
OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY
GRADUATE UNIVERSITY

Thesis submitted for the degree

Doctor of Philosophy

Topology of band-like excitations in
frustrated magnets and their

experimental signatures

by

Andreas Thomasen

Supervisor: Nic Shannon
Co-Supervisor: Judit Romhanyi

August 2021



ii



Declaration of Original and Sole
Authorship

I, Andreas Thomasen, declare that this thesis entitled Topology of band-like excitations
in frustrated magnets and their experimental signatures and the data presented in it are
original and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any
other university.

• References to the work of others have been clearly acknowledged. Quotations
from the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution
has been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the excep-
tion of [1] A. Thomasen, K. Penc, N. Shannon, and J. Romhányi, Novel features
of Spin Hall and Chern insulator phases realized by triplet excitations. arXiv:2012.11765
[cond-mat].

Date: August 24, 2021
Signature:

iii



iv Declaration of Original and Sole Authorship



Abstract

One of the most important revolutions in physics during the latter half of the 20th
century must surely be the introduction of topology. Beginning with the discovery
of the integer quantum Hall effect, modern condensed matter theory has now dis-
covered a new class of phases with unconventional transport properties. The theory
of topologically non-trivial electronic bands in solids is now extremely well-studied.
Questions of where similar physics may arise with magnetic excitations have there-
fore also gained attention. Magnons and other pseudo-particle spin-excitations form
a diverse cast with distinct properties that may be important in quantum metrology
or even quantum logic tasks and simulation. In this thesis, we investigate the band-
topology of such excitations and their experimental signatures.

In our study of the bilayer kagome Heisenberg model we investigate the un-
conventional excitations of a quantum paramagnet. We show that the Z2 topologi-
cal invariant known from the time-reversal invariant quantum spin Hall system of
electrons makes an appearance here. These are comparable, but not analogous to
Krämers pairs in electron transport, and they can be characterized in a similar fash-
ion, but they do not enjoy the same symmetry protection under time-reversal due
to their bosonic nature. We describe how bond-nematic terms appear which destroy
the Z2 phase.

We also study the monolayer spin-polarized kagome Heisenberg model. Our
representation theory of the bands allows for the determination of degeneracies as
well as interactions which give rise to non-trivial band-gaps. We show how one
may associate certain features in the neutron scattering spectra with topological ex-
citations. We show that pinch-points and half-moon features found ubiquitously in
neutron scattering experiments will undergo characteristic distortions when those
bands carry Chern numbers.

Our work paves the way for a more systematic experimental characterization
and treatment of topologically gapped magnetic excitations and motivates experi-
mental investigation of the spin Nernst effect in for instance quantum dimer mate-
rials, or possibly in certain ferro-quadrupolar ordered solids.
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space with Ŝz orthogonal to the plane. . . . . . . . . . . . . . . . . . . 112
A.4 Action of the group τ ⊗ C3v on the ferromagnetic state. . . . . . . . . 113

xix



xx List of Tables



Chapter 1

Introduction: What is topological
about band-like excitations and why
should you care?

One of the foundations of solid state physics has been the characterization of crys-
talline materials as electronic insulators or conductors[14, 15]. In the band-theory of
electronic solids, the appearance of an energy gap between conduction and valence
electrons explains the behavior of many insulators. Before the topological nature of
this band-gap was understood, such materials were not considered to form a wide
range of phases of matter. But it appears that topology has now given us an entirely
new perspective on what these band-insulators do, leaving open a space for us to
explore rich new physics, with implications on technology, industry and fundamen-
tal physics research [6, 16–18]. Throughout this thesis we will explore some of the
developments in this field arriving at its implications on magnetism where our own
results apply.

In this Chapter we will briefly review the history of topological band-insulators
and the implications it has had on theoretical physics in condensed matter. We
will begin by considering the integer quantum Hall effect. Historically the work
that originated this field concentrated on the electron transport properties of two-
dimensional (2D) materials [19]. We will follow the same route in this chapter and
begin by considering the discovery of the quantum Hall effect by von Klitzing [2]
and the Laughlin argument for the existence of quantum edge modes [3]. This leads
to a description of the TKNN formula [20], which introduces the Chern number
explicitly in the Hall response. This is followed by the quantum Hall physics of the
Haldane model of spinless electrons [4]. Expanding on the concept of the Chern
number we then introduce the Kane and Mele model, which includes the spin de-
gree of freedom of the electron [5]. This enables non-trivial topology due to a global
spin-degeneracy in the presence of spin-orbit coupling.

