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SUMMARY
Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-bind-
ing proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA
complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited
a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci for-
mation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-
binding regions, which contain unusually long clusters of motifs of characteristic types and density. These
‘‘binding-region condensates’’ are promoted by homomeric CTD-driven interactions and required for effi-
cient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish
that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcrip-
tome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling,
disease, and evolution.
INTRODUCTION

Changes in the activity of RNA-binding proteins (RBPs) play

crucial roles in shaping cell-type-specific gene regulation and

signal responses. Many mechanisms modulate the activity of

an RBP, such as changes in abundance, localization, or conden-

sation of ribonucleoprotein complexes (RNPs) (Alberti and Hy-

man, 2021). Condensation has been studied by monitoring

liquid-liquid phase separation (LLPS) of purified RBPs and

RNAs or formation of phase-separated RNA granules in cells,

but it can also occur at molecular nanometer scales (Lyon

et al., 2021). RBP condensation is often mediated by intrinsically

disordered regions (IDRs) rich in small, polar, and charged amino

acids, which are capable of weak multivalent interactions.

Condensation properties are commonly modified by mutations

or post-translational modifications of IDRs (Chong and For-

man-Kay, 2016; Lyon et al., 2021). Indeed, over a dozen RBP-
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coding genes are associated with amyotrophic lateral sclerosis

(ALS), and many of the causal mutations modify the RBPs’

condensation properties (Harrison and Shorter, 2017; Kim

et al., 2013; Patel et al., 2015). However, it is unknown whether

changes in RBP condensation selectively affect binding and

regulation of specific RNAs, and if so, which RNA features might

mediate such selectivity.

A central RBP in ALS pathogenesis is TDP-43 (trans-activating

response element DNA-binding protein of 43 kDa). Post-mortem

tissue from �97% of individuals with ALS presents TDP-43 ag-

gregates, and TDP-43 proteinopathy is also common in fronto-

temporal dementia (FTD), limbic-predominant age-related

TDP-43 encephalopathy (LATE) and Alzheimer’s disease (Gao

et al., 2019; Nelson et al., 2019). Moreover, mutations in

TARDBP, the gene encoding TDP-43, can cause ALS (Chia

et al., 2018; Sreedharan et al., 2008). Most mutations modify

the C-terminal domain (CTD) of TDP-43, which comprises two
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Deletions within the CR change the condensation behavior of TDP-43 in vitro

(A) The domainmap of TDP-43 includes an N-terminal domain (NTD), twoRNA recognitionmotifs (RRM1 and RRM2), two intrinsically disordered regions (IDR1, 2)

at the C terminus with an intervening conserved region (CR helix), and a nuclear localization signal (NLS; residues 82–92). The positions of the 5 deletion variants

are shown.

(B) Disorder confidence score, amino acid conservation (green, least conserved; red, most conserved position), and compositional biases of the C-terminal

domain (STAR Methods).

(C) Differential interference contrast (DIC) microscopy images of 10 mMWTMBP-TDP-43 and deletion variants show differences in droplet formation. The scale

bar represents 10 mm.

(D) Turbidity measurements of phase-separated WT MBP-TDP-43 and deletion variants. Mean (±SEM), n = 3, one-way ANOVA (**p < 0.01 and ***p < 0.001),

significant against the WT. The dashed line indicates the WT absorbance value.

(E) Csat (mM) of TDP-43 deletion constructs were determined by measuring the supernatant concentration after LLPS at 10 mM. Mean (±SEM), n = 3, one-way

ANOVA shows significant difference against WT TDP-43 (***p < 0.001). The dashed line indicates the Csat of the WT.

(F) Phase diagram showing changes in the phase boundary of deletion variants. ‘‘Sparse, small droplets’’ refer to droplets as in 320del414 in (C). The experiment

was repeated three times.
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disordered regions (IDR1 and IDR2) and a short conserved re-

gion (CR); all three contain sites that can form weak homomeric

contacts that promote TDP-43 condensation (Tziortzouda et al.,

2021; Figures 1A and 1B). At a high local concentration of TDP-

43, the CR adapts an a-helix fold (CR helix) that is stabilized by

homomeric contacts between CR helices of adjacent TDP-43

molecules (Conicella et al., 2016). ALS-causing mutations in

the CR can affect helix formation and the capacity of a CR-helix

for homomeric contacts (Conicella et al., 2016, 2020). For the

purpose of this study, any phenomena that require an intact

CR helix are considered to require TDP-43 condensation, at least

at a molecular scale.
In this study, we examined whether TDP-43 condensation

contributes to its RNA binding and regulation and whether it in-

volves entire RNAs or regions of RNAs. We found that point mu-

tations in the CR have the same gradient of effects at multiple

scales: in vitro LLPS, formation and dynamics of TDP-43 foci in

cell nuclei, binding to specific RNA regions, and selective regu-

lation of RNA processing. Given that condensation selectively

contributes to only some of the bound RNA regions, we wanted

to find out which RNA features mediate such selectivity. Multiva-

lency, clustering of multiple binding motifs, is a feature of RNAs

that can promote condensation of bound RBPs (Li et al., 2012;

Lyon et al., 2021). However, binding regions of TDP-43 are
Cell 184, 4680–4696, September 2, 2021 4681
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generally highly multivalent, and the sensitivity to CR helix muta-

tions additionally depends on a dispersed arrangement of spe-

cific motif types over long multivalent regions (generally more

than 100 nt). We show that altered condensation properties of

TDP-43 selectively modify its RNA-regulatory network.

RESULTS

The CR is essential for efficient LLPS of full-length
TDP-43
Several regions of TDP-43 are capable of higher-order interac-

tions. The CTD is sufficient for LLPS, but the specific roles of

each region within the CTD are unclear (Tziortzouda et al.,

2021). To identify critical regions, we produced TDP-43 deletion

constructs omitting sections of the CTD (Figures 1A and 1B):

274del319 removes IDR1, which is rich in glycines; 316del346

removes the helix-forming CR, which is rich in alanine, methio-

nine, and leucine (Figure 1B); 320del366 removes most of the

CR along with a glutamine- and asparagine-rich region that

resembles yeast prion domains (Alberti et al., 2009); 367del414

removes the glycine- and serine-rich IDR2; and 320del414 re-

moves most of the CR and all of IDR2. Under in vitro conditions,

with dextran as a crowding agent, 10 mM of purified full-length

wild-type (WT) TDP-43 (with a C-terminal maltose-binding pro-

tein (MBP) tag) spontaneously formed droplets (Wang et al.,

2018). These conditions mimic the 1–10 mM physiological con-

centration of TDP-43 (Ling et al., 2010). All mutants affected

droplet formation to variable extents (Figures 1C–1F), indicating

that each deleted region contributes to TDP-43 condensation.

The saturation concentration (Csat) for each mutant was deter-

mined after separation of droplets by centrifugation. All mutants

showed increased Csat (Figure 1E) and a shift in the phase

boundary (gray area in Figure 1F), demonstrating that higher pro-

tein concentrations are required for LLPS. The smallest pertur-

bation was seen for 367del414, the only deletion that does not

disrupt the CR, whereas the 316del346 deletion, which removes

only the CR, strongly disrupted LLPS (Figures 1C–1F). These re-

sults were not due to the presence of the MBP tag or crowding

agent because TDP-43 spontaneously formed droplets in the

absence of dextran when the MBP tag was cleaved from TDP-

43 with tobacco etch virus (TEV) protease (Figures S1A–S1C;

Wang et al., 2018). Moreover, the varying propensities for

LLPS were unaffected by addition of total HeLa cell RNA at

5 ng/mL or 10 ng/mL (Figures S1D and S1E), whereas higher con-

centrations of total HeLa cell RNA (40 ng/mL) inhibited TDP-43

LLPS (data not shown), as anticipated from similar findings

with yeast total RNA (Mann et al., 2019). Our results demonstrate

that the CR plays a central role in LLPS of full-length TDP-43, in

agreement with its requirement for LLPS of the truncated protein

(Conicella et al., 2016).

CR promotes condensation of TDP-43 in cell nuclei
RBP condensation can lead to formation of microscopically

visible granules (Lyon et al., 2021). To address the role of IDRs

in RBP condensation under physiological conditions, we gener-

ated stable Flp-In HEK293 cell lines with doxycycline-inducible

expression of small interfering RNA (siRNA)-resistant N-termi-

nally GFP-tagged WT or mutant GFP-TDP-43. 24 h after induc-
4682 Cell 184, 4680–4696, September 2, 2021
tion, GFP-TDP-43 was expressed at similar levels as endoge-

nous TDP-43 (Figure S2A). WT and mutant versions of GFP-

TDP-43 were predominantly localized in the nucleus, with diffuse

signals present across the nucleoplasm and additional punctate

patterns we refer to as ‘‘nuclear foci’’ (Figure 2A). To determine

the number and area of these foci, we automated the nuclear

segmentation and foci-counting procedure on confocal z stack

images. An induction time course of 4–72 h showed that in vivo

assembly of TDP-43 foci involves a concentration-dependent

condensation process (Figures 2B–2D and S2B). At 24 h, there

is a substantially reduced number of foci in all mutant GFP-

TDP-43 lines, except for 367del414, in which the CR is preserved

(Figure 2E). The extent of nuclear foci formation in WT and dele-

tion cell lines followed a sigmoidal relationship with Csat mea-

surements of the purified proteins (R2 = 0.9997; Figure S2C),

indicating that the threshold for foci formation in the nucleus is

deletion dependent. Thus, TDP-43 nuclear foci formation and

its concentration dependence is likely partially modified by the

weak CR helix-mediated homomeric interactions that mirror

LLPS behavior under in vitro conditions.

To further investigate the effect of CTD deletions on TDP-43

mobility in cells, we employed fluorescence recovery after pho-

tobleaching (FRAP) of GFP-TDP-43. We photobleached regions

of the nucleoplasm with similar GFP intensities and monitored

the rate of signal recovery (Figure S2D). GFP-TDP-43 mobility

was increased in all mutant lines except 367del414, which

showed only a small increase. The effect was independent of

protein size, with small deletions having a similar effect as the

large 320del414 deletion (Figures 2F and 2G). The proportions

of protein in the mobile fraction calculated from FRAP experi-

ments are very similar for all constructs during the observed

time period (Figure S2E). We examined the mobility of GFP-

TDP-43 in cells with or without siRNA-mediated depletion of

endogenous TDP-43 and observed no statistically significant

change between the two treatments for the WT or any mutant

(Figure S2F). Thus, the presence of endogenous TDP-43 has

no effect on the mobility of any GFP-TDP-43 construct. Again,

the extent of increased mobility in cell nuclei, as measured by

FRAP, correlated with the degree of perturbation of in vitro

LLPS for the different deletions (R2 = 0.9485; Figure S2G). We

find that CR-disrupting deletions had strong correlated effects

on LLPS, the number of nuclear foci, and the mobility of GFP-

TDP-43. This indicates that these distinct measurements likely

detect shared aspects of condensation propensity and demon-

strate that the CR is essential for optimal TDP-43 condensation

in vitro and in cell nuclei.

CR point mutants of TDP-43 have a gradient of
condensation properties
Studies of purified TDP-43 CTD identified specific missense mu-

tations that have variable effects on the helix-forming propensity

of the CR, which are reflected by effects on LLPS (Conicella

et al., 2016, 2020; Li et al., 2018). Therefore, we generated five

TDP-43 HEK293 Flp-In cell lines with point mutations within or

near the CR; we focus on these lines for the remaining experi-

ments in this study (Figures 3A and 3B). Themost perturbingmu-

tation is A326P, which replaces the helix-promoting alanine with

proline, disrupting the secondary structure (Conicella et al.,
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Figure 2. Deletions within the CR change the condensation behavior of TDP-43 in cells

(A) Maximum z-projection images of HEK293 Flp-In cell lines expressing doxycycline (dox)-inducible GFP-TDP-43 variants.

(B) Heterogeneous expression levels of GFP-TDP-43 WT were induced with a dox time course (4–72 h) in HEK293 Flp-In cells, n (cells) = 118. Foci counts in each

segmented nucleus are plotted against the total nuclear fluorescence of individual GFP-TDP-43 WT cells.

(C) As in (B), the fractional nuclear area occupied by the sum of all foci in each nucleus plotted against the mean nuclear fluorescence.

(D) As in (B), the relationship between the mean foci fraction fluorescence intensity and mean nuclear fluorescence.

(E) Quantification of foci counts in each segmented nucleus. Mean ± 95% confidence interval (CI) is shown. n (cells): WT = 21, 274del319 = 20, 316del346 = 22,

320del366 = 20, 367del414 = 23, 320del414 = 23.

(F) FRAP experiments on HEK293 cell lines. The fluorescence recovery curve was obtained by bleaching a spot of predefined size in the nucleoplasm. Mean ±

95% CI is shown for 34 cells for all cell lines.

(G) Rate constant of fluorescence recovery. Mean ± 95% CI is shown. n (cells) = 34 for all cell lines.

Significance for (E) and (G) was tested with Kruskal-Wallis test followed by Dunn’s multiple comparisons test. Reported adjusted (adj.) p values are for the in-

dividual comparisons (*p adj. < 0.05, ***p adj. < 0.001, and ****p adj. < 0.0001).
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2016; Li et al., 2018). A slightly less disruptivemutation isM337P,

which mimics the effects of an ALS-causing mutation (M337V);

both mutations disrupt the CR helix-helix interactions and helical

region extension to perturb LLPS (Conicella et al., 2016). The

ALS-causing mutation Q331K is positioned within the CR helix

and perturbs LLPS by disrupting helix-helix interactions without

breaking the helical region (Conicella et al., 2016; McGurk et al.,

2018). We also included the ALS-causing mutation G294A,

located in IDR1 just upstream of the CR, which has been shown

to only slightly decrease the tendency for higher-order interac-

tions in vitro (Johnson et al., 2009). Finally, G335A has been

shown to extend the CR helix and enhance LLPS (Conicella

et al., 2020). All missense mutant constructs displayed nuclear

localization, and their propensity for condensation, measured

by foci count and FRAP mobility (see above), ranked between

the WT and 316del346 (Figures 3C–3F and S3A). These experi-
ments resulted in the expected trend of the strongest disruption

by A326P, followed by M337P and then Q331K. In contrast,

G294A weakly and G335A strongly promoted condensation.

The mutants with slower mobility displayed a larger number of

nuclear foci, and so we assessed whether mobility was affected

within the foci as well as in the nucleoplasm. We photobleached

nuclear regions containing individual foci in the 316del346,

A326P, G335A, and WT cell lines (Figure S3C). The three mutant

constructs were chosen because they displayed faster or slower

mobility compared with the WT. In general, the fluorescence re-

covery rate of bleached areas is slower for regions containing

foci than in the surrounding nucleoplasm (Figures 3G and S3B;

two-way ANOVA, p = 0.0008). The differences in mobility of the

four constructs were recapitulated in foci-centered regions,

demonstrating thatmutations affect themobility of TDP-43 in nu-

clear foci and the nucleoplasm. Thus, the mutants affect nuclear
Cell 184, 4680–4696, September 2, 2021 4683
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Figure 3. CR point mutants of TDP-43 have a gradient of in vivo condensation properties

(A) Positions of the 5 point mutations in TDP-43 variants.

(B) Mutations modify condensation on a gradient from perturbing (red/orange) to maintaining (green) or promoting (blue) the condensation capacity.

