental to the underlying physics are not
2

ddressed in that brief note.



International Journal of Engineering Science 168 (2021) 103540R. Fosdick and E. Fried

f

w
e

T

t
(
f
𝑹

T
f
g
t
a

w
w

s
a
a
c
t

v

2

a
b
s

w

In Section 4, we turn to constitutive relations and, for the remainder of this work, we specialize not only to incompressible
luids but also to isothermal conditions. We find that constitutive relations are needed for the Cauchy stress tensor 𝑻 (excepting

the constitutively independent constraint reaction due to incompressibility), the incompatibility flux 𝙅 , and the chemical potential
𝜫 for incompatibility, in terms of the symmetric part 𝑫 of the velocity gradient 𝑳, the incompatibility 𝑮, and grad𝑮. We, then,
concentrate on the simplest constitutive structure for 𝑻 , 𝙅 , and 𝜫 that expresses a nontrivial incompatibility theory and that satisfies
the dissipation inequality for all possible flows. This structure involves, in addition to the specific moment of inertia constant 𝜄, two
material coefficients: the classical kinematic viscosity 𝜈 > 0, and a diffusivity 𝜅 > 0 associated with the transport of incompatibility.
When combined with the fundamental balance laws for momentum and incompatibility, we arrive, in Section 5, at a coupled system
of governing equations for 𝒗 and 𝑮. If external supplies are neglected, the equation expressing momentum balance takes the form

𝒗̇ = −1
𝜚
grad 𝑞 + 𝜈𝛥𝒗 + 𝜄2 div(𝑮⊤𝑮), (1.7)

here 𝜚 is the constant mass density of the fluid and 𝑞 is related to the pressure 𝑝 of the fluid by 𝑞 = 𝑝 + 𝜚𝜄2|𝑮|

2, and the equation
xpressing incompatibility balance takes the form

𝑮̇ = 𝑮𝑳⊤+ 𝜅 𝛥𝑮. (1.8)

hese evolution equations are to be solved subject to the requirements

div 𝒗 = 0 and div𝑮 = 0, (1.9)

he first of which stems from the assumption that the fluid is incompressible and the second of which arises because 𝑮, as defined by
1.6), is the curl of a tensor field (cf. (A.42)). The flow equation (1.7) differs from the Navier–Stokes equation for an incompressible
luid only to the extent that it contains a term arising from the added divergence of a symmetric incompatibility stress tensor
= 𝜚𝜄2𝑮⊤𝑮 which enters the constitutively determined portion of the Cauchy stress 𝑻 .
In Section 6, we discuss the boundary conditions at a fixed and impermeable wall. As is common, the velocity 𝒗 is taken to

vanish at such a boundary:

𝒗 = 0. (1.10)

o determine a suitable boundary condition for the incompatibility 𝑮, we observe that if 𝒎 is the unit normal, directed outward
rom the fluid, on such a boundary, then the incompatibility vector 𝑮𝒎 associated with such a surface depends only on the surface
radient of 𝜦. Thus, resting on the intuitive notion that incompatibility is generated at a fixed and impermeable boundary only if
he tangential wall stress exceeds or meets a certain threshold value, we propose to assign 𝑮𝒎 as zero if the threshold is not met
nd nonzero if otherwise. The final version of this condition takes the form

𝑮𝒎 =

{

0, if 2𝜚𝜈|(1 −𝒎⊗𝒎)𝑫𝒎| < 𝜏𝑐 ,

𝛾𝒎, if 2𝜚𝜈|(1 −𝒎⊗𝒎)𝑫𝒎| ≥ 𝜏𝑐 ,
(1.11)

here 𝜏𝑐 > 0 is the aforementioned threshold. Moreover, we argue that the incompatibility vector 𝑮𝒕 associated with a surface
hose oriented normal 𝒕 is tangent to the wall should not take part in the generation of incompatibility at the boundary:

𝑮𝒕 ⋅𝒎 = 0 for all 𝒕 ⟂ 𝒎. (1.12)

In Section 7, we apply our theory to the classical problem of steady plane Poiseuille flow in a rectangular channel, and for
ufficiently large pressure gradients we obtain many results reminiscent of results for laminar flows of non-Newtonian fluids
nd fully developed turbulence in Newtonian fluids. This is followed in Section 8 with a study of the transient effects in the
ssociated dynamical Poiseuille problem. In Sections 8.1 and 8.2, we present an energy-like analysis which allows us to quantitatively
haracterize the overall transition to steady state, and then, in Section 8.3, we provide a numerical account of the transition process,
ogether with a related discussion based on the physical effects of diffusion and dissipation.

Finally, in Section 9, we summarize and assess our theory and some implications of our analysis on fluid flows with incompatible
elocity gradients.

. Compatibility and incompatibility

In an incompatible flow, we envision that the distortion rate of the material, characterized by the velocity gradient 𝑳, is such
that local velocity slippage and instantaneous repair takes place as a sympathetic kinematic process. The (smooth) velocity gradient
is then considered to be the instantaneous additive composition of two smooth incompatible distortion rates: 𝜦, which by definition
is a distortion rate due to the generation of incompatibility, and 𝜦̄, which reacts to repair and preserve the local integrity of the
material structure so that the gradient representation, 𝑳 = grad 𝒗, is assured.2 With reference to (1.5), we write3

𝑳 ∶= grad 𝒗 = 𝜦 + 𝜦̄. (2.1)

2 Throughout this work, we assume that the velocity field 𝒗 is spatially and temporally smooth; singularities are not considered and weak function spaces
re not needed. The mention of velocity slippage in relation to the incompatible distortion rate 𝜦 is meant to be phenomenologically suggestive of its meaning,
ut the field 𝜦 itself is considered to be smooth, and may be regarded intuitively as a smooth distribution of velocity slippages. The resolution of a velocity
lippage event is not of interest in this work.

3 In classical linear elasticity theory, a similar decomposition of the local distortion tensor, characterized as a smooth displacement gradient, is proposed
3

ithin the context of incipient plastic deformation. The material is supposed to maintain its integrity as it deforms, and to support this notion it is envisioned
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The distortion rate 𝜦̄ plays no significant quantitative role in this work, the main kinematic quantities being the velocity 𝒗 and the
ncompatible distortion rate 𝜦. However, the presence of 𝜦̄ in (2.1) does ensure the compatibility of the velocity gradient 𝑳, as is
xpressed by curl 𝜦̄ = −curl𝜦, where the ‘curl’ operator on a tensor field is made explicit in (A.32)2 (or in its indicial counterpart
A.62)2). Incompatible flow may take place in subregions of the flow domain 𝑡, wherein 𝜦 ≠ 0, the remaining part undergoing
ompatible flow with 𝜦 ≡ 0 and, of course, 𝜦̄ = 𝑳. Otherwise, 𝜦̄ is determined by 𝒗 and 𝜦 according to 𝜦̄ = 𝑳 −𝜦.

As a consequence of the notion of incompatibility, and in particular the non-integrability of the differential form 𝜦d𝒙 expressed
n (1.5), it is natural to introduce a surfacial incompatibility vector 𝒈𝒏 such that, for any open surface 𝑡 ⊂ 𝑡 with boundary 𝑡 and
riented unit normal 𝒏 chosen so that 𝒑 ∶= 𝒕 × 𝒏 is the outward unit tangent-normal to 𝑡 on 𝑡,

∫𝑡
𝒈𝒏 d𝑎 ∶= −∫𝑡

𝜦 d𝒙 = −∫𝑡
𝜦𝒕d𝑠. (2.2)

hen, involving Stokes’ theorem for second-order tensor fields,4 we see that 𝒈𝒏 = 𝑮𝒏, where 𝑮, the incompatibility tensor, is defined
y

𝑮 ∶= − curl𝜦. (2.3)

n the subregions of the flow domain 𝑡 where 𝜦 ≠ 0 and, of course, 𝜦 is not the gradient of a vector field, it is evident that 𝑮 ≠ 0.
lso, in the complementary subregions of 𝑡 where 𝜦 ≡ 0, it is evident that 𝑮 ≡ 0. Thus, modulo the normalization requirement

hat whenever 𝜦 ≠ 0 it is not the gradient of a vector field, we see that

𝜦 = 0 if and only if 𝑮 = 0. (2.4)

f 𝑡 is closed in the sense that it has no boundary, namely if 𝑡 = ∅, then the integral (2.2) vanishes, with the consequence that if
he region 𝑡 occupied by the fluid is periphractic5 then (2.2) vanishes on every boundary of an internally embedded hole. Since,
ccording to (2.3) and (A.42),

div𝑮 = 0 (2.5)

hroughout the region 𝑡 occupied by the fluid, it then follows that the integral also vanishes for the external boundary 𝜕𝑡 of the
egion occupied by the fluid.6

.1. The stretching and vorticity tensors

The symmetric stretching tensor 𝑫 and the skew vorticity tensor 𝑾 , defined in terms of 𝑳 = grad 𝒗 through

𝑫 ∶= 1
2 (𝑳 +𝑳⊤) ∶= sym𝑳, 𝑾 ∶= 1

2 (𝑳 −𝑳⊤) ∶= skw𝑳, (2.6)

are inherently compatible because they are a priori determined by the gradient of a smooth velocity 𝒗. However, considered as
primitive symmetric and skew tensor fields defining a distortion rate 𝑳 = 𝑫 + 𝑾 , the issue of the integrability of the differential
form ḋ𝒙 = 𝑳d𝒙 and the consequent existence of a smooth velocity 𝒗 becomes fundamental. While this kind of question is not
broached in classical fluid mechanics,7 it is one of great importance in linear elasticity theory and it was solved by Cesàro (1906).

that local displacement dislocation (nominally displacement slippage) associated with the concept of plastic deformation, together with an elastic kinematic
repair process, takes place coincidently. The displacement gradient is, thus, taken to be the additive composition of two smooth distortion tensors; namely, a
plastic distortion tensor, and an elastic distortion tensor, neither of which can be represented as the gradient of displacement-like vectors. The plastic distortion
tensor is considered to be the source of a smooth field of defects, referred to as a dislocation density field, and it is quantified by the value of its curl, which is
a measure of its incompatibility. The decomposition of the velocity gradient 𝑳 advanced in (1.5) is, thus, completely analogous to that considered in classical
inear elasticity theory.

4 Given a surface  orientated by a unit normal field 𝒏 with unit tangent 𝒕 relative to 𝒏 in the right-handed sense, Stokes’ theorem for a second-order tensor
field 𝑱 , namely

∫
(curl𝑱 )𝒏d𝑎 = ∫𝜕

𝑱𝒕d𝑠,

follows from the classical version of Stokes’ theorem for a vector field 𝒇 , namely

∫
(curl𝒇 ) ⋅ 𝒏d𝑎 = ∫𝜕

𝒇 ⋅ 𝒕d𝑠.

To verify this assertion, let 𝒇 = 𝑱⊤𝒂 for some constant vector 𝒂. Then, since (curl𝒇 ) ⋅ 𝒏 = (curl(𝑱⊤𝒂)) ⋅ 𝒏 = ((curl𝑱 )⊤𝒂) ⋅ 𝒏 = 𝒂 ⋅ ((curl𝑱 )𝒏) by (A.32)2 and since
⊤𝒂 ⋅ 𝒏 = 𝒂 ⋅ 𝑱𝒏, we see that

𝒂 ⋅
(

∫
(curl𝑱 )𝒏d𝑎 − ∫𝜕

𝑱𝒕d𝑠
)

= 0

or any choice of 𝒂, to complete the assertion.
5 An open, connected region in three-dimensional Euclidean point space E3 that has embedded holes is said to be periphractic.
6 We remark in passing that the integrand 𝒈𝒏 = 𝑮𝒏 of (2.2) satisfies the identity 𝑮𝒏 = (grad 𝜦)[𝒏×], where grad𝑠 denotes the surface gradient on 𝑡 and the

peration on the right-hand side is as described in (A.40), and so depends only on the distribution of 𝜦 over the surface 𝑡. See the development of (6.11) for
etails.

7 See Fosdick and Royer-Carfagni (2020) for a related discussion.
4
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In the present context, Cesàro’s result implies that if the stretching tensor 𝑫 is smooth throughout a simply connected region and
satisfies the Saint Venant compatibility condition

curl((curl𝑫)⊤) = 0, (2.7)

hen the distortion rate 𝑳 is given as the gradient of a velocity 𝒗 of the form

𝒗(𝒙, 𝑡) = 𝒗0(𝑡) + 𝝎0(𝑡) × (𝒙 − 𝒙̄(0)) + ∫

1

0
(𝑫

(

𝒙̄(𝛼), 𝑡
)

+ (𝒙 − 𝒙̄(𝛼)) × (curl𝑫(𝒙̄(𝛼), 𝑡))⊤)𝒙̄′(𝛼)d𝛼, (2.8)

here 𝒙̄ parametrizes a smooth curve connecting the arbitrarily chosen points 𝒙̄(0) and 𝒙 in the region 𝑡 instantaneously occupied
y the fluid. Here, 𝒗0 and 𝝎0 are arbitrary vector valued functions of time which represent, respectively, a translational velocity
f 𝒙̄(0) and a rigid body angular velocity about (the translating point) 𝒙̄(0) of the entire body of fluid. An interesting consequence
f (2.8) is that, modulo the additive rigid body angular velocity 𝝎0, the vorticity tensor 𝑾 , or its related vorticity vector curl 𝒗,
an be calculated and, thus, is determined by 𝑫 provided that the region occupied by the fluid is simply connected and that 𝑫 is
ompatible.

Consider, now, the fundamental incompatibility questions that are directly associated with the symmetric and skew parts of
he distortion rate 𝜦, namely the tensors 𝑫𝛬 ∶= sym𝜦 and 𝑾 𝛬 ∶= skw𝜦 in the decomposition 𝜦 = 𝑫𝛬 + 𝑾 𝛬. To facilitate the
iscussion, we note that 𝑾 𝛬 and its axial vector 𝝎𝛬 obey the identity

curl𝑾 𝛬 = (div𝝎𝛬)1 − (grad𝝎𝛬)⊤, (2.9)

here grad𝝎𝛬 is given by

grad𝝎𝛬 = (curl𝑫𝛬)⊤+𝑮⊤− 1
2 (tr𝑮)1. (2.10)

ince tr(curl𝑫𝛬) = 0 due to (A.52) and the symmetry of 𝑫𝛬, we thus find that div𝝎𝛬 is given by

div𝝎𝛬 = − 1
2 tr𝑮. (2.11)

dditionally, we see that 𝑫𝛬 obeys the identity

curl((curl𝑫𝛬)⊤) = curl( 12 (tr𝑮)1 −𝑮⊤), (2.12)

In view of (A.54), the left-hand side of (2.12) is symmetric and, consequently, the skew part of the right-hand side of (2.12) must
vanish identically. Using (2.3) and (2.11), while noting from (A.34) that curl((tr𝑮)1) is skew, we find that

skw(curl( 12 (tr𝑮)1 −𝑮⊤)) = curl(( 12 tr𝑮 + div𝝎𝛬)1) = 0, (2.13)

nd, thus, that the right-hand side of (2.12) may be written equivalently as

curl( 12 (tr𝑮)1 −𝑮⊤) = − sym(curl(𝑮⊤)). (2.14)

.2. Alternative representations for the incompatible distortion rate 𝜦

Recalling the normalization requirement (2.4), we see that (2.9)–(2.11) are identically satisfied in subregions where 𝑮 ≡ 0. In
omplimentary subregions of incompatibility, where 𝑮 ≠ 0, while (2.3) determines 𝜦, the conditions (2.9)–(2.11) place restrictions
n the forms of 𝑫𝛬 and 𝝎𝛬 (or equivalently 𝑾 𝛬) with the understanding that 𝜦 is not the gradient of a smooth vector field. For
his situation, there are several possible scenarios to consider and, for definiteness in the following descriptions, we suppose that
he region occupied by the fluid is simply connected. First, we observe that the right-hand side of (2.12) can vanish even though
≠ 0. In this case, according to (2.8) with 𝑫 replaced by 𝑫𝛬, there is a smooth vector field 𝒖 such that

𝑫𝛬 = sym(grad 𝒖). (2.15)

n addition, even if 𝑮 ≠ 0 it may happen that tr𝑮 = 0 or tr𝑮 ≠ 0. These alternatives have the following ramifications:

(A) If tr𝑮 = 0, then according to (2.11) and Stokes’ theorem there is a smooth vector field 𝒘 such that

𝝎𝛬 = 1
2 curl𝒘, div𝒘 = 0, (2.16)

with the consequence that 𝑾 𝛬 = skw(grad𝒘). We thus see that if 𝑮 ≠ 0 but tr𝑮 = 0, then the distortion rate 𝜦 admits a
representation of the form

𝜦 = sym(grad 𝒖)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑫𝛬

+ skw(grad𝒘)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑾 𝛬

, (2.17)

subject to (2.16)2. While 𝜦 is not the gradient of a smooth vector field, we infer from (2.17) that the symmetric and skew
5

parts of 𝜦 involve symmetric and skew gradients of vector fields, respectively.



International Journal of Engineering Science 168 (2021) 103540R. Fosdick and E. Fried

T

𝜑

3

v
W
o

a
t
i
o
i

(B) If tr𝑮 ≠ 0, then according to (2.11) and the Helmholtz representation theorem, there are smooth scalar and vector fields 𝜑
and 𝒘 such that

𝝎𝛬 = grad𝜑 + 1
2 curl𝒘, div𝒘 = 0, (2.18)

with the consequence that 𝑾 𝛬 = skw(grad𝒘) + (grad𝜑)×, where, as explained in Appendix A.1, (grad𝜑)× is the skew tensor
with axial vector grad𝜑, and, thus, that

div𝝎𝛬 = 𝛥𝜑, (2.19)

where 𝛥 is the Laplacian. Using (2.19) in (2.11), we find that 𝜑 is determined by

𝛥𝜑 = − 1
2 tr𝑮. (2.20)

From (2.15) and (2.18)1, if 𝑮 ≠ 0 and tr𝑮 ≠ 0, then we find, subject to (2.18)2, that the distortion rate 𝜦 admits a
representation of the form

𝜦 = sym(grad 𝒖)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑫𝛬

+ skw(grad𝒘) + (grad𝜑)×
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑾 𝛬

. (2.21)

Finally, if the right-hand side of (2.12) does not vanish, we observe that due to a well-known representation theorem for
symmetric second order-tensor fields,8 there are smooth symmetric tensor and vector fields 𝜱 and 𝒖 such that

𝑫𝛬 = curl((curl𝜱)⊤) + sym(grad 𝒖), div𝜱 = 0, (2.22)

with the consequence that

curl((curl𝑫𝛬)⊤) = 𝛥2𝜱, (2.23)

where 𝛥2 is the biharmonic operator. Using (2.22) and (2.23) in (2.12), we find that 𝜱 is determined by

𝛥2𝜱 = curl( 12 (tr𝑮)1 −𝑮⊤). (2.24)

he two cases tr𝑮 = 0 and tr𝑮 ≠ 0 considered above are again possible and, correspondingly, we infer that:

(A′) If tr𝑮 = 0, then (2.16), (2.22), and (2.24) hold and we find, subject to (2.18)2 and (2.22)2, that the distortion rate 𝜦 admits
a representation of the form

𝜦 = curl((curl𝜱)⊤) + sym(grad 𝒖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑫𝛬

+ skw(grad𝒘)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑾 𝛬

. (2.25)

(B′) If tr𝑮 ≠ 0, then (2.18), (2.20), (2.22), and (2.24) hold and we find, subject to (2.18)2 and (2.22)2, that the distortion rate 𝜦
admits a representation of the form

𝜦 = curl((curl𝜱)⊤) + sym(grad 𝒖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑫𝛬

+ skw(grad𝒘) + (grad𝜑)×
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑾 𝛬

. (2.26)

In summary: Within subregions of incompatibility where 𝑮 ≠ 0, the distortion rate 𝜦 has the general representation as shown in
case (B′) above. If the right-hand side of (2.12) vanishes in those subregions, then 𝜱 can be eliminated; otherwise 𝜱 is governed by
(2.22)2 and (2.24). If, alternatively, the right-hand side of (2.11) vanishes in those subregions, then 𝜑 can be eliminated; otherwise

is governed by (2.20).

