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We show that the quantum Fisher information attained in an adia-
batic approach to critical quantum metrology cannot lead to the Heisen-
berg limit of precision and therefore regular quantum metrology under
optimal settings is always superior. Furthermore, we argue that even
though shortcuts to adiabaticity can arbitrarily decrease the time of
preparing critical ground states, they cannot be used to achieve or over-
come the Heisenberg limit for quantum parameter estimation in adia-
batic critical quantum metrology. As case studies, we explore the appli-
cation of counter-diabatic driving to the Landau-Zener model and the
quantum Rabi model.

1 Introduction
Quantum metrology [1] is concerned with harnessing quantum resources following
from the quantum-mechanical framework (in particular, quantum entanglement)
to increase the sensitivity of unknown parameter estimation beyond the standard
quantum limit [2]. This limitation is a consequence of the central limit theorem
which states that if N independent particles (such as photons or atoms) are used in
the process of estimation of an unknown parameter θ, the error on average decreases
as Var[θ] ∼ 1/

√
N . Taking advantage of quantum resources can further decrease the

average error leading to the Heisenberg scaling of precision Var[θ] ∼ 1/N [3] which in
the optimal case becomes the Heisenberg limit Var[θ] = 1/N . This elusive limit [4]
has been a subject of intense experimental and theoretical research effort in the
recent 20 years with both optical [5, 6] and atomic [7] systems. Unfortunately, highly
non-classical states are also highly sensitive to decoherence and noise [8, 9] which
often renders quantum-enhanced measurements as proof-of-principle experiments.
To counteract these effects, one can resort to quantum enhanced measurements
without entanglement [10] or critical quantum metrology associated with quantum
phase transitions which received much attention in the recent years [11–21].
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Critical quantum metrology [22] relies on the extreme sensitivity of equilibrium
states near a critical point to small changes of physical parameters. In the vicinity of
a critical point, such as a quantum phase transition, the ground state susceptibility
can diverge leading to a possibility of arbitrarily precise estimation of certain physi-
cal parameters or, in other words, the super-Heisenberg scaling of the sensitivity [23],
i.e., Var[θ] ∼ 1/Nx with x > 1 or overcoming the Heisenberg limit Var[θ] < 1/N .
However, if one takes into account the time needed to prepare such critical states, it
turns out that the required time also diverges which is referred to as critical slowing
down. As a result, the sensitivity of estimation in the critical case should be still
bounded by the Heisenberg limit [23]. A natural question that arises is whether one
can use shortcuts to adiabaticity to arbitrarily reduce the time of preparing a crit-
ical state and eventually overcome the Heisenberg limit. Since realizing finite time
adiabatic dynamics comes with an energy cost [24, 25], energy can then be treated
as a resource in quantum metrology. This can be phenomenologically understood if
one looks at the time-energy uncertainty principle Var[t] ≥ h̄/Var[E], where Var[t]
is interpreted as the time a quantum system needs to evolve from an initial to a
final state [26].

Shortcuts to adiabaticity [25] is a framework devoted to finding fast routes to
the final results of adiabatic changes of the system control parameters, and encom-
passes a variety of techniques including invariant based inverse engineering [27],
counter-diabatic driving [28, 29], the fast-forward approach [30], alternative short-
cuts through unitary transformations [31–33], and optimal control theory [34]. From
the viewpoint of metrology, counter-diabatic driving [35, 36] seems enticing as it
forces the state to be an instantaneous eigenstate of the bare Hamiltonian through-
out the entire process by suppressing any transitions between the system’s eigen-
states during the Hamiltonian dynamics.

In quantum metrology counter-diabatic-like techniques have already been ap-
plied to the estimation of parameters in time-dependent Hamiltonians by forcing
the time-evolved state to maximize the quantum Fisher information at every point
in time [37–39]. However, here we consider the case where the part of the Hamil-
tonian that depends on the unknown parameter is time-independent. Moreover,
we utilize counter-diabatic driving in its traditional sense that is, for ground state
preparation. Specifically, our goal is to drive the system to the ground state near
the critical point of the Hamiltonian starting from an uncritical state. The driving
gives rise to an overall time-dependent Hamiltonian, but the mechanism imprinting
the information about the unknown parameter remains time-independent.

In this work we show that critical quantum metrology cannot beat the Heisenberg
limit if the unitary dynamics required for critical ground state preparation is taken
into account which is often overlooked in studies of critically enhanced metrology
protocols. We therefore argue that given the same amount of time resources regular
quantum metrology always gives rise to better sensitivities than critical quantum
metrology. The latter in general diverges for critical ground state preparation due
to the problem of critical slowing down. To avoid the problem of diverging state
preparation times we consider shortcuts to adiabaticy, specifically counter-diabatic
driving, and apply these tools to two systems studied in the context of criticality and
metrology. The first system is the Landau-Zener model [40, 41] which we treat as
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a toy model for criticality, and the second one is the quantum Rabi model [20, 42].
Subsequently, by a careful analysis of the quantum Fisher information, we argue
why counter-diabatic driving cannot be used to achieve the Heisenberg limit in
critical quantum metrology and in general gives rise to a smaller quantum Fisher
information than purely adiabatic state preparation.