(C) Maximum z-projection images of HEK293 Flp-In cell lines expressing the indicated dox-inducible GFP-TDP-43 variants.

(legend continued on next page)
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foci formation and mobility of TDP-43 in a graded fashion,

ranging from disruptive (e.g., 316del346) to enhancing (e.g.,

G335A) effects, in line with observations from in vitro LLPS

studies.

CR-mediated condensation fine-tunes the RNA
sequence preferences of TDP-43
It remains unclear whether mutations that alter the CR-mediated

condensation of TDP-43 also affect its RNA-binding properties.

To tackle this, we performed crosslinking and immunoprecipita-

tion (iCLIP) to obtain transcriptome-wide RNA binding profiles

for WT TDP-43, the CR deletion (316del346), and each of the

missense mutants (mutants experiment, Table S1) after 24 h of

doxycycline induction (Figure 4A). The WT and 316del346 pro-

teins gave similar signal intensities, indicating that loss of CR-

mediated condensation does not affect the absolute amount of

RNA binding (Figure S4A). We performed duplicate iCLIP exper-

iments using each cell line after induction of the GFP-TDP-43

variants (mutants experiment, Table S1) and endogenous TDP-

43 from uninduced cells. Computational analysis of crosslink

sites in the iCLIP data revealed similar binding profiles for all

GFP-TDP-43 variants and endogenous proteins, with most bind-

ing occurring at introns and 30 UTRs (Figure S4B). We conclude

that CR-mediated condensation of TDP-43 does not affect the

general capacity of TDP-43 to bind RNA nor its ability to bind

different types of RNAs.

To assess whether the point mutations affect TDP-43 binding

at a more detailed, sequence-specific level, we quantified the

prevalence of hexanucleotide (6-mer) motifs around intronic

crosslink sites. We visualized the 20 most enriched 6-mers in a

heatmap, comparing their relative enrichments for the WT and

condensation-promoting G335A variant and the condensation-

deficient A326P and 316del346 variants (Figure 4B). These top

20 6-mers contained one or more UG dinucleotides, indicating

that many crosslinks occur around high-affinity UG repeats

that are known to be bound by TDP-43 (Buratti et al., 2005; Toll-

ervey et al., 2011). The WT and condensation-promoting G335A

variant displayed binding preferences similar to all 20 6-mers.

However, most condensation-deficient variants displayed

decreased binding to a subset of 6-mers compared with the

WT. The first group of 6-mers showed the most dramatic

decrease among the condensation-deficient variants; they

have the least divergence from the UG repeat ([UG]n), with a

possible C-to-U replacement. We therefore refer to this motif

group as YG-containing [UG]n (Y indicating pyrimidine). The sec-

ond group had modestly decreased binding; these 6-mers

diverge more from the UG repeat by replacing G with an A
(D) Quantification of foci counts in each segmented nucleus of confocal z stacks. M

Q331K = 32, G294A = 32, G335A = 30, WT = 30.

(E) FRAP experiments on GFP-TDP-43 CR mutant cell lines. The fluorescence

nucleoplasm. Mean ± 95% CI is shown for n (cells): 316del346 = 37, A326P = 36

(F) Rate constant of fluorescence recovery. Mean ± 95% CI is shown for the sam

Significance for (D) and (F) was testedwith Kruskal-Wallis test followed byDunn’sm

(**p adj. < 0.01, ***p < 0.001, and ****p < 0.0001).

(G) As in (E) for FRAP analysis of GFP TDP-43 mobility in nucleoplasm versus nuc

43 cell lines. Mean ± 95% CI is shown for n (cells): 316del346 nucleoplasm = 8,

oplasm = 8, G335A foci = 12, WT nucleoplasm = 8, WT foci = 10, 1 focus per ind
(such as UGUAUG), and we therefore refer to this motif group

as YA-containing [UG]n. The third group did not display

decreased binding; these 6-mers diverge most by interrupting

the repetitive YRYRYR (pyrimidine/purine) pattern, most often

with an AA dinucleotide (such as UGAAUG), and we therefore

refer to this motif group as AA-containing [UG]n. It is striking

that, even though the 6-mers were ranked by their relative

enrichment across TDP-43 variants and not sequence content,

they segregated into these three groups of motifs distinguished

by the degree and type of divergence from the canonical UG

repeat.

These observations were confirmed in additional iCLIP exper-

iments comparing the WT and 316del346 variants at two RNase

concentrations (Table S1). The distributions of the three motif

types around intronic and 30 UTR crosslink events showed that

316del346-binding was decreased at YG-containing [UG]n (Fig-

ures 4C and S4C) and to a lesser extent at YA-containing [UG]n

(Figures 4D and S4C) but not at AA-containing [UG]n motifs (Fig-

ures 4E and S4C). Strikingly, the distribution profiles of YG- and

YA-containing [UG]n motifs around crosslink events were very

broad, whereas AA-containing [UG]n motifs were much more

narrowly enriched. These findings demonstrate that the capacity

of TDP-43 for CR-mediated condensation is required for its

optimal binding to the broadly distributed YG- and YA-contain-

ing [UG]n but less important for binding to AA-containing [UG]n

motifs.

Homomultimeric interactions drive the CR-dependent
RNA assembly
The in vitro LLPS effects indicate that the CR mutations change

the capacity of TDP-43 for homomeric assembly. Additionally

the CTD of TDP-43 is known to form heteromeric contacts with

other proteins (Budini et al., 2014), but how mutations affect

RNA binding in vivo remains unresolved. To probe the mecha-

nism of CTD activity, we generated two variants of hnRNPA2,

a protein with a domain structure similar to TDP-43, with which

it has been reported to interact, although the direct protein-pro-

tein interaction appears to be weak (Buratti et al., 2005; Ryan

et al., 2018). We generated an hnRNPA2 variant that lacked

the CTD (hnRNPA2_delCTD) and a chimeric variant in which

hnRNPA20s CTD was swapped for that of TDP-43

(hnRNPA2_TDP_CTD; Figure 4F). The hnRNPA2 CTD has a

C-terminal nuclear localization sequence (NLS) (Siomi and

Dreyfuss, 1995), and therefore we added an N-terminal NLS

to both variants to warrant nuclear localization. Surprisingly,

neither variant localized to the nuclear TDP-43 foci, and

coexpression of mCherry-hnRNPA2_TDP_CTD, but not
ean ± 95%CI is shown for n (cells): 316del346 = 30, A326P = 32, M337P = 35,

recovery curve was obtained after bleaching a spot of predefined size in the

, M337P = 36, Q331K = 36, G294A = 36, G335A = 36, WT = 48.

e number of cells as in (E).

ultiple comparisons test. Reported p values are for the individual comparisons

lear regions centered on foci on 316del346, A326P, G335A, and WT GFP-TDP-

316del346 foci = 12, A326P nucleoplasm = 8, A326P foci = 12, G335A nucle-

ependent cell.
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Figure 4. iCLIP reveals that condensation

properties affect TDP-43 binding to specific

RNA motifs

(A) iCLIP involves UV-C crosslinking, cell lysis,

RNA fragmentation by RNaseI, immunoprecipi-

tation (IP) of crosslinked RBP-RNA complexes,

and ligation to an infrared dye-labeled linker. After

SDS-PAGE and transfer to a nitrocellulose mem-

brane, RNA is released by proteinase K digestion,

reverse transcribed, circularized, and PCR

amplified.

(B) The relative enrichment of the 20 6-mers that

are most enriched across the ‘‘Mutants, low

RNase experiment’’ iCLIP experiment (Table S1).

The mean intronic motif enrichment of two repli-

cates of each TDP-43 variant was normalized by

the mean enrichment across all variants to define

relative enrichment and plotted on the heatmap

(log2 scale). The motifs were sorted based on the

gradient of enrichment across TDP-43 variants

and combined into three groups that are named

according to the dominant sequence consensus:

YG-containing [UG]n (green), YA-containing [UG]

n (blue) or AA-containing [UG]n (red) (where Y in-

dicates C or U).

(C–E) Metaprofiles of YG-, YA-, or AA-containing

[UG]n coverage around crosslink events in introns

of replicates from the ‘‘RNase experiment" (Table

S1).

(F) hnRNPA2 domain map and design of its CTD

deletion and TDP-43 fusion variants that were

used for the ‘‘chimeraRBP-CLIP’’ experiment

(Table S1).

(G–J) Metaprofile of GGAA-type, YG-, YA-, or AA-

containing [UG]n coverage around crosslink

events in introns of replicates from the ‘‘chimer-

aRBP-CLIP’’ experiment, including samples with

endogenous TDP-43 depletion (siTDP43).
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mCherry-hnRNPA2_delCTD, actually led to a decreased number

of TDP-43 foci when co-expressed with WT GFP-TDP-43 (Fig-

ures S4D and S4E). We then performed iCLIP experiments with

both variants (chimeraRBP-CLIP, Table S1) as well as with
4686 Cell 184, 4680–4696, September 2, 2021
endogenous hnRNPA2 with and without

simultaneous siRNA depletion of the

endogenous TDP-43. The metaprofiles

showed that endogenous hnRNPA2

crosslinks strongly to its expected

GGAA-type motifs at introns and 30

UTRs (Huelga et al., 2012). This pattern

was also seen for both variants (Figures

4G and S4F). Strikingly, we also found

strong enrichment of the hnRNPA2_

TDP_CTD variant on YG- and YA-con-

taining [UG]n motifs that are bound

by TDP-43 in a CR-dependent manner

(Figures 4H, 4I, and S4F). Enrichment

of the chimeric protein was seen up to

100 nt surrounding the TDP-43 binding

motifs. Importantly, this enrichment was

observed only when endogenous TDP-
43 was present because its depletion decreased binding to the

same level seen for the hnRNPA2_delCTD. In contrast, both

hnRNPA2 variants showed less binding to the AA-containing

[UG]n motif, which is bound by TDP-43 in a CR-independent
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Figure 5. Three RNA features define the condensation-binding

relationships

(A) Binding regions were defined based on motifs proximal to crosslinks,

and each region was allocated to one of 36 classes defined by the region

length, motif density, and dominant motif type. The count of cDNAs falling

into each class of binding regions from each iCLIP dataset was determined

and normalized by the average cDNA count across all datasets within

this experiment. Duplicate samples were obtained for each TDP-43

variant. Blue color represents depletion compared with the average, and

gray represents enrichment. This is linked to Table S2 containing quanti-

fication of cDNA counts from CLIP samples overlapping with the binding

regions together with their genomic coordinates, region, gene ID and gene

names, and derived classifications in groups by length, density, and base

content.
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manner, with only slight enrichment seen around this motif (Fig-

ures 4E, 4J, and S4F). ChimeraRBP-CLIP shows that the CTD-

mediated homomultimeric contacts recruit the chimeric protein

close to the RNA-binding regions of endogenous TDP-43.

Three RNA features define the characteristics of
binding-region condensates
Because the CR mutations only disrupted binding to a subset of

binding motifs, we reasoned that only a subset of the RNA-bind-

ing sites might require CR-mediated condensation for efficient

binding to TDP-43. TDP-43 binds to clusters of motifs on endog-

enous RNAs, but the term ‘‘binding site’’ is sometimes used to

refer to individual RNA motifs; therefore, we use the term ‘‘bind-

ing region’’ in the rest of this study, and we consider regions that

are bound by TDP-43 in dependence of the CR helix-mediated

condensation as types of ‘‘binding-region condensates.’’ To

disentangle these features, we first defined the binding regions

of TDP-43 by developing a computational approach (see Motif-

and iCLIP-based binding region assignment in STAR Methods)

to identify the top-ranking 6-mers that are located in close prox-

imity to crosslinks and then grouped the motifs that are sepa-

rated by up to 30 nt into 122,170 motif clusters. These regions

were allocated into 36 classes by first placing them into 4 length

classes, each of which was partitioned into three equally sized

groups based on the density of motifs, and each of these was

further divided into three equally sized groups based on the prev-

alence of YG-, YA- or AA-containing [UG]n motifs (Figure S5B).

We found that induction of mutant variants of TDP-43 for the pur-

pose of iCLIP did not detectably change gene expression of HEK

cells, which simplified the analysis of binding trends at individual

RNA sites (Figure S5A). To visualize the binding trends for each

of the 36 classes of binding regions, we produced a heatmap

showing the combined cDNA counts from iCLIP of WT,

316del346, and point mutants across all regions in each class.

We highlighted the CR-dependent classes; i.e., those with rela-

tively decreased cDNA counts in iCLIP of TDP-43 variants with

perturbed CR-mediated condensation. These classes generally

contain long binding sites (>100 nt; yellow outline in Figure 5A)

with predominant YG- and YA-containing [UG]nmotifs, suggest-

ing that CR-dependent condensation contributes to efficient

TDP-43 binding to regions containing extremely long clusters

of specific motif types.

Next we analyzed the classes that do not show decreased

binding among condensation-deficient CR-variants. Crosslink-

ing of the CR-variants appears to increase at some of these clas-

ses, but this needs to be interpreted with caution because each

class on the heatmap is internally normalized by the average

binding across all variants for the sake of visualization; the

apparent increase at CR-independent regions thus likely results

from the decreased binding to CR-dependent regions. These

CR-independent classes are shorter and more densely covered

by motifs (Figure S5B, panel 4). The patterns of CR sensitivity

were reproduced in three independent experiments (Figures

5A, S5C, and S5D) and were robust to variations in RNase activ-

ity, the aspect that is hardest to control in iCLIP experiments, as

evident from results produced with medium (Figure 5A) or low-

RNase conditions (Figure S5C) (mutants experiment, Mutants;

low RNase experiment, Table S1). Among mutants, the relative
Cell 184, 4680–4696, September 2, 2021 4687
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changes in iCLIP binding correlated with the extent of perturbed

condensation, as observed by imaging (Figure 3). The decrease

in the relative binding to more than 100 nt versus less than 60 nt

regions was strongest for 316del346 and A326P and milder with

M337P andQ331K, andG294A had a similar iCLIP pattern as the

WT protein. Conversely, G335A had increased binding to the

more than 100 nt regions compared with the WT, which agrees

with its increased condensation propensity. Importantly, multi-

valency was not a sufficient criterion explaining CR sensitivity

because all classes of binding regions were highly multivalent,

and the short regions were most densely covered by motifs (Fig-

ure S5B, panel 4). To highlight that multivalency alone is not the

only RNA feature defining the binding-region condensates, we

refer to the CR-dependent regions as ‘‘long-multivalent’’ for

the sake of further discussion. A combination of length, motif

type, and density characterizes the CR helix-mediated binding-

region condensates, which assemble mainly on long multivalent

regions with relatively low density of predominantly YG- and YA-

containing [UG]n motif types.

Finally, we examined how 1,6-HD or 2,5-hexanediol (2,5-HD),

which tends to be less disruptive to condensates (Alberti andHy-

man, 2021), affect TDP-43 condensation in cells. 5-min treat-

ment of cells with 8% 1,6-HD decreased the number of TDP-

43 nuclear foci compared with 2,5-HD (Figures S5E and S5F).

