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Abstract

We discuss the conditions for the classicality of quantum states with a very large number of identical
particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a
classical trajectory when the distribution of the Bohmian particle positions in a single experiment is
always equal to the marginal distribution of the quantum state in physical space. This result can also be
interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also
demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum
(conditional) wave function solution of a classical non-linear Schrodinger equation. Our work shows
clear evidence for a quantum-—classical inter-theory unification, and opens new possibilities for
practical quantum computations with decoherence.

1. Introduction

Since the beginning of quantum theory a century ago, the study of the frontier between classical and quantum
mechanics has been a constant topic of debate [ 1-8]. Despite great efforts, the quantum-to-classical transition
still remains blurry and certainly much more puzzling and intriguing than, for example, the frontier between
classical mechanics and relativity. The relativistic equations of motion just tend to the classical ones when the
velocities are much slower than the speed of light [3].

The difficulties in finding a simple explanation for the classical-to-quantum transition have their roots in the
so-called measurement problem that requires getting rid of quantum superpositions [8—10]. Possible quantum
states of a particle are represented by vectors in a Hilbert space, and linear combinations of them (such as
superpositions of macroscopically distinguishable states) also correspond to valid states of the Hilbert space.
However, such a superposition of states is not always compatible with measurements [10, 11]. The measurement
problem can be formulated as the impossibility for a physical quantum theory (in empirical agreement with
experiments) to satisfy simultaneously the following three assumptions [9]. First, the wave function always
evolves deterministically according to the linear and unitary Schrédinger equation. Second, a measurement
always finds the physical system in a localized state, not in a superposition of macroscopically distinguishable
states. Third, the wave function is a complete description of a quantum system. Different quantum theories
(interpretations) appear depending on which assumption is ignored [3].

The first type of solution argues that the unitary and linear evolution of the Schrédinger equation is not
always valid. For instance, in the instantaneous collapse theories [ 12] (like the GRW interpretation [13]), a new
stochastic equation is used that breaks the superposition principle at a macroscopic level, while still keeping it at
amicroscopic one. Another possibility is substituting the linear Schrédinger equation by a non-linear collapse
law only when a measurement is performed [ 1, 14]. This is the well-known orthodox (or Copenhagen) solution,
and most of the attempts to reach a quantum-to-classical transition have been developed under this last
approach [4-8, 15-17].

A second type of solution ignores the assumption that a measurement always find the physical system in a
localized state. One then assumes that there are different worlds where different states of the superposition are
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found. This is the many worlds solution [18-20], in which the famous Schrodinger’s cat is found alive in one
world and dead in another. Explanations of the quantum-to-classical transition have also been attempted within
this interpretation [20].

There is a final kind of solution that assumes that the wave function alone does not provide a complete
description of the quantum state, i.e. additional elements (hidden variables) are needed. The most widespread of
these approaches is Bohmian mechanics [ 10, 23-28], where, in addition to the wave function, well-defined
trajectories are needed to define a complete (Bohmian) quantum state. In a spatial superposition of two disjoint
states, only the one whose support contains the position of the particle becomes relevant for the dynamics.
Previous attempts to study the quantum-to-classical transition with Bohmian mechanics mainly focused on
single-particle problems [28—31]. In this paper, we generalize such works by analyzing under which conditions
the center of mass of a many-particle quantum system follows a classical trajectory.

The use of the center of mass for establishing the classicality of a quantum state has some promising advantages.
The first one is related to the description of the initial conditions. Fixing the initial position and velocity of a classical
particle seems unproblematic, while it is forbidden for a quantum particle due to the uncertainty principle [1, 14]. The
use of the center of mass relaxes this contradiction: it is reasonable to expect that two experiments with the same
preparation for the wave function will give quite similar values for the initial position and velocity of the center of
mass when a large number of particles is considered, although the microscopic distribution of the positions and
velocities for all (Bohmian) particles will be quite different in each experiment.

The second advantage is that it provides a natural coarse-grained definition of a classical trajectory that coexists
with the underlying microscopic quantum reality. One can reasonably expect that the Bohmian trajectory of the
center of mass of a large number of particles can follow a classical trajectory, without implying that each individual
particle becomes classical. Therefore, the use of the center of mass allows a definition of the quantum-to-classical
transition, while keeping a pure quantum behavior for each individual particle.

This article is structured as follows. We begin by studying the conditions under which the center of mass of a
quantum state behaves classically. We then present a type of wave function that always fulfills these conditions,
and show the equation that guides the wave function of the center of mass. Next, we discuss examples of
quantum states whose center of mass does not behave classically. To finish, we summarize the main results,
contextualize them within previous approaches and comment on further extensions of this work.

2. Conditions for a classical center of mass

2.1. Evolution of the center of mass in an ensemble of identical experiments
Throughout the article, we will consider a quantum system composed of N particles of mass m governed by the
wave function W(#,...,7y, t) solution of the rnany-particle non-relativistic Schrodinger equation,

i ( Z Vi + VJ (1)

6t 2m

where 7 is the position of the ith particle, V7 its associated Laplacian operator, and the potential
V = V(%,...,7y, t) contains an external and an interparticle component,

V= ZVext(r)+ Z Z Vine (7, — 7). ()]
i=1 f=1i=f

In particular, we are interested in the evolution of one specific degree of freedom, the center of mass, defined as
1 XN

Our aim in this paper is to analyze under which circumstances the observable associated with the operator 7.,
follows a classical trajectory in a single experiment.

We first consider an ensemble of experiments realized with the same (prepared) wave function, whose
average ensemble value of the center of mass is given by

(Fan) () = f & f PRI Trs 1) PTone )

From Ehrenfest’s theorem [32], it is well-known that the time derivative of (7., is

1
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We can follow the same procedure for the time derivative of the momentum of the center of mass,

d(B) _ 1
dr N

Ndp) . 1
> = Ty 2 (e ). 6)

i=1 i=1

When the spatial extent of the many-particle wave function is much smaller than the variation length-scale of the
potential, we can assume (V. Vo (7)) = V Vi ((1n)), and write

d*(7im o
é:z > - _VVext(<rcm>)~ (7)

This classical behavior of the average (7.,) is a very well-known result [1, 2, 32]. The types of Vi, that satisfy the
condition (V} Vo (7)) = V Vgt ((7irn)) will be discussed further later.

2.2. Evolution of the center of mass in a single experiment

In order to satisfy our classical intuition, we need to certify that the observable associated with 7, follows a
classical trajectory in each experiment (not in an average over several experiments). This problem could be
analyzed within the orthodox formalism [4, 5, 7, 15-17, 33]. The typical approach would be to construct a
reduced density matrix of the center of mass by tracing out the rest of the degrees of freedom interpreted as the
environment. The effect of decoherence, i.e. the entanglement between the environment and the system, then
leads to a diagonal (or nearly diagonal) density matrix. Finally, after invoking the collapse law, one obtains the
observable result for the operator 7., by selecting one element of the diagonal at each measuring time. In this
work, however, we will approach the problem using Bohmian mechanics [23, 25-28]. This alternative formalism
will allow us to reach the quantum-to-classical transitions without dealing with the reduced density matrix and
without specifying the collapse law (this law is not needed in the Bohmian postulates [25, 26, 28]).