2 Preliminaries
2.1 Quantum metrology
Quantum metrology is based on the quantum theory of estimation [43] which states
that when estimating an unknown parameter θ, the sensitivity Var[θ] is limited by
the quantum Cramér-Rao bound [44]

Var[θ] ≥ 1√
Iθ
, (1)

where Iθ is the quantum Fisher information (QFI) which for pure states |ψ〉 is
defined as [44]

Iθ ≡ 4
(
〈∂θψ|∂θψ〉 − 〈∂θψ|ψ〉2

)
, (2)

with ∂θ ≡ ∂/∂θ. If the unknown parameter is a quantum phase imprinted via
a coherent dynamical process then θ = ωT with T being the total time of the
process and ω being the unknown Hamiltonian parameter. In this case, the QFI
gains time dependence (Iω = T 2Iθ) which means that by performing a long-enough
measurement under idealistic conditions, one can obtain an arbitrary precision of
estimation. Therefore, the time is considered a resource in quantum metrology.

We now assume that the mechanism imprinting the information about an un-
known parameter ω is known and can be described via a Hamiltonian of the form
Ĥ = ωĤω+Ĥt(t), where Ĥt(t) represents a general unknown-parameter-independent
Hamiltonian while ωĤω is the term imprinting the information about ω (Ĥω itself
does not depend on ω). Starting from an initial state |ψ0〉, the time-evolved state
after a time T is given by (we set h̄ = 1 throughout the entire manuscript)

|ψf〉 = Û |ψ0〉 = T exp
(
−i
∫ T

0
Ĥdt

)
|ψ0〉, (3)

with T being the time ordering operator. This allows us to rewrite the expression for
the QFI in the following way Iω ≡ 4

(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
, where ĥ = iÛ †∂ωÛ .

Moreover, it can be shown that the QFI is upper bounded by [45]

Iω ≡ 4
(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
≤ 4T 2

(
〈ψ0|Ĥ2

ω|ψ0〉 − 〈ψ0|Ĥω|ψ0〉2
)
. (4)

For example, for two-mode systems [46] with a fixed total number of particles N ,
the right hand side of the above inequality can be maximized by using maximally
entangled initial states which are in a superposition of eigenstates of the operator ĥ
with smallest and largest eigenvalue leading to the celebrated Heisenberg limit (HL)
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Var[ω] = 1/NT [44]. However, for non-entangled initial states, the above inequal-
ity gives rise maximally to the standard quantum limit (SQL) Var[θ] = 1/

√
NT .

Therefore, the quantum-enhanced sensitivity can be used as an entanglement wit-
ness [47–49]. For clarity, throughout this manuscript, we will refer to the above
scenario as regular quantum metrology and compare this scheme to the case of crit-
ical quantum metrology by carefully taking into account the time resources of either
of the two approaches.

2.2 Critical quantum metrology
Critical quantum metrology takes advantage of criticality associated with continuous
quantum phase transitions, for which in the thermodynamic limit the energy gap
above the ground state closes [50]. The effect of a vanishing energy gap can be
explicitly seen if we calculate the QFI for the ground state |ψ0(ω)〉 of the Hamiltonian
Ĥ(ω) = ∑

n=0En(ω)|ψn(ω)〉〈ψn(ω)| [51]

Iω = 4
∑
n6=0

|〈ψn(ω)|∂ωĤ(ω)|ψ0(ω)〉|2

[En(ω)− E0(ω)]2 , (5)

which coincides with the real part of the quantum geometric tensor [52]. From the
expression above, it is clear that if the energy gap above the ground state closes,
the QFI diverges due to the vanishing denominator. This property may lead, in
principle, to an arbitrarily high estimation precision in the thermodynamic limit.
However, the critical unknown-parameter-dependent ground state has to be prepared
beforehand. A standard approach to ground state preparation uses adiabatic time
evolution in which an easy-to-prepare ground state is adiabatically evolved into the
desired target ground state through a change in the Hamiltonian parameters. The
adiabatic theorem states that a quantum system will remain in its ground state as
long as it is changed slowly enough such that no excitations occur. However, this
implies that near a quantum phase transition, where the energy gap vanishes, any
change in the system parameters has to be infinitely slow—a behaviour known as
critical slowing down. Therefore, a critical quantum metrology protocol which relies
on preparing a ground state far away from the critical point and subsequently driving
it close to the critical point [20] will inevitably require long preparation times which
is often overlooked when calculating the achievable sensitivities and when comparing
the approach to the regular quantum metrology scheme. In fact, the QFI in critical
quantum metrology is constrained to a tighter limit than the QFI in the regular
quantum metrology scheme, which we briefly outline in the following.

Note that adiabatic state preparation is still a unitary dynamical process and
hence the final (critical) ground state is obtained via

|ψf〉 ≡ |ψf (ω, gf )〉 = Û(T, ω, g0, gf ) |ψ0〉 , (6)

where |ψ0〉 ≡ |ψ0(ω, g0)〉 is the initial state that can in general depend on the un-
known parameter ω and g0, gf are the initial and final values of a control parameter
g which is adiabatically changed from an uncritical to a critical point of the Hamil-
tonian Ĥ = ωĤω + Ĥt[g(t)]. The QFI is calculated with respect to the final critical

Accepted in Quantum 2021-06-23, click title to verify. Published under CC-BY 4.0. 4



states

Iω = 4
(
〈∂ωψf | ∂ωψf〉 − 〈∂ωψf | ψf〉2

)
. (7)

If we substitute equation (6) into equation (7) it is straightforward to show that the
expression for the QFI consists of three terms (see Appendix A)

Iω = Iω(∂ωÛ) + Iω(|∂ωψ0〉) + Iω(∂ωÛ , |∂ωψ0〉), (8)

where the first term depends only on ∂ωÛ , the second term depends only on |∂ωψ0〉
and the third term depends both on ∂ωÛ and |∂ωψ0〉. However, if the initial state
is not critical itself, as in the protocols studied in this work, the dependence of
the initial ground state on the unknown parameter can be neglected and the QFI
becomes