The historical review at this stage has so far focused on electron bands, but al-
though some of the conclusions and phenomena do not carry over exactly, the topo-
logical band theory of single-particle excitations may in reality be applied to any
kind of band system [21]. Topological excitations can be found in a very wide range
of media, since the mathematics describing them is universal. Notable examples are
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cold atom Bose-Einstein condensates with topological defects[22, 23], mechanical
[24, 25] or photonic systems [26]. There is no fundamental need for topologically
non-trivial systems or their excitations to be in a coherent quantum state, although
examples of those are also found in for instance majorana fermions [27, 28].

The bosonic excitations of magnetic insulators have had a role to play in this
story too [29–32]. Unlike their fermionic counterparts, any response resulting from
their excitation results from their Berry’s curvature being weighted by a Bose factor.
Thus strictly speaking, non-zero Chern numbers are not a requirement for trans-
verse transport. This was understood by Katsura, Nagaosa and Lee who presented
a theory of the magnon Hall effect in 2010 [33]. That same year the experimental
verification followed by Onose [9]. It was later shown that the magnon wave-packet
has a rotational and precessional motion, both of which must be considered in the
calculation of the thermal Hall effect [34, 35]. Interestingly, whereas the electron
wavepacket is affected by a Lorentz force due to the magnetic field, the Lorentz
force affecting magnon trajectories is the Berry’s curvature. It was only later argued
that magnonic bands would display the same topological physics as their electronic
counterparts, with Chern numbers and associated quantum edge modes [36, 37].

This argument was later applied to more exotic excitations in a study of the quan-
tum paramagnet SrCu2(BO3)2 by Romhányi, Penc and Ganesh [11]. Here the ther-
mal Hall current was carried by the triplet manifold of excited states existing com-
plementary to the dimer singlet ground state - so called triplons. This is an example
of a material which needs a quantum mechanical description to be studied properly.

In the following sections we will go into more detail with each of these devel-
opments. In Section 1.1 we will introduce the concept of the topological band-gap
as it appeared historically and came to be understood, culminating in the TKNN
formula for transport. In Section 1.2 we will then describe the more complete pic-
ture of topological insulators as described by Haldane and Kane and Mele. Finally
in Section 1.4 we describe the development of topological band-theory in magnetic
insulators.

1.1 What is a topological band-gap?

In this section we will go through some of the experimental discoveries and subse-
quent theoretical breakthrough that led to our understanding of the integer quan-
tum Hall effect. This is the famous quantized transverse conductance of materials
which band theory would previously have deemed to be insulating. To better ap-
preciate this, we briefly review the basic band theory of metals and insulators.

1.1.1 Prelude: The band theory of solids

The free-particle model of metals [38] could not properly answer why certain ma-
terials could conduct electricity and others could not. However, with the advent
of quantum mechanics, it was possible to distinguish between filled and unfilled
electronic states based on Fermi statistics [39]. This allowed the concept of a Fermi
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surface in reciprocal space, i.e. the space of wave-vectors

~k = (2π/λx, 2π/λy, 2π/λz). (1.1)

An additional component needed was the description of bands, to which Bloch’s
theorem is central [40]. It states that given a periodic potential, such as the atomic
nuclei of a metal, the single-particle solutions of the Schrödinger equation can be
written as

ψ~k,a = ei~k·ru~k,a(r). (1.2)

Here bands are indexed with a. Each band represents a separate solution to the
real component u~k,a(r) which encodes the magnitude of the wave-function. u~k,a(r)
determines the potential energy of each wave-function belonging to index a. Our
concept of a band then comes from the quasi-continuous eigenenergy εa(~k), which
spans a finite range of values in~k-space.

Bands belonging to distinct a may overlap in energy or be separated by a gap.
The band-insulator can be understood by considering the case where two bands are
gapped, while the chemical potential is within this gap. If that is the case then the
lower energy one is completely filled while the upper one is empty. In this case
there is no Fermi surface and therefore the material will be insulating (as explained
for instance in [15, Chapter 7]).