Asindicated in the introduction, in Bohmian mechanics, a quantum state is completely described by two
elements: the many-particle wave function W(7,...,7y, t), solution of the usual Schrédinger equation, and the
trajectory {?ij (t)}ofeachi = 1 ... N particle. Hereafter, each Bohmian quantum state will refer to a wave
function and to a particular set of trajectories labeled by the superindex j that correspond to a single experiment.
The velocity of each particle is given by

d7/(t)  J(#H @), F®), 1)
dr (7 (£, T (£)s D)2

vt =

®

where J; = 7 Im(U*V/¥) /m. Thus, the configuration of particles reproduces all quantum features while
evolving ‘choreographed’ by the wave function [26-28, 34, 35].

By construction, Bohmian predictions are as uncertain as the orthodox ones [36]: it is not possible to know
the initial positions in a particular experiment (unless the wave function is a position eigenstate). The best we can
know about the particle positions in the j-experiment, { ?I-j (t)},1s that they are found in locations where the wave
function has a reasonable presence probability. In particular, the set of positions in M different experiments

(prepared with the same wave function) are distributed according to

o R BN
(R, 7N, O = AEHOOMZ [T 6G — 7). (&)

j=1i=1

If the set of N positions follows this distribution at some time =0, it is easy to demonstrate that (9) will also be
satisfied at any other time #, provided that the many-particle wave function evolves according to (1) and that the
particles move according to (8). This property is known as equivariance [39] and it is key for the empirical
equivalence between Bohmian mechanics and other quantum theories. Equation (9) says that Born’s law is
always satisfied by counting particles [23, 25, 27, 28] and that the quantum results are unpredictable [36]. Several
authors assume that, as a postulate of the Bohmian theory, the initial configuration of the particles satisfies (9),
while others argue that it is just a consequence of being in a ‘typical’ Universe [21,39]°.

’In principle, one could postulate (9) (at some initial time) in the Bohmian theory in the same way that Born’s law is a postulate in the
orthodox theory. However, some authors argue that this is not necessary [21]. Probably the most accepted view against taking (9) asa
postulate comes from the seminal work by Diirr et al [39], where the equivariance in any system is discussed from the initial configurations of
(Bohmian) particles in the Universe. Using Bohmian mechanics to describe the wave function of the whole Universe, then the wave function
associated with any (sub)system is an effective (conditional) wave function of the universal one. Using typicality arguments, Diirr et al
showed that the overwhelming majority of the possible selections of initial positions of particles in the Universe will satisfy condition (9) in a
subsystem [39]. Other authors [22] have attempted to dismiss (9) as a postulate by showing that any initial configuration of Bohmian
particles will relax, after some time, to a distribution very close to (9) for a subsystem.
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After selecting one initial position of the particles from (9) in a single j-experiment, we can then define the
trajectory for the center of mass of the Bohmian quantum state as

. 1N ;
=iy — LN
Tem (1) = N EAG! (10

i=1

As discussed above, in general 72 (t) = 7! () for any two different experiments jand / because the Bohmian

positions have an intrinsic uncertainty coming from (9).

2.3. Classical center of mass in a single experiment

A classical trajectory for the center of mass 7/, () of a quantum state in a single experiment is obtained when the
following two conditions are satisfied:

+ Condition 1—For the overwhelming majority of experiments associated with the same wave function, the
same trajectory for the center of mass is obtained. That is to say, for (almost) any two different experiments,
jand h, we obtain 71, (t) = 7" ().

+ Condition 2—The spatial extent of the (many-particle) wave function in each direction is much smaller than
the variation length-scale of the external potential V..

According to condition 1, since 7/, (t) = 7% () for all M experiments, the empirical evaluation of (7.,) (that we
know is classical if condition 2 is also satisfied) will be equal to the trajectory of the center of mass 75 (¢) in a single
experiment:

M .
%moﬁiﬁgﬁﬂomm. (11)

Moreover, we notice that 7/_(#) in such a quantum state has the same well-defined initial conditions (position
and velocity) as in the overwhelming majority of experiments. While condition 1 might seem very restrictive, we
will show, in what follows, that quantum states that satisfy it are more natural than expected when the number of
particles is very large.

Abetter understanding of condition 2 can be found from a Taylor expansion of the external potential V., (7}) in
(6). One can easily realize that the condition (V Ve (7)) = V Ve ({7)) is directly satisfied by constant, linear or
quadratic potentials. Where V,y; can be approximated by potentials with such dependence requires a discussion of its
physical meaning. V., () in (2) describes the interaction of particle i with some distant ‘source’ particles located
elsewhere. Moreover, the fact that this potential is felt identically by all N system particles (i.e. Ve, (7;) is a single particle
potential) is due to the large distance between our system and the potential sources. We can then assume that V,y, is
generated by some kind of long-range force, such as an electromagnetic or gravitational one. Such external long-range
potentials will usually have a small spatial variation along the support of W(7,....,7y, t),andalinear or quadratic
approximation for V. would seem enough in most macroscopic scenarios. In any case, scenarios where higher orders
of the series expansion of V. are relevant are possible in the laboratory. Then, if condition 1 is applicable, it will
guarantee a unique trajectory (7.,,) (t) = 7.(t) inall experiments with well-defined initial conditions; however, its
acceleration will not only be given by the gradient of V., but it will also depend on the wave function.

3. Quantum states with a classical center of mass

3.1. A quantum state full of identical particles

We define here a type of quantum state with a very large number of indistinguishable particles (either fermions
or bosons) that we name quantum state full of identical particles. We will show that the center of mass of these
states always follows a classical trajectory. Our definition will revolve around the concept of marginal probability
distribution, i.e. the spatial distribution for the ith particle independently of the position of the rest of the
particles,

N
D@, 1) = f...fmz(a,...,?N, e I & (12)
f=1f=i
Empirically, this distribution can be calculated from a very large number M of experiments as
1 & :
D@ t) = lim — ) 6 — 7 ()). 13
(1) = lim — 378G ~ 7 (1) (13)

j=1
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Since our definition of a quantum state full of identical particles always involves indistinguishable particles, the
subindex i is superfluous, and all particles will have the same marginal distribution. We notice that, while all
Bohmian particles 7; () are ontologically distinguishable (through the index 7), the Bohmian dynamical laws,
equations (1) and (8), ensure that they are empirically indistinguishable”.

We define a quantum state full of identical particles as a state whose distribution of the positions of the N
particles in a single experiment is always equal to the marginal distribution of a single variable obtained from
averaging over different experiments,

D@7, t) = lim NZ 6(F — _']O(t)) = hm MZ 6(F — _"(t)) (14)

N—o0 i=1 j=1

For the practical application of this definition in systems with a finite (but very large) number of particles, one
can impose that the condition in (14) has to be satisfied for the overwhelming majority of experiments (see
appendix A). . 4

The selection of the initial position of the particles, 7;(0), 7(0) ... 7h (0), in a single experiment (labeled
here j;) can be done from (9). One would start by first selecting 7; 7h (0) (independently of the rest of the positions).
Then, selecting r2°(0) condltloned to the fact the 7} 7o (0) is already selected. This procedure is repeated until the

last position is chosen, 7{4(t), conditioned to all previous selected positions. The probability distribution for

selecting r]” (0) , when the previous positions rIJ (0),.. ,?1]0 1(0) are already chosen, can be defined from a

combination of conditional and marginal probabilities as:

i ]() —']0
fD’(?ﬂO(ox.. *fo <0> 7, 0)d7,

with

Di(Fy... 7, 0) = f...f|\1/(?l,...,7;,...,?N, 0 PEE,, ... Py, (16)

By construction, the probability distribution function in (14) has a total probability equal to unity. On the
contrary, anormalization constant is explicitly included in the definition of (15) to ensure that it is a probability
distribution function properly normalized to unity. In particular, for any jo-experiment, we get
Div(%, 0) = D (%, 0)and DN (7, 0) = (7 Jo 0),...,7 J“ (0),.. ,?ﬁ 1(0), 7y, t)[*. Therefore, a quantum state
full of identical particles can be alternatively defined as the wave function satisfying the global distribution of the
i=1,..., Nparticles in a single jo-experiment constructed from (15) and (16), and is equal to D (7, 0) in (12) for
the overwhelming majority of experiments. A trivial example of a quantum state full of identical particles is one
where the corresponding distribution for selecting the i = 1,...., N particles in the overwhelming majority of
experiments satisfies D/ (7, 0) = D(7, 0).