Iω = 4
(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
, (9)

with ĥ = iÛ †∂ωÛ which coincides with the expression for the QFI in equation (4)
and is therefore upper bounded by the same limits, i.e. the SQL for non-entangled
states and the HL for maximally entangled states. However, as was previously
shown, saturating the upper bound in equation (4) requires different states than the
instantaneous ground states of the Hamiltonian Ĥ = ωĤω + Ĥt[g(t)] [37] and there-
fore critical quantum metrology is always inferior to the optimal regular quantum
metrology scheme when adiabatic ground state preparation is taken into account as
well. Hence, the maximal attainable QFI Icω for a critical metrology protocol, i.e.,
when the time evolved state is the instantaneous ground state of the Hamiltonian
Ĥ = ωĤω + Ĥt[g(t)] obeys

Icω < max
{|ψ0〉}

4τ 2
c

(
〈ψ0|Ĥ2

ω|ψ0〉 − 〈ψ0|Ĥω|ψ0〉2
)
, (10)

where τc is the duration of the adiabatic protocol.

2.3 Shortcuts to adiabaticity
Shortcuts to an effective adiabatic dynamics can be realized with several different
techniques [34]. Here, we use counter-diabatic (CD) quantum driving as it ensures
transition-less dynamics [36]. This technique relies on adding an extra term to
the original Hamiltonian Ĥ which guarantees time evolution corresponding to the
adiabatic dynamics but within an arbitrary time. The CD term can be chosen as [53]

ĤCD = i
∑
n

|∂tψn(t)〉〈ψn(t)|, (11)

where |ψn(t)〉 are the instantaneous eigenstates of the original Hamiltonian. In
general, the CD term might be non-local [54, 55] and thus often impractical for
experimental realizations. Here, however, we are interested in the fundamental
limitations under idealistic conditions, therefore a possible non-locality of the CD
term does not constitute any issue.
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Note that with the addition of the CD term the unitary evolution according to
equation (3) is altered to

|ψf (T, ω, ω̃, gf )〉 = ÛCD(T, ω, ω̃, g0, gf )|ψ0〉

= T exp
(
−i
∫ T

0

(
ωĤω + Ĥt[g(t)] + ĤCD[ω̃, g(t)]

)
dt
)
|ψ0〉.

(12)

The appropriate CD term ensuring transitionless driving will in general depend on
the parameters of the bare Hamiltonian including the unknown parameter ω either
explicitly or implicitly through the chosen ramp function g(t, ω). However, the CD
term constitutes a control term that has to be engineered and applied externally
to the system of interest. Therefore, in any experimentally realistic setting the CD
term can only depend on an initial estimate ω̃ of the unknown parameter rather than
on the unknown parameter ω itself. The estimate ω̃ has to be updated after each
measurement yielding better control terms and hence giving rise to an adaptive
metrology scheme [37]. The fact that the CD term does not depend on the true
unknown parameter but its estimate ω̃ allows us to include the CD term into the
general time dependent term Ĥt(t) of the Hamiltonian. Therefore, the arguments
of the previous section still hold and the limitation from equation (10) is still valid.
Thus, even if the estimate ω̃ matches the true value of the unknown parameter to
arbitrary precision, i.e. ω̃ = ω, and therefore the critical ground state is reached
with perfect fidelity in an arbitrary short time using CD driving, the QFI is still
bounded by the HL. Note that this statement holds for any form of applied optimal
control in which the additional control term only depends on an estimate of the
unknown parameter rather than on the unknown parameter itself. While these
arguments already show that adiabatic critical quantum metrology with and without
CD driving cannot beat or even reach the HL, they do not yet quantify the extent
to how much better or worse one performs over the other. Therefore, we will explore
two different examples in Section 3 comparing the achieved QFI of the regular and
the critical quantum metrology approach with and without CD driving.

2.4 Fidelity and quantum speed limit
In order to quantify whether a desired target (ground) state |ψt〉 is reached, we will
use the fidelity defined as

F = |〈ψf |ψt〉|2, (13)

where |ψf〉 is the final state obtained after time evolution with the Hamiltonian
Ĥ + ĤCD. We will also refer to the quantum speed limit (QSL) time [56] which for
a general Hamiltonian Ĥ is given by [57]

τQSL = max

 h̄

Var[Ĥ]
arccos |〈ψ0|ψt〉|,

2h̄
π〈Ĥ〉

arccos |〈ψ0|ψt〉|2
 (14)

and constitutes the fundamental maximum rate for quantum time evolution.
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3 Case studies
3.1 Landau-Zener model
The Landau-Zener (LZ) model describes a two-level system in a time-dependent or
controlled field g(t) [58]

ĤLZ = ∆
2 σ̂x + g(t)

2 σ̂z. (15)

where ∆ is the level splitting for g = 0, and σ̂i is the ith Pauli matrix. Being a
single-particle system, the LZ model does not exhibit a quantum phase transition,
however, it features an avoided crossing at g = 0 and can therefore be considered as
a toy model for criticality [59, 60]. The instantaneous ground state of the LZ model
is given by

|ψ0〉 = g −
√

∆2 + g2√
2g
(
g −
√

∆2 + g2
)

+ 2∆2
|↓ 〉+ ∆√

2g
(
g −
√

∆2 + g2
)

+ 2∆2
|↑ 〉, (16)

and the QFI with respect to an unknown parameter, which we set to ∆, is calculated
to