Likewise, at the pure protein level, 1,6-HD completely prevents

LLPS of full-length TDP-43 (Mann et al., 2019) and dissolves pre-

formed TDP-43 condensates (Figures S5G–S5J). We also pro-

duced iCLIP data from cells pre-incubated for 5 min with 8%

1,6-HD or 2,5-HD. We performed two iCLIP experiments where

1,6-HD treatment was compared with untreated cells (Figure 5A)

or with 2,5-HD treatment (Figure S5D) (mutants experiment, HD

experiment, Table S1); in both cases, 1,6-HD generally per-

turbed binding to long binding regions. The classes of binding re-

gions affected by 1,6-HD were generally different from the CR-

sensitive classes, which results mainly from the prevalence of

different types and density of motifs in these classes (Figure 5A).

1,6-HD generally decreased binding to classes with more than

60 nt regions containing a relatively low density of predominantly

AA- and/or YA-containing [UG]n motifs (red outline in Figure 5A)

but increased binding to classes with predominantly YG-con-

taining [UG]n motifs (green outline in Figure 5A). In fact, conden-

sation-deficient CR variants and 1,6-HD treatment have an

opposing effect at long regions with predominant YG- or dense

YA-containing [UG]n motifs (yellow versus green outline in Fig-

ure 5A). Nonetheless, one class showed a similar sensitivity to

CR variants and 1,6-HD treatment: more than 100 nt regions

containing a relatively low density of predominantly YA-contain-

ing [UG]n motifs (orange outline in Figure 5A). 1,6-HD treatment

generally perturbed TDP-43 binding to different classes of bind-

ing regions than CR mutations, depending on the length of the

regions and the density and type of binding motifs they contain.

TDP-43 condensates form on individual binding regions
To date, studies of RNA-condensation relationships have been

done with full-length RNAs (Langdon et al., 2018; Lee et al.,

2020; Maharana et al., 2018). Therefore, it remains unclear

whether RBP condensation can involve individual binding re-

gions. We addressed this question by analyzing two abundant
4688 Cell 184, 4680–4696, September 2, 2021
long non-coding RNAs (lncRNAs) that contain multiple binding

regions with large numbers of iCLIP cDNAs: NEAT1 and

MALAT1. These lncRNAs participate in cross-regulation with

TDP-43 and are differentially bound in brain tissue from individ-

uals with FTD (Modic et al., 2019; Nguyen et al., 2020; Tollervey

et al., 2011), and NEAT1 has been found to influence the phase

separation propensity of bound RBPs (Maharana et al., 2018).

Both RNAs contain multiple TDP-43 binding regions, with

some regions displaying CR-dependent binding patterns,

whereas others were CR independent. In MALAT1, two primary

binding regions were �9 kb apart on the RNA. The CR-depen-

dent region showed greatly reduced binding of 316del346

compared with the WT, with the expected gradient of binding

loss across the point mutants (Figure 6B). The CR helix-disrupt-

ing mutations and 1,6-HD led to dramatic binding decreases.

Conversely, the CR-independent region did not show decreased

binding when the CR helix was mutated or upon 1,6-HD treat-

ment (Figure 6A). The CR-dependent region was more than

300 nt long and had broad binding consistently across the whole

region, whereas the CR-independent region was nearly 150 nt

long and had discrete, short binding peaks. Strikingly, the

hnRNPA2_TDP_CTD chimeric protein strongly increased its

binding to the CR-dependent region but not the CR-independent

region, and this increased binding was lost upon 1,6-HD treat-

ment or upon depletion of the endogenous TDP-43 (Figures 6A

and 6B, bottom panel). In NEAT1, we identified four binding re-

gions with distinct binding behaviors (Figure S6A). The first two

binding regions at the 50end of NEAT1 showed sensitivity to

1,6-HD treatment but not to CR helix mutations (Figure S6A).

The third and fourth binding regions, in contrast, showedmoder-

ate reliance onCR for binding, no sensitivity to 1,6-HD treatment,

and enhanced binding of the hypercondensing variant G335A.

The insensitivity to 1,6-HD is in agreement with an imaging study

showing that paraspeckles, which are scaffolded by NEAT1,

withstand 1,6-HD treatment (Yamazaki et al., 2018). We

conclude that TDP-43 does not assemble via a uniform mecha-

nism on RNAs with multiple binding regions but, rather, that

condensation of TDP-43 takes place on individual RNA-binding

regions.

The TDP-43 30 UTR binding region condensate mediates
autoregulation
As described above, one of the regions in MALAT1 was per-

turbed by CR mutations as well as by 1,6-HD (Figure 6B). Fasci-

natingly, another doubly sensitive binding region was found

within the 30 UTR of the endogenous TDP-43 mRNA itself (Fig-

ure 6C). This binding region has been shown previously to

mediate autoregulation so that binding of TDP-43 to its own

mRNA changes the processing of the 30 UTR and, thus, de-

creases mRNA abundance (Ayala et al., 2011; Polymenidou

et al., 2011). Therefore, we monitored TDP-43 expression by

western blotting after 2 days of doxycycline-induced expression

of GFP-TDP-43 variants in the presence of endogenous TDP-43

(Figures 6D andS6B). Strikingly, induction of the 316del346 dele-

tion abrogated the autoregulatory capacity, the helix-breaking

mutations A326P and M337P almost completely lost the capac-

ity, and Q331K had 50% lower capacity compared with the WT

construct. The expression level of 316del346 is lower in
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Figure 6. TDP-43 shows distinct condensation-dependent binding, and CR mutants have defects in autoregulation

(A) Mapping of TDP-43 iCLIP data onto Malat1 non-coding RNA. Two replicates were summed, and iCLIP data were normalized and converted into smoothed

lines using the rollmean function with a window size of 20 and mapped to a 250-nt-long regions on the ncRNA Malat1 (hg38 chr11:65501021-65501271:+) with

CR-independent binding behavior. A crosslinking signal derived from the following two different iCLIP experiments is shown. Top panel: CR mutant TDP-43

variants. Center panel: hnRNPA2 constructs as described in Figure 4F. Bottom panel: the assigned binding regions colored according to their motif bias: YG-, YA-

, and AA-containing [UG]n in green, blue, and red, respectively.

(B) As in (A) for a CR-dependent and 1,6-HD-sensitive binding region on a 400-nt-long region of the ncRNA Malat1 (hg38 chr11:65504300-65504700:+).

(C) As in (A) for a CR-dependent and 1,6-HD-sensitive region in the 30 UTR of the endogenous TARDBP RNA (hg38 chr1:11023414-11023698:+).

(D) Quantification of the western blot analysis of the endogenous TDP-43 levels after 2 days of induction of each of the GFP-TDP-43 variants; see the corre-

sponding western blot in Figure S6B. Statistical significance of n = 3 was calculated using Student’s t test with *p < 0.05, **p < 0.01.
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comparison with all other constructs, which likely contributes to

its reduced autoregulation capabilities, but even when normal-

izing endogenous TDP-43 by the transgene protein level,

316del346 still has the lowest autoregulatory capacity (Fig-

ure S6D). Further, helix-modifyingmutations have similar expres-

sion levels as the WT, but the gradient of their loss in autoregula-

tion capacity was correlated to the gradient of binding loss as

defined by iCLIP. These findings show that CR helix-mediated

condensation is essential for efficient assembly of TDP-43 on

the 30 UTR of its own mRNA and, therefore, its autoregulation.

Condensation is required for TDP-43 function at a
subset of its regulated mRNAs
The autoregulation effect revealed that CR-mediated conden-

sation contributes to the regulatory function of TDP-43.

Conversely, condensation-deficient TDP-43 variants in IDR1/

IDR2 can retain their function, regulating splicing of a few

RNAs (Schmidt et al., 2019). TDP-43 regulates a broad range

of 30 end processing events (Modic et al., 2019; Rot et al.,

2017), and therefore we investigated whether condensation-
deficient CR variants are deficient in regulating any of these

events. 24 h after transfecting siRNAs to deplete the endoge-

nous TDP-43, we induced the siRNA-resistant GFP-TDP-43 var-

iants and collected cells 24 h afterward. Total RNA was isolated

from cells and used for 30 mRNA sequencing.

To analyze the capacity of CR variants to rescue appropriate

30 end processing, we first derived a common atlas of poly(A)

sites (PASs) using data from all experiments which enabled us

to characterize unannotated sites. There was a good overlap

with annotated sites in the PolyASite 2.0 atlas (Herrmann et al.,

2020; Figure S7A). We then quantified the usage of each PAS

with DRIMseq (Nowicka and Robinson, 2016) to assess the

changes in ratios of PAS usage in each gene between siRNA

knockdown treatment of each cell line and induction of the

corresponding TDP-43 variant. This approach identified 200

genes with statistically significant changes (adjusted p < 0.05;

likelihood ratio test with Benjamini-Hochberg correction) in

PAS usage upon induction of at least one TDP-43 variant.

Filtering those sites with a 10% or less change in PAS usage

across variants left 166 genes (STAR Methods; Figure 7A).
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Next we defined similarly regulated clusters of 136 of the 166

significant genes for which PAS usage could be determined for

every rescue condition using partitioning around medoids. The

silhouette method showed that the data optimally clustered

into two groups (Figure S7B). The patterns of change in PAS

usage for each distinct group reflected the capacity of each

TDP-43 variant to regulate PAS usage relative to WT TDP-43.

For the 82 CR-independent mRNAs, condensation-deficient

TDP-43 variants (316del346, A326P, and M337P) were able to

regulate PAS usage in the same way as the WT, but for the 54

CR-dependent mRNAs, this capacity was significantly impaired

(Figures 7A and S7C). As supported by qPCR analysis, CR-

dependent mRNAs displayed a gradual decrease in functionality

from WT and G335A to the condensation-deficient variants,

especially the A326P and the CR deletion (Figures 7B, 7C, and

S7C). In contrast, CR-independent mRNAs displayed a function-

ality for all or most condensation-deficient variants to a similar

level as seen for the WT protein (Figures 7D, 7E, and S7C).

To assess whether changes in the functionality of TDP-43 var-

iants could be ascribed to changes in their RNA binding, we

examined the iCLIP data on the 30 UTRs of both mRNA classes.

Binding of the condensation-deficient variants (316del346 and

A326P) relative to condensation-preserving variants (WT and

G335A) was significantly decreased in CR-dependent mRNAs

(p = 0.0043) but not CR-independent mRNAs (Figure S7D).

Moreover, the mutant variants of TDP-43 exhibited graded

changes in binding to CR-dependent mRNAs that correlated

with their condensation capacity (p = 1.83 10�7), with the stron-

gest loss of binding seen for the A326P mutant, similar to

316del346 (Figure 7F). In contrast, TDP-43 variants did not

significantly differ in their binding to CR-independent mRNAs

(p = 0.23; Figure 7F). 30 UTRs of CR-dependent mRNAs had a

significantly increased number of YG-containing [UG]n (p =

0.00015), but not YA-[UG]n or AA-[UG]n, compared with CR-in-

dependent mRNAs (Figure 7G). These findings indicate that
Figure 7. Regulation of a subset of poly(A) sites (PASs) is sensitive to

(A) The change in usage or delta polyA site usage (dPAU) for the representative PA

for each PAS is normalized so that theWT change is always positive. Red shades

direction; white indicates no rescue. Genes are clustered according to their CR

(B) Top panel: the normalized 316del346 andWT iCLIP coverage tracks (combinin

and distal (right) PASs that show a regulation pattern that is sensitive to CRmutatio

(shaded in gray) are magnified and colored bymotif type. Bottom panel: the norma

with the 316del346 variant and WT.

(C) qPCRquantification of the change in PAS usage after expression of TDP-43 va

use of distal versus proximal PASs. The shaded region highlights the magnitude

1.68 3 10�10 [SMC1A]) .

(D) As in (B) for PASs that are regulated with similar efficiency by all TDP-43 vari

(E) As in (C) for CR-independent PASs. The shaded region highlights the magnitu

0.0158 [GXYLT1]).

(F) The ratio of total iCLIP cDNA counts for each TDP-43 variant in the region betw

and the ratio of total iCLIP cDNA counts for each TDP-43 variant normalized a

Statistical difference within each group was assessed with an ANOVA.

(G) The number of nucleotides covered by TDP-43 bound YG-, YA-, and AA-cont

dependent and CR-independent genes. Statistical difference was assessed with

(H) Each RRMdomain of TDP-43 recognizes only 4–6 nt in a sequence-specificma

deficient variants of TDP-43 have a decreased capacity to bind a subset of these r

and contain a medium density of predominantly YG- and YA-containing [UG]n m

interactions in enabling condensation of TDP-43molecules at a relatively high den

long RNAs can contain CR-dependent and CR-independent regions. The confor
TDP-43 condensation is required for regulation of a subset of

its mRNA partners. We observed a clear relationship between

the condensation capacity of TDP-43 variants in vitro and in vivo

(Figures 1, 2, and 3) and the capacity for iCLIP binding (Figures 4

and 5) and regulation (Figures 6 and 7) of a subset of RNA

partners.

DISCUSSION

Our study introduces an integrative approach across a broad

range of methods to study RNP condensation, including the

RBPchimera-CLIP approach and bioinformatics tools to assign

and classify bound RNA regions, to find that, by promoting ho-

momeric assembly of TDP-43 on specific RNA regions, the CR

helix selectively modulates the RNA binding specificity of TDP-

43. Notably, CR helix mutants perturb TDP-43 condensation at

multiple scales to a similar extent, including LLPS, nuclear

mobility and foci formation, formation of binding-region conden-

sates, and regulation of RNA processing, indicating that they are

driven by the same homomultimerization forces. The binding-re-

gion condensates are promoted by a relatively low density of

specific motif types that are dispersed over long RNA regions

(generally more than 100 nt). Such condensation-dependent as-

sembly on long multivalent regions selectively contributes to the

regulatory capacity of TDP-43. TDP-43 contains two tandem

RNA recognition motifs (RRMs) that have been shown to recog-

nize only 4- to 6-nt-long motifs (Lukavsky et al., 2013); thus, it is

plausible that CR-mediated condensation brings together a

large number of RRMs to increase their combined binding avidity

to the long-multivalent regions (Figure 7H). We have resolved the

salient RNA features of binding-region condensates that help

explain their role in selective RNP assembly and regulation of

RNA networks.

Transcriptome-wide changes in RNA processing have been

observed in post-mortem human tissue and in animal models
CR mutations

S in each gene upon rescue byWT TDP-43 or each variant (Table S4). The dPAU

indicate rescue in the same direction as theWT and blue shades in the opposite

dependence.

g all 2,5-HD replicates for each condition) are shown between the proximal (left)

ns (CR-dependent PAS). Center panel: bindingmotifs in the key binding region

lized 30 seq coverage tracks (merging all replicates) for knockdown and rescue

riants after knockdown of the endogenous TDP-43 (siT), showing the ratio of the

of WT rescue over knockdown (n = 3, t test, p = 5.97 3 10�10 [PPP2R2D] and

ants regardless of CR mutations (CR-independent PASs).

de of WT rescue over knockdown (n = 3, t test, p = 6.973 10�8 [GPCPD1] and

een the proximal and distal PAS for CR-dependent and CR-independent genes

gainst WT TDP-43 (combining both biological replicates for each condition).

aining [UG]n motifs in the region between the proximal and distal PASs for CR-

a Mann-Whitney test.

nner, and TDP-43 binds highly multivalent RNA regions in cells. Condensation-

egions, called ‘‘CR-dependent regions’’; these tend to bemore than 100 nt long

otifs. The schematic highlights the likely role of CR helix-mediated homomeric

sity on the long CR-dependent regions. Such condensation is regional because

mation of contacts as shown here is purely schematic.
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of mutant TDP-43, and a decreased capacity of mutant TDP-43

to autoregulate its own expression has been observed in a

mouse model of the Q331K ALS mutation, which increases the

levels of TDP-43 protein (White et al., 2018), but the mechanism

underpinning the impaired autoregulation remained unclear. Ex-

isting models of changes in the regulatory capacity of TDP-43

propose generic cytoplasmic gain and nuclear loss of function

as candidates for ALS-causing mechanisms (Tziortzouda et al.,

2021). Instead, we now find that the changes in function can

be selective because various CR mutations lower the ability of

TDP-43 to bind subclasses of binding regions while retaining

binding and regulation of other RNAs. Thus, when perturbed

condensation of TDP-43 decreases its capacity for autoregula-

tion, gradually increasing its abundance, it could affect different

RNAs in variable ways depending onwhether themutant TDP-43

can efficiently bind and regulate the RNA. At a later stage of ALS

progression, the general activity of TDP-43 drops because of its

mislocalization or aggregation, affecting all of its RNA partners.