. Basic laws

This section is devoted to formulating the basic laws underlying the dynamics of a homogeneous and incompressible fluid with
elocity gradient 𝑳 which supports incompatibility as introduced in (2.1) and (2.3), with non-zero incompatibility 𝑮 = −curl𝜦 ≠ 0.
e first express the basic laws in integral form, working with a material region 𝑡 the boundary 𝜕𝑡 of which is smooth and

rientable, with unit normal 𝒏 directed outward from 𝑡, and subsequently localize to obtain their equivalent pointwise versions.
Since 𝒗 and 𝑮 are independent kinematical descriptors, it is necessary to supplement the familiar balance laws for momentum

nd moment of momentum by an additional evolutionary balance law for incompatibility and to augment the balance law for energy
o incorporate transfers of energy that accompany a flux or supply of incompatibility. The second law of thermodynamics is imposed
n the form of the Clausius–Duhem inequality. To emphasize the mechanical aspects of this theory and to promote simplicity, we
pt to specialize and thereafter confine our attention to isothermal processes, in which case the energy balance and Clausius–Duhem
nequality combine to yield a dissipation inequality.

8 See Fosdick and Royer-Carfagni (2005).
6
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3.1. Momentum balance. Moment of momentum balance

To begin, we introduce the mass density 𝜚, Cauchy stress tensor 𝑻 , and specific body force 𝒃. Since we consider only fluids that
are both homogeneous and incompressible, mass balance simplifies to the requirement that the velocity 𝒗 be solenoidal:

div 𝒗 = 0. (3.1)

For a material region 𝑡 with boundary 𝜕𝑡 and outward unit normal 𝒏, momentum balance has the conventional form

d
d𝑡 ∫𝑡

𝜚𝒗d𝑣 = ∫𝜕𝑡
𝑻 𝒏d𝑎 + ∫𝑡

𝜚 𝒃d𝑣. (3.2)

lso, given a point 𝒙0 about which moments are computed and defining 𝒓 by 𝒓(𝒙) = 𝒙 − 𝒙0, the moment of momentum balance for
𝑡 has the conventional form

d
d𝑡 ∫𝑡

𝒓 × 𝜚𝒗d𝑣 = ∫𝜕𝑡
𝒓 × 𝑻 𝒏d𝑎 + ∫𝑡

𝒓 × 𝜚 𝒃d𝑣. (3.3)

pplying the transport and divergence theorems to (3.2) and (3.3) and localizing the resulting identities, we obtain their familiar
ointwise counterparts

𝜚𝒗̇ = div𝑻 + 𝜚 𝒃 and 𝑻 = 𝑻 ⊤. (3.4)

.2. Incompatibility balance

In formulating a balance law for incompatibility, we account for the possibility that the incompatibility of a material region 𝑡
ay be influenced by advective and diffusive transfer across its boundary 𝜕𝑡 and by the action of an external volumetric supply.
hereas advective transfer of incompatibility involves the surfacial incompatibility vector 𝒈𝒏 = 𝑮𝒏 and is measured by the integral

f 𝑮𝒏⊗𝒗 over 𝜕𝑡, additional fields are required to incorporate diffusive transfer and external supply of incompatibility. We therefore
ntroduce a second-order tensor 𝑱 𝒏, the surfacial incompatibility flux, depending on the surface normal 𝒏, and a second-order tensor

, the incompatibility supply per unit volume, and express the balance of incompatibility for 𝑡 as

d
d𝑡 ∫𝑡

𝑮 d𝑣 = ∫𝜕𝑡
𝑮𝒏⊗ 𝒗d𝑎 − ∫𝜕𝑡

𝑱 𝒏 d𝑎 + ∫𝑡
𝑯 d𝑣, (3.5)

pplying the transport theorem to the left-hand side of (3.5) and the divergence theorem to the first term on the right-hand side of
3.5), we obtain the condition

∫𝑡
(𝑮̇ −𝑮𝑳⊤)d𝑣 = −∫𝜕𝑡

𝑱 𝒏 d𝑎 + ∫𝑡
𝑯 d𝑣, (3.6)

hich, by a standard localization argument, implies that 𝑱 𝒏 must depend linearly on 𝒏 and is given in terms of a third-order tensor 𝙅 ,
he incompatibility diffusion flux, with the property that 𝑱 𝒏 = 𝙅𝒏. In turn, by applying the divergence theorem and the arbitrariness
f 𝑡 to the resulting integral equation we obtain the pointwise incompatibility balance

𝑮̇ = 𝑮𝑳⊤− div 𝙅 +𝑯 . (3.7)

Taking into consideration the requirements (3.1) and (2.5) that 𝒗 and 𝑮 be solenoidal, we find with reference to (A.44) that

(grad𝑮)𝒗 −𝑮𝑳⊤ = curl(𝑮 × 𝒗). (3.8)

hus, using the definition (A.56)2 of the material time derivative of a second-order tensor field, we see that the pointwise
ncompatibility balance (3.7) can be written alternatively as

𝜕𝑮
𝜕𝑡

+ curl(𝑮 × 𝒗) = − div 𝙅 +𝑯 . (3.9)

pplying the divergence to both sides of (3.9) and invoking the requirement (2.5) that 𝑮 must be solenoidal, we find that 𝙅 and 𝑯
ust satisfy the consistency condition

div(div 𝙅 ) = div𝑯 . (3.10)

hus, the specification of an external supply 𝑯 of incompatibility cannot be completely arbitrary. If, in particular, 𝙅 is skew in the
ense that 𝙅 𝑡 = −𝙅 , where 𝙅 𝑡 is the third-order tensor such that (𝙅 𝑡𝒃)𝒂 = (𝙅𝒂)𝒃, as defined in (A.13), for any choice of vectors 𝒂
7

nd 𝒃, then the consistency condition (3.10) reduces to the requirement that div𝑯 = 0.
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3.3. Equivalent surfacial incompatibility balance

In (2.2), we related the integral of 𝒈𝒏 = 𝑮𝒏 over a material surface 𝑡 with unit surface orientation 𝒏 and boundary 𝜕𝑡 ∶= 𝑡
ith unit tangent 𝒕 relative to 𝒏 directly to the incompatibility condition (2.3). It, thus, seems reasonable that the volumetric

ncompatibility balance (3.5) for any sufficiently smooth material region 𝑡 should be equivalent to a surfacial incompatibility
alance that applies on any sufficiently smooth material surface 𝑡. To see this, suppose that we are given a material surface 𝑡 with
nit orientation 𝒏 and boundary 𝜕𝑡 with unit tangent 𝒕 relative to 𝒏, and we apply each side of (3.9) to 𝒏, integrate the resulting
dentity over 𝑡, and invoke the transport identity9

d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝑡

( 𝜕𝑮
𝜕𝑡

+ curl(𝑮 × 𝒗)
)

𝒏d𝑎 (3.11)

n tandem with the consequence

∫𝑡
(div 𝙅 )𝒏d𝑎 = ∫𝜕𝑡

(𝙅 𝑡𝒏)𝒑d𝑠 + ∫𝑡
((grad 𝙅 )[𝒏⊗ 𝒏⊗ 𝒏] + 𝙅 [𝑲 − 2𝐻𝒏⊗ 𝒏])d𝑎 (3.12)

f the surface divergence theorem, where 𝒑 is the outward tangent-normal to the edge 𝜕𝑡 of 𝑡, (grad 𝙅 )[𝒏⊗𝒏⊗𝒏] and 𝙅 [𝑲−2𝐻𝒏⊗𝒏]
re the vector fields defined, according to (A.11)–(A.14), such that ((grad 𝙅 )[𝒏 ⊗ 𝒏 ⊗ 𝒏]) ⋅ 𝒂 = (grad 𝙅 ) ⋅ (𝒂 ⊗ 𝒏 ⊗ 𝒏 ⊗ 𝒏) and
⋅𝙅 [𝑲−2𝐻𝒏⊗𝒏] = 𝙅 ⋅(𝒂⊗𝑲−2𝐻𝒂⊗𝒏⊗𝒏) for any vector 𝒂, 𝑲 ∶= −grad 𝒏 is the curvature tensor of 𝑡, and 𝐻 ∶= 1

2 tr𝑲 = − 1
2 div 𝒏

is the mean curvature of 𝑡.10 This yields a surfacial balance of incompatibility of the form

d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = −∫𝜕𝑡
(𝙅 𝑡𝒏)𝒑d𝑠 + ∫𝑡

(𝑯𝒏 − (grad 𝙅 )[𝒏⊗ 𝒏⊗ 𝒏] − 𝙅 [𝑲 − 2𝐻𝒏⊗ 𝒏])d𝑎, (3.13)

hich, for 𝙅 𝑡 = −𝙅 , (3.13) reduces to
d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝜕𝑡
(𝙅𝒏)𝒑d𝑎 + ∫𝑡

𝑯𝒏d𝑎, (3.14)

where, in keeping with the comment immediately after the consistency condition (3.10), 𝑯 must satisfy div𝑯 = 0. The specialization
(3.14) of (3.13) is solely for illustrative purposes, as our further developments do not require that the incompatibility flux 𝙅 satisfy
𝙅 𝑡 = −𝙅 .

By Stokes’ theorem and the condition (2.5), we note that (3.11) can be recast as

d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝑡

𝜕𝑮
𝜕𝑡

𝒏d𝑎 + ∫𝜕𝑡
𝑮(𝒗 × 𝒕)d𝑠, (3.15)

hereas the first of the two integrals on the right-hand side of (3.15) represents the total rate of change of the incompatibility
ithin the region instantaneously occupied by the surface 𝑡, the remaining integral represents the total advective rate of transfer
f incompatibility through the edge 𝜕𝑡. According to the expression 𝑮(𝒗 × 𝒕) of the integrand, at each point on the edge 𝜕𝑡 the
urfacial incompatibility 𝒈𝒎 = 𝑮𝒎 on the oriented surface whose unit normal 𝒎 is parallel to 𝒗 × 𝒕 is advected onto 𝑡 with the
peed |𝒗|. There is another interpretation of this advection that may help to understand the process. Suppose we introduce the
ositively-oriented orthonormal basis {𝒕,𝒏,𝒑} on 𝜕𝑡, and observe that, on substituting the consequence

𝒗 × 𝒕 = (𝒗 ⋅ 𝒑)𝒏 − (𝒗 ⋅ 𝒏)𝒑 (3.16)

9 See Bowen (1989, eqn. (2.2.15)).
10 To explain briefly the origin of (3.12), we begin with the surface divergence theorem in the form

∫𝑡
div (𝙅 𝑡𝒏)tan d𝑎 = ∫𝜕𝑡

(𝙅 𝑡𝒏)𝒑d𝑠,

here (𝙅 𝑡𝒏)tan is the projection of 𝙅 𝑡𝒏 onto the tangent space of the surface 𝑡 and is given by

(𝙅 𝑡𝒏)tan = 𝙅 𝑡𝒏(1 − 𝒏⊗ 𝒏) = 𝙅 𝑡𝒏 − (𝙅 𝑡𝒏)𝒏⊗ 𝒏.

or the surface divergence in the integrand on the left-hand side above, we thus have the identity

div (𝙅 𝑡𝒏)tan = (div 𝙅 )𝒏 + 𝙅 𝑡[grad 𝒏] − (𝙅 𝑡𝒏)𝒏 div 𝒏 − grad (((𝙅 𝑡𝒏)𝒏))𝒏,

he last term of which vanishes because the surface gradient is annihilated by the operation on 𝒏. Moreover, the surface divergence div 𝙅 of 𝙅 is defined by

div 𝙅 ∶= div 𝙅 − ((grad 𝙅 )𝒏)𝒏,

here grad 𝙅 is evaluated on . Thus, we find that

div (𝙅 𝑡𝒏)tan = (div 𝙅 )𝒏 −
(

((grad 𝙅 )𝒏)𝒏
)

𝒏 + 𝙅 𝑡[grad 𝒏] − (𝙅 𝑡𝒏)𝒏 div 𝒏,

nd consequently that the surface divergence theorem may be written as

∫𝑡

(

(div 𝙅 )𝒏 − (grad 𝙅 )[𝒏⊗ 𝒏⊗ 𝒏] + 𝙅 𝑡[grad 𝒏 − (div 𝒏)(𝒏⊗ 𝒏)]
)

d𝑎 = ∫𝜕𝑡
(𝙅 𝑡𝒏)𝒑d𝑠.

inally, using the provided definitions of the curvature tensor 𝑲 , which is necessarily symmetric, and the mean curvature 𝐻 , while observing that 𝒏 ⊗ 𝒏 is
8

ymmetric, we see that this last result may be rewritten as in (3.12).
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of the resolution 𝒗 = (𝒗 ⋅ 𝒕)𝒕+ (𝒗 ⋅ 𝒏)𝒏+ (𝒗 ⋅ 𝒑)𝒑 of 𝒗 relative to {𝒕,𝒏,𝒑} in the second term on the right-hand side of (3.11), we obtain
the identity

d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝑡

𝜕𝑮
𝜕𝑡

𝒏d𝑎 + ∫𝜕𝑡
((𝒗 ⋅ 𝒑)𝑮𝒏 − (𝒗 ⋅ 𝒏)𝑮𝒑)d𝑠. (3.17)

he advective transport through its edge 𝜕𝑡 of 𝑡 can thus be interpreted as the total excess of a component (𝒗 ⋅ 𝒑)𝑮𝒏 = (𝑮𝒏⊗ 𝒗)𝒑
hat ‘glides’ in the direction of 𝒑 of the tangent-normal of 𝜕𝑡 relative to a component (𝒗 ⋅ 𝒏)𝑮𝒑 = (𝑮𝒑 ⊗ 𝒗)𝒏 that ‘climbs’ in the
irection of the restriction to 𝜕𝑡 of the normal 𝒏 to 𝑡. Notice, furthermore, that with the aid of (A.13) we may write (3.17) as

d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝑡

𝜕𝑮
𝜕𝑡

𝒏d𝑎 + ∫𝜕𝑡
(𝙆𝒏)𝒑d𝑠, (3.18)

here 𝙆 ∶= −(𝑮 ⊗ 𝒗 − (𝑮 ⊗ 𝒗) 𝑡) = −𝙆 𝑡, which shows that the edge advective transport juxtaposes nicely with the edge diffusive
ransport in the first term on the right-hand sides of either (3.13) or (3.14).

Suppose, finally, that we consider a surfacial balance of incompatibility as primitive and propose, as is natural, that
d
d𝑡 ∫𝑡

𝑮𝒏d𝑎 = ∫𝑡
𝒇 (𝒏,𝑲) d𝑎 + ∫𝜕𝑡

𝒒(𝒏,𝒑) d𝑠 + ∫𝑡
𝑯𝒏d𝑎, (3.19)

here, recalling (2.2), 𝒈𝒏 = 𝑮𝒏 is the surfacial incompatibility vector on 𝑡 with unit orientation 𝒏, 𝒇 (𝒏,𝑲) denotes the surfacial
ncompatibility flux vector on 𝑡 which depends on 𝒏 and the curvature tensor 𝑲 = −grad 𝒏, 𝒒(𝒏,𝒑) is the edge incompatibility
iffusion flux vector which depends on the edge orientation through 𝒏 and 𝒑, and, in accordance with (3.5), 𝑯𝒏 is the incompatibility
upply vector to 𝑡. Then, substituting (3.11) into the left-hand side of (3.19) we see that the resulting equation may be reorganized
s the sum of a surface integral over 𝑡 and an edge integral over 𝜕𝑡 which must vanish for all 𝑡, a condition equivalent to that
tudied by Fosdick (2016, §3.1, pp. 281–285). Thus, we may conclude that 𝒒(𝒏,𝒑) must depend bilinearly on 𝒏 and 𝒑 and be given
n terms of a third order tensor 𝙌 , an incompatibility diffusion flux, such that 𝒒(𝒏,𝒑) = (𝙌𝒏)𝒑. Moreover, by comparing (3.13) and
3.19) we see that on setting

𝙌 = −𝙅 𝑡, 𝒇 (𝒏,𝑲) = −(grad 𝙅 )[𝒏⊗ 𝒏⊗ 𝒏] − 𝙅 [𝑲 − 2𝐻𝒏⊗ 𝒏], (3.20)

he volumetric balance of incompatibility for 𝑡 expressed in (3.5) and the surfacial balance of incompatibility for 𝑡 expressed in
3.19) are equivalent.

.4. Energy balance

If 𝜦 = 0, so that the flow is compatible, then the principle of energy balance requires that the rate at which the sum of the
nternal and kinetic energies of a material region 𝑡 be equal to the power expended on 𝑡 by external agencies plus the rate at
hich the energy of 𝑡 changes due to the flow of heat through 𝜕𝑡 and external radiative heating within 𝑡. If, however, 𝜦 ≠ 0
nd the flow is incompatible, then exchanges of energy that accompany the flux and supply of incompatibility also occur and must
lso be taken into consideration when balancing energy. To accomplish this, we introduce a tensor 𝜫 that serves as a chemical
otential for incompatibility. Additionally, we introduce a constant specific moment of inertia 𝜄 > 0 to account explicitly for the
inetic energy of the additional kinematical descriptor 𝑮.11 Using 𝜀, 𝒒, and 𝑟 to respectively denote the specific internal energy,

11 Based upon an idea of Ostwald within his development of energetics during the 1890’s and early 20th century, we consider the constant 𝜚𝜄2 to be the
‘‘capacity’’ for the kinetic energy of incompatibility — incompatibility being considered as a distinct developing system. Accordingly, its ‘‘intensity’’ is measured
by the quantity 1

2
|𝑮|

2 in (3.21). According to Deltete (2008), Ostwald sought in his development of energetics to ‘‘construct a world view exclusively from
energetic material without using the concept of matter’’. He promoted the point of view that every object or system is identified as energy of different, distinct
forms, and that each form is resolved into factors, one indicating the ‘‘intensity’’ of the energy and the other being its ‘‘capacity’’. He conceived of the capacity
factor of a given energetic system as ‘‘the amount of energy which, with a given intensity, is present in a system’’ and he offered a few elementary examples.