I∆ = g2

(∆2 + g2)2 , (17)

by using the definition from equation (2). We plot the dependence of the QFI on
the control parameter g in figure 1(a), where we have set ∆ = 0.05 for the unknown
parameter. The QFI reaches its maximum value I∆ = 1/(4∆2) close to the point of
the avoided crossing at g = ∆ and diverges for (∆, g)� 1. The divergent behavior
of the QFI seems promising and suggests that arbitrary high sensitivities can be
realized. However, achieving these high sensitivities requires the preparation of the
critical ground state in the first place, which will inevitably suffer from the critical
slowing down. Therefore, when comparing the critical quantum metrology scheme
to the regular scheme we also have to take into account the amount of time it takes
to prepare the critical state. In what follows we assume that the initial state of the
system is the ground state with g � ∆, i.e. the spin-down state |ψ0〉 = | ↓ 〉, and
subsequently the control field g(t) is adiabatically decreased to reach the ground
state at g = ∆. The required time for adiabatic state preparation with the LZ
Hamiltonian of equation (15) can be lower bounded by the QSL time which for the
LZ can be calculated according to [61, 62]

cos
(

∆
2 τQSL

)
= |〈ψ0|ψt(g)〉|, (18)

where |ψ0〉 and |ψt〉 is the initial and target ground state, respectively. Figure 1(b)
shows the QSL as a function of g and illustrates the critical slowing down close to
the avoided crossing.

The QFI for a single-particle system in the regular quantum metrology setting
under optimal conditions is given by the SQL (for the LZ model the SQL is also the
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HL since N = N2 = 1) which for the LZ model takes the simple form ISQL
∆ = T 2

with T being the total evolution time [40]. Figure 1(c) compares the QFI attained in
the critical quantum metrology framework [equation (17)] to the SQL (black-dashed
line) when using the same time resources, i.e. ISQL

∆ = τQSL(g)2. The performance
of critical quantum metrology in comparison to the SQL becomes worse as g is
decreased towards the point of the avoided crossing. Hence, given the time it would
take to prepare a critical ground state, one always achieves higher sensitivities by
performing regular quantum metrology (under ideal conditions) in the same amount
of time.

0 5 10
g/∆

0

50

100

I ∆

(a)

0 5 10
g/∆

0

15

30
τ Q

S
L

(b)

0 5 10
g/∆

0.6

0.8

1.0

I ∆
/τ

2 Q
S
L

(c)

Figure 1: Panels (a) and (b) present the QFI I∆ and the QSL time τQSL for the LZ model
as a function of g/∆, respectively. Panel (c) shows the QFI normalized to the square of the
QSL time (solid red line) and the SQL (dash-dotted black line). In the simulations we set
∆ = 0.05.

Note that the QFI from equation (17) asymptotically reaches the SQL for g � ∆.
The SQL (the maximum QFI) is obtained when the evolved state is in a super-
position of eigenstates with highest and lowest eigenvalue of the operator ĥ =
iÛ †∂∆Û at all times [37]. In the limit g � ∆, i.e. far away from the avoided
crossing, the required time for adiabatic state preparation and therefore the QSL
time become arbitrarily small. Hence, the operator ĥ can be approximated as
ĥ = i exp(i∆σ̂xτQSL/2)∂∆ exp(−i∆σ̂xτQSL/2) + O(τ 2

QSL) ∼ σ̂xτQSL/2. Therefore,
the state maximizing the QFI is the spin-down state which happens to also be the
ground state of the LZ model for g � ∆. For that reason, optimal regular quantum
metrology becomes equivalent to our critical quantum metrology approach in the
limit of small evolution times T � 1/∆ and g � ∆.

The results above suggest that the critical slowing down near the avoided cross-
ing prevents the QFI to reach or overcome the SQL. Therefore, we now consider
a shortcut to adiabaticity, specifically CD driving, which allows to prepare a (crit-
ical) ground state in arbitrary short times. We add the CD term ĤCD to the LZ
Hamiltonian ensuring effective adiabatic dynamics for any control field g(t) [28]

ĤCD = − ġ(t)∆̃
2[∆̃2 + g(t)2]

σ̂y, (19)

where the dot notation ġ(t) indicates a time derivative. As mentioned previously the
CD term involves the parameter ∆ and is therefore not exactly realizable when the
parameter is unknown. Therefore, the parameter ∆ in the CD term is replaced by
an initial estimate ∆̃ which is then updated adaptively after each measurement [37].
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The ramp function g(t) can be chosen arbitrarily and therefore we set g(t) = g0 −
(g0−gf )(t/T )1/5 which is fast when the energy gap is large and becomes slower close
to the avoided crossing. In the following we focus on preparing the ground state at
gf = ∆ for which the QFI is maximal and set ∆̃ = ∆ = 0.05 which corresponds to
the ideal case where the estimate of the unknown parameter coincides with the true
value.

10−1 102 105

∆T

10−1

103

107

1011

I ∆

(a)

10−1 102 105

∆T

0

40

80

120

I ∆

(b)

10−1 102 105

∆T

0.85

0.90

0.95

1.00

F

(c)

CD

no CD

Figure 2: The effect of CD driving on the QFI for the LZ model. The system is prepared in
the spin-down state and then time evolved to the ground state at gf = ∆ = 0.05 close to the
avoided crossing. Panels (a) and (b) show the QFI I∆ as a function of time duration T of
the drive expressed in the units of ∆ in log-log scale (left) and log-linear scale (middle). The
dashed red curve is the QFI for a sole ramp (without adding the CD term) while the solid blue
line is the QFI for a ramp with CD driving. The dashed-dotted black line represents the HL.
In the adiabatic limit, i.e. for large evolution times T , the QFI attains the previously predicted
value (solid black line). Panel (c) displays the fidelity F between the final time-evolved state
and the target ground state for both cases of driving (with and without CD term) as a function
of time.