For example, qPCR analysis of the cryptic exons in ATG4B,

which is derepressed upon TDP-43 depletion, showed that CR

mutants and CR deletion were just as efficient in repressing

this exon as the WT protein (Ling et al., 2015; Figure S7E). The

50 splice site of the ATG4B cryptic exon is flanked by a 70-nt-

long UG microsatellite repeat characteristic of CR-independent

binding because it is very dense and less than 100 nt. Thus,

the characteristics of the TDP-43-binding regions and the results

of our qPCR analyses indicate that cryptic exons such as in

ATG4B may not be directly affected by CR mutations but could

become deregulated at the stage when nuclear clearance of

TDP-43 starts to contribute to the disease process.

As further insight into the regulated RNA network, we identified

136mRNAswith PAS switches, four of which are associatedwith

ALS or TDP-43 regulation, including the core stress granule pro-

tein G3BP1, which is essential for granule formation in response

to specific stressors (Guillén-Boixet et al., 2020; Yang et al.,

2020). Depletion of TDP-43 promotes expression of the longer

G3BP1 30 UTR isoform, which is believed to be translated less

efficiently and, thus, could decrease G3BP1 abundance (Sidibé

et al., 2021). TDP-43 also regulates processing of Gemin6, a

component of the Gem protein complex dysregulated in spinal

muscular atrophy (Cauchi, 2014), and of CSNK1D, encoding

one of the Ser/Thr Kinase CK-1 isoforms, which can phosphory-

late up to 29 sites in TDP-43, some of these in response to stress

(Kametani et al., 2009). Finally, TDP-43 regulates processing of

KPNB1, encoding karyopherin b1, a nuclear-import receptor

that counteracts the cytoplasmic accumulation of TDP-43 and

antagonizes TDP-43 fibrillization (Guo et al., 2018; Nishimura

et al., 2010). Our study provides insights into unprecedented

feedback loops that could drive TDP-43 pathogenesis through

aberrant phosphorylation, cytoplasmic mislocalization, and

aggregation of TDP-43, the hallmarks of ALS (Tziortzouda

et al., 2021).

It has been shown that RNAs can have specific effects on

condensation properties of RBPs (Loughlin et al., 2021; Maha-

rana et al., 2018; Mann et al., 2019; Sanders et al., 2020), but

whether these effects aremediated by full-length RNAmolecules

or by specific binding regions has remained unclear. Several

studies of splicing regulation provide evidence that variable
4692 Cell 184, 4680–4696, September 2, 2021
condensation of RNPs might be able to selectively modulate

RBP activities at subsets of RNA-binding sites (Ule and Blen-

cowe, 2019). We identified long RNAs that contain CR-

dependent and independent TDP-43 binding regions. The CR-

independent regions are generally shorter and contain a more

dense arrangement of motifs with enrichment of the UGAAUG-

type motifs (Figure 7H). This motif is precisely aligned to the

TDP-43 crosslink sites (Figure 4E), which agrees with structural

studies that have shown that the two adenosines of theUGAAUG

motif can anchor TDP-43 on the RNA by acting as a bridge be-

tween the b2-b3 loops of the two RRM domains (Lukavsky

et al., 2013). Conversely, more than 100 nt long regions with a

more dispersed arrangement of predominantly YG- and YA-con-

taining [UG]n motifs tend to form CR-dependent binding-region

condensates (Figure 7H). The more than 100 nt long regions with

a sparser arrangement of predominantly AA-containing [UG]n

are generally perturbed by 1,6-HD treatment rather than CR

mutations. Interestingly, a small subset of binding regions

(especially those enriched in YA-containing [UG]n) are sensitive

to both types of condensation perturbations, as we show in the

case of the MALAT1 and the 30 UTR of TARDBP mRNA.

By showing that the effects of TDP-43 condensation are spe-

cific to subsets of binding regions, our model helps explain the

findings of past studies that examined a few RNA partners of

TDP-43 to conclude that condensation mediated by various

CTD regions is or is not required for the function of TDP-43 in

RNA processing (Budini et al., 2014; Conicella et al., 2020; Rocz-

niak-Ferguson and Ferguson, 2019; Schmidt et al., 2019). Given

that distinct RNA features were enriched at regions affected by

CR mutation versus 1,6-HD treatment, one could speculate

that distinct types of condensation-promoting interactions might

be required at distinct classes of long-multivalent RNA regions.

Many types of homomeric contacts have been reported to

contribute to TDP-43 condensation. For instance, the 1,6-HD ef-

fect has been linked to the role of p-p interactions of aromatic

residues in IDR1 and IDR2 that promote the LLPS of TDP-43

(Schmidt et al., 2019). In addition to theCR helix, various portions

of the CTD can form highly polymorphic steric zippers, dagger-

shaped folds, and R-shaped fibrils that could also mediate

reversible or irreversible aggregation (Tziortzouda et al., 2021).

The importance of homomeric CTD-mediated interactions in

RNA recruitment is directly demonstrated by our iCLIP study of

a chimeric hnRNPA2-TDP-CTD protein, which requires the

endogenous TDP-43 to be present to bind to UG-rich RNA re-

gions. Interestingly, this recruitment does not appear to exclu-

sively occur within the foci because we do not observe any

enrichment of the chimeric protein in the foci. Moreover, it has

been shown that RNA binding makes TDP-43 less prone to

macroscopic phase separation (Mann et al., 2019; Yu et al.,

2021), and we find that, in addition to its effects on the foci,

CR-mediated condensation also slows the nucleoplasmic

mobility of TDP-43. These findings imply that region-specific

RNA recruitmentmight bemediated bymolecular-scale conden-

sates of TDP-43 into nanometer-sized assemblies.

Multivalency is known to be an essential feature of RNA mole-

cules that support condensation of bound RBPs, especially

those containing IDRs (Gueroussov et al., 2017; Loughlin et al.,

2021; Lyon et al., 2021; Ule and Blencowe, 2019), and several
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DNA-binding proteins have also been shown to require IDRs for

binding to broad DNA regions (Brodsky et al., 2020).We now find

that condensation selectively modulates TDP-43 assembly on

long multivalent regions; thus, it will be of interest to also inves-

tigate such selective condensation for other proteins. The

condensation properties of RBPs can be modified by mutations

in disease and evolution (Lyon et al., 2021), including in the coac-

ervate model of early RNP evolution (Astoricchio et al., 2020;

Drobot et al., 2018; Poudyal et al., 2018), and by post-transla-

tional modifications in response to signaling pathways, cellular

stress, or aging-related changes (Alberti and Hyman, 2021;

Chong and Forman-Kay, 2016). Moreover, ongoing efforts are

identifying therapeutic approaches that modulate condensates

in neurodegeneration (Alberti and Hyman, 2021; Wheeler,

2020), and it will be important to assess whether such ap-

proaches might also selectively affect the functionality of

affected complexes at the molecular scale. Our findings thus

open the possibility that changes in RNP condensation could

remodel RNA networks with high selectivity in development, dis-

ease, and evolution.

Limitations of study
We find that CR-mediated condensation of TDP-43 is not needed

for binding to all multivalent RNA regions, and its role additionally

depends on the length of multivalent regions and the type and

density of motifs in these regions. Although these features repre-

sent general trends of the whole class of CR-sensitive binding re-

gions, there are variations between individual CR-sensitive RNA

regions, and additional features may play a role. For example,

RNP condensates can also be modulated by RNA structure,

RNA-RNA contacts (Tauber et al., 2020), and proximal binding

sites of multiple different RBPs (Attig et al., 2018). The CR-depen-

dent and -independent RNA regions might differ in the structural

arrangement of the RNA regions in complex with TDP-43; for

example, so that the CR helix forms only in the first case. It will

be particularly interesting to study with purified components

how the presence of various RNAs affects the size, shape, and

organization of TDP-43 condensates. Moreover, CR-dependent

regions are long and contain highly dispersed TDP-43 binding

motifs; thus, much of their sequence is available for binding to

other RBPs. As a result, TDP-43might face increased competition

with other RBPs at the CR-dependent regions and require its CR-

mediated condensation to outcompete (or coassemble with)

these RBPs. Further in vitro, bioinformatics, and functional exper-

iments will be needed to resolve these hypotheses.
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Antibodies

Rabbit anti-TDP-43 Antibody Proteintech Cat#10782-2-AP, RRID:AB_615042

Mouse anti-a-Tubulin Antibody Sigma Cat# T5168, RRID:AB_477579

Mouse anti-FLAG Antibody Sigma Cat#F1804, RRID:AB_262044

Rabbit anti-GFP Antibody Abcam Cat# ab290, RRID:AB_303395

IRDye 800CW Donkey anti-Rabbit IgG (H + L) Li-Cor Cat#926-32213, RRID:AB_621848

IRDye 680RD Goat anti-Mouse IgG (H+L) Li-Cor Cat#926-68070, RRID:AB_10956588

Bacterial and virus strains

NEB 5-alpha Competent E. coli (High Efficiency) New England Biolabs Cat#C2987I

Chemicals, peptides, and recombinant proteins

GFP-TRAP_MA beads Chromotek Cat#gtma-10

Protein G Dynabeads Dynal Cat#10004D

Protein A Dynabeads Dynal Cat#10002D

BSA NEB Cat#B9000S

DC Protein Assay Kit Biorad Cat#5000111

Phusion High-Fidelity DNA Polymerase (2 U/mL) Thermo Fisher Scientific Cat#F530L

10 mM dNTP Mix Thermo Fisher Scientific Cat#18427088

UltraPure Agarose Thermo Fisher Scientific Cat#16500500

Kanamycin Sulfate Thermo Fisher Scientific Cat#BP906-5

Ampicillin Sodium Salt Sigma-Aldrich Cat#A0166-5G

2,5-HEXANEDIOL, 99%, Sigma-Aldrich Cat#H11904-50G

1,6-Hexanediol Sigma-Aldrich Cat#240117-50G

Fast SYBR Green Master Mix Thermo Fisher Scientific Cat#4385612

TRIzol reagent Thermo Fisher Scientific Cat#15596206

VECTASHIELD Vector labs Cat#H-1000

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific Cat#11668019

Lipofectamine RNAiMAX Transfection

Reagent-1.5 mL

Thermo Fisher Scientific Cat#13778150

AMPure XP, 5 mL Agencourt Cat#A63880

RIPA Buffer Sigma-Aldrich Cat#R0278-50ML

cOmplete(TM) Protease Inhibitor Cocktail Sigma-Aldrich Cat#11697498001

NuPAGE Novex 4-12% Bis-Tris Protein Gels,

1.0 mm, 10 well

Thermo Fisher Scientific Cat#NP0321BOX

Puromycin Takara Clontech Cat#631305

Blasticidin S HCl ThermoFisher Scientific Cat#R21001

Hygromycin B (50mg/ml) ThermoFisher Scientific Cat#10687010

Doxycycline hydrate Sigma-Aldrich Cat#D9891

Zeocin Selection Reagent Thermo Fisher Scientific Cat#R25001

Novex TBE Gels, 6%, 10 well-1 box Thermo Fisher Scientific Cat#EC6265BOX

Critical commercial assays

SuperScript II Reverse Transcriptase Thermo Fisher Scientific Cat#18064014

Zero Blunt TOPO PCR Cloning Kit for Sequencing,

with One Shot TOP10 Chemically competent E.coli

Thermo Fisher Scientific Cat#K2875J10

QuantSeq 30 mRNA-Seq Library Prep Kit FWD

for Illumina

Lexogen Cat#015.2x96

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

QuantSeq-Flex First Strand Synthesis Module Lexogen Cat#SKU: 026.96

Fast SYBR Green Master Mix Thermo Fisher Scientific Cat#4385612

Maxwell RSC simplyRNA Cells Kit Promega Cat#AS1390

Deposited data

TDP-43 variant iCLIP in Hek-293 This study Sequencing data deposited at EBI ArrayExpress

under accession number "ArrayExpress: E-MTAB-9436";

Raw data processed on the iMaps webserver:

https://imaps.goodwright.org/collections/868/

pAseq data This study Sequencing data deposited at EBI ArrayExpress

under accession number "ArrayExpress: E-MTAB-9410"

Experimental models: Cell lines

Human: HEK293T cells European Collection of

Authenticated Cell Cultures

(ECACC)

12022001

Oligonucleotides

Stealth RNAi siRNA Negative Control, Med GC Thermo Fisher Scientific Cat#12935300

TARDBP Stealth siRNA Thermo Fisher Scientific Cat#HSS177422

TDP43delCRrev This study CGCACCAAAGTTCATCCCACCACCCATA

TDP43delCRfw This study TCAGGCCCATCGGGTAATAACCAAAACCAAG

TDP43del274_320fw This study GCCATGATGGCTGCCGCCCA

TDP43del274_320rev This study ACTTCTTTCTAACTGTCTATTGCTATTGTGCTTAG

TDP43del367_414fw This study TAAACCCGCTGATCAgccTCGAC

TDP43del367_414rev This study GGCCTGGTTTGGCTCCCTCTG

hnRNPA2truncRv This study ACAGCGCTCGAGACTCCTAGAACTCTGA

ACTTCCTGCAT

NLS-hnRNPA2fw This study acagcgAGATCTGATCCAAAAAAGAAGAG

AAAGGTAGAGAAAACTTTAGAAACTGTT

CCTTTGGAGAGGA

hybrid linker-TDP43LC-fw Xba1 This study acagcgTCTAGACAAGAAATGCAGGAAGTT

CAGTTAGAAAGAAGTGGAAGATTTGGTGGT

TDP43LC-rv Xho1 This study acagcgCTCGAGCGGCCGCCACTG

NLS-pGEX-3x-hnRNPA2-fw This study acagcgAGATCTGATCCAAAAAAGAAGAGA

AAGGTAGAGAGAGAAAAGGAACAGTTCC

GTAAGCTCTTTA

pGEX-3x-hnRNPA2 fw This study acagcgAGATCTGAGAGAGAAAAGGAACAG

TTCCGTAAGCTCTTTA

A2cMycNLS_ BsrGI_ pCDNA3_mCHerry_fw This study GACGAGCTGTACAAGcctgctgctaagagagt

gaaactggatGAGAGAGAAAAGGAACAGTT

CCGTAAG

A2trunc_EcoRI_ pCDNA3_mCHerry_rev This study CTGCAGAATTCTCAACTCCTAGAACTCT

GAACTTCCTGC

A2TDPCTD_EcoRI_ pCDNA3_mCHerry_rev This study CTGCAGAATTCCTACATTCCCCAGCCA

GAAGACT

TDP43fl_fw This study aaaaggatccATGgagcaaaagctcatttc

TDP43fl_rev This study aaaactcgaGCTACATTCCCCAGCCAGAAGACT

MH239_mutA326P_fw This study GATGGCTGCCCCCCAGGCAGCACTACA

MH240_mutA326P_rev This study TGTAGTGCTGCCTGGGGGGCAGCCATC

MH241_mutQ331K_fw This study AGGCAGCACTAAAGAGCAGTTGGGGTATGATG

MH242_mutQ331K_rev This study CATCATACCCCAACTGCTCTTTAGTGCTGCCT

MH243_mutG294A_fw This study GTAATAGCAGAGCGGGTGGAGCTGGTTTGGGAA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MH244_mutG294A_rev This study TTCCCAAACCAGCTCCACCCGCTCTGCTATTAC