This powerful concept together with ab initio methods such as density functional
theory [41] has remained the starting point for understanding material conductiv-
ity. Insulators within this framework were considered to all belong to the same class
of materials. However, we now know that they form a very diverse cast with dis-
tinct properties [29]. It took physicists by complete surprise when it was discovered
in experiment that the seemingly innocuous insulator had been hiding a secret all
along: The integer quantum Hall effect.

1.1.2 The integer quantum Hall effect

The integer quantum Hall effect is the appearance of a quantized Hall conductance
in an otherwise electronically insulating sample. Its magnitude is determined by
natural constants h and e as well as an integer ν. It has the very simple form

σxy = νe2/h, (1.3)

and when it was discovered by von Klitzing et. al. [2] it changed condensed matter
physics in profound ways. Here the integer ν represents a filling factor, i.e. at a cer-
tain Fermi level this number of bands are filled completely. This gives a quantized
conductance in steps determined only by the fundamental charge e and Planck’s
constant h. It is important to appreciate that condensed matter systems consist of
a myriad of particles interacting in complex ways. The experimental setup of von
Klitzing et. al. used a metal oxide field effect transistor (MOSFET) which is made
up of a semiconductor material with several regions that are doped separately. The
conductance of such a material should ordinarily depend on substrate and dopant
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Figure 1.1: Experimental results from the discovery of the quantum Hall effect by
von Klitzing et. al. Here the first axis is the gate voltage across a CMOS device, and
the second axis is the measured Hall voltage. Figure reproduced from [2]

choice, carrier mobility and density, gate, supply and drain voltages. This is not to
mention impurities in the sample. Ordinarily, measuring fundamental physical con-
stants to high precision requires elaborate experiments which have the capability to
isolate single quantum particles.

However, von Klitzing found that the fraction e2/h could be measured to very
high precision using this method. They were able to report an accurate determina-
tion of the fine structure constant α−1 to an accuracy of 6 significant digits, which
should be compared to the best methods at the time being about 7.

This mysterious expression was not immediately explained. Why should a Hall
response be quantized in this way? Something deeper and more fundamental than
what was previously known was suddenly manifesting itself in a band-insulator, a
phenomenon that has since been studying in many variants including the fractional
quantum Hall effect [42–46].

In von Klitzing’s experiment using a metal oxide semi-conductor, the Fermi-level
was tuned with an applied gate voltage to alternately lie in a region with a high den-
sity of states and within the gap between Landau levels (see figure 1.1). Although
von Klitzing did realize that the observed quantized Hall effect was caused by the
quantization of Landau levels, the exact mechanism was unclear and the fact that
conductivity relied solely on universal constants shocked the physics community.
Transport equations normally relied on technically involved and difficult deriva-
tions using Green’s functions involving carrier density, applied potentials and exter-
nal magnetic fields. The universality of this result meant that there was fundamental
physics that had gone unnoticed until this point.
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Figure 1.2: The loop geometry considered by Laughlin is depicted here. Included
is also a simplified view of the Landau levels, which explains the physics of the
integer quantum Hall effect in the absence of edge effects. The broadening due to
impurities on the bottom right inset is taken into account when explaining the effect
in real materials. Figure reproduced from [3]

It was then argued by Laughlin [3] that this effect could be explained by the
long-range coherence of an electronic wave-function and that gauge-invariance to-
gether with an energy gap would be sufficient to explain the quantum Hall effect.
The argument of Laughlin can be summarized for single-particle wave-functions by
considering the effect of having them stretched across a loop-like geometry as seen
in figure 1.2. The path around the loop is described by the coordinate x ∈ [0, L).
We consider then a flux φ through the loop with a corresponding vector potential
defined along the positive x-direction along it. Therefore any gauge transformation
caused by φ on the wave-function, i.e.

ψk,a → eieAx/h̄cψk,a (1.4)

is constrained by

A = n
hc
eL

. (1.5)

Here n is some integer. This gauge symmetry allows us to consider transformations
that take the system into itself.