Deltete (2008) remarks that Ostwald should not be considered among the pioneers of energetics, because many of the basic approaches and principles of
that enterprise had already been set forth by Georg Helm in his thesis (see Deltete Deltete (1999) for an English translation of this work), together with a
few others. However, none of the earlier formulations of energetics drew much attention, and their authors, with few exceptions, were not widely known. On
the other hand, when Ostwald turned his attention to the theory of energetics he was already a scientist with an international reputation and, together with
Arrhenius and van’t Hoff, he was recognized as a founder of physical chemistry and was widely considered its most articulate and forceful spokesman. Thus,
almost immediately he became the central figure in the subsequent development of energetics.

Like Helm, Ostwald emphasized the ‘capacity-intensity’ characterization of systems and proposed a Factorization Principle, as basic to energetics calling it ‘‘the
oundation of modern energetics’’. As an example interpretation of this principle, Jammer (1961, p. 108) observes that in early 1900 Ostwald entered the debate
bout the concept of ‘mass’ and with his developing theory of energetics supported the notion that ‘mass’ should be defined in terms of energy. He conceived of
mass’ as merely an embodiment of the capacity that a system has for kinetic energy, with its associated intensity being 1

2
|𝒗|2, just as specific heat is a capacity

for the system of thermal energy, its intensity being temperature.
It is interesting to learn from Deltete (2008) how energetics is thought to have emerged at the end of the 19th century. He writes that, for more than 200

years until the end of the 19th century physicists generally had a clear fixed goal: to seek a mechanical explanation for natural phenomena. But, when Heinrich
Hertz wrote in 1894 that ‘‘all physicists agree that the problem of physics consists in tracing the phenomena of nature back to the simple laws of mechanics’’, the
physics community did not agree, and many doubted that mechanics was the most basic science. Thermodynamics and electromagnetic theory were mentioned
as alternatives and energetics, which was vigorously debated by Ostwald and others throughout the 1890’s and the early 1900’s, was another. Interestingly, the
law of conservation of energy, which traces back to Robert Mayer, and the thermodynamic writings of Rudolf Clausius, William Thomson (First Baron Kelvin),
and Josiah Willard Gibbs, seems to have played a fundamental role in stimulating the early development of energetics as an attempt to unify all of natural
science by means of the concept of energy and of laws describing energy in its various forms.

In the end, Ostwald’s energetic theory was not followed as it was thought to be of little predictive value and it never fully emerged from metaphysics to gain
9

a physical status outside of ontological belief without philosophical overtones.
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heat flux vector, and specific external heat supply, we thus express the energy balance for 𝑡 as

d
d𝑡 ∫𝑡

𝜚(𝜀 + 1
2 |𝒗|

2 + 1
2 𝜄

2
|𝑮|

2)d𝑣 = ∫𝜕𝑡
𝑻 𝒏 ⋅ 𝒗d𝑎 + ∫𝑡

𝜚 𝒃 ⋅ 𝒗d𝑣 − ∫𝜕𝑡
𝒒 ⋅ 𝒏d𝑎 + ∫𝑡

𝜚𝑟d𝑣 − ∫𝜕𝑡
𝜫 ⋅ 𝙅𝒏d𝑎 + ∫𝑡

𝜫 ⋅𝑯 d𝑣. (3.21)

pplying the transport theorem and the divergence theorem to (3.21) and invoking the pointwise momentum and incompatibility
alances (3.4)1 and (3.7), we obtain the internal energy balance

𝜚𝜀̇ = (𝑻 −𝜫⊤𝑮) ⋅𝑳 + (𝜫 − 𝜚𝜄2𝑮) ⋅ 𝑮̇ − 𝙅 ⋅ grad𝜫 − div 𝒒 + 𝜚𝑟. (3.22)

.5. Dissipation inequality

Introducing the specific entropy 𝜂 and the absolute temperature 𝜃 > 0, we impose the second law of thermodynamics through
he conventional Clausius–Duhem inequality

d
d𝑡 ∫𝑡

𝜚𝜂 d𝑣 ≥ −∫𝜕𝑡

𝒒 ⋅ 𝒏
𝜃

d𝑎 + ∫𝑟

𝜚𝑟
𝜃

d𝑣. (3.23)

pplying the transport and divergence theorems to (3.23), introducing the specific Helmholtz free energy

𝜓 = 𝜀 − 𝜃𝜂, (3.24)

nd using the pointwise internal energy balance (3.22) to eliminate the specific external heat supply 𝑟, we arrive at the inequality

𝜚𝛿 ∶= (𝑻 −𝜫⊤𝑮) ⋅𝑳 + (𝜫 − 𝜚𝜄2𝑮) ⋅ 𝑮̇ − 𝙅 ⋅ grad𝜫 − 𝜚(𝜓̇ + 𝜂𝜃̇) −
𝒒
𝜃
⋅ grad 𝜃 ≥ 0, (3.25)

here 𝛿 denotes the specific dissipation.

. Constitutive relations for incompressible fluids under isothermal conditions

We focus hereafter on isothermal processes, so that the absolute temperature 𝜃 is constant:

𝜃 = constant. (4.1)

n line with the assumption that the fluid is homogeneous and incompressible, which requires that the mass density 𝜚 be constant,
it follows that the specific free-energy 𝜓 , which nominally depends on 𝜃 and 𝜚, must be constant:

𝜓 = constant. (4.2)

oreover, taking into consideration the constraint (3.1) of incompressibility, we may without loss of generality take the Cauchy
tress 𝑻 to be of the form

𝑻 = −𝑞1 + 𝑺 +𝜫⊤𝑮, (4.3)

here 𝑞 is a constitutively indeterminate scalar field that does not affect the internal power, 𝑺 is a corresponding extra stress which
e take to satisfy

tr 𝑺 = 0, (4.4)

nd 𝜫⊤𝑮 is an incompatibility stress. We observe from the moment of momentum balance (3.4)2 that 𝑺 and 𝜫 must satisfy

skw(𝑺 +𝜫⊤𝑮) = 0 or, equivalently, skw𝑺 = − skw(𝜫⊤𝑮). (4.5)

or later reference, it is important to notice that the pressure 𝑝 corresponding to the stress 𝑻 is given by

𝑝 ∶= − 1
3 tr 𝑻 = 𝑞 − 1

3 tr(𝜫
⊤𝑮). (4.6)

ith the aid of the incompressibility condition (3.1) and using (4.1)–(4.3) in the dissipation inequality (3.25), we now find that

𝜚𝛿 = 𝑺 ⋅𝑳 + (𝜫 − 𝜚𝜄2𝑮) ⋅ 𝑮̇ − 𝙅 ⋅ grad𝜫 ≥ 0. (4.7)

n the basis of (4.7) and respecting (4.4), it is natural to consider constitutive relations that provide 𝑺, 𝜫 , and 𝙅 in terms of 𝑫, 𝑮,
nd grad𝑮. Instead of determining the most general class of such relations that are consistent with (4.7) in all possible processes, we
onsider the particular subclass of constitutive relations for which 𝑺, 𝜫 , and 𝙅 are linear functions of 𝑫, 𝑮, and grad𝑮, respectively.
pecifically, complying with (4.5), we assume that

𝑺 = 2𝜚𝜈𝑫, (4.8)

here 𝜈 > 0 is the kinematic viscosity,

𝜫 = 𝜚𝜄2𝑮, (4.9)
10
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and that

𝙅 = − 𝜅
𝜚𝜄2

grad𝜫 = −𝜅 grad𝑮, (4.10)

where 𝜅 > 0 is a diffusivity associated with incompatibility transport. Using (4.8) and (4.9) in (4.11), we next find that the Cauchy
stress tensor 𝑻 takes the form

𝑻 = −𝑞1 + 𝜚(2𝜈𝑫 + 𝜄2𝑮⊤𝑮), (4.11)

where, according to (4.6), the pressure is given by

𝑝 = 𝑞 − 1
3𝜚𝜄

2 tr(𝑮⊤𝑮) = 𝑞 − 1
3𝜚𝜄

2
|𝑮|

2, ⊤ (4.12)

nd, thus, 𝑻 differs from the conventional expression −𝑝1+2𝜚𝜈𝑫 for the stress in an incompressible linearly viscous fluid with mass
ensity 𝜚 and kinematic viscosity 𝜈 by a residual contribution due to

𝑹 ∶= 𝜚𝜄2𝑮⊤𝑮, (4.13)

hich we refer to as the ‘incompatibility stress tensor’. It is interesting to observe from (4.12) that the kinetic energy due to
ncompatibility, namely 1

2 tr𝑹 = 1
2𝜚𝜄

2
|𝑮|

2, plays a specific role in determining the pressure 𝑝.
Using (4.9)–(4.10) in (4.7), we find in addition that the specific dissipation 𝛿 reduces to

𝛿 = 2𝜈|𝑫|

2 + 𝜄2𝜅| grad𝑮|

2 ≥ 0 (4.14)

nd, thus, apart from the conventional contribution 2𝜈|𝑫|

2 stemming from viscous dissipation, accounts also for dissipation due to
he transport of incompatibility through the term 𝜄2𝜅| grad𝑮|

2.

. Final governing equations

Augmenting the pointwise momentum balance (3.4)1 with (4.11), we arrive at a slight modification,

𝒗̇ = −1
𝜚
grad 𝑞 + 𝜈𝛥𝒗 + 𝜄2 div(𝑮⊤𝑮) + 𝒃, (5.1)

f the classical equation for an incompressible and linearly viscous fluid with constant mass density 𝜚 and constant kinematic
iscosity 𝜈. Furthermore, using (4.10) in the pointwise incompatibility balance (3.7), we obtain an evolution equation for 𝑮:

𝑮̇ = 𝑮𝑳⊤+ 𝜅 𝛥𝑮 +𝑯 . (5.2)

n conjunction with the constraint (3.1) of incompressibility and the condition (2.5) arising from the definition (2.3) of 𝑮 and
A.42), the system (5.1)–(5.2) provides a complete set of evolution equations for the velocity 𝒗, pressure 𝑝, and the incompatibility
. Incorporating the identity (3.8) along with the definition (A.56)2 of the material time derivative of a second-order tensor field,
e see from the consistency condition (5.2) that the external supply 𝑯 of incompatibility must also be solenoidal:

div𝑯 = 0. (5.3)

lthough, as remarked earlier after (3.10), (5.3) follows if 𝙅 = −𝙅 𝑡, the constitutive relation (4.10) determining 𝙅 need not yield this
symmetry. Instead (5.3) follows from the consequence div(div 𝙅 ) = 0 of (4.10), which holds regardless of whether or not 𝙅 = −𝙅 𝑡.
ence, none of our developments hinge on assuming that 𝙅 = −𝙅 𝑡.

. Boundary conditions at a rigid, fixed, impermeable wall

Consider a fixed, rigid, impermeable wall with unit normal 𝒎 directed inward toward the region containing the fluid. Consistent
ith the assumption that the wall is impermeable, the normal component 𝒗 ⋅ 𝒎 of the velocity 𝒗 must satisfy the impenetrability

ondition

𝒗 ⋅𝒎 = 0. (6.1)

or the incompatibility vector 𝒈𝒎 = 𝑮𝒎 associated with the wall surface, we propose, in contrast a condition depending on
he magnitude |(1 −𝒎⊗𝒎)𝑻𝒎| of the shear stress evaluated at the wall. If that magnitude is sufficiently small, we require that
𝒎 = 𝑮𝒎 = 0. Otherwise, we allow for incompatibility associated with the wall to be generated and directed normal to the wall
urface. Specifically, we suppose that there exists a threshold value 𝜏𝑐 of |(1 −𝒎⊗𝒎)𝑻𝒎| such that

𝒈𝒎 = 𝑮𝒎 =

{

0, if |(1 −𝒎⊗𝒎)𝑻𝒎| < 𝜏𝑐 ,

𝛾𝒎, if |(1 −𝒎⊗𝒎)𝑻𝒎| ≥ 𝜏𝑐 ,
(6.2)

here 𝛾 = |𝑮𝒎| is a given scalar measure of incompatibility induced by the shedding of vortices at the wall.
Supplemental to (6.1), we require that 𝒗 satisfy the conventional no-slip boundary condition

(1 −𝒎⊗𝒎)𝒗 = 0. (6.3)
11
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Additionally, since surfaces in the flow domain that intersect the wall, and are oriented by any unit tangent vector 𝒕 perpendicular
to 𝒎, are not associated with the wall, they cannot be a source of generation of incompatibility into or out of the flow domain.
Thus, the incompatibility vector 𝒈𝒕 = 𝑮𝒕 associated with such a surface and evaluated at the wall is required to satisfy the boundary
ondition

𝒈𝒕 ⋅𝒎 = 𝑮𝒕 ⋅𝒎 = 0 for all 𝒕 ⟂ 𝒎. (6.4)

Observing from (6.2) and (6.4) that

(1 −𝒎⊗𝒎)𝑮⊤𝑮𝒎 = 0 (6.5)

t the wall, we see with reference to the expression (4.11) for 𝑻 that

(1 −𝒎⊗𝒎)𝑻𝒎 = 2𝜚𝜈(1 −𝒎⊗𝒎)𝑫𝒎. (6.6)

he alternative involving the threshold value 𝜏𝑐 , as expressed in (6.2), thus depends only on the magnitude 2𝜚𝜈|(1−𝒎⊗𝒎)𝑫𝒎| of
he viscous contribution to the total shear stress evaluated at the wall and (6.2) can be written more explicitly as

𝒈𝒎 = 𝑮𝒎 =

{

0, if 2𝜚𝜈|(1 −𝒎⊗𝒎)𝑫𝒎| < 𝜏𝑐 ,

𝛾𝒎, if 2𝜚𝜈|(1 −𝒎⊗𝒎)𝑫𝒎| ≥ 𝜏𝑐 ,
(6.7)

f, in addition, 2𝜚𝜈|(1 −𝒎⊗𝒎)𝑫𝒎| ≥ 𝜏𝑐 , so that the condition 𝑮𝒎 = 𝛾𝒎 applies at the wall, then

(1 −𝒎⊗𝒎)𝑮⊤𝑮𝒎 = 𝛾(𝑮⊤𝒎 − 𝛾𝒎), (6.8)

nd, referring to (6.5), we find that

𝑮𝒎 = 𝛾𝒎 at the wall ⟹ 𝑮⊤𝒎 = 𝛾𝒎 at the wall. (6.9)

ince the orientation 𝒆 of any surface that intersects the wall may be written as 𝒆 = (𝒆 ⋅𝒎)𝒎+ (𝒆 ⋅ 𝒕)𝒕 for some 𝒕 perpendicular to 𝒎,
e infer from (6.4) and (6.7) that the incompatibility vector 𝒈𝒆 = 𝑮𝒆 associated with such a surface satisfies 𝒈𝒆 ⋅𝒎 = 𝑮𝒆 ⋅𝒎 = (𝒆 ⋅𝒎)𝛾

and 𝒈𝒆 ⋅ 𝒕 = (𝒆 ⋅ 𝒕)𝑮𝒕 ⋅ 𝒕.
Finally, using the consequence 𝑮𝒎 = −(curl𝜦)𝒎 = (grad𝜦)[𝒎×] of (A.40) in conjunction with the decomposition

grad𝜦 = grad 𝜦 + ((grad𝜦)𝒎)⊗𝒎 (6.10)

of the gradient grad𝜦 of 𝜦 on the wall into a tangential component and a normal component ((grad𝜦)𝒎)⊗𝒎, we observe that 𝒈𝒎
can be expressed as

𝒈𝒎 = 𝑮𝒎 = (grad 𝜦)[𝒎×]. (6.11)

We hence conclude that the proposed boundary condition (6.7) encompasses the notion that incompatibility at a wall is associated
with heterogeneity of the surface gradient of the incompatible distortion rate 𝜦.

7. Compatible and incompatible solutions in steady plane Poiseuille flow

7.1. Preliminaries

Given a right-handed orthonormal basis {𝒊1, 𝒊2, 𝒊3} and a choice 𝒐 of origin, let 𝑥𝑖 = (𝒙 − 𝒐) ⋅ 𝒊𝑖, 𝑖 = 1, 2, 3, denote the associated
rectangular Cartesian coordinates. We consider a steady two-dimensional flow within an infinite rectangular channel in the 𝑥3 = 0
plane with walls parallel to 𝒊1 and located at 𝑥2 = −ℎ and 𝑥2 = ℎ, as driven by a negative pressure gradient with uniform streamwise
component satisfying

𝒊1 ⋅ grad 𝑝 = −𝑃
𝓁
, 𝑃 > 0, (7.1)

ith 𝓁 > 0 being a characteristic length in the streamwise direction. The flow domain is defined by −∞ < 𝑥1 < ∞, −ℎ ≤ 𝑥2 ≤ ℎ,
∞ < 𝑥3 < ∞. To ensure that the velocity 𝒗 and the incompatibility 𝑮 are solenoidal per the requirements (2.5) and (3.1), we
ssume that they are given by

𝒗 = 𝑣𝒊1 and 𝑮 = 𝐺𝒊2 ⊗ 𝒊1 + 𝛤 𝒊2 ⊗ 𝒊2, (7.2)

here 𝑣 and 𝐺 depend at most on 𝑥2 and 𝛤 is a constant. As an immediate consequence of (7.2)2, we see that

tr𝑮 = 𝛤 = constant. (7.3)

oreover, we see with reference to (A.36) that

curl(𝑮⊤) = curl(𝐺𝒊1 ⊗ 𝒊2) = ((grad𝐺)×)𝒊2 ⊗ 𝒊1 = 𝐺′(𝒊2 × 𝒊2)⊗ 𝒊1 = 0, (7.4)

here a prime denotes differentiation with respect to 𝑥2. For 𝑮 as defined in (7.2)2, we also see that
1 (tr𝑮)1 −𝑮⊤) = 0. (7.5)
12
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If 𝛤 ≠ 0, then alternative (B) of Section 2.1 applies. Thus, (2.15) holds and there exists a vector field 𝒖 such that 𝑫𝛬 is given by

𝑫𝛬 = sym(grad 𝒖). (7.6)

oreover, (2.18) holds and there exist scalar and vector fields 𝜑 and 𝒘 such that 𝝎𝛬 is given by

𝝎𝛬 = grad𝜑 + 1
2 curl𝒘, div𝒘 = 0, (7.7)

nd, recalling (7.3), (2.20) simplifies to

𝛥𝜑 = − 1
2𝛤 = constant. (7.8)

dditionally, noting (A.6), 𝜦 admits the representation

𝜦 = sym(grad 𝒖) + skw(grad𝒘) + (grad𝜑)×. (7.9)

n particular, however, (7.2)2 ensures that 𝜦 is determined by the scalar quantities 𝐺 and 𝛤 through

𝜦(𝒙) =
(

𝛤𝑥1 − ∫

𝑥2

−ℎ
𝐺(𝑥̄2)d𝑥̄2

)

𝒊2 ⊗ 𝒊3, (7.10)

nd, of course, since (2.3) is satisfied, 𝜦 cannot be the gradient of a vector field within the channel.
The dependence of 𝜦 on 𝑥1 may seem puzzling and somewhat ponderous. However it can be shown that

∫𝑡
𝜦𝒕d𝑠 = −

(

∫𝑡
(𝛤 𝒊2 + 𝐺(𝑥2)𝒊1) ⋅ 𝒏d𝑎

)

𝒊2 (7.11)

or any circuit 𝑡 spanned by the surface 𝑡 in the flow domain. Thus, for any 𝒊1-translate of 𝑡 to 𝑡(𝑐) ∶= {𝒚 ∈ E3 ∣ 𝒚 = 𝒙+𝑐𝒊1,𝒙 ∈ 𝑡},
here 𝑐 = constant, it follows that the integral is 𝒊1-translation invariant:

∫𝑡(𝑐)
𝜦𝒕d𝑠 = ∫𝑡

𝜦𝒕d𝑠. (7.12)

learly, there are many circuits 𝑡 for which the integral (7.11) does not vanish, for example for any circuit lying in an 𝑥1 = constant
r 𝑥2 = constant plane for which 𝒏 = 𝒊1 or 𝒏 = 𝒊2, respectively. And there are some circuits for which (7.11) vanishes, for example
or any circuit lying in an 𝑥3 = constant surface for which 𝒏 = 𝒊3. In any case, the 𝑥1 dependence in (7.10), while being present in
he incompatible distortion rate 𝜦, is not present in the incompatibility 𝑮 or any physical field directly dependent upon it.