As shown in figure 2(c) with the addition of the CD term the target ground
state is indeed reached with unit fidelity in arbitrary short times (blue line) while
driving without the CD term (dashed-red line) gives rise to excited states for short
ramps away from the adiabatic limit. The QFI on the other hand now explicitly
depends on time and is plotted in figure 2(a),(b) for both cases of driving with
and without the CD term. The critical quantum metrology scheme performs again
considerably worse than the SQL (black dashed-dotted line) even though the critical
ground state can be prepared in much shorter times [see figure 2(a)]. Moreover, the
achieved QFI quickly goes to zero for small evolution times and is able to surpass
the previously calculated value of the QFI in the adiabatic limit (black solid line)
only for intermediate times [see figure 2(b)]. Therefore, regular quantum metrology
operated close to the SQL outperforms critical quantum metrology also in this case
when using CD driving and hence when avoiding the problem of critical slowing
down. Before discussing these results in Section 4, we first analyze a more complex
system that, unlike the LZ model, exhibits a quantum phase transition.
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3.2 Quantum Rabi model under the Schrieffer-Wolff transformation
The quantum Rabi model is a finite-component system composed of a single two-
level atom interacting with a single bosonic mode

ĤQRM = ∆â†â+ Ω
2 σ̂z + g

2
(
â† + â

)
σ̂x. (20)

where ∆ is the frequency of the bosonic field represented by its creation and annihi-
lation operators â† and â, Ω is the energy splitting of a two-level atom represented
by Pauli matrices σ̂i, and g is the coupling parameter between the bosonic field
and the two-level atom. In the limit of ∆/Ω → 0, which can be considered as the
thermodynamic limit [63], the quantum Rabi model exhibits a superradiant phase
transition at gc ≡

√
∆Ω that can be harnessed in critical quantum metrology [20].

To obtain an analytical expression for the QFI we need to compute the ground
state of the system in an analytical form which is difficult for the general case [64, 65].
However, in the suitable limit of ∆/Ω→ 0, the system can be diagonalized with the
help of the Schrieffer-Wolff transformation ÛSW = exp{i(g/2Ω)(â†+ â)σ̂y} which up
to O(∆

√
∆/Ω) terms leads to

ÛSWĤQRMÛ
†
SW ≡ ĤSW ' ∆â†â+ Ω

2 σ̂z + g2

4Ω
(
â† + â

)2
σ̂z. (21)

This effective model (for clarity we will keep referring to it as the quantum Rabi
model) can be diagonalized and the ground state is given by

|ψ0〉 = Ŝ(ξ)|0〉 ⊗ |↓ 〉, (22)

where Ŝ(ξ) ≡ exp{(ξ/2)(â†)2−(ξ∗/2)â2} is the squeeze operator with ξ = −1
4 ln{1−

(g/gc)2} being the squeezing parameter which is real only for g < gc. The latter
condition restricts the validity of this ground state to the normal phase. Although
an effective model for the superradiant phase can be derived [20], in what follows we
will focus on the normal phase only. Given the analytical expression for the ground
state we can compute the QFI with respect to an unknown parameter which we
assume to be ∆. Near the critical point the QFI becomes [20]

I∆ '
1

32∆2(1− g/gc)2 . (23)

The QFI diverges at the critical point g = gc, where an arbitrarily large precision can
be achieved [see red curve in figure 3(a)]. Similarly to the LZ case, the QFI above
is attained when the (critical) ground state is prepared adiabatically. To include
the required time resources for reaching a specific target ground state, we again
use the QSL as a lower bound to the adiabatic evolution time. In the following we
assume that the initial state is always given by the ground state of the Hamiltonian
at g = 0, i.e. the vacuum state of the field and the spin-down state |0〉 ⊗ |↓〉. The
QSL time for achieving the ground state of the Hamiltonian for a different value
of g can be calculated according to the bang-off protocol (see Appendix C for a
detailed derivation) in which first a quantum kick is applied such that g2

bang = 2∆Ω
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and g2
bangTbang/Ω = − ln(1 − (g/gc)2)/2, and subsequently one waits for a time

Toff = π/(4∆) with goff = 0, where Tbang and Toff is the duration of the bang and
off time, respectively. The QSL is then given by τQSL = Tbang + Toff and plotted in
figure 3(b).

To compare the QFI in the critical quantum metrology scheme of equation (23)
to the HL of regular quantum metrology, we first need an expression for the latter,
which requires some extra considerations. The quantum Rabi model does not con-
serve the number of photons and the ground state itself exhibits a different number
of photons depending on the coupling parameter g. The HL can be computed for
every g by calculating the maximal sensitivity that can be achieved in single mode
phase estimation [66] for a state with a fixed average number of photons 〈n〉, which
turns out to be the squeezed vacuum state, i.e. the ground state of the quantum
Rabi model. The HL is then given by I∆ = 8T 2(〈n〉2 + 〈n〉) where T is the total
evolution time. The HL after setting the time T to the previously computed QSL
time τQSL(g) required for ground state preparation in critical quantum metrology
is shown as a black dashed-dotted line in figure 3(a),(c). In contrast to the LZ
model, if we could adiabatically evolve the quantum Rabi model within the QSL
time, it would be possible to overcome the HL for states close to the critical point
at g ∼ gc. We have to keep in mind though that the QSL time is a very optimistic
lower bound on the actual required adiabatic evolution time. Hence, the achievable
HL (black dashed-dotted line) when considering the true time resources of adiabatic
state preparation will likely be larger than the QFI (red solid line) computed from
equation (23). However, these general considerations serve as a benchmark result
and naively suggest that reducing the time of reaching the critical ground state
might indeed lead to a potential advantage of critical quantum metrology for the
quantum Rabi model.
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100