Laughlin considered the Hamiltonian

Ĥ =
1

2m∗
(~p− e

c
~A)2 + eE0y. (1.6)

Here a magnetic field of strength H0 penetrates the surface of the strip, while E0 is
the electric field across the strip in the y direction. The Landau gauge can be picked
for ~A. Thus

~A = H0yx̂. (1.7)

The solutions are the familiar Landau levels

ψk,n = eikxφn(y− yk), yk =
h̄k

eH0
. (1.8)
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Here the k must due to the periodic boundary conditions be quantized in multiples
of some integer j as

k = 2π j/L. (1.9)

The φn(y− yk) are the bound-state solutions to the Harmonic oscillator equation,[ 1
2m∗

p̂2
y +

1
2m∗

( eH0

c

)2
y2
]
φn = (1/2 + n)h̄ωcφn. (1.10)

Thus the wave-functions ψk,n are in this basis a product of a Harmonic oscillator
bound state φn(y− yk) in the y-direction with quantum number n centered around
yk and the x dependent phase-component eikx.

The effect of introducing a flux δφ through the loop is to change the vector po-
tential by an amount

δ~A = δφ/Lx̂. (1.11)

This then has the effect of shifting the center of mass of each Landau wavefunction
by an amount

δy = −δφ/LH0. (1.12)

Notice that each time the flux changes by a single flux quantum,

∆φ = hc/e, (1.13)

the vector potential changes by an amount

∆~A =
hc
eL

x̂. (1.14)

This has the effect of mapping the wave-function back to itself due to the aforemen-
tioned gauge symmetry. Note also that

∆y = ∆A/H0 (1.15)

is the spacing between Landau levels along the width of the strip. The physical
interpretation of this is that as the Landau wave-functions are adiabatically moved
through the sample, the system reverts to its initial configuration after each Landau
orbital has shifted by exactly one spacing. Thus one elementary charge is moved
for each filled Landau level for each flux quantum.

Now, if one considers the threaded flux to be slowly varying, such that the filling
of Landau levels below the Fermi energy remains unperturbed, we can examine the
electromotive force (EMF) along the strip geometry and compare it with the current
generated.

dQ
dt

=
1
c

σxy
dφ

dt
(1.16)

Integrating both sides of this equation and rearranging we obtain

σxy = c
∆Q
∆φ

= ν
e2

h
. (1.17)
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Here ν is the number of filled Landau levels, which at the same time gives the num-
ber of charges transferred across the sample.

We see in this case that because the only gauge transformations possible on the
wave-function are dictated by the topology of the geometry it is embedded in, and
because of the adiabatic transport associated with the Landau levels, we obtain a
robust transport which is quantized in terms of fundamental constants. We can
therefore understand already that this quantized response comes from the neces-
sary description of the wave-function as a topologically non-trivial map, in this case
from x to the gauge of the wave-function. Moreover, one of the most elegant conclu-
sions of this argument is that the gauge-fixing condition of the wave-function must
persist even in the presence of impurities (so long as the perturbations thus intro-
duced are not large enough to bridge the Landau levels). This is because gauge-
invariance is determined by the geometry of the strip and this cannot be changed
by local perturbations.

Interestingly, not only is this edge current therefore robust against sample im-
purities, in real materials impurities are in fact needed for an integer quantum Hall
effect. The conditions and sources of breakdown of the quantum Hall effect have
been studied in a number of works by Joynt and Prange [47–50].

It was later argued by Halperin [51] that as well as the bulk Landau levels, there
are quasi one-dimensional modes at each edge of a sample which carry a current.
These states are robust against perturbations and remain coherent around the edge
on which they are defined and they are still the subject of thorough research in a
variety of physical systems [52–58]. This is a general feature of topologically non-
trivial band-structures, as the confining edge forces the gapped bands to terminate
through an edge mode.

The explicit calculation of the transverse transport in 2 dimensions was carried
out using the Kubo formula, when the Fermi energy is in a gapped region. This
was first done by Aoki and Ando [59]. Later Thouless, Kohmoto, Nightingale and
den Nijs [20] showed that this Hall conductance depends on a global integral over
the Berry’s curvature of each filled Landau level. This results in the appearance of
Chern numbers in the response theory, which can be equated to the filling factor of
the Landau levels.