.2. Governing equations and boundary conditions

From (7.2), we find that

𝑳 = 𝑣′𝒊1 ⊗ 𝒊2, 𝛥𝒗 = 𝑣′′𝒊1, div(𝑮⊤𝑮) = 𝛤𝐺′𝒊1,

𝑮𝑳⊤ = 𝛤𝑣′𝒊2 ⊗ 𝒊1, grad𝑮 = 𝐺′𝒊2 ⊗ 𝒊1 ⊗ 𝒊2, 𝛥𝑮 = 𝐺′′𝒊2 ⊗ 𝒊1,

}

(7.13)

nd, moreover, from the definition (4.13) of the incompatibility stress tensor 𝑹, that

𝑹 = 𝜚𝜄2𝐺2𝒊1 ⊗ 𝒊1 + 𝜚𝜄2𝛤𝐺(𝒊1 ⊗ 𝒊2 + 𝒊2 ⊗ 𝒊1) + 𝜚𝜄2𝛤 2𝒊2 ⊗ 𝒊2. (7.14)

ccording to (4.12), we thus have the relation

𝑝 = 𝑞 − 1
3𝜚𝜄

2(𝐺2 + 𝛤 2), (7.15)

nd it follows that

𝒊1 ⋅ grad 𝑝 = 𝒊1 ⋅ grad 𝑞. (7.16)

sing (7.1) and (7.13) in (5.1)–(5.2) while recalling that 𝛤 is constant, we then find that

grad 𝑞 = −𝑃
𝓁
𝒊1, (7.17)

nd we obtain a system of two second-order ordinary-differential equations for 𝑣 and 𝐺:
(

𝑣′ + 𝜄2𝛤
𝜈
𝐺
)′

= − 𝑃
𝜚𝜈𝓁

,
(

𝐺′ + 𝛤
𝜅
𝑣
)′

= 0. (7.18)

Applying the boundary conditions (6.1) and (6.3) to (7.2)1, we find that 𝑣 must satisfy

𝑣(±ℎ) = 0. (7.19)

dditionally, applying the boundary conditions (6.2) and (6.4) to (7.2)2, we find that 𝛤 is determined according to

𝛤 =

{

0, if 𝜚𝜈|𝑣′(±ℎ)| < 𝜏𝑐 ,
′

(7.20)
13
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and that 𝐺 must satisfy

𝐺(±ℎ) = 0. (7.21)

e consider the alternatives 𝜚𝜈|𝑣′(±ℎ)| < 𝜏𝑐 and 𝜚𝜈|𝑣′(±ℎ)| ≥ 𝜏𝑐 in sequence, starting with 𝜚𝜈|𝑣′(±ℎ)| < 𝜏𝑐 .

7.3. Compatible solutions

For 𝜚𝜈|𝑣′(±ℎ)| < 𝜏𝑐 , (7.20) gives 𝛤 = 0, (7.18)2, (7.20), and (7.21) require also that 𝐺 = 0, whereby (7.2)2 and (7.10) reduce to

𝑮 = 0 and 𝜦 = 0. (7.22)

ence, the distortion rate 𝑳 has no incompatible component 𝜦 if 𝜚𝜈|𝑣′(±ℎ)| < 𝜏𝑐 . Moreover, (7.18)1 and (7.19) simplify to the
boundary-value problem for conventional Poiseuille flow and the streamwise velocity, which, reserving the symbol 𝑣 for use in the
alternative case 𝜚𝜈|𝑣′(±ℎ)| ≥ 𝜏𝑐 of incompatible solutions, we denote by 𝑉 , with the familiar quadratic expression

𝑉 (𝑥2) =
𝑃ℎ2

2𝜚𝜈𝓁

(

1 −
𝑥22
ℎ2

)

, −ℎ ≤ 𝑥2 ≤ ℎ. (7.23)

.4. Incompatible solutions

For the alternative 𝜚𝜈|𝑣′(±ℎ)| ≥ 𝜏𝑐 , (7.20) yields 𝛤 = 𝛾 and we may solve (7.18) subject to (7.19) and (7.21), with the outcome
that 𝑣 and 𝐺 are given by

𝑣(𝑥2) =
𝑃ℎ2

𝜚𝜈𝓁
coth𝛺ℎ
𝛺ℎ

(

1 −
cosh𝛺𝑥2
cosh𝛺ℎ

)

,

𝐺(𝑥2) =
𝑃ℎ
𝜚𝜄2𝛾𝓁

( sinh𝛺𝑥2
sinh𝛺ℎ

−
𝑥2
ℎ

)

,

⎫

⎪

⎬

⎪

⎭

− ℎ ≤ 𝑥2 ≤ ℎ, (7.24)

here we have introduced a wavenumber 𝛺 defined by

𝛺 ∶=

√

𝜄2𝛾2

𝜈𝜅
. (7.25)

n this case, the distortion rate 𝑳 has a nontrivial incompatible component 𝜦 and we may use the relation 𝛤 = 𝛾 and the expression
(7.24)2 for 𝐺 in (7.10) to find that

𝜦 = 𝛬𝒊2 ⊗ 𝒊3, (7.26)

where 𝛬 is given by

𝛬(𝑥1, 𝑥2) = 𝛾𝑥1 +
𝛾

𝜅𝛺2
(𝑣(𝑥2) − 𝑉 (𝑥2)), −∞ < 𝑥1 < ∞, −ℎ ≤ 𝑥2 ≤ ℎ, (7.27)

with 𝑉 and 𝑣 as provided in (7.23) and (7.24)1. Thus, we see that

𝑫𝛬 = sym(grad 𝒖) = 1
2𝛬(𝒊2 ⊗ 𝒊3 + 𝒊3 ⊗ 𝒊2), (7.28)

hich, in accord with (2.8), (2.12), and (7.5), having replaced 𝑫 by 𝑫𝛬, we may integrate to find 𝒖. Up to added unimportant (and
dropped) constant translational and angular velocities, we find that 𝒖 is of the form

𝒖 = 𝑢𝑖𝒊𝑖, (7.29)

where 𝑢𝑖, 𝑖 = 1, 2, 3, are given by

𝑢1(𝒙) = − 1
2 𝛾𝑥2𝑥3,

𝑢2(𝒙) =
1
2 𝛾𝑥1𝑥3,

𝑢3(𝒙) =
1
2 𝛾ℎ𝑥1 + ∫

𝑥2

−ℎ
(𝛬(𝑥1, 𝑥̄2) −

1
2 𝛾𝑥1)d𝑥̄2,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

−∞ < 𝑥1 < ∞, −ℎ ≤ 𝑥2 ≤ ℎ. (7.30)

From (7.26), we also find that

𝑾 𝛬 = skw(grad𝒘) + (grad𝜑)× = 1
2𝛬(𝒊2 ⊗ 𝒊3 − 𝒊3 ⊗ 𝒊2), (7.31)

r, equivalently, by (A.7), that

𝝎𝛬 = 1
2 curl𝒘 + grad𝜑 = − 1

2𝛬𝒊1, (7.32)

here 𝒘 and 𝜑 must obey

div𝒘 = 0 and 𝛥𝜑 = − 1 𝛾. (7.33)
14
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Up to added unimportant (and dropped) constant translational and angular velocities, we thus find that 𝒘 is given by

𝒘(𝒙) =
(

𝛾𝑥1(𝑥2 + ℎ) − ∫

𝑥2

−ℎ
𝛬(𝑥1, 𝑥̄2)d𝑥̄2

)

𝒊3, −∞ < 𝑥1 < ∞, −ℎ ≤ 𝑥2 ≤ ℎ, (7.34)

nd, correspondingly, up to an added (and dropped) constant, that 𝜑 is given by

𝜑(𝒙) = − 1
4 𝛾𝑥

2
1. −∞ < 𝑥1 < ∞. (7.35)

In view of (4.11) and (7.18)1, the total shear stress 𝑇12 = 𝒊1 ⋅ 𝑻 𝒊2 = 𝜚(𝜈𝑣′ + 𝜄2𝛾𝐺) must be a linear function of the spanwise
coordinate 𝑥2, as is known to be so in conventional Poiseuille flow. Indeed, from (7.24), we see that it has the standard form

𝑇12(𝒙) = −
𝑃𝑥2
𝓁

, −ℎ ≤ 𝑥2 ≤ ℎ. (7.36)

e will nevertheless show in Section 7.6 that the contributions 𝜚𝜈𝑣′ and 𝜚𝜄2𝛾𝐺 to 𝑇12 due, respectively, to ordinary viscous effects
and the incompatible distortion rate 𝜦 are considerably more interesting. From (7.13), (7.14), (7.20), and (7.24), we see that the
normal stresses 𝑇𝛼𝛼 = 𝒊𝛼 ⋅ 𝑻 𝒊𝛼 , 𝛼 = 1, 2, are given by

𝑇11(𝒙) = 𝑅11(𝒙) = 𝜚𝜄2𝐺2(𝑥2),

𝑇22(𝒙) = 𝑅22(𝒙) = 𝜚𝜄2𝛾2,

}

− ℎ ≤ 𝑥2 ≤ ℎ, (7.37)

with 𝐺 as defined in (7.24)2. Thus, in contrast to conventional Poiseuille flow, incompatibility gives rise to nontrivial normal stresses
and an associated first normal stress difference

𝑇11(𝒙) − 𝑇22(𝒙) = 𝑅11(𝒙) − 𝑅22(𝒙) = 𝜚𝜄2(𝐺2(𝑥2) − 𝛾2), −ℎ ≤ 𝑥2 ≤ ℎ. (7.38)

7.5. Asymptotic results for small values of the dimensionless wavenumber

For 𝜚𝜈|𝑣′(±ℎ)| ≥ 𝜏𝑐 , we may use the Taylor expansions of the hyperbolic sine and cosine in (7.24) to find that

𝑣(𝑥2) ∼ 𝑉 (𝑥2) and 𝐺(𝑥2) ∼ 0 for 𝛺ℎ ≪ 1. (7.39)

Thus, granted that the dimensionless wavenumber 𝛺ℎ satisfies 𝛺ℎ ≪ 1, the classical quadratic velocity profile (7.23) is recovered
nd the contribution 𝐺 to the incompatibility 𝑮 vanishes.

To put one physical interpretation on what governs the size of the dimensionless wave number 𝛺ℎ, suppose we return to (7.25)
nd write

𝛺ℎ =

√

𝜄2𝛾2∕𝜈2

𝜅∕𝜈
ℎ. (7.40)

ow, for a given mass density 𝜚, we observe that (7.2)2, (7.20), and (7.21) require the kinetic energy of incompatibility that enters
he region occupied by the fluid though the boundary to be given by

1
2𝜚𝜄

2
|𝑮|

2 = 1
2𝜚𝜄

2𝛾2. (7.41)

hus, suppose that for a fluid with fixed density 𝜚 and kinematic viscosity 𝜈 this boundary input of kinetic energy of incompatibility
s specified. Then, if 𝜅 ≫ 𝜈 so that the fluid efficiently diffuses the transport of incompatibility relative to the viscous diffusive
ffect of viscosity, we see that for a given channel width 2ℎ, 𝛺ℎ is small and we may conclude that incompatibility plays a minor
ole in the flow behavior of the fluid. In this scenario, it is when the diffusivity 𝜅 of incompatibility transport is small relative to
he kinematic viscosity 𝜈 that a significant presence of incompatibility becomes an important element of the flow behavior, and, of
ourse 𝛺ℎ is large.

.6. Dimensionless results

Fig. 1(a) contains plots of the dimensionless velocity 𝑣∗ defined by

𝑣∗(𝑦) ∶=
𝑣(ℎ𝑦)
𝑣(0)

= 1 −
1 − cosh𝛺ℎ𝑦
1 − cosh𝛺ℎ

, −1 ≤ 𝑦 ≤ 1, (7.42)

or representative values of the dimensionless wavenumber 𝛺ℎ. For the smallest value 𝛺ℎ = 0.01 of 𝛺ℎ considered, the plot of 𝑣∗
s difficult to distinguish from the classical quadratic expression. This is consistent with the asymptotic result (7.39)1. The plots of
∗ become progressively more blunted as 𝛺ℎ increases.12 To further explore the influence of the dimensionless parameter 𝛺ℎ on

12 Similarly blunted velocity profiles are common to steady laminar channel flows of incompressible non-Newtonian fluids and fully developed turbulent channel
lows of incompressible Newtonian fluids. In the former context, they are captured by power-law (Saramito, 2016; Schechter, 1961), pseudoplastic (Matsuhisa

Bird, 1965; Rotem & Shinnar, 1961), viscoelastic (Griffiths, 2020; Oliveira, 2002; Oliveira & Pinho, 1999; Siline & Leonov, 2001; Yoo & Choi, 1989), and
iscoelastic–plastic (White, 1981) models. In the latter context, they are captured by direct numerical simulations (Abe, Kawamura, & Choi, 2004; Abe, Kawamura,

Matsuo, 2001; Bernardini, Pirozzoli, & Orlandi, 2014; Hoyas & Jiménez, 2003; Kim, Moin, & Moser, 1987; Lee & Moser, 2015; Lozano-Durán & Jiménez,
15

014; Monty & Chong, 2009).
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Fig. 1. (a) Plots of the dimensionless downstream velocity 𝑣∗ defined in (7.42) versus the dimensionless spanwise coordinate 𝑦 = 𝑥2∕ℎ for select values of the
dimensionless counterpart 𝛺ℎ of the wavenumber from (7.25). (b) Plot of the dimensionless flow rate 𝑄∗ defined in (7.43) versus 𝛺ℎ.

the solution to the incompatible flow problem, we integrate 𝑣 spanwise and divide by the flow rate ∫ ℎ−ℎ 𝑉 (𝑥2)d𝑥2 = 2𝑃ℎ3∕3𝜚𝜈𝓁
corresponding to the classical quadratic profile 𝑉 in (7.23), yielding the dimensionless flow rate

𝑄∗ ∶= 3 coth𝛺ℎ
𝛺ℎ

(

1 − tanh𝛺ℎ
𝛺ℎ

)

. (7.43)

The decay of 𝑄∗ as 𝛺ℎ increases that is depicted in Fig. 1(b) is consistent with the blunting of the velocity profile shown in Fig. 1(a).
Consequently, a larger pressure drop 𝑃∕𝑙 is needed to maintain a given flow rate as 𝛺ℎ increases.

Fig. 2 contains plots of the dimensionless viscous shear stress 𝜏∗ defined by

𝜏∗(𝑦) ∶=
𝜚𝜈𝑣′(ℎ𝑦)
𝜚𝜈𝑣′(−ℎ)

= −
sinh𝛺ℎ𝑦
sinh𝛺ℎ

, −1 ≤ 𝑦 ≤ 1, (7.44)

and the dimensionless incompatibility shear stress 𝜎∗ defined by

𝜎∗(𝑦) ∶=
𝜚𝜄2𝛾𝐺(ℎ𝑦)
𝜚𝜈𝑣′(−ℎ)

=
sinh𝛺ℎ𝑦
sinh𝛺ℎ

− 𝑦, −1 ≤ 𝑦 ≤ 1, (7.45)

for representative values of 𝛺ℎ.13 Consistent with the asymptotic result (7.36) for 𝑇12, we see that 𝜏∗ does not deviate substantially
from −𝑦 for 𝛺ℎ = 1.50. However, as 𝛺ℎ becomes large, we see that 𝜏∗ vanishes outside boundary layers near the walls. Within those
layers, the magnitude of 𝜏∗ increases monotonically as 𝛺ℎ increases. Consistent with the asymptotic result (7.39)2 for 𝐺, we see that
𝜎∗ ≈ 0 for 𝛺ℎ = 0.01. For larger values of 𝛺ℎ, 𝜎∗ is odd about the midline 𝑥2 = 0 of the channel, like 𝜏∗. For non-negligible values
of 𝛺ℎ, |𝜎∗| is maximized near the channel walls, respectively, and those maxima are connected by a nearly straight line of negative
slope with monotonically increasing magnitude. In line with the previous observation that, as a consequence of the balance (7.18)1,
the total shear stress 𝑇12 must be a linear function of the spanwise coordinate, from (7.44) and (7.45) we see that the dimensionless
shear stresses compensate one another to ensure that 𝜏∗(𝑦) + 𝜎∗(𝑦) = −𝑦 for −1 ≤ 𝑦 ≤ 1. Less obvious, however, is a cross-over
between conventional viscous effects and incompatibility evident from Fig. 2: Although the viscous contribution to the total shear
stress 𝑇12 dominates for 𝛺ℎ ≪ 1, it becomes increasingly less significant as 𝛺ℎ increases and is completely overwhelmed by the
incompatibility shear stress contribution for 𝛺ℎ ≫ 1.