MH251_mutG335A_fw This study TACAGAGCAGTTGGGCTATGATGGGCATG

MH252_mutG335A_rev This study CATGCCCATCATAGCCCAACTGCTCTGTA

MH253_mutM337P_fw This study CAGTTGGGGTATGCCGGGCATGTTAGC

MH254_mutM337P_rev This study GCTAACATGCCCGGCATACCCCAACTG

pJ4M_TDP-43 del272_320fw This study GCAATGATGGCGGCTGCACAA

pJ4M_TDP-43 del272_320rev This study GGAACGTTCCAGTTGGCGGT

pJ4M_TDP-43 316delUCR346fw This study TCAGGCCCGAGCGGCAATAATCAG

pJ4M_TDP-43 316delUCR346rev This study GGCACCAAAGTTCATACCGCCACCCA

pJ4M_TDP-43 320delQN366fw This study TTTGGTAGCGGTAACAATAGCTACAGCG

pJ4M_TDP-43 320delQN366rev This study CGGATTGATGGAGAAGGCACCAAAG

pJ4M_TDP-43 320del414rev This study CGGATTGATGGAGAAGGCACCAAAGTTCA

pJ4M_TDP-43 367del414rev This study CGCTTGATTCGGTTCACGCTGCATGT

SMC1A PAS distal_fw (Rot et al., 2017) caaccaaagaagtcacgtacca

SMC1A PAS distal_rev (Rot et al., 2017) aattgtgctcgtccataaagg

SMC1A PAS prox_fw (Rot et al., 2017) GTTCTACACCAAGGCCGAGA

SMC1A PAS prox_rev (Rot et al., 2017) TCGAAGGTCAGGACTTTGCT

PPP2R2D GE fw This study TTGAGTGTTGCTGGAACGGT

PPP2R2D GE rev This study TACACACCTTCCGGGGTTTG

PPP2R2D APA fw This study TGATTGCCTGTGCCCCTG

PPP2R2D APA rev This study TAGACAGGGGGATGGGATGG

GPCPD1 GE fw This study AGCAGGAATTGCCAGAGCTT

GPCPD1 GE rev This study ACTGAGAAGCCCAAAAGGCA

GPCPD1 dist fw This study GGAAAGTGTTGTGGCGCTTC

GPCPD1 dist rev This study TGGATGGGAGACGACAGACA

GXYLT1 GE fw This study TGACGATAAGCAACCAGCAT

GXYLT1 GE rev This study TGGTGATCTGGCATAACGATCT

GXYLT1 APA fw This study AGGGTCCCTGGTCAGACATT

GXYLT1 APA rev This study ACAAGAGGTTGCTATAGTGTGCT

ATG4B fw (Ling et al., 2015) TGTGTCTGGATGTGAGCGTG

ATG4B rev (Ling et al., 2015) TCTAGGGACAGGTTCAGGACG

GAPDH qPCR fw This study AATCCCATCACCATCTTCCAG

GAPDH qPCR rev This study AAATGAGCCCCAGCCTTC

Recombinant DNA

pcDNA 3.1(+) Mammalian Expression Vector Thermo Fisher Scientific Cat#V79020

pOG44 Flp-Recombinase Expression Vector Thermo Fisher Scientific Cat#V600520

pcDNA5 FRT/TO Vector Kit Thermo Fisher Scientific Cat#V652020

Software and algorithms

Fiji/ImageJ Rueden et al., 2017 https://imagej.nih.gov/ij/

GraphPad Prism 5 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

R v 4.0.3 The R Project for Statistical

Computing

https://www.r-project.org/

Python v 3.7 Python Software Foundation https://www.python.org

Snakemake v 5.31.1 Mölder et al., 2021 https://snakemake.github.io/

iCount; iMaps König et al., 2010 https://github.com/tomazc/iCount

iCLIP analysis code; pAseq analysis pipeline

and code

This study https://github.com/ulelab/tdp43-mutants

ll
OPEN ACCESS

Cell 184, 4680–4696.e1–e11, September 2, 2021 e3

Article

https://imagej.nih.gov/ij/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://www.r-project.org/
https://www.python.org
https://snakemake.github.io/
https://github.com/tomazc/iCount
https://github.com/ulelab/tdp43-mutants


ll
OPEN ACCESS Article
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jernej Ule

(jernej.ule@crick.ac.uk).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact.

Data and code availability
The sequencing data generated in this study have been deposited at EBI ArrayExpress under accession numbers ‘‘ArrayExpress: E-

MTAB-9436’’ (iCLIP) and ‘‘ArrayExpress: E-MTAB-9410’’ (pAseq). All iCLIP data are available processed on the iMaps webserver:

https://imaps.goodwright.org/collections/868/

All raw data have been deposited at Mendeley Data, https://doi.org/10.17632/834kstxzry.1. All code used to analyze the data and

generate figures is available at https://github.com/ulelab/tdp43-mutants.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In vitro phase separation assays
Purification of Recombinant TDP-43 MBP His6

Plasmids, pJ4M TDP-43 wild-type (WT) MBP His6 pJ4M/TDP-43 was as described (Addgene plasmid #104480; http://addgene.org/

104480; RRID:Addgene_104480) (Wang et al., 2018). Deletions pJ4M TDP-43 272del320 MBP His6, pJ4M TDP-43 316del346 MBP

His6, pJ4M TDP-43 321del366MBPHis6, pJ4M TDP-43 320del414MBPHis6 and pJ4M TDP-43 367del414 were generated by PCR

with phosphorylated oligos (Key resources table) flanking the deleted regions and amplification of the entire plasmid. The resulting

reactions were Dpn1 treated, ligated and transformed into DH5alpha. The whole locus was then sub-cloned into the original vector

backbone to avoid unintended PCR-generated mutations.

All constructs were purified using two different methods. For proteins used for droplet formation using dextran, the plasmids were

first transformed into BL21(DE3)RIL E. coli. A small culture of the cells was grown at 37�C in LB media containing antibiotics, kana-

mycin (50mg/mL) and chloramphenicol (34mg/mL). After approximately 4 hours, the cells were transferred to a larger culture with 0.2%

(w/v) glucose and grown to OD600 of about 0.5. The protein expression was induced with 1mM isopropyl b D 1-thiogalactopyrono-

side (IPTG) and the cells were grown overnight in 15�C. The cells were harvested via centrifugation at 4,658 g for 20 minutes at 4�C
and re-suspended in 20mM Tris-HCl (pH 8.0), 1M NaCl, 10mM imidazole, 10% glycerol and 1mM DTT with EDTA-free protease in-

hibitor (cOmplete, EDTA-free, Roche). The re-suspended cells were subsequently lysed using Misonix sonicator 3000 after incuba-

tion with lysozyme (20mg/mL) on ice for 30 minutes. The proteins were purified over Ni-NTA agarose beads (Thermo) and eluted in

20mM Tris-HCl (pH 8.0), 1M NaCl, 300mM imidazole, 10% glycerol and 1mMDTT. The eluate was further purified over amylose resin

(NEB) and eluted in 20mM Tris-HCl (pH 8.0), 1M NaCl, 10mM imidazole, 10% glycerol, 10mM maltose and 1mM DTT. The eluted

protein was concentrated to approximately 150mM using Amicon� Ultra Centrifugal filters (50K, Millipore) and stored in aliquots

in �80�C after being flash-frozen in liquid N2. Molecular weights were determined by polyacrylamide gel electrophoresis using

4%–20% Tris-HCl gel (BioRad) followed by staining with Coomassie Brilliant Blue (BioRad).

For droplet formation using TEV protease, all constructs were purified as described in Wang et al. (2018). Briefly, plasmids were

transformed into BL21 Star (DE3) E. coli. Cell cultures were grown at 37�C to an OD600 of 0.6-0.9, then cooled down to 16�C. Protein
expression was induced overnight with 1mM IPTG at 16�C. Cells were harvested by centrifugation and resuspended in 20mM Tris-

HCl (pH 8.0), 1 M NaCl, 10 mM imidazole, 10% glycerol, 1 mM DTT supplemented with EDTA-free protease inhibitor cocktail tablets

(cOmplete, EDTA-free, Roche). Cells were lysed with Emulsiflex C3 (four passes), and clarified by centrifugation at 48,000 g for 1

hour. Clarified lysates were filtered using 0.2 mm syringe filter and applied to a 5 mL HisTrap HP column. Proteins were eluted

with a linear gradient of elution buffer (20mM Tris-HCl (pH 8.0), 1 M NaCl, 500 mM imidazole, 10% glycerol, 1 mM DTT). Eluant

was further purified over HiLoad 26/600 Superdex 200 pg (GE Healthcare) with 20 mM Tris-HCl (pH 8.0), 300 mM NaCl, and

1 mM DTT. As described in Wang et al., 2018, size exclusion results in three distinct eluant peaks in the following order of retention

time: TDP-43-MBP:nucleic acid aggregates (peak 1), pure TDP-43-MBP oligomers andmonomers (peak 2), and contaminants (peak

3). For each TDP-43 variant, the second peak was pooled and concentrated to approximately 240 mM using Amicon� Ultra Centrif-

ugal filters (50K, Millipore), flash frozen, and stored at �80�C.
Total RNA extraction from HeLa cells

HeLa cells were cultured to 90%confluence in DMEMmedia supplemented with 10%FBS and penicillin/streptomycin at 37�C at 5%

CO2. Media was aspirated and cells were lysed in 1ml TRIzol reagent (Invitrogen, catalog number 15596206) per 10cm culture dish,

homogenized by pipetting, transferred to aDNA/RNA low-bind tube and incubated for 5mins at room temperature. 0.2ml chloroform/

1ml TRIzol reagent was added and the sample was centrifuged at 12,000 x g for 15 minutes at 4�C. 500ml of isopropanol was added

per 1/ml TRIzol, incubated at room temperature for 10 minutes, and the sample was centrifuged for at 12,000 x g for 10 minutes at
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4�C. The pellet was dislodged and washed in 1ml 75% ethanol and centrifuged at 7,500 x g for 5 minutes at 4�C. The RNA was re-

suspended in 50ml of RNase free water per 10cm culture for use in TDP-43 droplet formation experiments.

Droplet formation

Droplet formation using dextran: WT TDP-43-MBP and the deletion constructs were thawed on ice and centrifuged for 10 minutes at

16,100 g at 4�C. The proteins were subsequently buffer exchanged into 20mM HEPES-NaOH (pH 7.4), 150mM NaCl and 1mM DTT

using Micro Bio-Spin P-6 (BioRad). Corresponding extinction coefficients and molecular weights of the proteins were determined

using ExPASy ProtParam software and were used to quantify the protein concentrations by NanoDrop (ThermoFisher). The phase

separation reaction was set upwith 10% (w/v) Dextran, 20mMHEPES-NaOH (pH 7.4), 150mMNaCl and 1mMDTT.WT and deletions

of TDP-43 were added last to the reaction to final concentrations of 10mM. Phase-separated droplets were imaged by DIC

microscopy after 30 minutes of incubation in room temperature. Droplets smaller than 2.5mm in diameter, sparsely distributed

across the image were categorized as ‘‘sparse, small droplets.’’ Droplets greater than 2.5mm in diameter and densely packed

were categorized as ‘‘droplets.’’ For the turbidity measurements, absorbance values of phase-separated proteins were read at

395nm using TECAN (Safire2).

Droplet formation using TEV protease: WT TDP-43-MBP and deletion constructs were thawed on ice and centrifuged for

10 minutes at 16,100 g. Protein concentrations were then determined by NanoDrop, as described above. Proteins were diluted to

0.1-10 mM in 20mM HEPES-NaOH (pH 7.4), 150mM NaCl and 1mM DTT. Droplet formation was initiated by the addition of TEV pro-

tease at a final concentration of 0.03mg/mL. In some experiments, total HeLa cell RNAwas included at 5-40ng/ml. After 30minutes of

incubation, phase-separated droplets were imaged by Brightfield microscopy (EVOS M5000). Turbidity measurements were re-

corded as described above.

Saturation concentration (Csat) determination by centrifugation

To determine Csat ofWT TDP-43-MBP and the deletions, phase-separated reactionswith 10mMproteins in 10% (w/v) Dextran, 20mM

HEPES-NaOH (pH7.4), 150mM NaCl and 1mM DTT (see Droplet formation for detailed protocol) were centrifuged for 30 minutes at

21,130 g in room temperature. 2mL of the supernatant was sampled carefully without disturbing the pellet and the concentration was

quantified using the NanoDrop (see Droplet formation for more information).

1,6-HD treatment of preformed TDP-43-MBP condensates

Purified TDP-43-MBP was buffer exchanged into LLPS buffer (150 mM NaCl, 20mM HEPES, 1mM DTT) with Micro Bio-Spin P-6

columns (Biorad). Preformed TDP43-MBP droplets were prepared with 5.7mMTDP-43, 8.6% dextran sulfate in buffer and incubated

at room temperature for 15 minutes before adding either buffer or 1,6-HD for final concentrations of 5mM TDP-43, 7.5% dextran

sulfate, 8% 1,6-HD (w/v) in LLPS buffer. Sample absorbance was measured by Tecan Safire2 (395 nm, 10 reads/measurement)

20minutes after adding buffer or 1,6-HD. Absorbance readings from blank samples (no TDP-43 added) were subtracted from sample

readings. For imaging, TDP-43-MBP droplets were prepared as described, with the addition of Alexa488-labeled TDP-43-MBP

(Alexa FlourTM 488 NHS Ester, 1:200 labeled:unlabeled). TDP-43-MBP droplets were imaged 10-30 minutes after addition of

buffer or 1,6-HD with 60x objective on EVOS M5000. Droplet size and area fraction were quantified using Cell Profiler (Version,

4.0.7, identify primary objects, min diameter = 3 pixels, Robust Background, lower outlier fraction = 0.05, threshold smoothing

scale = 1.3488).

METHOD DETAILS

Mammalian cell culture
HEK293 Flp-In T-REx cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS),

supplemented with 3 mg/ml blasticidine and 50 mg/ml zeocin. HEK Flp-In T-Rex cell lines were generated by co-transfection of

pcDNA5/FRT/TO/GFP constructs together with pOG44 (Invitrogen). Stable integrates were selected by culturing cells in DMEM

with 250 mg/ml hygromycin, 4 mg/ml blasticidine.