The Kubo formula [60] allowed them to write the Hall conductance as

σxy =
ie2

A0h̄ ∑
εα<EF

∑
εβ>EF

(∂Ĥ/∂k1)α,β(∂Ĥ/∂k2)β,α − (∂Ĥ/∂k2)α,β(∂Ĥ/∂k1)β,α

(εα − εβ)2 . (1.18)

By taking the spectral decomposition of the Hamiltonian, this can be expressed as

σxy =
ie2

2πh ∑
ε<EF

∫
d2k

∫
d2r
(∂u∗

∂k1

∂u
∂k2
− ∂u∗

∂k2

∂u
∂k1

)
(1.19)

=
ie2

4πh ∑
ε<EF

∮
dk ·

∫
d2r
(

u∗∇u−∇u∗u
)

. (1.20)

Note that the u above is written according to the convention of TKNN, where it
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includes the phase component of the wave-function. It corresponds to ψk,a rather
than uk,a in our notation. While the choice of gauge is in general arbitrary, TKNN
showed that due to the translational invariance of the wave-function, the line inte-
gral along the Brillouin zone boundary must result in an integral multiple of 4πi.
We can therefore define a number

c =
1

i4π ∑
ε<EF

∮
dk ·

∫
d2r
(

u∗∇u−∇u∗u
)

. (1.21)

This is the so-called Chern number, which evaluates to 1 for Landau wave-functions.
Therefore the filling factor in the integer quantum Hall effect can be equated to this
number (up to a sign difference due to definitions of x and y) to obtain the quantized
response

σxy = −ce2/h. (1.22)

Thereby it is explicit that an integer must enter the transport equations regardless
of the edge-geometry. The integrand of equation (1.20) is the Berry’s connection,
which when integrated along the edge of the Brillouin zone gives the Chern number.
For an elegant and thorough explanation of this see [61]. Not only did the TKNN
paper show that such integers are important invariants of the wave-function, which
have an effect on the transport theory, they were also able to simultaneously show
that the Landau levels of the electron gas carried Chern numbers.

Remarkably, we therefore have two independent arguments leading to the same
conclusion. Namely that the transport is governed by a topological quantum num-
ber in the band-insulating regime. TKNN directly calculate this using the Kubo
formula, which does not depend on the shape of the boundary. This is complemen-
tary to the work done by Laughlin, in which the wavefunctions are calculated in an
explicit example which shows how the wave-function facilitates this edge current.

The fractional quantum Hall effect, is caused by fractional filling of the Landau
levels of Laughlin’s analysis. Here the quantization of σxy takes place at fractional
multiples of e/h. This is an interesting effect in its own right which has its origins
not in single-particle band theory, but rather in effective field theories [62–64]. This
is a state of matter that has the potential to host nonabelian anyons [65], and it’s
been observed to occur in graphene [66]. There is also an interesting experimental
proposal for the realization of ν = 1/2 fractional quantum Hall effect in ultracold
dipolar molecules [67].

1.2 The Lattice Models of Haldane and Kane and Mele

The appearance of topological invariants in the response theory gives a more formal
way to link very surprising physics with the fundamental mathematics of topolog-
ically non-trivial maps. These ideas were expressed very elegantly in the seminal
1988 paper by Haldane [4]. Here the explicit role of crystal symmetries is explored
for the first time, and a model is developed which expresses all of the physics dis-
cussed so far in this chapter.

Haldane explores a tight-binding model where time-reversal symmetry is bro-
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Figure 1.3: This graphic indicates the lattice vectors and the geometry of the Hal-
dane model. Complex hopping occurs along the next-nearest neighbor paths indi-
cated with a dashed line. Figure reproduced from [4].

ken by spontaneous ordering of magnetic moments in a honeycomb lattice. This
originates a complex hopping term in the Hamiltonian as charges move through a
non-zero vector potential. The Hamiltonian is written as

Ĥ = t1 ∑
〈i,j〉

ĉ†
i ĉj + H. c. + t2eiφ ∑

〈〈i,j〉〉
ĉ†

i ĉj + H. c. + M ∑
i∈A,j∈B

(ĉ†
i ĉi − ĉ†

j ĉj). (1.23)

Here M has been included to study the model when inversion symmetry is bro-
ken. The phase φ accrued through hopping is equal to the line integral of the vector
potential along the hopping direction, i.e.