Recalling from (7.37)2 that the spanwise normal stress 𝑇22 is constant, we next consider the dimensionless streamwise normal
stress 𝑁∗ defined in terms of 𝑇11 = 𝜚𝜄𝐺2 by

𝑁∗(𝑦) =
𝜚𝜄2𝜅𝐺2(ℎ𝑦)
1
2𝜚𝜈𝑣

2(0)
= 2

( sinh𝛺ℎ
cosh𝛺ℎ − 1

)2
𝜎2∗(𝑦) = 2

( sinh𝛺ℎ𝑦 − (sinh𝛺ℎ)𝑦
cosh𝛺ℎ − 1

)2
. (7.46)

Fig. 3 contains plots of 𝑁∗ for representative values of 𝛺ℎ.14 Apart from showing that 𝑁∗ vanishes along the walls and midline of
the channel walls but is otherwise positive, these plots show that the peak values of 𝑁∗, which necessarily coincide with the maxima
and minima of the dimensionless incompatibility shear stress 𝜎∗, increase monotonically with 𝛺ℎ. Determining 𝑫 from (7.24)1 and

13 The plots of 𝜎∗ resemble the experimentally determined Reynolds shear stress profiles presented in Figure 12 of Schultz and Flack (2013), whose results
for friction Reynolds numbers Re𝜏 = 944 and Re𝜏 = 2000 closely match results from direct numerical simulations performed by Del Alamo, Jiménez, Zandonade,
and Moser (2004) and Hoyas and Jiménez (2003), respectively.

14 The plots of Fig. 3 share the qualitative features of experimentally determined streamwise Reynolds normal stress profiles presented in Figure 8 of Schultz
and Flack (2013), whose measurements are closely matched by results from the direct numerical simulations of Hoyas and Jiménez (2003), the plots of 𝑁∗ show
that the streamwise normal stress peaks near the channel walls.
16
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Fig. 2. Plots of (a) the dimensionless viscous shear stress 𝜏∗ defined in (7.44) and (b) the dimensionless incompatibility shear stress 𝜎∗ defined in (7.45) versus
the dimensionless spanwise coordinate 𝑦 = 𝑥2∕ℎ for select values of the dimensionless counterpart 𝛺ℎ of the wavenumber from (7.25).

Fig. 3. Plots of the dimensionless streamwise normal stress 𝑁∗ defined in (7.46) versus the dimensionless spanwise coordinate 𝑦 = 𝑥2∕ℎ for select values of the
dimensionless counterpart 𝛺ℎ of the wavenumber from (7.25).

Fig. 4. (a) Plots of the dimensionless specific dissipation 𝛿∗ defined in (7.47) versus the dimensionless spanwise coordinate 𝑦 = 𝑥2∕ℎ for select values of the
dimensionless counterpart 𝛺ℎ of the wavenumber 𝛺 from (7.25). (b) Plot of the total dimensionless dissipation 𝐷∗ defined in (7.48) versus 𝛺ℎ.
17
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curl𝑮 from (7.2)2 and (7.24)2, we next construct the dimensionless specific dissipation 𝛿∗ defined by

𝛿∗(𝑦) =
𝛿(ℎ𝑦)
𝛿(±ℎ)

=
𝛺2ℎ2 sinh2𝛺ℎ𝑦 + (𝛺ℎ cosh𝛺ℎ𝑦 − sinh𝛺ℎ)2

𝛺2ℎ2 sinh2𝛺ℎ + (𝛺ℎ cosh𝛺ℎ − sinh𝛺ℎ)2
, −1 ≤ 𝑦 ≤ 1. (7.47)

lots of 𝛿∗ for representative values of 𝛺ℎ provided in Fig. 4(a) show that the dissipation is generally concentrated near the channel
alls and becomes more so as 𝛺ℎ increases. From Fig. 4(b), we see that the total dimensionless dissipation, as defined by

𝐷∗ = ∫

1

−1
𝛿∗(𝑦)d𝑦 = 𝛺ℎ coth𝛺ℎ − 1

𝛺2ℎ2 + (𝛺ℎ coth𝛺ℎ − 1)2
, (7.48)

decays monotonically as 𝛺ℎ increases. As 𝛺ℎ → 0, 𝐷∗ → 2∕3, which is the dimensionless dissipation for the classical quadratic
expression 𝑉 defined by (7.23). The ratio of the dimensional version of the total specific dissipation (7.48) to the dimensional
ersion of the flow rate (7.43) scales with 𝑃∕𝓁 and, thus, the dissipation associated with applying the pressure drop needed to
nduce a certain flow rate would increase linearly with that pressure drop, when measured relative to the flow rate.

. Transient effects in plane Poiseuille flow

We now consider the transient version of the plane channel flow problem considered in Section 7 with the purpose of exploring
he transition to steady state from compatible to incompatible flow. We thus take the velocity 𝒗 and the incompatibility 𝑮 to be
f the form (7.2) and the pressure gradient grad 𝑝 to satisfy (7.1), while allowing the streamwise velocity 𝑣 = 𝒗 ⋅ 𝒊1 and the shear
ontribution 𝐺 = 𝒊1 ⋅ 𝑮𝒊2 to the incompatibility to depend not only on the spanwise coordinate 𝑥2 but also on time 𝑡 and allowing

and 𝑃 to depend on 𝑡, the latter being given as a Heaviside step function

𝑃 (𝑡) =

{

0, if 𝑡 ≤ 0,

𝑃 , if 𝑡 > 0.
(8.1)

ollowing the same procedure as in the development of the system (7.18) of ordinary-differential equations governing steady channel
low, we thus find that 𝛤 = constant and that 𝑣 and 𝐺 must evolve according to

𝜕𝑣
𝜕𝑡

= 𝜈 𝜕
2𝑣
𝜕𝑥22

+ 𝜄2𝛤 𝜕𝐺
𝜕𝑥2

+ 𝑃
𝜚𝓁

and 𝜕𝐺
𝜕𝑡

= 𝛤 𝜕𝑣
𝜕𝑥2

+ 𝜅 𝜕
2𝐺
𝜕𝑥22

. (8.2)

e consider the parabolic system (8.2) for all (𝑥2, 𝑡) in (−ℎ, ℎ) × (0,∞) subject to the boundary conditions

𝑣(±ℎ, 𝑡) = 0, 𝐺(±ℎ, 𝑡) = 0, 𝑡 ≥ 0, (8.3)

nd the initial condition

𝑣(𝑥2, 0) = 0, 𝐺(𝑥2, 0) = 0, −ℎ ≤ 𝑥2 ≤ ℎ, (8.4)

in conjunction with the following alternative criteria:

(C1) 𝜌𝜈||
|

𝜕𝑣(𝑥2, 𝑡)
𝜕𝑥2

|

|

|𝑥2=±ℎ
< 𝜏𝑐 for all 𝑡 ≥ 0;

(C2) 𝜌𝜈||
|

𝜕𝑣(𝑥2, 𝑡)
𝜕𝑥2

|

|

|𝑥2=±ℎ
< 𝜏𝑐 for 𝑡 < 𝑡∗ and 𝜌𝜈||

|

𝜕𝑣(𝑥2, 𝑡)
𝜕𝑥2

|

|

|𝑥2=±ℎ
≥ 𝜏𝑐 for 𝑡 ≥ 𝑡∗.

8.1. Compatible solutions

If (C1) holds, then the flow is compatible and 𝐺 = 𝛤 = 0. In this event, only one equation in (8.2) survives, namely

𝜕𝑣
𝜕𝑡

= 𝜈 𝜕
2𝑣
𝜕𝑥22

+ 𝑃
𝜌𝓁
, (8.5)

long with corresponding reductions

𝑣(±ℎ, 𝑡) = 0, 𝑡 ≥ 0, (8.6)

nd

𝑣(𝑥2, 0) = 0, −ℎ ≤ 𝑥2 ≤ ℎ, (8.7)

f the boundary and initial conditions.
To analyze the asymptotic behavior of the solution of the problem (8.5)–(8.7), we introduce the difference velocity field

𝑣𝑑 ∶= 𝑣 − 𝑣0, (8.8)

here 𝑣0 satisfies 𝜈𝑣′′0 +𝑃∕𝜚𝓁 = 0 subject to the boundary conditions 𝑣0(±ℎ) = 0 and is therefore given by 𝑉 defined in (7.23). Then,
𝑑 satisfies the partial differential equation

𝜕𝑣𝑑 = 𝜈
𝜕2𝑣𝑑

2
, (8.9)
18

𝜕𝑡 𝜕𝑥2
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the boundary conditions

𝑣𝑑 (±ℎ, 𝑡) = 0, 𝑡 ≥ 0, (8.10)

nd the initial condition

𝑣𝑑 (𝑥2, 0) = −𝑉 (𝑥2), −ℎ ≤ 𝑥2 ≤ ℎ. (8.11)

ultiplying (8.9) by 𝑣𝑑 , integrating by parts, using the boundary conditions (8.10), and invoking the Poincaré inequality

∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2 ≤ 𝐶 ∫

ℎ

−ℎ

|

|

|

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2, (8.12)

here 𝐶 > 0 is a constant with the dimensions of length, we find that

d
d𝑡 ∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2 = −2𝜈 ∫

ℎ

−ℎ

|

|

|

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2 ≤ −2𝜈

𝐶 ∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2. (8.13)

hus,

d
d𝑡

(

exp
(

−2𝜈𝑡
𝐶

)

∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2
)

≤ 0, (8.14)

nd integrating over the interval [0, 𝑡], and using the initial condition (8.11), we arrive at the inequality

∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2 ≤ exp
(

−2𝜈𝑡
𝐶

)

∫

ℎ

−ℎ
𝑉 2(𝑥2)d𝑥2, (8.15)

which implies that |𝑣𝑑 (𝑥2, 𝑡)| = |𝑣(𝑥2, 𝑡) − 𝑉 (𝑥2)| → 0 as 𝑡→ ∞ for all 𝑥2 in (−ℎ, ℎ) in the sense of the 𝐿2 norm.
Nominally, we conclude that the transition of 𝑣 to fully developed steady laminar flow 𝑣0 = 𝑉 increases monotonically with time

𝑡. However, if the assigned pressure 𝑃 is too large, there will be a critical transition time 𝑡∗ at which

𝜌𝜈||
|

𝜕𝑣(𝑥2, 𝑡∗)
𝜕𝑥2

|

|

|𝑥2=±ℎ
= 𝜏𝑐 (8.16)

nd this solution no longer applies for 𝑡 > 𝑡∗. We next address that possibility.

.2. Transition to incompatible solutions

If (C2) holds then both of (8.2) are relevant with the understanding that only (8.5) applies for 𝑡 < 𝑡∗ and that 𝛤 is determined
hrough the boundary condition (7.21)1 by

𝛤 =

{

0, 0 ≤ 𝑡 < 𝑡∗,

𝛾, 𝑡∗ ≤ 𝑡 ≤ ∞.
(8.17)

o analyze the asymptotic behavior of the solution of this problem, we introduce difference fields

𝑣𝑑 ∶= 𝑣 − 𝑣0 and 𝐺𝑑 ∶= 𝐺 − 𝐺0, (8.18)

here 𝑣0 and 𝐺0 satisfy

𝜈
d2𝑣0
d𝑥22

+ 𝜄2𝛾
d𝐺0
d𝑥2

+ 𝑃
𝜌𝓁

= 0 and 𝜅
d2𝐺0

d𝑥22
+ 𝛾

d𝑣0
d𝑥2

= 0 (8.19)

ubject to the boundary conditions

𝑣0(±ℎ) = 0 and 𝐺0(±ℎ) = 0. (8.20)

onsequently, the fields 𝑣0 and 𝐺0 are equivalent to the fully developed steady fields given in (7.24). Following this, the difference
ields satisfy

𝜕𝑣𝑑
𝜕𝑡

= 𝜈
𝜕2𝑣𝑑
𝜕𝑥22

+ 𝜄2𝛾
𝜕𝐺𝑑
𝜕𝑥2

and
𝜕𝐺𝑑
𝜕𝑡

= 𝜅
𝜕2𝐺𝑑
𝜕𝑥22

+ 𝛾
𝜕𝑣𝑑
𝜕𝑥2

. (8.21)

ubject to boundary conditions

𝑣𝑑 (±ℎ, 𝑡) = 0 and 𝐺𝑑 (±ℎ, 𝑡) = 0, 𝑡 ≥ 𝑡∗, (8.22)

long with conditions

𝑣𝑑 (𝑥2, 𝑡∗) = 𝑣(𝑥2, 𝑡∗) − 𝑣0(𝑥2) and 𝐺𝑑 (𝑥2, 𝑡∗) = −𝐺0(𝑥2), −ℎ ≤ 𝑥2 ≤ ℎ, (8.23)

hat apply at the transition time 𝑡 = 𝑡∗, namely when, according to (8.16),

𝜌𝜈||
𝜕𝑣(𝑥2, 𝑡∗) |

| = 𝜏𝑐 . (8.24)
19

| 𝜕𝑥2 |𝑥2=±ℎ
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Multiplying (8.21)1 through by 𝑣𝑑 , integrating by parts, and using the homogeneous boundary conditions (8.22) for 𝑣𝑑 and 𝐺𝑑 ,
we find that

1
2

d
d𝑡 ∫

ℎ

−ℎ
|𝑣𝑑 (𝑥2, 𝑡)|

2 d𝑥2 = −𝜈 ∫

ℎ

−ℎ

|

|

|

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2 − 𝜄2𝛾 ∫

ℎ

−ℎ
𝐺𝑑 (𝑥2, 𝑡)

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

d𝑥2. (8.25)

imilarly, multiplying (8.21)2 through by 𝐺𝑑 , integrating by parts, and using the homogeneous boundary conditions (8.22)2 for 𝐺𝑑 ,
e find that

1
2

d
d𝑡 ∫

ℎ

−ℎ
|𝐺𝑑 (𝑥2, 𝑡)|

2 d𝑥2 = 𝛾 ∫

ℎ

−ℎ
𝐺𝑑 (𝑥2, 𝑡)

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

d𝑥2 − 𝜅 ∫
ℎ

−ℎ

|

|

|

𝜕𝐺𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2. (8.26)

hus, multiplying (8.26) by 𝜄2 and adding the resulting equation to (8.25), we obtain the identity

1
2

d
d𝑡 ∫

ℎ

−ℎ
(|𝑣𝑑 (𝑥2, 𝑡)|

2 + 𝜄2|𝐺𝑑 (𝑥2, 𝑡)|
2)d𝑥2 = −𝜈 ∫

ℎ

−ℎ

|

|

|

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2 − 𝜄2𝜅 ∫

ℎ

−ℎ

|

|

|

𝜕𝐺𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2. (8.27)

pplying the Poincaré inequality to both terms on the right-hand side of (8.27), we next see that

d
d𝑡 ∫

ℎ

−ℎ
(|𝑣𝑑 (𝑥2, 𝑡)|

2 + 𝜄2|𝐺𝑑 (𝑥2, 𝑡)|
2)d𝑥2 ≤ −2𝜈

𝐶 ∫

ℎ

−ℎ

|

|

|

𝜕𝑣𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2 −

2𝜅
𝐶 ∫

ℎ

−ℎ
𝜄2||
|

𝜕𝐺𝑑 (𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
d𝑥2

≤ −2𝜆𝜈
𝐶 ∫

ℎ

−ℎ
(|𝑣𝑑 (𝑥2, 𝑡)|

2 + 𝜄2|𝐺𝑑 (𝑥2, 𝑡)|
2)d𝑥2, (8.28)

here 𝜆 is defined by

𝜆 ∶= min
(

1, 𝜅
𝜈

)

> 0. (8.29)

inally, multiplying by the integrating factor 2𝜈𝜆∕𝐶 on both sides of (8.28), integrating the resulting inequality from the transition
ime 𝑡∗ to a generic time 𝑡 > 𝑡∗, and applying the transition conditions (8.23) for 𝑣𝑑 and 𝐺𝑑 , we obtain the inequality

∫

ℎ

−ℎ
(|𝑣𝑑 (𝑥2, 𝑡)|

2 + 𝜄2|𝐺𝑑 (𝑥2, 𝑡)|
2)d𝑥2 ≤ exp

(

−
2𝜆𝜈(𝑡 − 𝑡∗)

𝐶

)

∫

ℎ

−ℎ
(|𝑣0(𝑥2)|

2 + 𝜄2|𝐺0(𝑥2)|
2)d𝑥2, (8.30)

hich applies for each 𝑡 ≥ 𝑡∗ and implies that |𝑣𝑑 (𝑥2, 𝑡)| = |𝑣(𝑥2, 𝑡) − 𝑣0(𝑥2)| → 0 and |𝐺𝑑 (𝑥2, 𝑡)| = |𝐺(𝑥2, 𝑡) − 𝐺0(𝑥2)| → 0 as 𝑡→ ∞ for
ll 𝑥2 in (−ℎ, ℎ) in the sense of the 𝐿2 norm.

Nominally, we conclude that during the time interval (0, 𝑡∗), the spanwise velocity 𝑣 is laminar and the flow is compatible,
eaning that the field 𝐺 = 0. At time 𝑡∗, the velocity field satisfies the condition

𝜌𝜈||
|

𝜕𝑣(𝑥2, 𝑡∗)
𝜕𝑥2

|

|

|𝑥2=±ℎ
= 𝜏𝑐 (8.31)

nd from that time onward the flow is incompatible with 𝐺 ≠ 0. As time 𝑡 progresses, the streamwise velocity 𝑣 and shear contribution
to the incompatibility field tend monotonically to the steady fully developed expressions given in (7.24).

.3. Numerical results

For a sufficiently large pressure 𝑃 the boundary–initial-value problem arising from (8.2)–(8.4) with the pressure given by (8.1)
nd the condition (8.17) on 𝛤 , there will be a critical transition time 𝑡∗, at which (8.16) holds. Thereafter, the solution will change
ts structure from compatible to incompatible and the criterion (C2) will be in place. We describe the nature of this transition and
he settling to a steady state in the following two subsections.