The equivalence between both expressions in (14) implies the equivalence between two sets of positions:
first, the positions of particle i in M different experiments, {7-j (t)} forj=1,..., M, and, second, the positions of

the N particles in the same j,-experiment, {7; 7o (t)} fori=1,..., N. Because of this equivalence, a position in the

first set, say r]" (t),is equal to another position in the second set, 7; (t) Any position of one set has another

identical position in the other set. Therefore, since the exchange of positions of identical particles does not
H]0 _

exchange their velocity [37], we obtain that v Wthh implies that 7; 7o (1) = _'] ) (t) atany time. Therefore,

we conclude that if (14) is satisfied ata partlcular tlme, suchast = 0, then the quantum state will be full of
identical particles at any other time.

At this point, using (14) for any time #, we can certify that the trajectory of the center of mass of a quantum
state full of identical particles satisfies

* The empirical indistinguishability of the Bohmian trajectories means that the 7-observable computed from 7§ (¢) is identical to the
7-observable computed from rlf (t). This property can be easily understood from the symmetry of the wave function (see also [25, 28, 37]).
Consider a set of tra]ectorles {7 (), 7 (1), 7 ()} a551gned to an experiment j. We construct another set of trajectories
{r1 (), 7 (1), ,rN (t)} whose 1n1t1als conditions are r1 h0) = 7J(0) and rh(O) = 71’ (0), while ?}’ 0) = ﬁJ(O) fori=3,...,N.Dueto the

symmetry of the wave function (and of velocity (8)), 7| M) = 7 (t)and rzh (t) = 7/ (¢) (the rest of the trajectories are 1dent1ca1 injandh).
Any observable related to 7 (or 7,) is evaluated over an ensemble of different experiments. For each j-element of the ensemble, we can
construct itts corresponding h-set of trajectories and evaluate the %-observable using 7y (t) instead of 7J (¢). By construction, since
) = ?1] (t), the $-observable is identical to the 7i-observable.
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j RN 1 &
() = lim — ) 7°) = lim — » 7/ (¢
b= Jim TR0 = fim 3270
1L 1 & 1 X1 &
= lim —) —» #@ = lim — — > @)
NMHOON;M;I NMﬂooszz:lNi:II
1 M
= lim — ) 7 = (7)), 17
MHooM; cm <cm>() ( )
where we have used
#Pnu):f? D@, 1)d7 (18)

with D(7, t) given by any of the two expressions in (14). In summary, a quantum state full of identical particles
satisfies condition 1, and, if condition 2 also holds, its center of mass will be a classical trajectory.

The arguments we have presented here are for a system of indistinguishable particles. For a macroscopic
object composed of several types of particles, we can apply the same reasoning and obtain a classical center of
mass for each type of particle subsystem, such that the global center of mass is also classical.

3.2. Example 1: a quantum state with all particles sharing the same single-particle wave function
Here we show the simplest example of a quantum state full of identical particles. We consider an N-particle wave
function given by

N
U(H,..otvs 1) = [ © @, 1). (19)
j=1
It corresponds, for example, to a system of non-interacting bosons, all with the same single-particle wave
function v (7, t) solution of a single-particle Schrédinger equation under the external potential V(7).

The quantum state in the j-experiment is completed with the set of trajectories {?ij ()} fori=1,...,N
selected according to |¥2. Since (19) corresponds to a separable system, each position ?ij (0) has to be selected
according to its own probability distribution in (15) and (16) with Di’ (%, 0) = [¢)(%, 0)|>. The marginal
distribution in (12) satisfies D (7}, 0) = |1 (7, 0)|*, which is exactly the same distribution mentioned above for
selecting the particles. Therefore, this quantum state trivially satisfies (14) when N — oo, i.e.

DWvi(7, 0) = D(7, 0). Asaresult, the (Bohmian) trajectory of the center of mass will follow a classical trajectory
when condition 2 about V,,, is also satisfied.

Numerical example
For simplicity, we consider a 1D physical space to numerically test the properties of the above state. As the initial
single-particle wave function we select a wave packet of the form

P(x, 0) = exp (— M) exp(ikox), (20)
202

1
JoiT
with o the dispersion of the wave-packet, x the initial position and ky the initial momentum. Then, since the
particles are independently selected, the central limit theorem [38] ensures that the center of mass of the
quantum state will be normally distributed with a dispersion o;, = o/~/N — 0, confirming that the center of
mass has the same well-defined position in all the experiments (see appendix A).

In the first example in figure 1 we use a linear potential V., (x) = 2x emulating a particle in free fall under a
gravity force. The quantum wave packet increases its width over time and its center follows a typical parabolic
movement. The second example in figure 2 corresponds to a harmonic potential Vz (x) = x?/2. In this case,
because the wave function corresponds to the ground state of the quantum harmonic oscillator, it does not show
any dynamics and the trajectories remain static at their initial positions. In any case, the center of mass (dashed
blackline in figure 2) corresponds to the classical trajectory at the position of the minimum of the harmonic
potential with zero velocity.

Now, we confirm the classicality of the center of mass of a quantum state defined by (19) using simpler
arguments. Since there is no correlation between different trajectories x/ (t), the Bohmian trajectories plotted in
figures 1 and 2 can be interpreted in two different ways. The first interpretation is the one explained above where
they correspond to differenti = 1,..., N'trajectories in the same experiment described by the many-particle wave
function given by (19). In this case, the average value of the trajectories (dashed black lines in figures 1(b) and
2(b)) is understood as the trajectory for the center of mass in that particular experiment. The second
interpretation is that the trajectories correspond to different experiments of a single particle system defined by
the wave function % (x, t). In this interpretation, (x.,) corresponds to a classical trajectory (for large enough N

6
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Figure 1. (a) Evolution of a quantum wave packet with a potential V., (x) = 2x. The initial wave function is a Gaussian wave packet of
width o = 1, centered around xo = —15, and an initial positive velocity ko = 10. (b) Quantum trajectories corresponding to the
dynamics in (a), with the average shown as the dashed black line. Unitsare m = 7% = 1.
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Figure 2. Same as figure 1 but for the evolution of an initial Gaussian wave packet with xo = 0, 0 = 1and ko = 0, ina potential
Vext (%) = x/2.

and Vi, satisfying condition 2), as shown by Ehrenfest’s theorem [32] discussed in section 2.1. Since the
trajectories in both interpretations are mathematically identical, we conclude that the (Bohmian) trajectory of
the center of mass in a single experiment follows a classical trajectory x/ () = (%cm)» as anticipated in the
discussion above on how these quantum states satisfy the condition in (14) , i.e. D*(x, 0) = D(x, 0).