φ =
∫

e/h̄~A · d~r. (1.24)

The orientation of the vector potential ~A is sketched in figure 1.3. Haldane describes
this as originating from a periodic magnetic flux density ~B(r) which lies in the z-
direction. This field contributes a zero net flux through the unit cell. It is imagined,
that this could originate from some anti-ferromagnetic ordering of local spins.

Because ~A is derived from this field, the phase accrued by hopping along a closed
path must equal the total flux enclosed by the loop this path specifies. Since the unit
cell encloses zero flux, it is only t2, the next-nearest neighbor hopping, which is
affected by ~A.

Haldane originally wrote his model in the two sublattice Fourier basis (ψk,a, ψk,b)
the Hamiltonian becomes

Ĥ(~k) = 2t2 cos φ

(
∑

i
cos(~k ·~bi)

)
I + t1

(
∑

i

[
cos(~k ·~ai)σ1 + sin(~k ·~ai)σ2

])

+

[
M− 2t2 sin φ

(
∑

i
sin(~k ·~bi)

)]
σ3. (1.25)
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This is what one obtains by projecting the Hamiltonian of equation (1.23) onto the
space of single-electron wave-functions. Here the lattice vectors ~ai and ~bi corre-
spond to the solid and dashed lines respectively of figure 1.3. The σi are Pauli
matrices acting on the sub-lattice basis states.

Using this model, Haldane is able to formulate the topological map from a two-
dimensional k-space to the coefficient space of the three Pauli matrices which is de-
termined by the terms in the Hamiltonian. The crux of the argument here is that
there is no way to trivially map these two spaces, since one of them is a sphere and
the other is a torus (see Chapter 3).

This is an extremely important insight. The Hamiltonian is written as

Ĥ~k =
~d(~k) ·~σ (1.26)

where we have discarded diagonal terms. Each di is a coefficient belonging to the
corresponding σi as they appear in equation (1.25). The orientation of di(~k) defines
a point on the Bloch sphere, which in turn defines a pair of spinors that satisfy
the Schrödinger equation. We have to therefore define the wavefunction ψ : ~k →
A(~k) |ψ~k〉. However, this map cannot be completed without introducing a phase
discontinuity because the wavefunction has to be defined for each point on a sphere,
whereas the quasi-momenta exist on a torus. The torus and the sphere are examples
of closed surfaces which do not have the same genus. As such, any map between
them is not homeomorphic.

The Chern numbers associated with this map are what appear in the TKNN for-
mula, which gives a non-zero transverse conductance in the insulating state. It is re-
markable that we can think of the quantum Hall effect as a consequence of the topol-
ogy of the band-structure. Because of the universality of this result, the Haldane
model has been recast in a large variety of systems including ultra-cold fermions,
localized spins and magnetic excitations [68–74]. Models for the fractional Chern
insulator, that is a lattice model for the fractional quantum Hall effect, have also
been discussed [75, 76].

It was later realized that in systems with time-reversal symmetry, electron trans-
port could still facilitate topological bands. The celebrated model introduced by
Kane and Mele [5, 77] showed that spin-orbit coupling allowed for a topological
band-gap whilst keeping the spin components degenerate.

Ĥ =t1 ∑
〈ij〉α

ĉ†
i,α ĉj,α + iλSO ∑

〈〈ij〉〉αβ

νij ĉ†
i,α ŝz

αβ ĉj,β

+ iλr ∑
〈ij〉αβ

νij ĉ†
i,αs× dij ĉj,β + λv ∑

i
ξ ĉ†

i ĉi (1.27)

Here νij = di × dj, where these vectors are unit vectors lying in the direction of the
two bonds which the electron traverses going from site i to site j. Here the complex
hopping term of the Haldane model is replaced with a spin-dependent time-reversal
symmetric spin-orbit term. We see that the above Hamiltonian implements complex
hopping by acting on each spin-component with a conjugate interaction due to the
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Figure 1.4: The band-structure of the Kane and Mele model in the quantum spin
Hall state (left) and insulating state (right). The inset shows a phase diagram with
relative strengths of the spin-orbit interaction λSO, Rashba spin-orbit λR and inver-
sion symmetry breaking potential λv. Figure reproduced from [5].

ŝz operator. The Hamiltonian commutes with sz and we can therefore treat each
spin-component completely separately. Here we also include the Rashba spin-orbit
term with the coefficient λr and the staggered sublattice potential with coefficient
λv.