Generation of GFP TDP-43 inducible cell lines
Full-length constructs and mutants of TDP-43 tagged with GFP were inserted into the pcDNA5/FRT/TO plasmid (Life Technologies,

V6520-20). In order to generate siRNA resistance in TDP-43, a region of the TDP-43 coding sequence (50-GAGCCAATTGAAATCC

CAAGCGAA-30) was silently mutated. Point mutations were generated by site-directed mutagenesis following Quikchange

Site-directed mutagenesis instructions (Agilent Technologies) using oligonucleotides detailed in Key resources table. All primers

and oligonucleotides for this study were ordered from IDT (Integrated DNA Technologies). Deletions were generated by PCR with

phosphorylated oligos (Key resources table) flanking the deleted regions and amplification of the entire plasmid. The resulting

reactions were Dpn1 treated, ligated and transformed into DH5alpha. The whole locus was then sub-cloned into the original vector

backbone to avoid unintended PCR-generated mutations.

Full-length and deletion constructs of hnRNPA2 (cDNA amplified with primers in Key resources table) tagged with GFP were

inserted into the pcDNA5/FRT/TO plasmid (Life Technologies, V6520-20). For truncation and the chimeric A2-TARDBP-IDR an

N-terminal addition of an SV40 NLS was required to compensate for loss of C-terminal non-canonical NLS. To create the chimeric

gene a hybrid linker - partly hnRNPA2, partly TARDBP CTD - was used to clone the IDR via an Xba1 site to the RRMs of hnRNPA2.

Stable Flp-In lines were produced as above.
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For the co-expression experiments hnRNPA2 constructs were tagged with the mCherry fluorescent protein. Therefore

the hnRNPA2_TDP_CTD and hnRNPA2_delCTD constructs were amplified from the pcDNA5/FRT/TO plasmids with primers

(Key resources table) containing BsrGI and a cMYC NLS and a EcoRI-containing primer into pcDNA3.1 N-mCherry vector.

Microscopy and imaging analysis
Z stack confocal imaging

Glass coverslips were pre-coated with poly-D-lysine (0.5mg/ml) for at least 1 hour, then washed with distilled water (cell-culture

grade, GIBCO 15230188) twice and air-dried in the hood for half an hour. GFP-TDP-43 cells or GFP-hnRNPA2 cells were seeded

on pre-coated glass coverslips. After 24 hours, doxycycline (150ng/ml) was added to the media to induce GFP-TDP-43/hnRNPA2

expression for 24 hours unless specified otherwise for the time course experiment (4-72 hours). For coexpression imaging experi-

ments between mCherry-hnRNPA2 and GFP-TDP-43, GFP-TDP-43-WT Flp-IN cells seeded on pre-coated glass coverslips in

6 well plates were transfected with mCherry-hnRNPA2 plasmids (or no plasmid control) using lipofectamine 3000 following manu-

facturer’s protocol at 1.25ug per 6 well. After 4 hours, media was exchanged and doxycycline was added to induce GFP-TDP-43

WT expression for 24 hours. Cells were fixed in 4% PFA in 1xPBS for 15min, and washed 3x PBS. Coverslips were then mounted

with VECTASHIELD (Vector labs, H-1000).

0.35 mm z stacks of HEK293 Flp-In cell lines were obtained with Zeiss inverted 880 confocal microscope with a 63x objective at 4x

zoom. Dimensions were set at 2048x2048 pixels. Pinhole size was set to 1 airy unit.

Quantification of fluorescence intensity from confocal z stacks and counting procedure

Quantification of fluorescence intensity and GFP-TDP-43 foci counting were done using a custom-written macro for batch process-

ing in Fiji, based on the procedure from Jain and Vale (2017). For each z stack, themaximum intensity z-projection was used for auto-

matic segmentation of the nuclei signal using the GFP-signal, taking advantage of the observation that GFP-TDP-43 signal was pre-

dominantly in the nucleus (hence no independent nuclei staining such as DAPI was required). Maximum intensity z-projection was

first smoothed with Gaussian and Median filtering, then auto-thresholded with the default settings in Fiji. The Adjustable Watershed

plugin was set with a tolerance = 40, to separate nuclei which were touching each other. Masks were created for each segmented

nuclei from each image, and measurements of mean/median, skewness, kurtosis, standard deviation of the fluorescence intensities

and the area were taken from each mask. To filter out measurements frommasks containing more than one nuclei, all masks with an

area > 300 pixels and the associated measurements were discarded.

The foci counting and segmentation procedure was automated in order to eliminate variability associated with manual counting of

‘foci’. Consistency of manual counting would be particularly difficult in this case especially across nuclei of different fluorescence

intensities. To count the number of nuclear GFP-TDP-43 foci for each cell line, the masks associated with each nuclei created

from the maximum intensity projection were overlaid and used to segment the original z stack. Subsequently nuclear GFP foci

from the segmented z- stack for each nuclei was counted with the ImageJ 3D Objects Counter (Bolte and Cordelières, 2006). A rela-

tive intensity threshold was set as 1.6x of the mean fluorescence intensity (Jain and Vale, 2017) of the z-projection to account for

variability of GFP-TDP-43 expression across cell lines and individual cells. To quantify the area and mean fluorescence intensity

of the condensed fraction, foci ROI from ‘Object map’ output from ImageJ 3D Objects Counter was overlapped with the maximum

intensity z-projection of each nucleus.

To compare GFP-TDP-43 foci counts in co-expression imaging experiments between mCherry-hnRNPA2 and GFP-TDP-43 from

the transfected coverslips, nuclear segmentation and foci counting were carried out as before with the GFP channel. Separately, the

derived nuclear masks were used to segment the mCherry channel of the maximum z-projection. Each field of view contained cells

expressing heterogenous levels of mCherry-hnRNPA2. Image files of the mCherry channel of each segmented nucleus were anony-

mized and shuffled for blinded manual classification into ‘low’ (no or low expression) or ‘high’ (medium or high levels) hnRNPA2

expression based on visualizing the mCherry signal using the ImageJ ‘Blind Analysis Tools’ plugin ‘Analysis and Decide’ function.

Blinded classification results were then subsequently matched to the GFP foci counts.

Fluorescence recovery after photobleaching (FRAP)
GFP-TDP-43 HEK293 Flp-In cells were seeded 24 to 48 hours prior to the experiment on Glass-bottom cell culture dishes (Nunc

150680), pre-coated with poly-D-lysine, as before. Doxycycline was added to the media 24 hours prior to the experiment to induce

GFP-TDP-43 expression at a near endogenous level. DMEM 10% FBS media was replaced with Fluorobrite DMEM (GIBCO,

A1896701), 2%FBS +Glutamax supplemented with doxycycline, 1-2 hours prior to the start of FRAP experiments. FRAPwas carried

out on Zeiss inverted 880 confocal microscope, equipped with a 63x objective, a gasmixer CO2 supply and a temperature-controlled

chamber set at 37�C, with Zeiss 2012 software. All parameters were kept constant across independent experiments and conditions.

Acquisition parameters: EGFP channel, Frame size: 512x512, 12 bit, Averaging = 1, Bidirectional scanning, scan speed = 9, Scan

area = 4x during FRAP acquisition, Pinhole: 90.1 mm, Gain: 750, Bleaching parameters (This should reach > 95%bleaching efficiency

on fixed cells): 100% laser power on 488nm laser, 20 bleach iterations, Start bleach after 5 cycles, Different scan speed for bleaching:

6, ZOOM bleach, Bleach area = rectangle of 20x24 pixels at 4x zoom, Acquisition cycles: 200 cycles, frame interval = 326ms. Hence

fluorescence recovery is monitored for around 1 minute, where plateau is reached. The bleaching area was a small nuclear region

outside of any foci (Figure S2D), unless otherwise specified. For foci-centered bleaching, the bleaching area was centered on the

selected foci within the nucleus (Figure S3C).
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FRAP analysis
FRAP analysis was done with the FRAP calculator package (by Robert Bagnell; https://www.med.unc.edu/microscopy) on ImageJ

(Rueden et al., 2017). FRAP serieswere imported into ImageJwith the area of bleaching definedas a ‘region of interest’ (ROI). The frame

interval was defined as 326ms and the plugin measured the mean pixel intensities across the entire acquisition cycles of the bleached

area during the recovery phase. A control ROI of the same area in another nuclei in the same image was used to normalize for the pixel

intensities to account for fluctuations in laser power and photobleaching of GFP signal during the entire acquisition series.

Since bleaching occurs at time point = 6, the fluorescence intensities at the first 5 pre-bleach time points were averaged and used

again to normalize the fluorescence intensity values at all subsequent post-bleach time points. Fluorescence recovery plateauedwithin

the 1 minute acquisition time. For the fluorescence recovery time course of each individual cell, fluorescence intensities at post-bleach

time points up to 60 s were used to plot the FRAP curve and for non-linear regression (done in Prism), with the following settings: one

phase association (i.e., single exponential), variance weighted by 1/Y2. This derives an approximate rate constant of FRAP. The mobile

fraction was calculated from the plateau and the first post-bleach fluorescence intensity of the fitted curve with the following equation:
�
Intensityplateau � Intensityinitial post�bleach

� � �
1 � Intensityinitial post�bleach

�

Comparison of in vitro Csat with FRAP and foci measurements
Best fit parameters for sigmoidal fitting of Log(Csat) versus foci count were determined in Prism7 with the four-parameter logistic

curve model:

Y=minimum+ maximum�minimumð Þ�ð1+ 10^ Log inflection pointð Þ � XÞ � HillSlopeð Þð Þ
Where maximum = 33.29, minimum = 2.215, inflection point = 6.3
0283109, HillSlope = �9.441. Best fit parameters for linear regres-

sion of Log(Csat) versus rate constant were determined in Prism7.

Statistics for image quantification
Quantification of FRAP (i.e., rate constant of FRAP and themobile fraction of GFP-TDP-43 cell lines) and data derived from confocal z

stacks were statistically tested for normality (Prism 5, Kolmogorov-Smirnov test, D’Agostino and Pearson omnibus normality test and

Shapiro-Wilk normality test). Since there were conditions where the datasets did not pass a normality test, significance was tested

with Kruskal-Wallis test followed by Dunn’s post hoc test for multiple comparisons. The p values reported were from the individual

comparisons in Dunn’s test. In experiments comparing differences between cell lines plus an additional factor (si-TDP-43 or foci-

centered), a two-way ANOVA was performed in Prism. The number of cells quantified for each condition is shown in the correspond-

ing figure legends.

Individual-nucleotide resolution UV-crosslinking and immunoprecipitation of protein-RNA complexes (iCLIP)
This experiment identified TDP-43-RNA binding sites in 293 Hek Flip-In cells. Cells were grown to 80% confluence, transgene was

induced by doxycycline for 24h, UV crosslinked on ice and then lysed in RIPA buffer. 0.4 Units of RNaseI (0.2 Units for Figure S5C) and

4 Units Turbo DNase were added per 1 mL of cell lysate at 1mg/ml protein concentration for RNA fragmentation. Negative controls

(no-UV) were prepared. Antibodies against GFP coupled to magnetic Protein G beads or GFP-TRAP_MA beads (Chromotek, gtma-

20) were used to isolate Protein-RNA complexes, and RNA was ligated to a pre-adenylated infra-red labeled IRL3 adaptor (Zarnegar

et al., 2016) with the following sequence:

/5rApp/AG ATC GGA AGA GCG GTT CAG AAA AAA AAA AAA /iAzideN/AA AAA AAA AAA A/3Bio/

For experiment Figure S5B we chose to multiplex a maximum of 3 samples before the protein gel which required for the ligation

step a bar-coded unlabeled L3 adaptor of the following design:

/5rApp/WN XXX AGA TCG GAA GAG CGG TTC AG/3Bio/

The complexes were then size-separated by SDS-PAGE, blotted onto nitrocellulose and visualized by Odyssey scanning. For the

multiplexed sample, one replicate was run in parallel with the IRL3 to allow quality control of the RNP complexes on the membrane

and to help with cutting of the bands. RNA was released from the membrane by proteinase K digestion and recovered by precipi-

tation. cDNA was synthesized with Superscript IV Reverse Transcriptase (Life Technologies) and AMPure XP beads purification

(Beckman-Coulter, USA), then circularized using Circligase II (Epicenter) followed by AMPure XP beads purification. After PCR ampli-

fication, libraries were size-selected with Ampure beads (if necessary by gel-purification) and quality controlled for sequencing.

Libraries were sequenced as single end 100bp reads on Illumina HiSeq 4000.

For the ‘RNase experiment’ we use 4 units Turbo DNase and 0.1 (low), 0.4 (medium) or 2 units (high) per 1 mL of lysate at 1mg/ml

protein concentration. This dataset was used for the metaprofile of motif coverage in Figures 4C–4E. For the ‘chimeraRBP-CLIP’

GFP-TRAP_MA beads (Chromotek, gtma-20) were used for induced GFP-tagged protein variants, and for endogenous protein, Pro-

tein GDynabeads (Life Technologies) were coupled to Antibodies against hnRNPA2B1 (SC374052, Santa Cruz). For the ‘HD dataset’,
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cells were treated with 8% 1,6-Hexanediol (HD) or 2.5-HD (for Figure S5D) in DMEM for 5 min at 37 degrees, and then cells were

washed in ice-cold PBS, cross-linked and library preparation was performed as described above.

Western blot analysis
For the TDP-43 autoregulation experiment, the cell lines were induced with 150 ng/ml doxycycline (Dox) for 48 h. In parallel a set

of uninduced samples was processed. Cells were harvested, washed once with PBS and lysed with 300 mL of RIPA lysis buffer

(25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) supplemented with 25x Protease

Inhibitor Cocktail (Roche) and Benzonase Nuclease (Novagen) for 5 min at 4�C. Supernatants were cleared of debris by

10 min centrifugation at 13000 rpm at 4 �C and total protein concentrations were determined using the DC Protein Assay Kit

(Bio-Rad). 2 mg of total cell lysates were supplemented with 4x Nupage loading buffer (+DTT, fc. 10mM) and separated over

4%–12% gradient SDS-PAGE gels, transferred to a 0.2 mm nitrocellulose membrane using the Trans-Blot Turbo RTA Mini Nitro-

cellulose Transfer Kit (Bio-Rad) and blotted with rabbit polyclonal anti-TDP-43 (10782-2-AP Proteintech), and mouse monoclonal

anti-a-Tubulin (T5168 Sigma-Aldrich). After secondary antibody incubations, signals were detected by LI-COR secondary Anti-

bodies (IRdye680 1:15000, IRdye800 1:15000) and visualized by Odyssey scanning (LI-COR) and quantified using Image Studio

Lite (LI-COR).

siRNA transfection
For the siRNA-induced knockdown of TDP-43, 240 pmol of TDP-43 stealth siRNA was mixed with 10 mL of RNAiMAX following the

manufacturer’s reverse transfection protocol and added to a 10 cm dish of HEK293 Flp-In cells. After the first 24hrs of transfection,

the medium was replaced with DMEM with 10% FBS and after an additional 24hrs, the cells were collected for analysis. The scram-

bled control siRNAwas used at 240 pmol to distinguish off-target effects from biologically relevant ones. For rescue experiments with

stable cell lines, 24hrs after the transfection, themediumwas replaced with DMEMwith 10% FBS and 150 ng/mL doxycycline for the

induction of the protein of interest, and cells were collected 24h after induction. For 6-well dishes the reactions were scaled down

accordingly.