3.3. Example 2: a many-particle quantum state with exchange and inter-particle interactions

In the following, we consider a more general example of a quantum state full of identical particles with exchange
and inter-particle interactions. We consider here a quantum wave function ¥ which, at time ¢ = 0, is built from
permutations of N single-particle wave functions, ¢;(7, 0). We define U(%,...,7y, 0) as

N
YRty 0) = > [ ¥ 0)sp (2]

ﬁGSN i=1

where p = {p,, p,»..., Py} is an element of the set Sy of N'! permutations of N elements. The term s; = +11is
the sign of the permutation for fermions, while s = 11is for bosons. A global normalization constant has been
omitted because it will be irrelevant. In particular, we consider that the single-particle wave functions (7, 0)
and 1;(7, 0) are either identical or without spatial overlapping. For any 7 and v (7, 0), we have:

%‘(7’ 0) = %(7, 0) er N;,
Yr(7, 0)hi(7, 0) = 0 Vf¢ N (22)

where N; is the subset of wave functions identical to 1;(7, 0). We now check if the quantum state defined by
equations (21) and (22) is a quantum state full of identical particles. The initial modulus squared of the wave
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function in (21) can be written as

N
WP = 3 [T ¢n(h OUyG 0)spsyn 3)

p.p €Sy i=1

and the marginal distribution for each particle is then given from (12) as

N
D(F, 00 = Y (7 ow;‘j;(?, OIT dppspsps (24)
p.p' €SN i=2

with the matrix element d; ; defined as
dig = [:7, 0wiE, 07 (25)

Because of (22), d; s = 1forall f € N;and d;¢ ~ 0 for f & N;. Then, only the summands in (24) with all the
terms d; ; = 1are different from zero, and we can rewrite D (¥, 0) as

N
D(7, 0) = a ) _[4i(7, 0)|*. (26)

i=1
where v is the product of the number of permutations of each N; to provide a properly normalized distribution
in (14).

On the other hand, the selection of the N positions in a single experiment { ?I-j (0)} has to satisfy (9). The
selection of the first particle 7{ (0) (independently of all other particles) is given by (26). To select the second
particle 7J (0), one needs to take into account the already selected 7/ (0). In general, according to definitions (15)
and (16) and using (23)—(25),the selection of the position ?,{1 (0) as a function of the previous m — 1 positions
?{ 0),.. .,?,{l, 1(0) is given by the distribution

m—1 N
DI(F, 0) = > (H w,j,pk,pkf)wpﬂ, 0y (7, 0)[ [1 dp,,,pg)sgs,s/, @7)
p.p’eSn \ k=1 i=m+1

with the matrix element ij op! defined as
Dby
Wl popr = U (0), 0V (0), 0). 28)

For each position ?,j (0), because of (22), there is a N; set of wave functions whose value is
wkj,if = |1/),»(?,f (0), 0)]* forany f € N;,and W,i,—)f ~ Oforany f & N;. Again, we can assume that only the
summands with the products W,i if = IQ/J,»(?’,f (0), 0)*and d;, 5 = lwillremain different from zero in (27) giving
Pi(7, 0) 77[1?(?, 0) = |i(#, 0)]>. We can then rewrite D™ (7, 0) as

N
DI (7, 0) = ﬁm(ZIwi(?, 0)|2], (29)
i=1
m—1 .
ﬁm =« Z H ka(?k](o), O)|2 (30)
PESu-1 k=1

Again, the parameter (3, is irrelevant because the selection of the particles can be done through an expression of
D7™(7, 0) properly normalized to unity, where only the dependence on ¥ matters.

In summary, for the quantum state defined by equations (21) and (22) plus a set of trajectories {7/ (0)}, we
conclude that the (normalized versions of the) distributions D (¥, 0) in (26) and D»™ (7, 0)in (29) for any m are
identical. Therefore we are dealing with a quantum state full of identical particles whose center of mass follows a
classical trajectory.

Aswe have demonstrated in section 3.1, whether W(#,...,7y, t) fulfills the condition in (14) or not has to be
tested at a single time. Since we have shown that (21) is a quantum state full of identical particlesat t = 0, we
conclude that any quantum state with the wave function U(#,...,7y, t) solution of the many-particle
Schrodinger equation in (1), with or without external V,; or inter-particle Vi, potentials, and with the initial
state defined by equations (21) and (22), is a quantum state full of identical particles when N — oo.

Numerical example

In what follows, we investigate numerically this system. We will show that the center of mass of the quantum
state effectively tends to a classical result, even for quite a small number of particles. The evolution of the initial
wave function in (21) in the limit of N — oo is numerically intractable. We will consider here a finite number of
non-interacting bosons in a 1D space and test if the center of mass tends to a classical trajectory when N
increases. Each single-particle wave function 1; (x;, t) is a solution of a single-particle Schrodinger equation
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Figure 3. (a) Simulation with N = 20 distinguishable particles: particle trajectories (thin lines), quantum center of mass trajectory
(dashed black line), classical center of mass trajectory (solid orange line). (b) Same as (a) but for indistinguishable particles. (c) Relative
error between the classical and quantum center of mass trajectories for one particle (black solid line) or N distinguishable (light
orange) or indistinguishable (dark blue) particles. From thin to thick lines: N = 4, 8, 12, 16, and 20 particles.

under the potential V.. Therefore, the bosonic many-particle wave function can be written at any time t as
N
\I/(xb...,XN, t) = Z H /(/}Pi(xi) t)' (31)
pESN i=1

For comparison, we also consider the same state in (31), but without exchange interaction

N
\I/(Xl,...,XN, t) = H wi(xi) t)- (32)

i=1

In particular, we will consider each of the 1; in equations (31) and (32) as a sum of two initially separated
Gaussian wave packets, but with opposite central momenta to ensure that they impinge at a later time

exp(ikirx}) ( (x,-—xiL)Z) exp(ikirx;) ( (x]-—xl-R)z)
————exp| — exp|l ————— >

2(mo?)l/4 20?2 2(mo?)t/4 20?

Pi(xj, 0) = (33)
The x;; and x; are the centers of two (non-overlapping) Gaussian wave packets, with respective momenta k;r
and k;p, and spatial dispersion 0 = 15 nm. Each of the wave functions have different random values for x;;, x;z,
kiz, and k;. These wave functions evolve using the Schrodinger equation with an external potential V., implying
a constant electric field of 3.3 x 10° Vm ™.

We show in figures 3(a) and (b), for the cases with and without exchange interaction, the evolution of the
quantum trajectories (thin lines). We plot their quantum center of mass (dashed black line) computed from (10)
for N = 20. We also plot the classical center of mass (solid orange line), computed from a Newtonian trajectory
with the same initial position and velocity as the previous quantum center of mass. We notice that the Bohmian
trajectories for states with exchange interaction do not cross in the physical space. This is a well-known property
[37] that obviously remains valid, even if the center of mass becomes classical.
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Moreover, in figure 3(c) we show the difference between the quantum and classical centers of mass for
different values of N, with and without exchange interaction. (See appendix A for a discussion of the error of a
quantum state full of identical particles when a large, but finite, number of particles is considered.) We see that
the quantum center of mass x ., () becomes more and more classical as N grows, and the indistinguishable case
reduces the quantum non-classical effects faster than the case without exchange interaction. These results can be
interpreted in a simple way: a single experiment with N distinguishable particles represents effectively only one
experiment, while a single experiment with N indistinguishable particles represents, in fact, N! different
experiments, each one with the initial (Bohmian) positions interchanged. This explains why the latter center of
mass become more similar to that given by the Ehrenfest theorem which involves an infinite number of
experiments.