.3.1. Precursor compatible flow
Here, we consider the solution for 𝑡 ∈ (0, 𝑡∗], and determine the velocity profile 𝑣(𝑥2, 𝑡∗) and the time 𝑡∗ from

𝜌𝜈||
|

𝜕𝑣(𝑥2, 𝑡∗)
𝜕𝑥2

|

|

|𝑥2=±ℎ
= 𝜏𝑐 , (8.32)

both of which will serve as initial conditions for the subsequent incompatible flow that follows.
To render the problem dimensionless, we scale the spanwise coordinate 𝑥2 by the half-width ℎ of the channel and scale the time

𝑡 by the ratio of ℎ2 to the kinematic viscosity 𝜈. In parallel with these choices, we scale the streamwise velocity 𝑣 by

𝑣̄ ∶= cosh𝛺ℎ − 1
𝛺ℎ sinh𝛺ℎ

𝑃ℎ2

𝜚𝜈𝓁
, (8.33)

the maximum value of the dimensionless steady solution (7.24)1, which is natural considering that this precursor flow will be
matched to an incompatible flow that will be scaled equivalently. Thus, introducing

𝑣∗(𝑦, 𝑠) ∶=
𝑣(𝑥2, 𝑡)
𝑣̄

, 𝑦 ∶=
𝑥2
ℎ
, and 𝑠 ∶= 𝜈𝑡

ℎ2
, (8.34)

e find from (8.2) and (8.17) that 𝑣⋆ evolves according to

𝜕𝑣∗ = 𝜕2𝑣∗ + 𝛺ℎ sinh𝛺ℎ (8.35)
20

𝜕𝑠 𝜕𝑦2 cosh𝛺ℎ − 1
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on −1 < 𝑦 < 1 and 𝑠 > 0 subject to the boundary conditions

𝑣∗(±1, 𝑠) = 0, 𝑠 ≥ 0, (8.36)

nd the initial condition

𝑣∗(𝑦, 0) = 0, −1 ≤ 𝑦 ≤ 1. (8.37)

aking 𝑣∗ to be of the form

𝑣∗(𝑦, 𝑠) = 𝑢(𝑦, 𝑠) + 1
2
𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

(1 − 𝑦2), (8.38)

e find from (8.35)–(8.37) that 𝑢 must satisfy the homogeneous partial-differential equation

𝜕𝑢
𝜕𝑠

= 𝜕2𝑢
𝜕𝑦2

(8.39)

or −1 < 𝑦 < 1 and 𝑠 > 0, the boundary conditions

𝑢(±1, 𝑠) = 0, 𝑠 ≥ 0, (8.40)

nd the initial condition

𝑢(𝑦, 0) = −1
2
𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

(1 − 𝑦2), −1 ≤ 𝑦 ≤ 1. (8.41)

Using standard techniques from Fourier analysis, we find that the solution 𝑢 of (8.39)–(8.41) admits a representation of the form

𝑢(𝑦, 𝑠) = 4𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

∞
∑

𝑛=1

2(cos 𝑛𝜋 − 1) + 𝑛𝜋 sin 𝑛𝜋
𝑛3𝜋3

sin
( 𝑛𝜋(1 + 𝑦)

2

)

exp
(

− 𝑛
2𝜋2𝑠
4

)

(8.42)

or −1 ≤ 𝑦 ≤ 1 and 𝑠 ≥ 0. However, by virtue of the identity

2(cos 𝑛𝜋 − 1) + 𝑛𝜋 sin 𝑛𝜋 =

{

−4, if 𝑛 is odd,

0, if 𝑛 is even,
(8.43)

e see that (8.42) simplifies to

𝑢(𝑦, 𝑠) = − 𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

∞
∑

𝑛=1

16
(2𝑛 − 1)3𝜋3

sin
( (2𝑛 − 1)𝜋(1 + 𝑦)

2

)

exp
(

−
(2𝑛 − 1)2𝜋2𝑠

4

)

. (8.44)

Thus, by (8.38), 𝑣∗ is given by

𝑣∗(𝑦, 𝑠) = 𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

( 1 − 𝑦2

2
−

∞
∑

𝑛=1

16
(2𝑛 − 1)3𝜋3

sin
( (2𝑛 − 1)𝜋(1 + 𝑦)

2

)

exp
(

−
(2𝑛 − 1)2𝜋2𝑠

4

))

, (8.45)

or −1 ≤ 𝑦 ≤ 1 and 𝑠 ≥ 0. Hence, it follows that

𝜕𝑣∗(𝑦, 𝑠)
𝜕𝑦

= − 𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

(

𝑦 +
∞
∑

𝑛=1

8
(2𝑛 − 1)2𝜋2

cos
( (2𝑛 − 1)𝜋(1 + 𝑦)

2

)

exp
(

−
(2𝑛 − 1)2𝜋2𝑠

4

))

, (8.46)

for −1 ≤ 𝑦 ≤ 1 and 𝑠 ≥ 0, from which we determine

|

|

|

𝜕𝑣∗(𝑦, 𝑠)
𝜕𝑦

|

|

|𝑦=±1
= 𝛺ℎ sinh𝛺ℎ

cosh𝛺ℎ − 1

(

1 −
∞
∑

𝑛=1

8
(2𝑛 − 1)2𝜋2

exp
(

−
(2𝑛 − 1)2𝜋2𝑠

4

))

, (8.47)

or 𝑠 ≥ 0.
Now, using (8.33) and (8.34) we see that

|

|

|

𝜕𝑣∗(𝑦, 𝑠)
𝜕𝑦

|

|

|

= |

|

|

𝜕𝑣(𝑥2, 𝑡)
𝜕𝑥2

|

|

|

𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

𝜚𝜈𝓁
𝑃ℎ

, (8.48)

nd we find from (8.32) that

|

|

|

𝜕𝑣∗(𝑦, 𝑠∗)
𝜕𝑦

|

|

|𝑦=±1
= 𝛺ℎ sinh𝛺ℎ

cosh𝛺ℎ − 1
𝜏𝑐𝓁
𝑃ℎ

, (8.49)

here 𝑠∗ ∶= 𝜈𝑡∗∕ℎ2. So, to determine the dimensionless critical time 𝑠∗ (and, thus, its dimensional counterpart 𝑡∗ = ℎ2𝑠∗∕𝜈), we see
from (8.47) that

8
𝜋2

∞
∑

𝑛=1

1
(2𝑛 − 1)2

exp
(

−
(2𝑛 − 1)2𝜋2𝑠∗

4

)

= 1 −
𝜏𝑐 𝓁
𝑃ℎ

, (8.50)

here the dimensionless quantity 𝜏𝑐𝓁∕𝑃ℎ is to be specified and must be less than unity.
It is convenient, and also representative of the general character of this solution, to set

𝜏𝑐 𝓁 =
2(cosh𝛺ℎ − 1)

, (8.51)
21

𝑃ℎ 𝛺ℎ sinh𝛺ℎ
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Fig. 5. Plots of the partial sum 𝑆𝑁 defined in (8.53) for 𝑁 = 1, 𝑁 = 2, 𝑁 = 8, and 𝑁 = 1024.

Table 1
Values of the dimensionless critical time 𝑠∗ determined from solving 𝑆8 = 1 − 𝜏𝑐𝓁∕𝑃ℎ, 𝑆𝑁 being
defined by (8.53), for the 𝛺ℎ used in Figs. 1 and 4.
𝛺ℎ 𝑠∗

0.01 4.66 × 101

1.50 6.80 × 100

2.50 3.75 × 10−1

4.00 1.83 × 10−1

6.00 8.64 × 10−2

10.0 3.14 × 10−2

in which case the right-hand side is less than unity for representative values of the dimensionless number 𝛺ℎ, as we shall see.
Referring to the expressions (7.23) and (7.24)1, we observe that, along the midline 𝑥2 = 0 of the channel, the ratio of the steady-state
velocity 𝑣(0) to the corresponding compatible quantity 𝑉 (0) = 𝑃ℎ2∕2𝜚𝜈𝓁 obeys

𝑣(0)
𝑉 (0)

=
2(cosh𝛺ℎ − 1)
𝛺ℎ sinh𝛺ℎ

. (8.52)

Given a value of 𝜏𝑐𝓁∕𝑃ℎ satisfying 𝜏𝑐𝓁∕𝑃ℎ < 1, we hence determine from (8.50) both 𝛺ℎ and the foregoing ratio. From plots of the
partial sum

𝑆𝑁 = 8
𝜋2

𝑁
∑

𝑛=1

1
(2𝑛 − 1)2

exp
(

−
(2𝑛 − 1)2𝜋2𝑠∗

4

)

(8.53)

versus 𝑠∗ for select choices of 𝑁 in Fig. 5, we see that 𝑆8 provides an excellent approximation for the left-hand side of (8.50) for
𝑠∗ > 1.50 ⋅ 10−3. Select values of 𝑠∗ determined from solving 𝑆8 = 1 − 𝜏𝑐𝓁∕𝑃ℎ are given in Table 1.

8.3.2. Incompatible flow and transition to steady state
We next consider the boundary–initial-value problem arising from (8.2)–(8.4) for 𝑡 > 𝑡∗ with the initial instant 𝑡∗ determined

in terms of 𝛺ℎ by (8.50) and (8.51) with 𝑡∗ = ℎ2𝑠∗∕𝜈, the pressure given by (8.1), and criterion (C2) in place. Again, to render
the problem dimensionless, we scale the spanwise coordinate 𝑥2 by the half-width ℎ of the channel, as we did above, and scale the
time 𝑡 by the ratio of ℎ2 to the kinematic viscosity 𝜈, while, for the purposes of this subsection, shifting time forward by the critical
transition time 𝑡∗. In parallel with these choices, we scale the streamwise velocity 𝑣 the same as in Section 8.3.1 and we scale the
shear contribution 𝐺 to the incompatibility tensor according to

𝑣̄ ∶= cosh𝛺ℎ − 1
𝛺ℎ sinh𝛺ℎ

𝑃ℎ2

𝜚𝜈𝓁
and 𝐺̄ ∶= cosh𝛺ℎ − 1

𝛺ℎ sinh𝛺ℎ
𝑃ℎ
𝜚𝜄2𝛾𝓁

, (8.54)

respectively. As in Section 8.3.1, 𝑣̄ is the maximum value of the dimensionless steady solution (7.24)1 and is thus natural, and we
choose 𝐺̄ to simplify the final governing equations. Thus, in this subsection we introduce

𝑣∗(𝑦, 𝑠) ∶=
𝑣(𝑥2, 𝑡)
𝑣̄

, 𝐺∗(𝑦, 𝑠) ∶=
𝐺(𝑥2, 𝑡)
𝐺̄

, for 𝑦 ∶=
𝑥2
ℎ

and 𝑠 ∶=
𝜈(𝑡 − 𝑡∗)
ℎ2

, (8.55)

and we find from (8.2) and (8.17) that 𝑣∗ and 𝐺∗ evolve according to

𝜕𝑣∗ = 𝜕2𝑣∗ + 𝜕𝐺∗
+ 𝛺ℎ sinh𝛺ℎ and 𝜕𝐺∗

= 𝜅 ( 𝜕2𝐺∗
+𝛺2ℎ2 𝜕𝑣

∗ )
(8.56)
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Fig. 6. Plots of the restriction 𝑣∗0 of the dimensionless velocity defined in (8.63) for two representative values, (a) 𝛺ℎ = 4.00 and (b) 𝛺ℎ = 10.0, of the
dimensionless wavenumber 𝛺ℎ and six representative values, 𝜅∕𝜈 = 0.05, 𝜅∕𝜈 = 0.10, 𝜅∕𝜈 = 0.25, 𝜅∕𝜈 = 0.50, 𝜅∕𝜈 = 0.75, and 𝜅∕𝜈 = 1.00, of the ratio of diffusivity
𝜅 to the kinematic viscosity 𝜈.

for 𝑠 > 0. We emphasize that the appropriate initial condition at 𝑠 = 0 for determining the solution 𝑣∗ is given by (8.45) evaluated
at 𝑠 = 𝑠∗, where 𝑠∗ is determined in terms of 𝛺ℎ from (8.50) and (8.51). Thus, in line with (8.3) and (8.4), we solve the system
(8.56) numerically for −1 < 𝑦 < 1 and 𝑠 > 0 subject to the homogeneous boundary conditions

𝑣∗(±1, 𝑠) = 0 and 𝐺∗(±1, 𝑠) = 0, 𝑠 ≥ 0, (8.57)

along with the initial conditions

𝑣∗(𝑦, 0) = 𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

(1 − 𝑦2

2
−

∞
∑

𝑛=1

16
(2𝑛 − 1)3𝜋3

sin
( (2𝑛 − 1)𝜋(1 + 𝑦)

2

)

exp
(

−
(2𝑛 − 1)2𝜋2𝑠∗

4

))

(8.58a)

and

𝐺∗(𝑦, 0) = 0, −1 ≤ 𝑦 ≤ 1, (8.58b)

where 𝑠∗ is determined in terms of 𝛺ℎ from (8.50) and (8.51). In view of the results of Section 8.2 and the scaling (8.54)–(8.55),
𝑣∗ and 𝐺∗ must approach the corresponding dimensionless quantities from the solution to the steady-state problem as 𝑠 → ∞:

lim
𝑠→∞

𝑣∗(𝑦, 𝑠) = 1 −
1 − cosh𝛺ℎ𝑦
1 − cosh𝛺ℎ

,

lim
𝑠→∞

𝐺∗(𝑦, 𝑠) = 𝛺ℎ sinh𝛺ℎ
cosh𝛺ℎ − 1

( sinh𝛺ℎ𝑦
sinh𝛺ℎ

− 𝑦
)

.

⎫

⎪

⎬

⎪

⎭

(8.59)

Thus, in particular, we have that

lim
𝑠→∞

𝑣∗(0, 𝑠) = 1, (8.60)

or, equivalently, in terms of dimensional quantities and consistent with the relation (8.52) determining the ratio of the steady-state
velocity 𝑣(0) to the corresponding compatible quantity 𝑉 (0) = 𝑃ℎ2∕2𝜚𝜈𝓁,

lim
𝑡→∞

𝑣(0, 𝑡)
𝑉 (0)

=
2(cosh𝛺ℎ − 1)
𝛺ℎ sinh𝛺ℎ

. (8.61)

The boundary–initial-value problem (8.56)–(8.58) involves two dimensionless parameters: the ratio 𝜅∕𝜈 of the diffusivity
associated with incompatibility transport to the kinematic viscosity 𝜈 and the dimensionless wavenumber 𝛺ℎ. If 𝜅 < 𝜈, it follows
from the decay relation (8.30) that the dimensionless time required for the system to reach steady state must decrease monotonically
with increasing 𝜅∕𝜈. Otherwise, if 𝜅 > 𝜈, it follows from (8.30) that conventional viscous effects dominate the evolution toward
steady state. To explore the competition between such effects and the transport of incompatibility, we therefore restrict attention
to situations in which 𝜅 and 𝜈 satisfy

0 < 𝜅
𝜈
≤ 1. (8.62)

Details of the scheme used to construct approximate numerical solutions of (8.56)–(8.58) are provided as Supplementary Informa-
tion.

Fig. 6 contains plots of the dimensionless midline velocity 𝑣∗0, as defined by

𝑣∗(𝑠) ∶= 𝑣∗(0, 𝑠), 𝑠 ≥ 0, (8.63)
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Fig. 7. Plots of (a) the dimensionless velocity 𝑣∗ and (b) the dimensionless shear contribution 𝐺∗ to the incompatibility tensor for 𝜅∕𝜈 = 0.25 and 𝛺ℎ = 10.0.

for 0 ≤ 𝑠 ≤ 2.5 and representative choices of 𝜅∕𝜈 and 𝛺ℎ. In each plot, 𝑣∗0 grows initially from its initial value 𝑣∗0(0) = 𝑣∗(0, 0), as
determined from the first of (8.58) in response to the initially imposed pressure for the precursor compatible flow. The effects shown
in these plots hinge upon the coupling between 𝑣∗ and 𝐺∗ in the system (8.56). After reaching a maximum value, 𝑣∗0 eventually
achieves the value 𝑣∗0 = 1 corresponding to setting 𝑦 = 0 in the dimensionless steady state solution (7.42). For both choices of 𝛺ℎ
presented here and 𝜅∕𝜈 sufficiently small, 𝑣∗0 decreases from its maximum to a minimum value below the asymptotic limit 𝑣∗0 = 1
and this mildly oscillatory pattern repeats at least once more before steady state is achieved.15 If 𝜅∕𝜈 is sufficiently large, however,
𝑣∗0 decreases monotonically from its maximum value to unity without oscillating. Consistent with the decay relation (8.30), the
dimensionless time elapsed toward reaching steady state decreases as 𝜅∕𝜈 increases and simulations performed for other choices of
𝜅∕𝜈 show that this trend is monotonic. Comparing the plots for 𝛺ℎ = 4.0 and 𝛺ℎ = 10.0, we see that the maxima of 𝑣∗0 increase
with 𝛺ℎ and an analogous comment applies to the minima that are exhibited during the oscillations that occur for sufficiently small
values of 𝜅∕𝜈. Moreover, simulations performed for other choices of 𝛺ℎ show that these trends are monotonic.

Fig. 7 shows the dimensionless velocity 𝑣∗ and the dimensionless shear contribution to the incompatibility field 𝐺∗ for 𝜅∕𝜈 = 0.25
and 𝛺ℎ = 10.0 up to 𝑠 = 2.25, at which steady state appears to have been attained. The plot of 𝑣∗ starts at 𝑠 = 0 with the initial values
given by the first of (8.58), which is flat-looking except near the channel walls at which it must be zero. The precursor surface is not
shown, but in terms of the dimensionless time 𝑠, consistent with the entry of Table 1 corresponding to 𝛺ℎ = 10.0, that surface begins
on this figure at 𝑠 ≈ −3.14 ⋅ 10−2. As the dimensionless velocity 𝑣∗ begins to grow with the dimensionless time 𝑠, it rapidly changes
to a more parabolic-like character with the central portion losing its bluntness while it is peaking, followed by a smooth drop as a
growing central portion of relative bluntness spreads outward toward the channel walls with increasing 𝑠. The initial parabolic-like
growth in the central portion appears to be driven by the effects of viscosity as if incompatibility was not present and this must be
due to the low value of diffusivity 𝜅 relative to viscosity 𝜈. As 𝑠 increases further, these formative effects result in a steady shape
at 𝑠 = 2.5 which, consistent with the steady solution (7.24)1 and the velocity profile for 𝛺ℎ = 10.0 shown in Fig. 1(a), resembles
a plug-like flow that smoothly attaches to the channel walls. The surface undergoes local structural changes that accompany this
process and that are related to the kinematic viscosity and the diffusivity associated with the transport of incompatibility, both of
which contribute coincidently and interactively to the dissipation of energy. These are manifested in the oscillating, undulating and
blunting features that appear during the recovery that takes place following the initial burst to peak level.

The plot of 𝐺∗, shown in Fig. 7, also exhibits the early growth of initial peaks and subsequent oscillations before steady state
is achieved consistent with (7.24)2. This plot illustrates that as 𝑠 increases the growth of incompatibility is mostly concentrated in
narrow zones near the channel walls, with the two peaks in 𝐺∗ appearing somewhat later than the peak in 𝑣∗. This gives evidence that
for the choice 𝜅∕𝜈 = 0.25 the initial response of the system is dominated by viscous action and the rapid growth of the dimensionless
velocity profile is momentarily unabated as if no incompatibility were present in the flow. However, as the incompatibility 𝐺∗ grows
and diffuses and is realized through its contribution to the changing stress field, it has the effect to draw down and to flatten the
profile 𝑣∗, perhaps too quickly, which results in a slight undulation and oscillation of the surface as it reaches its steady form. Of
course, the size of the diffusivity 𝜅 relative to the kinematic viscosity 𝜈 plays a central role in the details of this process.