105

I ∆
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90
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τ Q
S
L

(b)

0.0 0.5 1.0
g/gc

0

1

2

3

I ∆
/H

L

(c)

Figure 3: QFI I∆ for the quantum Rabi model. Panel (a) presents the QFI as a function of
g/gc for the case of critical parameter estimation (solid red line) and the HL for the case of
regular quantum metrology that could be potentially achieved if the protocol lasted for τQSL(g)
(black dashed-dotted line). Panel (b) depicts the QSL time τQSL. Panel (c) shows the QFI of
critical quantum metrology (solid red line) normalized to the HL (black dashed-dotted line).
In the simulations we set ∆ = 0.01 and Ω = 100. The maximal value of g shown in the plots
is 0.99gc.

Therefore, we next consider adding the appropriate CD term to the Hamiltonian
(see Appendix B for a derivation) given by

ĤCD = i
g(t)ġ(t)

4 (g2
c − g2(t))

[(
â†
)2
− â2

]
. (24)
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In contrast to the LZ model, the CD term for the quantum Rabi model does not
explicitly depend on the unknown parameter ∆ (or an estimate ∆̃ thereof). The
dependence on the unknown parameter enters only through the expression for the
critical coupling g̃c =

√
∆̃Ω that we have to insert into the ramp function which we

choose to be g(t) =
√
t/T g̃c. We again consider the ideal case where the estimate

matches the value of the unknown parameter, i.e. ∆̃ = ∆ = 0.01.
Figure 4(b) shows the achieved target ground state fidelities when driving the

system with and without the CD term and indicates that critical ground state prepa-
ration can be reduced to arbitrary short times with the addition of the CD term as
expected. However, the computed QFI for either of the driving protocols [plotted in
figure 4(a)] is not able to overcome the HL (black dashed-dotted line) and reaches
the adiabatic limit (solid black line) only for very large driving times. Together
with the example of the LZ model these results confirm that shortcuts to adiabatic-
ity cannot be used to saturate or beat the HL and therefore inevitably lead to lower
sensitivities than performing optimal regular quantum metrology using the same
amount of time resources.

10−2 10−1 100 101 102

∆T

10−4

102

108

I ∆

(a)

10−2 10−1 100 101 102

∆T

0.92

0.96

1.00

F

(b)

CD

no CD

Figure 4: The effect of CD driving on the QFI I∆ for the quantum Rabi model. In panel (a),
the solid black line corresponds to the previously predicted adiabatic limit of the QFI for large
driving times T , the dash-dotted black line is the HL as a function of the evolution time T ,
the dashed red line is the QFI for a sole ramp (without adding the CD term), and the solid
blue line is the QFI for a ramp with CD driving. The black dotted line indicates a T 4 scaling
of the QFI. Panel (b) shows the achieved fidelities F between the final time-evolved states
and the target critical ground state as a function of time. In the simulations we set ∆ = 0.01,
Ω = 100, and gf/gc = 0.9.

4 Discussion
The arguments presented in Sections 2.1 and 2.2 show that critical quantum metrol-
ogy cannot yield better sensitivities than optimal regular quantum metrology given
the same time resources even when shortcuts to adiabaticity are applied which we
illustrated using the two examples of the LZ and the quantum Rabi model. How-
ever, it does not yet explain why in these two cases critical quantum metrology using
CD driving performs considerably worse away from the adiabatic limit, i.e., why the
achievable QFI goes to zero for short evolution times even though the target ground
state is always reached with almost unit fidelity. In the following we will provide an
intuitive explanation for the poor performance of CD driving in quantum metrology.
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The expression for the QFI I∆ ≡ 4 (〈∂∆ψf |∂∆ψf〉 − 〈∂∆ψf |ψf〉2) can be rewritten
as

I∆ = lim
δ→0

4
δ2

(
1− |〈ψf (T,∆, ∆̃, gf )|ψf (T,∆ + δ, ∆̃, gf )〉|2

)
, (25)

where δ is an infinitesimal change of the unknown parameter ∆. Thus, the QFI
reaches its maximum value when the overlap of the final states |ψf (T,∆, ∆̃)〉 and
|ψf (T,∆ + δ, ∆̃)〉 is minimal which corresponds to a larger distance between these
quantum states in the ∆-parameter space and therefore an enhanced sensitivity (see
figure 5 for an illustration). For adiabatic processes (hence large evolution times T ),
the CD term becomes irrelevant, and both of the time-evolved states |ψf (T,∆)〉
and |ψf (T,∆ + δ)〉 in equation (25) will be ground states of their respective final
Hamiltonians. However, for short evolution times the CD term gains importance
ensuring that |ψf (T,∆, ∆̃)〉 is the ground state when ∆̃ = ∆ is set appropriately.
The state |ψf (T,∆ + δ, ∆̃)〉 on the other hand is no longer the ground state of the
Hamiltonian at ∆ + δ. In fact, the CD term pushes the final state closer to the
target ground state of the Hamiltonian at ∆ = ∆̃ for which it has been designed
for. This leads to an increase in the overlap of the two time-evolved states and in
turn the QFI decreases illustrated by the blue line in figure 5. Hence, for shorter
evolution times T , the effect of the CD term will be larger, giving rise to smaller
distances of the final time-evolved quantum states in the parameter space of the
unknown parameter and therefore a lower sensitivity.