3.4. Wave equation for the center of mass
While the description of a classical state requires only a trajectory, a complete Bohmian quantum state requires a
wave function plus trajectories. Moreover, because of its exponential complexity, solutions to the Schrédinger
equation in the whole many-particle configuration space are not accessible. However, an equation describing the
evolution of a wave function associated with the center of mass of a quantum state full of identical particles will
help to certify that a classical center of mass behavior is fully compatible with a pure quantum state. In addition,
such an equation will provide an accessible numerical framework to analyze practical quantum systems under
decoherence. One route towards this equation could be obtained from the reduced density matrix of the center
of mass, and assuming some kind of collapse. Alternatively, as mentioned throughout the paper, we will follow a
Bohmian procedure which allows the construction of such a wave equation for the center of mass through the
use of the (Bohmian) conditional wave function [39—41].

To simplify the derivations, in the following we restrict ourselves to a 1D physical space. We define the center
of mass of our N-particle state, xcm, and a set of relative coordinates, ¥ = {y,,...,)/}, as

1 N
Xem = 2 Z Xi> (34)
N i=1

= x — M (35)

BTN T TN 1

With these substitutions, the 1D version of the Schrédinger equation (see equation (1)) can be rewritten as

2 2 2 N 92
g0 [0 RS2y 36)
ot 2Mem OxG,  2m ;55 Oy,

where M., = Nmand ¥ = U(xy,, ¥, t)is the many-particle wave function with the new coordinates. The
coordinates ¥ in (34) are chosen such that no crossed terms appear in the Laplacian of (36) (see appendix B).
Notice that the many-particle Schrodinger equation in (36) is, in general, non separable because of the potential
Vdefined in (2), see also (B.11).

Hereafter, we derive the wave equation associated with the conditional wave function for the center of mass
[39—41] defined as ¥req (Xem» ) = W(Xem, 77 (), t) associated with the j-experiment. By construction, the
velocity (and therefore the trajectory) of the center of mass only depends on the spatial derivatives along x .,
[39,41]. Therefore, xcfm (t) can be equivalently computed from either .4 or ¥. Following [40], (36) can be
written in the conditional form as

7z M _ 7?0 & O™ (Xems V> )

ot 2Mm Ox2,  2m S dy?

1

7i(t)

N =
N iﬁZViJ (t) 8\:[j(xcm) V> t)
=2 8}/

i= i

+ ch (xcm) wcdy (37)

7i(t)

where Vi, (Xcm) = N Ve (Xcm)- See appendix B to see how the term Vin the many-particle Schrodinger
equation (36) is translated into the term V,;,, in the equation of motion of the conditional wave function (37). By
inserting the polar decomposition of the full and conditional wave functions, ¥ = R exp(iS//%) and

Yed = Reqg exp(iSca /72 ), into (37), one can then derive a continuity-like equation,

0

_ ORYG G (R2 S 1

c + ] Fi(t)» 38
ot ke daxCm Mcm) |yf(t) (38)
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J—ﬁZ[aRZ iy - 2 (lr 85” (39)
oy \m 0y,

plus a quantum Hamilton—Jacobi-like equation

S, 1 (0SqY
oS . 0S
G=Qwm+ Z[Zm (6_) + Qi — Vﬂ(t)a—]- (41)
They include the definition of the quantum potentials
R 2 O°R
Qcm = Qcm(xcm) V> t) = - M R(?x_z (42)
_ L .. h* OR
Qi - Qi(xcma Y t) - - szW) (43)
and the (non-local) velocity fields
Vem = ch(xcm: )7> t) = ]VII ais > (44)
1 0S
Vi = vi(Xem> V> 1) = —5 (45)

The behavior of the quantum Hamilton—Jacobi equation (40) would be classical if the effect of the ‘potential’
G could be ignored. Therefore, the key point in our demonstration is to show that Gin (41) fulfills

oG
OXem

=0, (46)

7=71(t)
for a quantum state full of identical particles. The first part of this proof shows that

N 2 )
0 1 fas) 08
OXem i3\ 2m\ Oy, oy,

where we have used 0S/0y, that depends on x., but V»j (t) does not. The second part of the proof shows that

Qcm + ZQ: =0. (48)
axcm i=2 71 ()

Up to here all equations have involved only the j-experiment. Since we know from section 2.2 thatany other
trajectory of the center of mass associated with the k-experiment will satisfy xcm () = x0,,(t) = xm(t), the
shape of the potential term in (48) for the j-experiment must also be equal to that of any other k-experiment.
Therefore, we substitute (48) by an average over an ensemble of experiments,

N
Yem i=2 (1) k=1 Xk 0751

i=2
Since the trajectories x* (¢) and 7*(¢) in the rhs are selected according to (9), we can substitute the sum in (49)
by an integral weighted by R?,

om ! = cm i dxcmd d . 50
Mkzl[axcm[Q +ZQ ]]x < (D740 I‘c 'j;z j;N 8xcm[Q +ZQ) y, - dyy. (50)

=0, 47)
7I(t)

_[10s 9’ Vi %S
m 0y, OXem, ! OXem,

7 ()

i=2

For each term Q; we have that

2 2 3
f R2(Xerms )decm _ f OR a—Rdme _ f RaiRdxcm ) (51)
Xem OXem 2m | Yxem OXem 8yi2 Xe 8xcm6yi2

It can be easily seen that these two terms are equal (but with opposite signs) by integrating by parts the first term
(assuming that R is zero for x — £00). Therefore (51) is equal to 0. A similar argument can be made to show
that the term with Q.y, in (50) is also zero. The fact that (50) vanishes can be anticipated by knowing that this type
of integral on the whole configuration space also appears (and is zero) in the derivation of Ehrenfest’s theorem if
the polar form of the wave function is used.
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Figure 4. (a) Evolution of a classical wave packet subjected to a potential V., (x) = 2x. The initial wave function is a Gaussian wave
packet of width o = 1, centered around x, = —15, and an initial positive velocity ko = 10. (b) Trajectories corresponding to these
dynamics. Units are M, = /2 = 1.

We have just demonstrated that the (conditional) wave equation of a center of mass associated with a
quantum state full of identical particles implies (46). In this case, the Hamilton—Jacobi equation in (40) has no
dependence on R g, and only on S 4. Therefore, the velocity of the center of mass,
1 0S4

Mcm 8xcm

(52)

ch

and its trajectory can be computed from (40) independently of (38). Moreover, (40), ignoring the ‘potential’ G, is
analogous to the (classical) Hamilton—Jacobi equation, from which one can derive a Schrédinger-like equation

2 2
. Mg _(_ h* 0
ot 2Mm axfm

+ ch - Qcm)d’cd- (53)

In the derivation of this wave equation, we have also used (38). The exact shape of the term Jin (38) is irrelevant for
computing the velocity of the center of mass (which only depends on (40)), and we have assumed the term ] = 0 to
deal with a conditional wave function with norm equal to one. This equation is also known as the (non-linear)
classical Schrodinger wave equation [11, 26, 42]. A study of the dynamics associated with this equation can be
found in [43]. We emphasize that the correlations among x., and the rest of y; present in (36) are included through
the non-linear term — Q.y, in the conditional equation of motion (53).