Additional plots of 𝑣∗ and 𝐺∗ for the choices 𝛺ℎ = 4.00 and 𝛺ℎ = 10.0 of the dimensionless wavenumber 𝛺ℎ and the values,
𝜅∕𝜈 = 0.05, 𝜅∕𝜈 = 0.10, 𝜅∕𝜈 = 0.25, 𝜅∕𝜈 = 0.50, 𝜅∕𝜈 = 0.75, and 𝜅∕𝜈 = 1.00, of the ratio 𝜅∕𝜈 used in Fig. 6 are included in the
Supplementary Information. From these plots, it is evident that for small values of 𝛺ℎ the precursor laminar flow is well developed
and almost parabolic before incompatibilities begin to have an effect and, consistent with Fig. 2 of the manuscript, the plug-like
steady state is not as noticeable. As the diffusivity 𝜅 associated with incompatibility increases relative to the kinematic viscosity 𝜈,

15 Viscoelastic models for polymeric fluids predict initial bursts, followed by damped oscillations, a quiescent polymeric fluid in a channel or pipe that is
suddenly subjected to a constant pressure drop, as predicted by viscoelastic models (Akyildiz & Jones, 1993; Chong & Franks, 1970a, 1970b; Fielder & Thomas,
1967; Fong, 1972; Waters & King, 1970).
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Fig. 8. Plots of the isoclines of (a) the dimensionless specific viscous dissipation 𝛿∗𝑉 and (b) the dimensionless specific incompatibility dissipation 𝛿∗𝐼 , defined in
(8.66), for 𝜅∕𝜈 = 0.25 and 𝛺ℎ = 10.0.

the initial peaks and undulations of 𝑣∗ and 𝐺∗ in these plots diminish, consistent with a previous observation. The incompatibility
in the boundary layers evidenced in the plots of 𝐺∗ tends to concentrate closer to the walls as 𝜅∕𝜈 increases. For sufficiently small
values of 𝛺ℎ, the tendency for incompatibility to concentrate near the walls appears to diminish the blunting of the velocity profiles
seen in the plots of 𝑣∗. However, the decreasing thickness of the boundary layers and enhanced blunting of the velocity profiles that
occurs as 𝛺ℎ increases becomes compatible with the enhanced concentration of incompatibility near the walls as 𝜅∕𝜈 increases.

The effects of kinematic viscous dissipation and the dissipation due to incompatibility appear to play a synergistic role in
structuring the dimensionless velocity profile. To support this conjecture quantitatively, we first note, from (4.14) and the transient
version of the Poiseuille flow problem as formulated at the beginning of Section 8, that the specific dissipation 𝛿 is given by

𝛿(𝑥2, 𝑡) = 𝜈||
|

𝜕𝑣(𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
+ 𝜄2𝜅||

|

𝜕𝐺(𝑥2, 𝑡)
𝜕𝑥2

|

|

|

2
. (8.64)

Using the definitions of 𝑦, 𝑠, 𝑣⋆, and 𝐺∗ in (8.55), we then find that

𝛿(𝑥2, 𝑡)
|

|

|(𝑥2 ,𝑡)=(ℎ𝑦,𝜈𝑠∕ℎ2)
= 𝜈𝑣̄2

ℎ2
(

|

|

|

𝜕𝑣⋆(𝑡, 𝑠)
𝜕𝑦

|

|

|

2
+ 1
𝛺2ℎ2

|

|

|

𝜕𝐺⋆(𝑡, 𝑠)
𝜕𝑦

|

|

|

2)
, −1 ≤ 𝑦 ≤ 1, 𝑠 ≥ 0. (8.65)

In Fig. 8, we plot the isoclines for the dimensionless specific viscous dissipation 𝛿∗𝑉 and the dimensionless specific incompatibility
dissipation 𝛿∗𝐼 , as defined by

𝛿∗𝑉 (𝑦, 𝑠) ∶=
|

|

|

𝜕𝑣∗(𝑡, 𝑠)
𝜕𝑦

|

|

|

2
and 𝛿∗𝐼 (𝑦, 𝑠) ∶=

1
𝛺2ℎ2

|

|

|

𝜕𝐺∗(𝑡, 𝑠)
𝜕𝑦

|

|

|

2
, −1 ≤ 𝑦 ≤ 1, 𝑠 ≥ 0. (8.66)

Consistent with these definitions, we then see that the dimensionless specific dissipation 𝛿∗ is related to the specific dissipation 𝛿
through

𝛿∗ = ℎ2𝛿
𝜈𝑣̄2

= 𝛿∗𝑉 + 𝛿∗𝐼 . (8.67)

It is apparent in Fig. 8 that the isoclines for 𝛿∗𝑉 which correspond to low dissipation are tending to converge at the center of the
channel 𝑦 = 0 at 𝑠 ≈ 0.2, which correlates well not only with the time corresponding to the peak of 𝑣∗ in Fig. 7, but also with
the very low value of the corresponding isocline for 𝛿∗𝐼 ≈ 0.01. As 𝑠 increases, the isoclines for 𝛿∗𝐼 slightly rise and fall in a central
portion of the channel which contains an elliptically shaped isocline. Correspondingly, low dimensionless specific viscous dissipation
is maintained in this portion while a noticeable growth of 𝛿∗𝑉 is rapidly diffused toward the boundaries. It is within the elliptical
shaped region on the plot of the dimensionless specific incompatibility dissipation 𝛿∗𝐼 that we see that 𝑣∗ undulates below its steady
state value on Fig. 7. Thus, it appears that the transport of incompatibility into this region and the related increase in its dissipation
play an important part in the adjustments that the velocity profile undergoes shortly after it reaches its peak value. It is clear from
Fig. 8 that as 𝑠 increases, 𝛿∗𝑉 and 𝛿∗𝐼 are both mostly present near the walls of the channel. However, there are subtle differences in
the formation and persistence of these two boundary layer dissipation zones that play a part in the formation of the dimensionless
velocity profile 𝑣∗, especially in the central portion of the channel. A point of interest is that Fig. 8 shows a distinct thin valley on
the dimensionless specific incompatibility dissipation surface 𝛿∗𝐼 that forms early during the transition process to steady state, and
it contains a zero isocline which may tend to regulate the adjustments that take place between the two forms of dissipation in the
25
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interior of the channel as they seek a combined steady state of minimal dimensionless specific dissipation 𝛿∗. This isocline separates
the strong dissipative effect of the boundary from the weaker, but active, dimensionless specific incompatibility dissipation 𝛿∗𝐼 that
is present in the interior of the channel, and that is actively compensating with the dimensionless specific viscous dissipation 𝛿∗𝑉 to
flatten the velocity profile. Contrary to the isoclines for 𝛿∗𝐼 , the isoclines for 𝛿∗𝑉 in Fig. 8 are not bounded in the interior of the flow
domain by a zero isocline that would promote interior adjustments apart from the boundary effect; 𝛿∗𝑉 = 0 at the midline 𝑦 = 0 of
the flow region.

9. Discussion

This work is driven by the idea that during a flow the stretching and/or the shearing of fluid material filaments can sustain
only a limited magnitude before the distortion rate 𝑳, which determines the instantaneous smooth local geometric temporal change
in the local arrangement of material particles, develops an incompatible component 𝜦. When this occurs, 𝑳, which is faithfully
determined as the spatial gradient of the velocity 𝒗, develops a component 𝜦 which is not determined as the gradient of a vector
field and, therefore, is incompatible. To characterize this incompatibility, we introduce the incompatibility 𝑮 = −curl𝜦, being zero
when 𝜦 is a gradient and otherwise nominally non-zero. Thus, from the mechanics point of view, the two main fields that describe
the fluid motion are 𝒗 and 𝑮, and we develop a physical theory for the balance laws which govern these fields.

The classical balance laws of mass, momentum, and moment of momentum for a material region 𝑡 form an important part of
the system of governing equations, and they, of course, introduce the fundamental unknown fields of specific mass density and the
Cauchy stress tensor. We restrict attention to homogeneous and incompressible fluids, so that the mass density 𝜚 is constant and
the velocity 𝒗 is solenoidal.

Consistent with the role of the incompatibility 𝑮 as an additional independent kinematical descriptor, we propose a balance
law for the incompatibility 𝑮 which balances the total rate of change of 𝑮 in a material region 𝑡 against the advective and
diffusive transfer through its boundary together with a possible volumetric external rate of supply of incompatibility. This balance
law requires the introduction of an unknown incompatibility diffusion flux 𝙅 , a third order tensor, which accounts for the surfacial
diffusive transfer of incompatibility on 𝜕𝑡 and which, from a mechanics point of view, ultimately will require a constitutive relation
xpressed in terms of the fundamental kinematical descriptors 𝒗 and 𝑮. This balance law includes the possibility of an a priori
pecified volumetric external rate of supply. We show how this balance law may be recast equivalently as a surfacial balance law
or an arbitrary material surface including the advective and diffusive transfer which associates with its edge. Fundamentally, a
urfacial balance law expressing incompatibility for arbitrary material surfaces is to be expected because it follows from Stokes’
heorem that the integral of 𝑮𝒎 over a material surface whose oriented normal is 𝒎 will vanish if 𝜦 is a gradient — otherwise,
hen the incompatibility tensor 𝑮 is nominally non-zero on that material surface, it is expected to generate incompatibility in time
ccording to advective and diffusive transfer and external flux contribution.

An additional element of the governing balance equations is the balance of energy for a material region 𝑡. For this, the rate of
hange of the internal energy plus the two kinetic energies, one due to the velocity 𝒗 and the other due the incompatibility 𝑮, of
he region are balanced against the classical contributions associated with the power expended by external mechanical actions and
ith the energy transfers that accompany the flux and external radiative supply of heat to the region plus nonclassical contributions
ssociated with the energy transfers that accompany the flux and external supply of incompatibility to the region. The expression
or the energy transfers associated with incompatibility requires the introduction of a tensor 𝜫 which serves as a chemical potential
or incompatibility and which is conjugate to both the surfacial incompatible diffusion flux and the external rate of supply of
ncompatibility.

The second law of thermodynamics in the form of the Clausius–Duhem inequality serves to identify the general dissipation
nequality that is necessary for any acceptable constitutive theory and thermodynamic process. We then restrict our theory to
sothermal processes, and propose a natural elementary constitutive structure for the Cauchy stress 𝑻 , the tensorial chemical
otential 𝜫 for incompatibility, and the incompatibility diffusion flux 𝙅 in terms of the descriptor fields 𝒗 and 𝑮. The constitutive
elation for 𝙅 introduces the diffusivity 𝜅 > 0 associated with the transport of incompatibility. A novel aspect of the Cauchy stress is
hat, aside from the non-constitutive constraint reaction part, there are two additional terms; one corresponds to the usual viscosity
ontribution related to the velocity 𝒗, and the other is an incompatibility stress due to the incompatibility 𝑮. This latter novel
tress term not only contributes to the total shear stress but also accounts for a normal stress effect due to incompatibility. This
tructure, together with the balance laws of momentum, moment of momentum and incompatibility tensor field leads to the two
inal mixed system (5.1) and (5.2) of governing equations for 𝒗 and 𝑮: (i) The flow equation (5.1) represents a generalized version
f the Navier–Stokes equation which contains the additional divergence of an incompatibility stress tensor field; (ii) The evolution
quation (5.2) for the incompatibility tensor field. For this theory, the dissipation reduces to the sum of two positive terms, one being
f the usual form, quadratic in the stretching tensor and containing the kinematic viscosity 𝜈 > 0, and the other being quadratic in
he gradient grad𝑮 of the incompatibility tensor 𝑮 and containing the diffusivity 𝜅 associated with the transport of incompatibility.

After a discussion of boundary conditions for 𝒗 and 𝑮 in Section 6, wherein we express that incompatibility enters a flow domain
hrough its fixed boundary when a given critical wall shear stress is exceeded, we analyze in Sections 7.1–7.4 the classical problem
f steady plane Poiseuille flow. We find that if the constant pressure gradient that drives the flow is below a certain level there is
o incompatibility generated (𝑮 = 0) and the velocity 𝒗 has the classical parabolic profile. Above this level, at which the critical
all shear stress is exceeded, the flow becomes incompatible with 𝑮 ≠ 0. In Section 7.5, we discuss physical considerations that
ictate the size of 𝛺ℎ, which should be small if incompatibility plays a minor role but large otherwise. In Section 7.6, we display the
26
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effect near the channel walls, tending to blunt the velocity field from its parabolic form. Other quantities fixed, this blunting is
shown to be more pronounced the greater is the kinematic viscosity 𝜈 relative to the diffusivity 𝜅 associated with the transport of
incompatibility. Correspondingly, for this scenario the quantity of flow rate is reduced, meaning that as incompatibility increases a
larger pressure drop is required to maintain a given flow rate. For incompatible flow, the shear stress has two additive components,
one due to the effect of viscosity and the other due to the effect of incompatibility, both being odd about the centerline of the flow
domain. For large kinematic viscosity 𝜈 relative to diffusivity 𝜅, that part of the shear stress due to viscous effects nearly vanishes
outside of boundary layers near the walls and that part of the magnitude of the shear stress due to incompatibility exhibits absolute
maxima near the walls. In addition, there is a significant streamwise normal stress effect that is due solely to incompatibility. Finally,
we show that the dissipation for this Poiseuille flow is generally concentrated near the channel walls, the concentration becoming
more pronounced for large 𝜈 relative to 𝜅.

In Section 8 we study the dynamical transition of Poiseuille channel flow from rest to steady state, driven by the initial application
of a pressure drop at a generic section of the channel which is thereafter held fixed. After setting up the related dynamical problem,
we first show, in Sections 8.1 and 8.2, how the square integral norms of 𝒗 and 𝑮 exponentially limit to the steady fully developed
forms as given in Section 7. The exponential decay rate that we find depends upon 𝜈min{1, 𝜅∕𝜈}, so the overall transition process
is expected to be governed by the weaker of the two forms of diffusive transport. Then, in Section 8.3 we mostly concentrate on
numerical results which illustrate in some detail how the velocity 𝒗 and the incompatibility 𝑮 are structured by diffusion and
dissipation in the channel during the transition process. As the flow starts, there is a precursor laminar flow that develops until a
particular time at which the wall shear stress becomes equal to an a priori given cut-off value at which incompatibility forms at the
walls of the channel and begins to diffuse inward. The velocity profile at that critical time is obtained in Section 8.3.1 and it serves
as an initial condition for determining, in Section 8.3.2, the velocity and incompatibility fields as time progresses. The numerical
results are presented graphically and, as we discuss, the physical effects of diffusion and dissipation are found to be important
synergistic elements in the formation process.

Certain features of the solutions of the steady and transient problems considered in Sections 7 and 8 resemble results from
established theories for laminar flows of non-Newtonian fluids and turbulent flows of incompressible Newtonian fluids. These
similarities are suggestive of connections that we find intriguing and plan to pursue in future works.
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Appendix A

All fields considered below are assumed to be as smooth as necessary to ensure the existence of indicated derivatives.

A.1. Vector and tensor identities

In addition to vectors, we consider second- and third-order tensors. Given a vector 𝒂, the second-order tensor 𝒂× is defined such
that, for any vector 𝒃,

(𝒂×)𝒃 = 𝒂 × 𝒃. (A.1)

Since, by (A.1), the definition of the transpose of a second-order tensor, and the properties of the cross-product of two vectors, we
have

𝒄 ⋅ ((𝒂×)⊤𝒃) = 𝒃 ⋅ ((𝒂×)𝒄) = 𝒃 ⋅ (𝒂 × 𝒄) = −𝒃 ⋅ (𝒄 × 𝒂) = −𝒄 ⋅ (𝒂 × 𝒃) = −𝒄 ⋅ ((𝒂×)𝒃) (A.2)

for every pair of vectors 𝒃 and 𝒄, then it follows that 𝒂× must be skew:

(𝒂×)⊤ = −𝒂×. (A.3)

Thus, using (A.1) we have

(𝒄×)(𝒂×)𝒃 = (𝒄×)(𝒂 × 𝒃) = 𝒄 × (𝒂 × 𝒃) = ((𝒂⊗ 𝒄) − 1(𝒂 ⋅ 𝒄))𝒃, (A.4)

and applying (A.3) we obtain

(𝒄×)⊤(𝒂×) = −(𝒄×)(𝒂×) = (𝒂⊗ 𝒄) − 1(𝒂 ⋅ 𝒄) ⟹ (𝒄×) ⋅ (𝒂×) = 2𝒂 ⋅ 𝒄. (A.5)

To every second-order tensor 𝑨, there thus corresponds a vector 𝒂, called the axial vector of 𝑨, defined such that

𝑨 −𝑨⊤ = 𝒂 × . (A.6)

In particular, given vectors 𝒂 and 𝒃, it follows that

𝒂⊗ 𝒃 − 𝒃⊗ 𝒂 = (𝒃 × 𝒂)×, (A.7)
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which, with (A.5) and (A.3), shows that

(𝒄×) ⋅ (𝒂⊗ 𝒃) = 𝒄 ⋅ (𝒃 × 𝒂). (A.8)

Moreover, a second-order tensor 𝑨 with axial vector 𝒂 can be expressed as the sum,

𝑨 = sym(𝑨 − 1
3 (tr𝑨)1) + 1

3 (tr𝑨)1 + 1
2𝒂×, (A.9)

of a traceless symmetric component sym(𝑨 − 1
3 (tr𝑨)1), a spherical component 1

3 (tr𝑨)1, and a skew component 1
2𝒂×.