However, these results do not necessarily imply that shortcuts to adiabaticity
are not useful in the context of quantum metrology or critical quantum metrology
is impractical. Shortcuts to adiabaticity and related techniques can be employed to
prepare suitable initial states [67, 68] or to lead a quantum state through a quantum
path that maximizes the QFI [37]. In certain cases CD driving can still be beneficial
and can give rise to a higher QFI than driving without any additional control (see
figure 4). On the other hand critical quantum metrology might be useful in cases
where the optimal conditions for reaching the HL in the regular quantum metrology
setting cannot be easily achieved experimentally. Critical quantum metrology will
also be advantageous if the initial state of the system of interest is already (close to)
the critical ground state and therefore the associated time resources for preparing
a critical state can be neglected which however, is not often the case in real experi-
mental setups. The oft-cited super-Heisenberg scaling in critical quantum metrology
achievable in critical quantum metrology I∆ ∼ N>2 [69] derives from the fact that
the QFI is calculated without considering the adiabatic protocol time. When this
time duration is included [20, 23], the apparent super-Heisenberg scaling vanishes
and the sensitivity is limited by the HL I∆ < N2T 2.

5 Conclusions
In this work, we have shown that the HL achievable in regular quantum metrology
also poses an upper bound for the attainable QFI in critical quantum metrology
when the preparation of the critical ground state is taken into account as well.
However, as reaching the HL requires different states than instantaneous eigenstates
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Figure 5: The QFI I∆ can also be interpreted as a distance between quantum states in the
parameter space of the unknown parameter ∆ [44]. In the case of adiabatic state preparation
(red-dashed lines), the final quantum states |ψ(∆, gf )〉 and |ψ(∆ + δ, gf )〉 reached after time
evolution using the unknown parameter ∆ and ∆+δ respectively, are always the ground states
of the corresponding Hamiltonians. Hence, the QFI can be computed through a considera-
tion of the final (critical) Hamiltonian and its ground state alone. Yet, the time needed to
adiabatically prepare the ground state at the critical point will in general diverge. Therefore,
counter-diabatic driving is employed to reduce the time of reaching the final target ground
state |ψ(∆, gf )〉 (blue solid lines). However, the time evolved state |ψ(∆ + δ, ∆̃, gf )〉 when
the unknown parameter is shifted by δ is no longer the ground state of the corresponding
Hamiltonian, but rather a state moved closer towards the target ground state |ψ(∆, gf )〉 for
which the CD term was designed for. This gives rise to a larger overlap between those quantum
states and in turn to a smaller QFI.

of a critical system, optimal regular quantum metrology is always superior to critical
quantum metrology given the same amount of time resources. We confirmed that
previous reports [20, 69] on beating the HL in critical quantum metrology are a
consequence of neglecting the time required to prepare a critical state [23]. We
have also shown that shortcuts to adiabaticity, specifically counter-diabatic driving,
cannot be used to reach or overcome the HL, although they allow the critical ground
state to be prepared in arbitrary short times. In fact, for the two examples considered
here, CD driving in general leads to lower sensitivities than performing adiabatic
quantum metrology without any extra control.
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A Quantum Fisher information in critical quantum metrology
In our critical quantum metrology scheme the system of interest is driven from
the uncritical ground state of a Hamiltonian Ĥ(∆, gi) to the critical ground state
of a Hamiltonian Ĥ(∆, gf ), where ∆ is the unknown parameter to be estimated,
and gi, gf are the initial and final values of the control field g(t), respectively (gf
is close to the critical point). The final state can therefore be calculated via the
corresponding unitary evolution operator

|ψf〉 ≡ |ψf (∆, gf )〉 = Û(T,∆, g0, gf ) |ψ0(∆, g0)〉 , (26)

with |ψ0(∆, g0)〉 being the unknown-parameter-dependent initial ground state and
T the total evolution time. Inserting the expression above into the definition of the
QFI I∆ ≡ 4 (〈∂∆ψf |∂∆ψf〉 − 〈∂∆ψf |ψf〉2) and using ĥ = iÛ †∂∆Û , yields

I∆ = 4
(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
+ 4

(
〈∂∆ψ0|∂∆ψ0〉 − 〈∂∆ψ0|ψ0〉2

)
+ 4

(〈
ψ0

∣∣∣ (∂∆Û
†
)
Û
∣∣∣∂∆ψ0

〉
+
〈
∂∆ψ0

∣∣∣ Û † (∂∆Û
) ∣∣∣ψ0

〉)
+ 2

〈
ψ0

∣∣∣ (∂∆Û
†
)
Û
∣∣∣ψ0
〉
〈∂∆ψ0| ψ0〉

= I∆(∂∆Û) + I∆(|∂∆ψ0〉) + I∆(∂∆Û , |∂∆ψ0〉),

(27)

If the initial ground state |ψ0〉 is far from the critical state, its dependence on the
parameter ∆ is negligible, i.e. |∂∆ψ0〉 ' 0, and the QFI becomes

I∆ ' 4
(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
. (28)

Furthermore, if the time-evolution is adiabatic, that is, it follows the instantaneous
ground state of the bare Hamiltonian Ĥ(∆, g(t)), we obtain

I∆ = 4
(
〈ψ0|ĥ2|ψ0〉 − 〈ψ0|ĥ|ψ0〉2

)
= 4

(
〈∂∆GS(∆, gf )|∂∆GS(∆, gf )〉 − 〈∂∆GS(∆, gf )|GS(∆, gf )〉2

)
,

(29)

where |GS(∆, gf )〉 denotes the (critical) ground state of the Hamiltonian Ĥ(∆, gf ).