Preparation of total RNA
Cells were washed once with PBS and harvested by centrifugation. RNA was extracted from cell pellets using Maxwell RSC simply

RNA cells kit in the Maxwell RSC instrument following manufacturer’s instructions.

RT-PCR
The Superscript II was used for the reverse transcription reaction with oligo-dT according to manufacturer’s instructions

(Thermo Scientific). Between 500-1000 ng RNA was used as input. For PAS switches we used qPCR, whereby 2 mL of diluted

cDNA was used for each reaction using SYBR green PCR mastermix and each primer at a final concentration of 0.2uM in a

QuantStudio 6 Flex Real-Time PCR System. To analyze the PAS changes, relative expression values were normalized against the

gene expression values of primers in the gene body. In the case of ATG4B cryptic exon inclusion levels were normalized against

GAPDH expression. Reactions were carried out on biological triplicates and technical duplicates. Oligos used for qPCR are listed

in Key resources table.

Generation of pAseq libraries
To quantify poly(A) site usage, we used a customized Quantseq 30 end sequencing method that allowed us to multiplex cDNAs

straight after the reverse transcription with a barcoded RT-primer (barcode position as xxxxx in RT-primer below). The samples

were pooled into subgroups of 6 and each group had a separate Lexogen barcode (i7 indices). The libraries were sequenced with

100-nt paired-end reads on HiSeq, such that the experimental barcode of the RT primer was acquired in read 2, and the Lexogen

barcode by the index read.

For most of the protocol, we used the forward QuantSeq mRNA 30 end sequencing kit (Lexogen) according to manufacturer’s

recommendations. Libraries were prepared from cells siRNA-depleted of TDP-43 with and without rescue with the transgene

induced for 24h by Dox treatment or with transgene induction only. Also 1 replicate of each cell line without any treatment was

analyzed to monitor cell-line specific variations in gene expression. We modified the standard protocol to enable multiplexing of

6 individual libraries straight after RT:

5 mL of RNA (100ng – 1ug) weremixedwith 5 mL of customRT primer (12.5 nM final concentration) and 5 mL of FS1x. FS1x and FS2x

come in QuantSeq-Flex Targeted RNA-Seq Library Prep Kit V2.

30Seq_RT 50BioGTTCAGACGTGTGCTCTTCCGATCTxxxxx TTTTTTTTTTTTTTTTTTTTVN-30

Samples were denatured for 3 minutes at 85 degrees then cooled to 42�C .

FS2x/E1 mastermix (pre-warmed to 42�C) was added and kept in the thermocycler at 42�C to reduce internal mispriming. RT was

run for 15 minutes at 42�C after which the Reverse Transcriptase was inactivated at 70�C for 10 minutes. Inactivation of the RT helps

prevent any cross/mis-hybridization effects after pooling.
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Up to 6 samples were pooled and after pooling were immediately purified to remove buffers, excess RT primer, enzyme and to

reduce the volume. 120 mL of pooled sample was purified with 2.5x Purification Beads (supplied with QuantSeq Flex kit); cDNA

was eluted in 50 mL of water. 10.5 mL of this pool was used in second strand synthesis by adding 5 mL FS1x, 4.5 mL FS2x and

5 mL RS. RNA was removed by heat treatment at 95�C for 10 minutes. Second strand synthesis reactions for each pool were con-

ducted according to the standard Quantseq protocol. All libraries were sequenced on Illumina HiSeq 4000 machines in a paired-end

manner with a read length of 100 nt, and an additional 10nt index read. We used multiple replicates per cell line in two experimental

batches (knockdown v. rescue - 316del346: 9 v. 9; A326P: 8 v. 9;M337P: 9 v. 8; Q331K: 3 v. 3; G294A: 3 v. 2; G335A: 8 v. 9;WT: 8 v. 9).

Computational analyses
Conservation and Disorder score calculation

Amino acid conservation of TDP-43 C-terminal domain was calculated using https://consurf.tau.ac.il, applying default settings. The

disorder confidence score is shown for the C-terminal domain, calculated using the DISOPRED3 algorithm with default settings on

the full length TDP-43 amino acid sequence on the PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipre).

Analysis of iCLIP data

Reads were processed according to standardized iCLIP analysis methods using the iMaps webserver, and are available at pro-

cessed on the iMaps webserver:

https://imaps.goodwright.org/collections/868/

For all samples the human GRCh38 genome build and GENCODE version 27 annotation was used. Customized downstream anal-

ysis of iCLIP data was done using scripts described below, and written in Python 3.7.3.

Regional thresholding to obtain thresholded crosslinks (tXn)

Thresholded crosslinks (tXn) were identified as the starting point for the scripts that are described further below. Crosslinks with high

cDNA counts were identified based on thresholds that were dynamically calculated for each transcript region. Each intron, each inter-

genic region, and combined exons in each gene were defined as their own regions. Intervals with a high density of crosslinks and a

high cDNA counts per crosslink site (peaks) were called using Paraclu (Frith et al., 2008) with parameters: minValue of 10 and max

cluster length 200 (default). Crosslink sites in each region that have a cDNA count equal or above the 70th percentile (or as described

below) of counts of crosslinks that are in the peaks in the region were then defined as ‘thresholded crosslinks’ (tXn).

Kmer analysis with positionally enriched kmer analysis (PEKA)

PEKA was used to identify the 6mers that were most enriched around crosslinks in the iCLIP data. In this study we used PEKA with

introns, because they contained the vast majority of crosslinks (Figure S4B), and we find that nuclear RBPs generally have the stron-

gest specificity at intronic crosslink sites. We aimed to identify motifs that enable high-affinity binding of the corresponding protein

while avoiding identification of crosslinking preferences (commonly U-rich sequences; Haberman et al., 2017; Sugimoto et al., 2015)

or other experimental artifacts common to all crosslink sites. To do so we identified kmers that are enriched at specific positions

around tXn as compared to remaining crosslinks that are present outside peaks (oXn) (which more likely represent weak binding

sites). The genomic sequences flanking the crosslink sites were separated into proximal and distal regions. The proximal region

was�40 to 40nt relative to each crosslink site, and the distal regions were�150 to�100nt and 100 to 150nt relative to each crosslink

site. For each motif, the positions of enrichment were identified in the proximal region by analyzing their normalized occurrence

around all tXn within the examined region, which was obtained by dividing the occurrence at each proximal position by the average

occurrence across all distal positions. Thus, PEKA examined the enrichment of each motif in the context of its regional composition.

Positions chosen for further analysis included all positions in the region�13..13nt relative to the crosslink site, as well as those in the

regions�40..-14 and 14..40nt where the normalized occurrence was greater than 2. An average normalized enrichment PEKA score

was calculated for each kmer across all chosen positions for tXn by comparing with the same positions around 100 control groups of

crosslink sites that were randomly sampled from the oXn. The kmers were then ranked by PEKA score, and the top ranking motifs

were selected for visualizing their coverage around crosslinks.

Comparative PEKA

Comparative PEKAwas used to identify the 6mers that are most enriched in the iCLIP data of the TDP-43 variants (using all data from

the ‘Mutants, low RNase’ experiment, (Table S1) by comparing iCLIP of the GFP-TDP-43 mutants or HD treated cells with the refer-

ence untreatedwild-typeGFP-TDP-43). The analysis was donewith two sequential runs of PEKA. First, we analyzed theWT data with

PEKA, using the merged iCLIP replicates of WT transgene (WT_1 andWT_2 from the ‘Mutants, low RNase’ experiment) and focusing

on intronic regions. The first iteration of PEKA was run as described above, except that the chosen positions for further analysis

include only those within �40..40 of tXn with the normalized occurrence greater than 4 (the higher threshold was possible due the

high quality of the present iCLIP data, and it limited the motif search to the most relevant positions). This generated multiple param-

eters that were then used for a 2nd iteration of PEKA: the average distal occurrences around tXn for each kmer, which was used for

data normalization; the positions relative to tXn that were used for enrichment calculations of all motifs; and all parameters for remain-

ing crosslinks sampled from the referenced sample. In the 2nd iteration of PEKA, these pre-defined parameters were used to analyze

the intronic regions of all the samples from the ‘mutants’ experiment. In this 2nd iteration, only the occurrence of the kmer at each

specific position relative to tXn was calculated for each sample, whereas all other parameters were used from the 1st iteration. This

ensured that the motif analyses were normalized in the same way and used the same relative positions for all case samples, thus

enabling the comparison of motif enrichment to reflect purely the differences in motif occurrence around tXn between samples.
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The 6mers were then ranked by their average PEKA score across all TDP-43 variants, and the 20 top ranked 6mers were used

for visualization on a heatmap (Figure 4B), where motif log2(enrichment) values were averaged between replicate experiments,

and normalized by subtracting the average log2(enrichment) across variants in order to visualize the relative enrichment of each

motif across the TDP-43 variants. In the heatmap, the 20 motifs were then sorted based on their gradient of relative enrichment in

the WT and condensation-promoting G335A variant compared with the condensation-deficient A326P and 316del346 variants,

which was the basis of their subdivision into three groups. The first group had the clearest decrease in normalized iCLIP counts

of the condensation-deficient variants (by a factor of > 1.3), the second group had modest decrease (by a factor of 1.1-1.3), and

the third group did not have any decrease. Motifs from each group most often had characteristic divergence from UG-repeat

([UG]n), therefore they are referred to in the text and figures as YG-containing [UG]n, YA-containing [UG]n and AA–containing

[UG]n respectively.

Metaprofile of average motif coverage around crosslinks

We visualized the coverage of groups of 6mers around the crosslink events in introns (Figures 4C–4E and 4G–4J) and 30 UTRs (Fig-

ures S4C and S4F). Sequences flanking the crosslinks were scanned with a rolling window equal to the motif length. The cDNA count

of crosslink positions that were identified by more than 20 unique cDNAs was capped at 20. All positions containing a motif were

given a score corresponding to the cDNA count of the evaluated crosslink position and remaining positions were scored 0. Scores

at each position around crosslinks in the assessed region were summed and divided by the total cDNA count of all evaluated cross-

links to generate the coverage showing the percent crosslink events overlapping with any 6-mer from the group at each position.

Finally, coverage distributions were converted into smoothed lines using rollmean function with window size of 6.

Motif- and iCLIP-based binding region assignment

We identified the candidate binding sites of TDP-43 by looking for motifs that were located in the 60nt windows centered on each tXn.

The 150 top-ranking 6mers identified by the comparative PEKA procedure were used and, as before, these were divided into three

groups based on their relative enrichment across condensation-deficient versus condensation-capable variants (motifs from each

group most often had characteristic divergence from UG-repeat, therefore they are referred to in the text and figures as YG-contain-

ing [UG]n, YA-containing [UG]n and AA-containing [UG]n respectively). tXn were defined based on combined data across ‘mutants’

and ‘HD’ experiments (which have the largest numbers of cDNAs, see Table S1) using the 50th percentile threshold. For each motif,

the generic reference positions were identified based on summarized distribution around all examined tXn from intronicWT_2 data of

the ‘mutants’ experiment, where the motif was enriched by a factor of > 4. We then proceeded to identify the binding sites based on

motifs located around crosslink sites. We extracted sequences in a �30 to 30 nt window around these tXn, and scanned them for

presence of queried motifs at the reference positions. This resulted in the ‘motif positions’ file for each of the three sets of motifs.

The three sets ofmotif positionswere combined andmotif positions that were present within 30nt weremerged into ‘binding regions’.

Each of these regionswas then allocated into one of 36 groups based on their length, motif density and the predominant type of [UG]n

motifs that were present in the region (Figure 5) as follows:

First the regions were divided into 4 groups of following length range thresholds: 1-30nt, 31-60nt, 61-100nt, > 100nt. These bound-

aries were defined so that ± 40000 regions fell into each of the 1-30, 31-60, 61-100 class, while the > 100 class had less regions

because the cDNA counts in this class were generally much higher, and thereby we ensured that the total count of cDNAs falling

into each binding region class was comparable (Figure S5B).

Each of the resulting 4 groups were further subdivided based on the density of motifs (i.e., percentage of each binding region that

was covered by motifs) into three classes of regions with relatively low, medium and high motif density, each containing an equal

number of binding regions.

Each of the resulting 12 groups were then subdivided into further 3 classes each in the following order:

d Since the YG-containing [UG]n and AA-containing [UG]n motifs had the opposing trend in condensation sensitivity (Figure 4B),

we first collected the 3000 top ranking regions (or top 1500 for the > 100 group) based on highest calculated ratio of YG-/AA-

containing [UG]n motifs

d To obtain binding regions on the opposite spectrum of condensation sensitivity that were enriched in the insensitive motifs (AA-

containing [UG]n), we then collected from remaining regions the 3000 top ranking regions (or top 1500 for > 100 group) based

on highest calculated ratio of AA-containing [UG]n/remaining motifs

d All remaining regions are the third group

To study how the crosslinking behavior of the TDP-43 variants changed in each binding region class, we identified the cDNA/cross-

link count for each region for each variant. For analyses presented in Figure 5, we included those regions where the total cDNA count

in the ‘HD’ experiment (Table S1) was > 100, and those regions inside genes that had a cDNA count > 10 and contained at least 10%

of the counts of the region that had the maximum count within the gene. For the visualization of individual motifs on specific binding

regions (Figures 6 and 7), we only retained positions that overlapped with these filtered binding regions.

Visualization of iCLIP data

For the comparative visualization of iCLIP data, we normalized iCLIP cDNA/crosslink counts at a given crosslink site by the exper-

imental library size. Normalized counts were then smoothed over the region of interest using a rolling mean, with a sliding window of

20 nt. The smoothed, normalized values were plotted across the region.
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Analysis of pAseq data
Gene expression analysis

To quantify gene expression using the pAseq data we trimmed Illumina adapters, low-quality positions (Phred score < 10) and polyA

tails using Cutadapt (Martin, 2011). We quantified gene counts using the pseudoaligner Salmon (Patro et al., 2017) and a decoy-

aware transcriptome (created from the human genome, GRCh38, and theGencode V33 annotation) specifying no read length correc-

tion as recommended for Quantseq. Salmon quantification output files were imported into R using tximport and counts normalized for

visualization using the variance stabilizing transformation from DESeq2 (Love et al., 2014).

PolyA site usage analysis

The quality of the sequenced reads were checked with FastQC and Illumina adapters and low quality positions (Phred score < 10)

trimmed using Cutadapt. First, we generated an atlas of PAS containing all detectable sites across all experiments. Reads that

extended into the polyA tail were selected based on the presence of at least 5 consecutive ‘A’ bases at the 30 end of the read using

Cutadapt. Thesewere then aligned against the human genome (GRCh38, with theGencode V33 annotation) using STAR (Dobin et al.,

2013). All alignment BAM files across all experiments were merged and the total genomic coverage of the 30 ends of the reads calcu-

lated. Adjacent positions were merged into clusters and those with fewer than 2 reads were filtered. To assess for internal priming

artifacts and filter them computationally, we used an approach similar to that described in Herzog et al. (2017). The percentage of A

nucleotides in the 20 nucleotides downstream of each candidate PAS cluster was calculated, termed ‘‘A content.’’ Candidate PAS

clusters were then grouped into three based on the presence of i) a canonical polyA signal (AATAAA or ATTAAA), ii) an alternative

polyA signal (TATAAA, AGTAAA, AATACA, CATAAA, AATATA, GATAAA, AATGAA, AAGAAA, ACTAAA, AATAGA, AATAAT, AACAAA,

ATTACA, ATTATA, AACAAG, AATAAG) or iii) no polyA signal in the 40 nucleotide window upstream of the PAS cluster. Different

filtering thresholds were used for each group based on assessment of the nucleotide distribution profile for each group for deciles

of ‘‘A content’’: those with over 50% for canonical polyA signal clusters, over 40% for alternative polyA signal, and over 30% for no

polyA signal, were removed. Finally PAS clusters within 200 nucleotides weremerged, with the one with themost read counts kept as

the indicative site. If two had the same count, the most 30 cluster was kept. The clusters were assigned to genes, based on whether

they overlapped annotated 30 UTRs, or the 1 kb downstream of the annotated 30 UTR, or an annotated gene in a hierarchical manner.