Numerical examples

In order to illustrate the previous derivation, in what follows we will solve the (non-linear) classical Schrodinger
wave equation in (53). We show in figure 4 the case of the evolution of a wave packet under a potential

Vim(x) = 2x. One can see that the classical wave packet preserves its shape, and its corresponding trajectories are
the expected classical parabolic ones. This contrasts with the simulation of the same initial quantum wave packet
in figure 1, which expanded over time. Another simulation is shown in figure 5, in this case for a harmonic
potential with a narrow initial wave packet displaced from the origin. As expected from the classical behavior,
the trajectories oscillate around the origin, while the wave packet maintains its narrow shape. We emphasize that
the initial wave packet has to reflect that the probability distribution of the center of mass is very sharp [43].

4. Quantum states without a classical center of mass

There are certainly many examples of quantum states whose center of mass do not behave classically
[5,7,44,45]. In the following we discuss two paradigmatic examples.

4.1. Single-particle states

For a single particle state, the center of mass in a single experiment is the Bohmian position of the particle itself.

Moreover, it cannot satisfy condition 1 because different experiments will provide different results. Therefore,

the center of mass of a quantum system with one particle (or few particles) cannot follow our classical intuition.
Let us analyze the problems that appear when Bohmian mechanics is used to study the quantum-to-classical

transition for a single-particle state. By inserting ¢ = R exp(iS// ) into the single-particle Schrédinger

equation one arrives at a quantum continuity equation

12



10P Publishing

NewJ. Phys. 19 (2017) 063031 X Oriols and A Benseny

\ 3 \

25
2

= =

S .8

2 15 2

o o

o o
1
0.5
0

0 1 2 3 4 5 0 1 2 3 4 5
time time
Figure 5. Same as figure 4 but in a potential V., (x) = x2/2. The initial Gaussian wave function has xo = —2, ¢ = 0.2,and ko = 0.

2 2
OR | O [ROS =0, (54)
ot Ox\ m Ox
plus a quantum Hamilton—Jacobi equation [23] given by
S 1 (0SY
Py L] + v+ Q=0. 55
ot 2m (ax) e + Q (>3)
It can be easily demonstrated that (54) and (55) give a Newton-like equation for the (Bohmian) trajectories
[23,26]
dv(x(t), t 0
m—LLLl[-—O&+Q4 . (56)
dt Ox x=x/(t)

It has been argued [46] that a classical (Newtonian) trajectory could be obtained from (56) by just adding a
new condition

Q _
Ox

The problem with this statement is that the classical state given by %/ (t) is not compatible with a quantum state
given by the same trajectory x/(¢) and a wave function ¢. The reason for such incompatibility is that 1) does not
exist in general. The wave function 1) would have to satisfy, in each position, three equations, equations (54), (55)
and (57), but with only two unknowns, R and S.

Another single-particle approach to reach classical dynamics is to interpret the potential V., as an additional
unknown that allows us to define some (exotic) systems where the trajectory and the wave function belongto a
state which is simultaneously classical and quantum [47]. The simplest example is a plane wave with a constant
R = 1, giving Q = 0. However, even these particular solutions have some unphysical features that disagree with
our classical intuition. The initial positions of the Bohmian trajectories x/(t) associated with these systems
obviously have to be selected according to the distribution |¢|? obtained from (9). This means that different
initial positions are obtained in different experiments. For the plane wave, the particle can depart from anywhere
at an initial time, contradicting our classical intuition of having well defined initial positions.

On the contrary, we have shown in section 3 that a quantum state full of identical particles is compatible with
a center of mass following a classical trajectory. The reason why both classical and quantum states are compatible
in our case is because the condition in (46) is satisfied in a natural way by a quantum state full of identical
particles (without imposing very restrictive conditions on V). In addition, the classical trajectory of the center
of mass of such states directly implies that its initial position and velocity do not change when the experiment is
repeated.

0. (57)

4.2. Many-particle states

Our definition of a quantum state full of identical particles discussed in section 3.1 is quite natural when the

number of particles tends to be verylarge. However, we define here a quantum state with alarge number N of

particles with strong correlations that do not satisfy our requirements for a quantum state full of identical particles.
One can think of wave functions of identical particles which make it impossible for a single experiment to fill

the whole support of the marginal distribution. Macroscopic quantum many-particle superpositions [44, 45, 48]

will not satisfy the condition in (14) and therefore we do not expect a classical behavior for their center of mass,

13



10P Publishing

NewJ. Phys. 19 (2017) 063031 X Oriols and A Benseny

evenwhen N — 0o. An extreme example would be the superposition of two separated wave packets (a
Schrodinger cat-like state) such as

N N
W ty) = [T oGi = x) + [] o(xi — xR)). (58)
2\ i=1

We assume that ¢ (x) is a (properly normalized) wave packet centered around x = 0, whose support is much
smaller than the distance between the two wave packets (xg — xz) so that the overlap between ¢ (x; — x;) and
@(x; — xg) is zero. The wave function in (58) only allows for two kinds of quantum states. The first one
corresponds to the wave function above plus all particles around x;. The second one corresponds to the same
wave function plus all particles around xp.

In order to see these two types of quantum states from the point of view of the probability distributions, we
calculate the marginal probability distribution of this state, using (12),

D(x, 0) = %(las(xi )P+ 16— x)P). (59)

Therefore, the first particle position in the j-experiment has equal probability to be in either xlj (0) =~ x; or

xlj (0) =~ xg.If, for instance, it is xlj (0) = xi, then, using (15) and (16), the second particle is selected according
to D»2(x, 0) = |¢(x; — x1)|? and it will also be xzj (0) ~ x;.In fact, all subsequent particles are located around
x; because (15) and (16) show that D (x;, 0) = |¢(x; — x;)|? for i > 1.Similarly, if in another experiment the
first particle is xlj (0) & xg, then, all particles will be around xij (0) ~ xg. Itis obvious then that in this case

D(x, 0) = D¥(x, 0)in all experiments. This is because the marginal distribution for this state has a non-zero
support around both x; and xg, while the quantum state in any experiment involves only particles on the left or
only particles on the right, but never particles at both sides.

We discuss here why the center of mass of a quantum state like the one in (58) can show quantum
interference. Although the marginal distribution has support on both sides of the physical space, in a particular
experiment, the Bohmian trajectories associated with this state will be present on only one side, say the left
support. Thus, the dynamics of the center of mass is associated only with the particles on the left support of the
wave function. However, (classically unexpected) interferences could appear later if the left wave function
overlaps and interferes with the right one (empty of particles), thus modifying the velocities of the particles. On
the contrary, in the numerical example of section 3.3 where the marginal distribution also has two separated
supports, such (classically unexpected) interferences will not appear because it is a quantum state full of identical
particles. Bohmian trajectories will always fill up both left and right supports and the center of mass will always
be an average over all (left and right) particles. If the left and right supports are large enough to be
macroscopically distinguishable, we will see two classical particles, described by the center of mass of the left and
right Bohmian particles, respectively. The trajectories of these centers of mass will correspond to the elastic
collision between classical particles. We conclude that quantum states whose supports are partially empty of
particles are required to observe effects against our classical intuition.