B Bang-off protocol for the critical ground state preparation of
the quantum Rabi model under the Schrieffer-Wolff trans-
formation

The ground state of the quantum Rabi model is a squeezed vacuum state which is
squeezed along the real axis of the Husimi Q function defined as [71]

Q(α) = 1
π
〈α|ρ̂|α〉, (30)
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where ρ̂ is the density operator of the system which for pure states |ψ〉 becomes
ρ̂ = |ψ〉〈ψ| and |α〉 is a coherent state of the field. A squeezed vacuum state can be
obtained from the quantum Rabi Hamiltonian by performing a proper pulse with the
control parameter g. In order to make this explicit, let us rewrite the Hamiltonian

Ĥ = ∆â†â+ Ω
2 σ̂z + g2

4Ω
(
â† + â

)2
σ̂z

= ∆â†â+ Ω
2 σ̂z + g2

4Ω

((
â†
)2

+ â2 + 2â†â+ 1
)
σ̂z.

(31)

Since the initial state is a spin-down state (an eigenstate of the σ̂z operator), the σ̂z
operator can be replaced by −1, and the resultant constant terms can be dropped
giving rise to
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Figure 6: Husimi Q functions illustrating the bang-off protocol for critical ground state prepa-
ration. Panel (a) displays the initial vacuum state. Panel (b) shows the squeezed state after
the bang step of the protocol which is not squeezed along the real axis and therefore does not
yet correspond to the target ground state. Thus, during the off-step of the protocol a rotation
of π/4 around the origin is applied yielding the critical ground state as shown in panel (c).

Ĥ =
(

∆− g2

2Ω

)
â†â− g2

4Ω
(
â†2 + â2

)
. (32)

If we set g =
√

2∆Ω, the first term vanishes, and we end up with a Hamiltonian

Ĥ = −∆
2
(
â†2 + â2

)
, (33)

which leads to a squeezing operator

Û(t) = exp
(
it

∆
2
(
â†2 + â2

))
= exp

(1
2
(
z∗â2 − zâ†2

))
= Ŝ(z), (34)

where z = reiφ, with r = t∆ and φ = −π
4 being the squeezing amplitude and

squeezing direction, respectively. The ground state wavefunction of the quantum
Rabi model is

|ψ0〉 = exp
(1

2
(
ξ∗â†2 − ξâ2

))
|0〉 ⊗ |↓ 〉, (35)
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with ξ = −1
4 ln{1− (g/gc)2}. In order to prepare an equally squeezed state one has

to set t∆ = −1
4 ln{1 − (g/gc)2}, and subsequently rotate the squeezed state such

that it is squeezed along the real axis of the Husimi Q function. The rotation can
be performed by turning off the control field such that the Hamiltonian becomes

Ĥ = ∆â†â, (36)

for a time such that t∆ = π/4. Therefore, the QSL time for this bang-off protocol
is given by τQSL =

(
π/4− 1

4 ln{1− (g/gc)2}
)
/∆. Note that −1

4 ln{1− (g/gc)2} > 0.
The sequence preparing the critical ground state is presented in figure 6.

C Counter-diabatic driving for the quantum Rabi model under
the Schrieffer-Wolff transformation

The CD term for the shortcut to adiabaticity can be calculated as

ĤCD = i
∑
n

[
|ṅ(t)〉〈n(t)| − 〈n(t)| ṅ(t)〉 |n(t)〉〈n(t)|

]
, (37)

where |n(t)〉 ≡ |ψn(t)〉 is the instantaneous eigenstate of the bare Hamiltonian and
|ṅ(t)〉 is its time derivative. We have

|ṅ(t)〉 = g(t)ġ(t)
4 (g2

c − g2(t))

[(
â†
)2
− â2

]
|n(t)〉 (38)

and therefore the overlap

〈n(t)| ∂tn(t)〉 = g(t)ġ(t)
4 (g2

c − g2(t))

〈
n
∣∣∣∣ Ŝ† [(â†)2

− â2
]
Ŝ
∣∣∣∣n〉

= f(t)
(〈
n
∣∣∣ Ŝ†â†ŜŜ†â†Ŝ ∣∣∣n〉− 〈n∣∣∣ Ŝ†âŜŜ†âŜ ∣∣∣n〉)

= f(t)
[〈
n

∣∣∣∣ (â† cosh(r) + â sinh(r)
)2
∣∣∣∣n〉

−
〈
n
∣∣∣∣ (â cosh(r) + â† sinh(r)

)2
∣∣∣∣n〉]

= f(t)(2n+ 1) [sinh(r) cosh(r)− sinh(r) cosh(r)] = 0,

(39)

vanishes, where we have set f(t) = g(t)ġ(t)/{[4(g2
c − g2(t)]} and used

Ŝ†(ξ)âŜ(ξ) = â cosh(r)− â†eiϑ sinh(r), (40)

with ξ = reiφ = 1
4 | ln(1− g2(t)/g2

c )|eiπ in our case. Using the completeness relation∑
n |n(t)〉〈n(t)| = Î of the instantaneous eigen-basis the CD term finally reads

ĤCD = i
g(t)ġ(t)

4 (g2
c − g2(t))

[(
â†
)2
− â2

]
. (41)
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