Given a vector 𝒂 and a second-order tensor 𝑩, 𝒂⊗𝑩 and 𝑩⊗ 𝒂 are the third-order tensors defined such that, for any vector 𝒄,

(𝒂⊗ 𝑩)𝒄 = 𝒂⊗ (𝑩𝒄) and (𝑩 ⊗ 𝒂)𝒄 = (𝒂 ⋅ 𝒄)𝑩. (A.10)

oreover, given a third-order tensor 𝘾 , 𝘾𝒂 is the second-order tensor defined such that, for any second-order tensor 𝑩,

(𝘾𝒂) ⋅ 𝑩 = 𝘾 ⋅ (𝑩 ⊗ 𝒂), (A.11)

𝘾 [𝑩] is the vector defined such that, for any vector 𝒂,

(𝘾 [𝑩]) ⋅ 𝒂 = 𝘾 ⋅ (𝒂⊗ 𝑩), (A.12)

and 𝘾 𝑡 is the third-order tensor defined such that, for any pair of vectors 𝒂 and 𝒃,

(𝘾 𝑡𝒂)𝒃 = (𝘾𝒃)𝒂, (A.13)

with the consequence that

𝘾 𝑡[𝑨] = 𝘾 [𝑨⊤] (A.14)

for any second-order tensor 𝑨.
Given a vector 𝒂 and a second-order tensor 𝑩, 𝒂 × 𝑩 and 𝑩 × 𝒂 denote the second-order tensors defined through

𝒂 × 𝑩 = (𝒂×)𝑩 and 𝑩 × 𝒂 = 𝑩(𝒂×), (A.15)

and by analogy to the definition (A.1) of the skew tensor 𝒂× determined by a vector 𝒂, 𝑨× is the third-order tensor defined such
hat, for every vector 𝒃,

(𝑨×)𝒃 = 𝑨 × 𝒃. (A.16)

n particular, choosing 𝑩 = 1 in (A.15) gives 𝒂 × 1 = (𝒂×)1 = 𝒂× and 1 × 𝒂 = 1(𝒂×) = 𝒂×, and with (A.16) we have

𝒂 × 1 = 1 × 𝒂 = (1×)𝒂 = 𝒂×. (A.17)

Now, referring to (A.1), and letting {𝒊1, 𝒊2, 𝒊3} denote a right handed orthonormal basis for three-dimensional Euclidean vector space
3, we see that (𝒊𝑘×)𝒊𝑗 = 𝒊𝑘 × 𝒊𝑗 , so 𝒊𝑖 ⋅ (𝒊𝑘×)𝒊𝑗 = −𝜖𝑖𝑗𝑘, and we may then write (𝒊𝑘×) = −𝜖𝑖𝑗𝑘𝒊𝑖 ⊗ 𝒊𝑗 . Consequently, with the aid of

(A.17) we have ((1×)𝒊𝑘)𝒊𝑗 ⋅ 𝒊𝑖 = −𝜖𝑖𝑗𝑘 which yields the representation

1× = −𝜖𝑖𝑗𝑘𝒊𝑖 ⊗ 𝒊𝑗 ⊗ 𝒊𝑘. (A.18)

In addition, to determine (𝒂×)× we first observe, from (A.17)3, (A.16) and (A.15)2 that ((𝒂×)×)𝒃 = (𝒂×)×𝒃 = (𝒂×)(𝒃×) = ((1×)𝒂)(𝒃×).
Thus,

((𝒂×)×)𝒊𝑘 = ((1×)𝒂)(𝒊𝑘×) = ((1×)𝒂)(−𝜖𝑟𝑠𝑘𝒊𝑟 ⊗ 𝒊𝑠), (A.19)

and we find that

(((𝒂×)×)𝒊𝑘)𝒊𝑗 ⋅ 𝒊𝑖 = −𝜖𝑟𝑗𝑘((1×)𝒂)𝒊𝑟 ⋅ 𝒊𝑖 = −𝜖𝑟𝑗𝑘𝑎𝑚((1×)𝒊𝑚)𝒊𝑟 ⋅ 𝒊𝑖 = 𝜖𝑟𝑗𝑘𝜖𝑖𝑟𝑚𝑎𝑚 = (𝛿𝑖𝑘𝛿𝑚𝑗 − 𝛿𝑖𝑗𝛿𝑚𝑘)𝑎𝑚𝛿𝑖𝑘𝑎𝑗 − 𝛿𝑖𝑗𝑎𝑘, (A.20)

which establishes the representation

(𝒂×)× = 𝒊𝑖 ⊗ 𝒂⊗ 𝒊𝑖 − 𝒊𝑖 ⊗ 𝒊𝑖 ⊗ 𝒂. (A.21)

Since (𝒄 ⊗ 𝒅)𝑨 = 𝒄 ⊗ (𝑨⊤𝒅) for any second-order tensor 𝑨 and any pair of vectors 𝒄 and 𝒅, choosing 𝑩 = 𝒄 ⊗ 𝒅 in (A.15)2 and
invoking (A.3) shows that

(𝒄 ⊗ 𝒅) × 𝒂 = (𝒄 ⊗ 𝒅)(𝒂×) = 𝒄 ⊗ ((𝒂×)⊤𝒅) = −𝒄 ⊗ (𝒂 × 𝒅) = 𝒄 ⊗ ((𝒅×)𝒂) = (𝒄 ⊗ (𝒅×))𝒂 (A.22)

for any vector 𝒂, from which, with the aid of (A.16) it follows that

(𝒄 ⊗ 𝒅)× = 𝒄 ⊗ (𝒅×) (A.23)

for any pair of vectors 𝒄 and 𝒅.
Now, setting 𝘾 = 1× in (A.11) and using (A.17) we see that

(1×) ⋅ (𝑩 ⊗ 𝒂) = ((1×)𝒂) ⋅ 𝑩 = (𝒂×) ⋅ 𝑩, (A.24)

from which it follows that

(1×) ⋅ (𝑩 ⊗ 𝒂) = 0 if 𝑩 = 𝑩⊤. (A.25)
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A.2. Differential identities

Let 𝒇 be a vector field. Then, its gradient grad𝒇 is a second-order tensor field and, thus, by (A.9), admits a decomposition of
the form

grad𝒇 = sym(grad𝒇 − 1
3 (tr(grad𝒇 ))1) +

1
3 (tr(grad𝒇 ))1 + skw(grad𝒇 ). (A.26)

The divergence and curl of 𝒇 are the scalar and vector fields, div𝒇 and curl𝒇 , defined by

div𝒇 = tr(grad𝒇 ) and (curl𝒇 )× = 2 skw(grad𝒇 ), (A.27)

with the consequence that (A.26) becomes

grad𝒇 = sym(grad𝒇 − 1
3 (div𝒇 )1) +

1
3 (div𝒇 )1 + 1

2 (curl𝒇 )×. (A.28)

Since the first two terms on the right-hand side of (A.28) are symmetric, on computing the scalar product with a skew tensor 𝒈×
on both sides of (A.28) and using the identity (A.5), it follows that

𝒈 ⋅ curl𝒇 = (𝒈×) ⋅ grad𝒇 (A.29)

for any vectorial quantity 𝒈. If, in particular, 𝒇 is of the form 𝒇 = 𝜁𝒂, with 𝒂 a constant vector, then, since, by (A.29) and (A.8),

𝒈 ⋅ curl(𝜁𝒂) = (𝒈×) ⋅ grad(𝜁𝒂) = (𝒈×) ⋅ (𝒂⊗ grad 𝜁 ) = 𝒈 ⋅ ((grad 𝜁 ) × 𝒂) (A.30)

for any choice of 𝒈, it follows that

curl(𝜁𝒂) = (grad 𝜁 ) × 𝒂 (A.31)

for any constant vector 𝒂.
Next, let 𝑭 be a second-order tensor field. Then, since the gradient grad𝑭 is a third-order tensor field, it is convenient to introduce

a constant vector 𝒂 and to consider the gradient of the vector field 𝑭 ⊤𝒂. On appealing to (A.27) with 𝒇 = 𝑭 ⊤𝒂, the divergence and
curl of 𝑭 , div𝑭 and curl𝑭 , are herein identified as the vector and second-order tensor fields defined such that

𝒂 ⋅ div𝑭 = div(𝑭 ⊤𝒂) and (curl𝑭 )⊤𝒂 = curl(𝑭 ⊤𝒂) (A.32)

for any constant vector 𝒂. Let 𝜁 be a scalar field. Then, by (A.31) and (A.32)2, we see that

(curl(𝜁1))⊤𝒂 = curl(𝜁1⊤𝒂) = curl(𝜁𝒂) = (grad 𝜁 ) × 𝒂, (A.33)

for any constant vector 𝒂, from which, with (A.1), it follows that

curl(𝜁1) = −(grad 𝜁 )×. (A.34)

Similarly, by (A.1), (A.31), and (A.32)2,

(curl(𝜁𝑩))⊤𝒂 = curl(𝜁𝑩⊤𝒂) = (grad 𝜁 ) × (𝑩⊤𝒂) = ((grad 𝜁 )×)𝑩⊤𝒂 (A.35)

for any constant vector 𝒂 and any constant second-order tensor 𝑩, from which it follows, using (A.3) and (A.15)2, that

curl(𝜁𝑩) = −𝑩((grad 𝜁 )×) = −(𝑩×) grad 𝜁 = −𝑩 × grad 𝜁 (A.36)

for any constant second-order tensor 𝑩. Also, by (A.8), (A.27)1, (A.32)1, and the definition of the trace of a second-order tensor, we
see that

𝒂 ⋅ curl𝒇 = (𝒂×) ⋅ grad𝒇 = tr((𝒂×)⊤grad𝒇 ) = − tr((𝒂×) grad𝒇 ) = − tr(grad(𝒂 × 𝒇 )) = − div((𝒇×)⊤𝒂) = −𝒂 ⋅ div(𝒇×) (A.37)

for any constant vector 𝒂, and it follows that curl𝒇 can be obtained alternatively from the divergence of the associated skew tensor
field 𝒇× through the identity

curl𝒇 = −div(𝒇×). (A.38)

Furthermore, using (A.9), (A.32)2, and (A.29) we see that

𝒂 ⋅ (curl𝑭 )𝒈 = 𝒈 ⋅ curl(𝑭 ⊤𝒂) = (𝒈×) ⋅ grad(𝑭 ⊤𝒂) = (grad𝑭 ) ⋅ (𝒂⊗ (𝒈×)) = 𝒂 ⋅ ((grad𝑭 )[𝒈×]) (A.39)

for any constant vector 𝒂, and it follows that

(curl𝑭 )𝒈 = (grad𝑭 )[𝒈×] (A.40)

for any vectorial quantity 𝒈. Additionally, on noticing from (A.32) that

𝒂 ⋅ div curl𝑭 = div((curl𝑭 )⊤𝒂) = div curl(𝑭 ⊤𝒂) (A.41)

for any constant vector 𝒂 and recalling that div curl𝒇 = 0 for any vector field 𝒇 , it follows that

div curl𝑭 = 0. (A.42)
29



International Journal of Engineering Science 168 (2021) 103540R. Fosdick and E. Fried
Next, given vector and tensor fields 𝒈 and 𝑭 , it follows from (A.12), (A.32)2 and (A.3) that

(curl(𝑭 × 𝒈))⊤𝒂 = curl((𝑭 × 𝒈)⊤𝒂)

= curl((𝑭 (𝒈×))⊤𝒂)
= − curl((𝒈×)𝑭 ⊤𝒂)

= curl((𝑭 ⊤𝒂) × 𝒈)

= (grad(𝑭 ⊤𝒂) − (div(𝑭 ⊤𝒂))1)𝒈 − (grad 𝒈 − (div 𝒈)1)𝑭 ⊤𝒂

= ((grad𝑭 )𝒈 − (div𝑭 )⊗ 𝒈 − 𝑭 (grad 𝒈)⊤+ (div 𝒈)𝑭 )⊤𝒂, (A.43)

for any constant vector 𝒂 and, consequently, that

curl(𝑭 × 𝒈) = curl(𝑭 (𝒈×)) = (grad𝑭 )𝒈 − (div𝑭 )⊗ 𝒈 − 𝑭 (grad 𝒈)⊤+ (div 𝒈)𝑭 . (A.44)

Furthermore, from (A.32)2, for any constant vector 𝒂,

(curl curl𝑭 )⊤𝒂 = curl((curl𝑭 )⊤𝒂)

= curl curl(𝑭 ⊤𝒂)

= grad div(𝑭 ⊤𝒂) − 𝛥(𝑭 ⊤𝒂)

= grad(𝒂 ⋅ div𝑭 ) − (𝛥𝑭 )⊤𝒂

= (grad div𝑭 − 𝛥𝑭 )⊤𝒂, (A.45)

where 𝛥 denotes the Laplacian, and, thus, that

curl curl𝑭 = grad div𝑭 − 𝛥𝑭 . (A.46)

By (A.12), (A.23), (A.32)2 and (A.40),

((𝒂⊗ 𝒃)×) ⋅ grad𝑭 = ((𝒂⊗ (𝒃×))) ⋅ grad𝑭
= ((grad𝑭 )[𝒃×]) ⋅ 𝒂
= ((curl𝑭 )𝒃) ⋅ 𝒂,

= 𝒃 ⋅ ((curl𝑭 )⊤𝒂)

= (𝒂⊗ 𝒃) ⋅ curl𝑭 , (A.47)

from which it follows that

((𝒂⊗ 𝒃)×) ⋅ grad𝑭 = (𝒂⊗ 𝒃) ⋅ curl𝑭 (A.48)

for any pair of vectors 𝒂 and 𝒃. Thus, since any second-order tensor can be represented as a linear combination of second-order
tensors of the general form 𝒂⊗ 𝒃, the requirement that (A.32)2 hold for any vector 𝒂 implies that

𝑨 ⋅ curl𝑭 = (𝑨×) ⋅ grad𝑭 (A.49)

holds for any second-order tensor 𝑨. Conversely, on setting 𝑨 = 𝒂 ⊗ 𝒃 in the requirement that (A.49) hold for all 𝑨 of the form
𝑨 = 𝒂⊗ 𝒃, with 𝒂 and 𝒃 being arbitrarily chosen vectors, we see using (A.23) that (A.48) is equivalently

((𝒂⊗ (𝒃×))) ⋅ grad𝑭 = 𝒂 ⋅ (curl𝑭 )𝒃, (A.50)

which, according to (A.39), is equivalently

𝒃 ⋅ curl(𝑭 ⊤𝒂) = 𝒂 ⋅ (curl𝑭 )𝒃 = 𝒃 ⋅ (curl𝑭 )⊤𝒂, (A.51)

and implies that (A.32)2 must hold for all 𝒂. Imposing (A.49) for all second-order tensors 𝑨 thus provides an equivalent alternative
to imposing (A.32)2 for all vectors 𝒂. In particular, on choosing 𝑨 = 1 in (A.49), it follows that tr(curl𝑭 ) = 1 ⋅ curl𝑭 = (1×) ⋅ grad𝑭
and, with (A.18), that

tr(curl𝑭 ) = 0 if 𝑭 = 𝑭 ⊤. (A.52)

Finally, from the relation (𝒂×) ⋅ curl𝑭 = 𝒂 ⋅ (div(𝑭 ⊤) − grad tr 𝑭 ), which holds for any constant vector 𝒂 as a consequence of (A.21)
and (A.49), it follows from (A.42) on choosing 𝑨 = 𝒂× that

(𝒂×) ⋅ curl((curl𝑭 )⊤) = 𝒂 ⋅ (div curl𝑭 − grad tr(curl𝑭 )) = −𝒂 ⋅ grad tr(curl𝑭 ) (A.53)

for any vector 𝒂 and, in view of (A.52) and noting that 𝒂× is skew, that

curl((curl𝑭 )⊤) = (curl((curl𝑭 )⊤))⊤ if 𝑭 = 𝑭 ⊤. (A.54)
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A

A.3. Material time rate

We use a superposed dot to denote the material time rate. In particular, for a scalar field 𝛼,

𝛼̇ = 𝜕𝛼
𝜕𝑡

+ (grad 𝛼) ⋅ 𝒗. (A.55)

The material time derivatives 𝝋̇ and 𝜮̇ of vector and second-order tensor fields 𝒇 and 𝑭 are, thus, given by

𝝋̇ =
𝜕𝒇
𝜕𝑡

+ (grad𝒇 )𝒗 and 𝑭̇ = 𝜕𝑭
𝜕𝑡

+ (grad𝑭 )𝒗, (A.56)

where the vector field (grad𝒇 )𝒗 satisfies

𝒄 ⋅ ((grad𝒇 )𝒗) = 𝒗 ⋅ grad(𝒇 ⋅ 𝒄) (A.57)

for any constant vector 𝒄 and, similarly, (grad𝑭 )𝒗 is the second-order tensor field which satisfies

(𝒂⊗ 𝒄) ⋅ ((grad𝑭 )𝒗) = 𝒗 ⋅ grad(𝒂 ⋅ 𝑭𝒄) (A.58)

for any pair of constant vectors 𝒂 and 𝒄.

.4. Select representations in terms of rectangular Cartesian components

Relative to a fixed right-handed orthonormal basis {𝒊1, 𝒊2, 𝒊3}, the second- and third-order tensors 𝒂× and 𝑨× defined through
(A.1) and (A.15)2 admit representations of the form

𝒂× = 𝜖𝑖𝑘𝑗𝑎𝑘𝒊𝑖 ⊗ 𝒊𝑗 , and 𝑨× = 𝐴𝑖𝑝𝜖𝑗𝑝𝑘𝒊𝑖 ⊗ 𝒊𝑗 ⊗ 𝒊𝑘, (A.59)

where 𝑎𝑖 = 𝒂 ⋅ 𝒊𝑖, 𝐴𝑖𝑗 = 𝒊𝑖 ⋅ 𝑨𝒊𝑗 , and the standard summation convention applies. Representations for the special cases 𝒊𝑘× and 1×,
as well as for (𝒂×)× were presented in (A.17)–(A.21) and were used in Appendices A and B.

Also, the gradient grad𝒇 of a vector field 𝒇 admits the representation

grad𝒇 = 𝑓𝑖,𝑗 𝒊𝑖 ⊗ 𝒊𝑗 . (A.60)

Thus, from (A.27), the divergence and curl, div𝒇 and curl𝒇 , of 𝒇 admit representations of the form

div𝒇 = 𝑓𝑖,𝑖 and curl𝒇 = 𝜖𝑖𝑗𝑘𝑓𝑘,𝑗 𝒊𝑖, (A.61)

while, from (A.32), the divergence and curl, div𝑭 and curl𝑭 , of a second-order tensor field 𝑭 admit representations of the form

div𝑭 = 𝐹𝑖𝑗,𝑗 𝒊𝑖 and curl𝑭 = 𝜖𝑗𝑟𝑠𝐹𝑖𝑠,𝑟𝒊𝑖 ⊗ 𝒊𝑗 . (A.62)

by (A.46), the double curl, curl curl𝑭 , of 𝑭 admits the representation

curl curl𝑭 = (𝐹𝑖𝑘,𝑘𝑗 − 𝐹𝑖𝑗,𝑘𝑘)𝒊𝑖 ⊗ 𝒊𝑗 . (A.63)

Finally, the material time derivatives 𝒇̇ and 𝑭̇ of vector and second-order tensor fields 𝒇 and 𝑭 admit the representations

𝒇̇ =
( 𝜕𝑓𝑖
𝜕𝑡

+ 𝑓𝑖,𝑗𝑣𝑗
)

𝒊𝑖 and 𝑭̇ =
( 𝜕𝐹𝑖𝑗
𝜕𝑡

+ 𝐹𝑖𝑗,𝑘𝑣𝑘
)

𝒊𝑖 ⊗ 𝒊𝑗 . (A.64)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijengsci.2021.103540.
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