5. Conclusions

In summary, by using the peculiar properties of the center of mass of a large set of a Bohmian particles, we have
provided a natural route to explain the quantum-to-classical transition. We have defined a quantum state full of
identical particles as the state whose distribution of the Bohmian positions in a single experiment is always equal
to the marginal distribution. The center of mass of such states satisfies our classical intuition in the sense that,
first, its initial position and velocity are perfectly fixed when experiments are repeated (prepared with the same
wave function) and, second, it follows a classical trajectory. We emphasize that only the center of mass behaves
classically, while the rest of the microscopic degrees of freedom can and will show quantum dynamics. In this
sense, the quantum-to-classical transition appears due to the natural coarse-graining description of the center
of mass.

Due to the compatibility between Bohmian and orthodox results [23, 25-27], the Bohmian explanation of
the quantum-to-classical transition in this paper can be equivalently derived using orthodox arguments. The
Bohmian route explored here avoids dealing with the reduced density matrix and the collapse law. Thereisa
commonly accepted wisdom in the orthodox attempts that decoherence plays a relevant role in the quantum-to-
classical transition, and this work does not contradict this. One can see that the center of mass (our open system)
is strongly entangled with the rest of the degrees of freedom of the macroscopic object (the environment).
Notice, from the definition of the potential in (B.12), that the many-particle Schrédinger equation in (36) is, in
general, non separable. Without this entanglement, we will not arrive at the classical (dispersionless) wave
equation in section 3.4, but to a single-particle Schrédinger equation with the typical spreading of wave packets.
Notice that the original Schrodinger equation is linear, while the classical version is non-linear, breaking the
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superposition principle. A paradigmatic example of the role of decoherence in destroying superposition (and
avoiding wave packet spreading) was initially presented by Zurek using the example of Hyperion, a chaotically
tumbling moon of Saturn [49-52]. He estimated that, without decoherence, within 20 years the quantum state of
Hyperion would evolve into a highly nonlocal coherent superposition of macroscopically distinguishable
orientations. It is important to emphasize that, in our work, the environment of the center of mass of Hyperion
would consist of N ~ 10** particles, which would be responsible for the decoherence of the center of mass.

The conclusions in this paper for a quantum state full of identical particles, derived for an infinite number of
particles, can be translated into a macroscopic system with a very large but finite number of particles when the
error defined in appendix A remains smaller than some predetermined measuring accuracy. In particular, for
the two numerical examples of this paper, the central limit theorem [38] ensures that the center of mass ofa
quantum state full of identical particles with a finite number of particles tends to the exact classical value as N
grows. However, further research on quantum states full of identical particles where the selection of the initial
positions are dependent on each other is still needed.

Finally, an explanation as to why we have ignored the measurement apparatus in this article is in order. It is
well-known that the Bohmian formalism does not include any collapse law but, instead, one has to include the
interaction between the system and a measuring apparatus. We have ignored this interaction because we are only
dealing with a classical object measured by a classical apparatus. Both the classical object and the classical
measuring apparatus are in a quantum state full of identical particles whose centers of mass follow a classical
trajectory 7 m (¢) and 7, o (£), respectively. Then, the interaction between the system and the apparatus, i.e.
between 7 ., (¢) and 7, ., (1), is unproblematic and it can be ignored if the type of classical measurement is
assumed to not perturb the classical macroscopic object. On the contrary, the present work cannot be directly
applied to the measurement of a quantum system in general. Obviously, quantum systems cannot be directly
described by a quantum state full of identical particles when different experiments (with identical wave function
preparation) provide different measured results. Nevertheless, a straightforward generalization of the present
work can explain why the measuring apparatus (entangled with the quantum system) presents a classical
behavior with its macroscopic pointer (in fact, its center of mass) following a classical trajectory.
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Appendix A. Evolution of the error of the center of mass for a quantum state full of
identical particles with a finite number of particles

A definition of a quantum state full of identical particles in (14) of the text, in principle, requires N — oco. Let us
now study the properties of a quantum state with a finite number, N, of particles that becomes a quantum state
full of identical particles when Nz — 0o. We use the subscript F in Ng as a reminder that the number of particles
is finite. In particular, the selection of the initial position of the trajectories associated with these new quantum
states with only N particles also follows (15) and (16). Once the Ny, particles are selected, we can distribute them
following

. NF .
CioF (7, 1) = L S 6(F — (1)), (A1)
N i=1
and define their center of mass as
. . 1 M
vk (1) = f dF 7 CIE (7, 1) = —— 5 Fh). (A2)
Fi=1

Notice again that 7iof (t) = 72, (t) because we are dealing here with a finite number of particles N, while we

know that 7%, (t) = (%) (t). The error resulting from comparing this center of mass 7JoF (1) with the one
obtained for N — 00, can be estimated as

Err(t) = |(7m) (1) — P (1)), (A3)

Asindicated in (17), (%) (t) is independent of the experiment, but 72oF (£) in (A.2) varies between experiments
due to quantum randomness.
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To further develop expression (A.3), let us assume now that the selections of all 7/(¢) are independent, i.e.

we select each Fi]" (t) according to D (7, t). This is exactly the case in the two numerical examples explained in
sections 3.2 and 3.3. The center of mass in (A.2) corresponds to a sequence of independent and identically
distributed random variables 7; drawn from a distribution D (7, t) with a mean value given by

(Tem) (1) = f 7 D(7, t)d7 and with a finite variance given by
020 = [ = (En) () D7, 7. (A4)

We know from the central limit theorem [38] that the distribution of 7% (¢) in different experiments given by
(A.2) follows a normal distribution when Ng grows with mean value and variance

Pt 1) = [d7 7 CVE G 1)~ () 0, (A.5)
2
fd? 7 — (m) (1))? CivF(7, 1) = ﬂ. (A.6)
F
These results are valid for any initial distribution D (7, t) as far as Ng is large enough.
The error in expression (A.3) can now be rewritten in terms of the probability of obtaining a difference
between (7.,) (t) and 72" (¢) smaller than a given error, Err,
: VNrE
P (o) — 71 < Brr) = z%[ﬁ) —1 (A7)
o
where @ (x) is the cumulative distribution function of the standard normal distribution,
x 1
Dy (x zf exp(—t%/2)dt, A.8
v = [ —en(-i/2) (A8)

and we have used its property ®y(x) 4+ ®y(—x) = 1. Ifwe require, for example, the difference (7.,) — FiF to
be smaller than Err = 0.0050 with a probability of P(| (7)) — Fiof| < 0.0050) = 0.98, then we get that the
number of particles Ng has to be equal or larger than:

N> (O'(0.99)
~0.0052

In summary, if we consider 0.005¢ an acceptable error for 7/:F, then we are sure than 98% of the experiments
with our quantum state with a number of particles Nr 2 2 X 10° satisfy the fixed error.

As amore realistic example, let us consider a macroscopic system with the number of particles equal to a mol
of the matter,i.e. Ne = 6 x 102 particles. In addition, we require that the value of 7/; always gives the classical
value, i.e. that only oncein My = 2 x 10'2 experiments, the value of 7% overcomes a fixed value of the Err.