Remaining intergenic PAS were discounted. This process generated our atlas of reliable PAS for quantification.

For quantification, all the sequencing reads were used (with any polyA tails trimmed using Cutadapt). These were then aligned

against the human genome (GRCh38, with the Gencode V33 annotation) using STAR. For each experiment, BEDtools (Quinlan,

2014) was used to count the number of reads that mapped to a window 200 nucleotides upstream of the PAS in a strand-aware

manner. This count table was used as the input for DRIMSeq (Nowicka and Robinson, 2016). Pairwise comparisons were done

for each TDP-43 variant cell line between the knockdown and rescue condition. PAS that were either in genes with fewer than 10

reads in 75% of replicates across all conditions or themselves had fewer than 5 reads in 75% replicates in either knockdown or

rescue conditions (whichever was lower) were filtered. DRIMSeq was used to fit the gene level Dirichlet-multinomial model and tran-

script level beta-binomial model to the data, using an additional covariate to account for the experimental batch. To assess for dif-

ferential PAS usage, a likelihood ratio test was used, with Benjamini-Hochberg correction for multiple testing. A predefined threshold

of p < 0.05 was deemed statistically significant. Any gene that had a significantly changing PAS in any pairwise comparison was

considered to be a potentially regulated gene. We used the modeled proportion estimates as quantification of the usage of each

PAS. Next, to derive those genes with robust regulation, we filtered out sites that had a less than 10% change in PAS usage (Table

S4). For each gene, we identified one representative regulated PAS by selecting first the one that had the lowest adjusted p value and

then breaking ties by selecting the one with the highest PAS usage.

To cluster genes with similar patterns of TDP-43 mutant rescue, we selected those genes for which the representative PAS usage

change (dPAU) could be calculated for every mutant condition. We adjusted the direction of dPAU for each mutant rescue condition

relative to theWT, such that it was always positive for theWT rescue. We clustered genes based on twomeasurements: i) the relative

dPAU betweenWT and 316del346 and ii) the absolute dPAU betweenWT and 316del346, in order to consider both the direction and

magnitude of change. We clustered the genes using partitioning by medoids (k-medoids clustering), as it is more robust to outliers

and noise than k-means clustering, and used the average silhouette method to calculate the optimal number of groups into which to

partition the genes.

To identify the partner PAS matching the representative PAS, we selected the partner site with the largest change in usage in the

opposite direction to the representative site. This defined the two anchors of the 30 UTR, between which we measured iCLIP binding

signal and motif coverage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on statistics for image quantification is given in the ‘Statistics for image quantification’ chapter, statistical tests used is

given in figure legends, and on statistics of analysis of differential pAsite in the chapter ‘Analysis of pAseq data’, and information of

statistical tests used to determine significance of specific differences is described in figure legends.
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Figure S1. Deletions within the CR change the condensation behavior of TDP-43, related to Figure 1

A. Brightfield microscopy images of WT TDP-43-MBP and deletion variants (5mM) after addition of TEV protease show differences in droplet formation. The black

bar represents 10 mm.

B. Turbidity measurements of phase-separated WT TDP-43-MBP and deletion variants (5mM) after addition of TEV protease. Mean (±SEM), n = 2, one-way

ANOVA (*p < 0.05). Asterisks, significant relative to the WT. The dashed line indicates the absorbance value of WT.

C. Phase diagram (left) shows changes in the phase boundary of deletion variants. Representative brightfield microscopy images are shown on the right. Scale

bar, 10mm. The experiment was repeated two times.

D. Brightfield microscopy images of WT TDP-43-MBP and deletion variants (10mM) after addition of TEV protease in the presence of 5ng/ml (upper panels) or

10ng/ml (lower panels) of total HeLa cell RNA show differences in droplet formation. The black bar represents 10 mm.

E. Turbidity measurements of phase-separated WT TDP-43-MBP and deletion variants (10mM) after addition of TEV protease in the presence of 5ng/ml (left) or

10ng/ml (right) of total HeLa cell RNA. Mean (±SEM), n = 3-4, one-way ANOVA (**p < 0.005; ***p < 0.001). Asterisks, significant relative to the WT. The dashed line

indicates the absorbance value of WT.
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Figure S2. Deletions within the CR change the condensation behavior of TDP-43 in cells, related to Figure 2

A. Western blot analysis of expression level of the various dox-inducible constructs, compared to the endogenous TDP-43, as determined by the anti-TDP-43

antibody.

B. Quantification of mean nuclear fluorescence levels of GFP-TDP-43 WT Flp-In cells induced with dox for 4, 8, 24 and 72hrs. n (cells) = 26, 27, 36, 29.

C. Relationship between in vitro Csat (mM) of purified TDP-43 deletion constructs (Figure 1E) and quantification of foci counts per nucleus in confocal images of

HEK293 Flp-In cell lines expressing the dox-inducible GFP-TDP-43 variants (Figure 2E). The sigmoidal curve (±95% confidence band) shown was fitted to the

means of each datapoint.

D. Representative image series and ROI from nucleoplasm FRAP experiments (Figure 2F) of GFP-TDP-43 WT cells.

E.Mobile fraction of TDP-43, obtained from the plateau of the fitted exponential curve from FRAP data shown in Figure 2F. Mean ± 95%CI are shown for n (cells) =

34 for all cell lines. Significance was tested with Kruskal-Wallis test followed by Dunn’s Multiple Comparison Test. The p values reported are for the individual

comparisons (*p adj. < 0.05).

F. Rate constant of FRAP from WT and deletion constructs with or without siRNA mediated knockdown of endogenous TDP-43 (siT). Mean ± 95%CI are shown

for n (cells) = 12 for all conditions except n (cells) = 11 for 367del414 siT. Significance was tested with Two-way ANOVA (cell line: ****p < 0.0001, siT: not significant

p = 0.2249, interaction: not significant p = 0.3052). Rate constant was not found to be significantly different between all pairs of untreated versus si-TDP-43

conditions.

G. Relationship between in vitro Csat (mM) of purified TDP-43 deletion constructs (Figure 1E) and FRAP rate constants assessing mobility of GFP-TDP-43 in

HEK293 Flp-In cell lines (Figure 2G). The linear regression (±95% confidence band) shown was fitted to the means of each datapoint.
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Figure S3. CR point mutants of TDP-43 have a gradient of in vivo condensation properties, related to Figure 3
A. Mobile fraction obtained from the plateau of the fitted exponential curve from FRAP experiments shown in Figure 3E. Mean ± 95%CI are shown for n (cells):

316del346 = 37, A326P = 36, M337P = 36, Q331K = 36, G294A = 36, G335A = 36, WT = 48. Significance was tested with Kruskal-Wallis test followed by Dunn’s

Multiple Comparison Test (**p adj. < 0.01).

B. Rate constant of fluorescence recovery from each of the 316del346, A326P, G335A andWTGFP-TDP-43 cell lines, in foci-centered regions or the surrounding

nucleoplasm obtained from FRAP experiments shown in Figure 3G. Mean ± 95%CI are shown for n (cells): 316del346 nucleoplasmic = 8, 316del346 foci = 12,

A326P nucleoplasmic = 8, A326P foci = 12, G335A nucleoplasmic = 8, G335A foci = 12, WT nucleoplasmic = 8, WT foci = 10, 1 focus per independent cell.

Significance was tested with Two-way ANOVA (cell line: ****p < 0.0001, nucleoplasm versus foci: ***p = 0.0008, interaction: not significant p = 0.6656).

C. As in Figure S2D, representative image series and ROI from focus-centered FRAP experiments (Figure 3G) of GFP-TDP-43 WT cells.
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Figure S4. iCLIP reveals that condensation properties affect TDP-43 binding to specific RNA motifs, related to Figure 4
A. In this representative iCLIP experiment, the RNA/TDP-43 complex was visualized by Li-Cor scanning of nitrocellulose membrane, which detects the infrared

adaptor that is ligated to the protein-RNA complexes. Shown here are WT (MW 85kDa) and 316del346 construct (MW 81kDa). The shift of the RNA-TDP-43

complex to higher molecular weight - highlighted by the orange box - is caused by the cross-linked RNA and ligated adaptor. RNase concentration was at 0.4

(+, low), 2 units (++, high) per 1 mL of lysate at 1mg/ml protein concentration and libraries were produced from the two low-concentration replicates.

B. The number of unique cDNAsmapping to each region of transcriptome is shown for each replicate for the experiment shown in Figure 4B, and compared to the

iCLIP with the endogenous TDP-43.

C. Metaprofile of YG-, YA- or AA-containing [UG]n coverage around crosslink events in 30UTRs of replicates from the ‘RNase’ iCLIP experiment.

(legend continued on next page)
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D. Top: Maximum z-projection images of HEK293 Flp-In cell lines expressing the indicated dox-inducible GFP-TDP-43WT, transfected with mCherry-hnRNPA2-

delCTD or mCherry-hnRNPA2-TDP-CTD. Bottom: HEK293 Flp-In cell lines expressing dox inducible GFP-hnRNPA2-delCTD or GFP-hnRNPA2-TDP-CTD.

E. As in (D) Boxplot showing quantification of GFP-TDP-43WT foci count per nucleus upon transfection with the indicatedmCherry-hnRNPA2 construct. Nuclear

segmentation of images from coverslips transfected with mCherry-hnRNPA2 were blinded, then the mCherry channel was classified as low or high expression

manually, two replicate experiments. n (cells): replicate 1: A2-delCTD low = 8, A2-delCTD high = 19, A2-TDP-CTD low = 10, A2-TDP-CTD high = 21; replicate 2: no

plasmid control transfection = 18, A2-delCTD low = 9, A2-delCTD high = 13, A2-TDP-CTD low = 14, A2-TDP-CTD high = 10. Significance was tested with t test.

F. Metaprofile of GGAA-type motif, and YG-, YA-, AA-containing [UG]n around crosslink events in 30UTRs of replicates from the ‘chimeraRBP-CLIP0 iCLIP
experiment, including samples with endogenous TDP-43 depleted (siTDP43).
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Figure S5. Three RNA features define the condensation-binding relationships, related to Figure 5

A. Normalized gene expression for the genes with regulated PAS (see Figure 6A) in control and after WT or TDP-43 variant induction.

B. The features of each binding region class, which contribute to their classification. The 36 classes of binding regions are ordered as in Figure 5, and the following

features are shown: the number of regions in each class, the average cDNA count per replicate in the ‘HD’ experiment (Table S1), average length of regions in each

class, the average density of all evaluated motifs, and the average coverage of YG- or AA-containing [UG]n motifs.

C. A separate experiment was analyzed as explained in Figure 5A of TDP-43 mutant lines at a lower RNaseI concentration (0.2 units per 1mL of lysate) resulting in

longer RNA fragments.

D. A separate experiment was analyzed as explained in Figure 5A, containingWT TDP-43 and 316del346 triplicate samples pre-treated either with 1,6- or 2,5-HD.

C and D are linked to Table S3 containing quantification of cDNA counts from CLIP samples overlapping with the binding regions, together with their genomic

coordinates, region, gene id and gene names and derived classifications in groups by length, density and base content.

E. Maximum z-projection of confocal z stacks of dox-induced GFP-TDP-43 WT in HEK Flp-In cells after incubation with 8% 2,5-HD or 8% 1,6-HD for 5 minutes.

F. Quantification of foci counts in each segmented nucleus from confocal z stacks. n (counted cells): 2,5-HD = 7, 1,6-HD = 5; segmented from n (fields of view):

2,5-HD = 2, 1,6-HD = 2. Significance was tested with a Welch Two Sample t test (*p = 0.017).

G. Turbidity measurements on pre-formed TDP-43-MBP condensates show a reduction in turbidity after addition of 1,6-HD compared to addition of buffer (n = 3,

two-tailed t test, p < 0.0001).

H. Alexa488-labeled TDP-43-MBP (1:200 labeled:unlabeled) was used to image TDP-43-MBP condensates after addition of buffer or 1,6-HD. Scale bar, 10 mm.

I. Decrease in area fraction of TDP-43-MBP condensates upon addition of 1,6-HD compared to addition of buffer (n= 15 images, two-tailed t test, p < 0.0001).

J. Decrease in TDP-43-MBP condensate size upon addition of 1,6-HD compared to addition of buffer (n = 15 images, two-tailed t test, p < 0.0001).
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Figure S6. TDP-43 shows distinct condensation-dependent binding, and CR mutants have defects in autoregulation, related to Figure 6

A. Mapping of TDP-43 iCLIP data onto Neat1 ncRNA. Two replicates were summed and iCLIP data was normalized and converted into smoothed lines using

rollmean with window size of 500 to two 22kB long regions on the ncRNA Neat1 with CR-dependent and -independent binding behavior. Crosslinking signal was

derived from CR mutant TDP-43 variants. The bottom panel shows a motif-based binding site assignment where 300nt regions are colored according to their

motif bias: YG-, YA-, AA-containing [UG]n in green and blue and red, respectively.

B.Western blot analysis of expression level of the endogenous TDP-43 and GFP-TDP-43 variants after 2 days of induction with doxycycline (DOX), as determined

by the anti-TDP-43 antibody. Data was compared to no DOX level of the endogenous TDP-43 protein and loading was normalized by alpha-tubulin as a loading

control.

C. Quantification of western blot analysis of the endogenous TDP-43 levels after two days of induction of each of theGFP-TDP-43 variants. Each sample replicate

was normalized by alpha-tubulin as a loading control.

D. Same as in (C) except, each sample replicate was normalized by GFP-TDP-43 variant expression.
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Figure S7. Regulation of a subset of PAS is sensitive to CR mutations, related to Figure 7

A. The distribution of PAS from PolyASite 2.0 (Herrmann et al., 2020) around PAS defined from the 30 end sequencing data.

B. The optimal number of k-medoid clusters assessed using the average silhouette method.

C. Related to Figure 7A: distribution of the relative change in dPAU (normalized such thatWT is always positive) for each gene upon rescue byWT TDP-43 or each

variant. Genes have been clustered according to their CR-dependence.

(legend continued on next page)
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D. The ratio of total iCLIP cDNA counts for helix-disrupting (316del346 and A326) normalized against helix-preserving variants (G335A and WT TDP-43) in the

region between the proximal and distal PAS for CR-dependent and CR-independent genes. Statistical difference within each group was assessed with a Mann-

Whitney test.

E. qPCR quantification of the change in cryptic exon usage in the ATG4B gene after expression of TDP-43 variants in combination with siRNAmediated depletion

of the endogenous TDP-43 (siT) (n= 3). This cryptic exon has very low expression in Hek-293 cells and this results in qPCR Ct values of 29 versus 25 after TDP-43

depletion.
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