Then, we can compute the required error by solving the relation P = 1 — 1/Mpin (A.7)as:
Err  ©'(1 — 1071
g RV Np
In summary, for a quantum state with a number of particles typical of a macroscopic system, i.e. Np = 6 x 10%,
the error of 72 is always smaller than Err ~ 10~!'o (except in one experiment every My = 2 x 10'2).

The time evolution of the error in (A.3) can be obtained once we know the particular time-dependence of the
variance of D (x, t). For example, in the case of D (x, t) given by the modulus square of a Gaussian wave packet
in free space, then the standard deviation is given (for larger times) by

2
Jat Jat

o(t) =o0p,]1+ 5| =
2 moy

~ 2 x 10°. (A9)

~9 x 10712, (A.10)

~ . (A.11)
2 maoy

For example, assuming an initial spatial dispersion gy = 100 nm, a mol of carbon atoms (m = 2 x 1072°kg),
after t = 1 year of classical evolution, the absolute error in (A.10) is given by Err(¢) ~ 10~'20(t) ~ 8 ym.In
summary, in the overwhelming majority of experiments (all Mg = 2 x 10'2 experiments except one), the error
in the center of mass after 1 year of evolution, between the exact value (with N — o0) and the approximate
center of mass (with N = 6 x 102) for the described quantum state is smaller than 10 zm.

Certainly, in this example Err(¢) grows with time due to the intrinsic expansion of a free wave packet.
However, we want to emphasize that our classical intuition is based on crystalline materials where particles have
an ordered structure due to their attractive interactions. Thus, classical objects (i.e. their particles) will tend to
remain much more localized than in the above example. These interactions will also introduce correlations
among the different particles and, in principle, the assumption that the selection of all 7/ (¢) are independent
might not seem fully rigorous. However, one can argue that in a realistic classical system, with Ny >~ 6 x 10%3
interacting particles, the accurate selection of the first, say Ni /100, particles with the procedure in (15) and (16)
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will be roughly independent. This is due to the selection of points in a huge (and basically empty) configuration
space of 3Ng ~ 10%* dimensions. Only the selection of the particles whose positions are very close to previous
ones will be influenced by the non-negligible correlations.

Appendix B. Wave equation for the center of mass coordinates

Our aim here is to find a change of coordinates in the 1D many-particle Schrédinger equation (see the 1D
version of equation (1)) with the usual definition of the center of mass,

1N
Xem = — D Xi. (B.1)
Nio
and without cross terms appearing in the Laplacian. The additional set of N — 1 coordinates can be written as
N .
¥ = Z agj)x,' forj=2,...,N, (B.2)

and the aﬁj ) will be fixed by the condition that cross terms do not appear in the Laplacian

ZN % 1 9% Z azw
— T — B-3
— ox} NOxZ, = -3

Substituting equations (B.1) and (B.2) into the lhs. of (B.3), one obtains

ﬁ’:azw 1o% | %l 0% f: (k>]+ ZZ[@ > Z % (")] (B.4)

i=1 8)61-2 Na 2 Nk 2 chmayk k=2 j=2 Vi i=1

Comparing this with (B.3) we see that the conditions for our change of variables are

N N
0= Z o, 1= 0= aa® forj= k (B.5)
i=1 i=1
We propose a change of variables with the following structure (using x, separately as we onlyneed N — 1
variables besides the center of mass):

b & ; b
y; = axj + bxem + cx = axj + Nin + o = agcJ) =a bj + N + ¢ b1 (B.6)
i=1

We impose conditions (B.5) in order to get the following system

N .
O:Zaf-’):a+b+c, (B.7)
i=1
N ) b 2 b 2 b 2
1= ) = c+—)+(a+—)+N—2(—), B.8
i;( ) ( N N ( ) N (B.8)
N 2 2
j b 2b b b
0=>aPa® = (c + —) + —(a + —) +(N-3 (—) . B.9
,; C 571 7 R V (B.9)
This can be solved to yield the variable changes in equation (34) and the final many-particle Schrodinger

equation in (36).
Now, in order to see how the term Vin the many-particle Schrodinger equation (36) is translated into the
term V,,, in the conditional wave function (37), we invert (34) to obtain

1
Xl = Xem — — /s Xi = Xem + V: ; (B.10)
1 Ci m;y g) C y] \/—-’—NZ}/

We can now rewrite the potential (2) as:

N

V(xcm) }’) ext(xcm - Z)/,) Z ext(xcm + )’] \/— N + N Z)/,)

j=2

1L
"3

z:: lm( \/_Zyz )+ Z Z Vine (3, — (B.11)

i=2 j=2;i=j

The terms Vi, have no dependence on x.,. Therefore, when considering the conditional wave function of the
center of mass with ¥ = () in (B.11), they will just become a purely time-dependent potential. Their only
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effect will then be a pure time-dependent phase in the wave function, which can be neglected in the computation
of the conditional equation of motion of the center of mass.

Each of the other two terms V, in (B.11) have a dependence on x, plus a dependence on Zfi , ). We
provide a Taylor expansion around X,

Vext (Xem + Ax) = Vet (Xem) + Mex ) Ax + 1 0Veu ) Ax? + ... (B.12)
Ox = 2 Ox? o
We define, in order to simplify, the expressions,
8\/;3,“ (x) 1 ext (x)
Xem) = ——— , Xem) = ————— B.13
B (Xcm) i Y Xem) = > o | (B.13)
This allows us to rewrite the part of the potential that depends on x,, as
N N
Vex Xem — + Vex Xcm +
t[ J_Zy’] ]Zz t( a J_+Nzyl]
1 N-1 )\
=NVext (Xem) + 5(xcm)(1 = —) Y
t N JN+N g;
N 1 N-1 ’
+9 (Xem 2+l=+ — + ... B.14
v<c>§2y] (N TN LN r+N)DJ (B.14)
We see that the factor of 3 (xcm) iszero,i.e. 1 — Jl_ \/ﬁ:rlN = 0, and the factor of 7y (x.,) can be
simplified as -1 = 0, sowearrive at

(J_+N)2 JNH\/
N N N
Vext[xcm - WZ}’,) + Z Vext(xcm + Y, — \/— N+ N Z)’I) NVext (Xem) + 'Y(xcm)z }’iz + ... (B.15)

i=2 j=2 i=2
The 7 (xcm) in the second term and higher orders still have, in principle, some x.r, spatial dependence. We now
invoke condition 2 (see section 2.2) that assumes a quadratic approximation for the (long range) external
potential, with a negligible dependence of 7y on xp,. This means that -y (x.,,) = - and the rest of the higher order
derivatives of the Taylor expansion become zero. Under such conditions, when calculating the conditional wave
function of the center of mass at y (¢), the term 7Zfi ) yl.z (t) can be neglected as a purely time-dependent term
(as occurred for the previously discussed Vi, terms). Therefore, we finally get the external potential of the
equation of motion of the conditional wave function of the center of mass

N
Z ‘/ext(xj)lyzy(t) =N ‘/ext(xcm) = \/cm(xcm)- (B16)
j=1

The same simple potential can be exactly recovered for a quadratic external potential

Vet (x) = o + Bx + ~yx? with constant o, £, and ~y. Notice that our derivation above demands a more relaxed

condition on V., as it only requires that this shape (constant ) occurs along the extension of the object in

physical space.
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