The spinor wavefunction we use is (ψk,a,σ, ψk,b,σ). Here we include a spin index
σ, but this is otherwise similar to the Haldane model. This can be most easily seen
when the Rashba spin orbit term and staggered sublattice potential are excluded
from the model, in which case the model can be formulated analogously to the Hal-
dane model in k-space.

Ĥ(~k) = t1

(
∑

i

[
cos(~k ·~ai)σ1 + sin(~k ·~ai)σ2

])
+ 2σλSO

(
∑

i
sin(~k ·~bi)

)
σ3. (1.28)

Thus we may in this very clean system where time-reversal and inversion symmetry
are both preserved describe this system as a spin-full Haldane model. Since the spin-
orbit interaction here takes the role of the magnetic field in the Haldane model, the
analogy is completed by considering each time-reversed partner experiencing the
exact opposite Berry curvature and conjugate complex hopping amplitudes, which
in this case is analogous to a reversed magnetic field.

The quantum Hall effect of this material is a spin-Hall effect, as there is no ac-
tual net charge current associated with it, but only a spin current. This is because
each spin-component contributes an opposite charge current, since they carry like
charges, but because their spins are opposite there is a finite net spin current. There
is a Z2 topological invariant associated with this type of response, which is defined
by considering a time-reversal polarization, which is analogous to the charge polar-
ization of the flux-threading argument introduced by Laughlin. The filling factor of
the integer quantum Hall effect determined exactly the change in charge polariza-
tion when a quantum of flux was introduced to that system. Likewise here, the Z2
topological invariant will tell us the change in time-reversal polarization.
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Figure 1.5: (a) ARPES data for Bi2Se3 with a spin-polarized Dirac cone. (b) Here the
spin-polarization of the Fermi-surface is shown with its chiral texture. (c) Here the
surface spectrum of Bi2Se3 has been computed with the local density approximation.
(d) Generic dispersion of Bi2X3 class compounds with spin-polarized surface-states.
Figure reproduced from [6].

If a time-reversal symmetry preserving Rashba spin-orbit term is introduced,
then ŝz is no longer conserved and equation (1.28) is no longer valid. The Laughlin
argument can no longer be applied here either, as transport may no longer be de-
scribed purely by the charge polarization. That being said there are still topological
edge modes in the presence of perturbations, as long as they do not close the bulk
band-gap. This is depicted on figure 1.4, where a phase diagram is included in an
inset showing the transition between topologically trivial and non-trivial bands.

The quantum spin Hall effect and Z2 topological invariant have been under in-
vestigation in a wide variety of systems both theoretically [78–83] and experimen-
tally [84–89] and the QSH state has been predicted to arise in several materials [90–
92]. Similarly to the edge-states of the Chern insulator the quantum spin Hall helical
edge modes have also been predicted to be dissipationless and robust towards local
scattering potentials, although here the Krämers protection mechanism is responsi-
ble. This robustness has been studied theoretically as well [93].

A promising candidate for the realization of the spin-Hall topological insula-
tor is Bi2Se3 and several variants thereof with different admixtures of Se [94–100].
Spin polarized angle resolved photo-emission spectroscopy (ARPES) has been used
to demonstrate that the electronic band-structure of this material has a chiral spin-
polarized Dirac cone (see figure 1.5). This is a hallmark of the quantum spin Hall
state, since such a Dirac cone exhibits the features expected of a non-trivial dispers-
ing band-structure with Krämers’ pairs. Bismuth bilayers too have been proposed
to support a quantum spin Hall state [101] and in the experiments by Sabater et.
al., it was found that exfoliating these bilayers allowed the measurement of a Hall
conductance plateaus at room temperature [102].
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Figure 1.6: (a) Dielectric function ε(r) of a photonic crystal with a triangular unit
cell. (b) Corresponding band structure of TE and TM modes. Figure reproduced
from [7].

1.3 The universality of topological insultators

The topological band-structures discussed in electronic systems so far are remark-
able due to the direct link between fundamental physics and topology, a link which
is made unambiguous by the simplicity of the quantized Hall conductance seen
in experiments. The physics of topological insulators is dual to many systems in
nature, even where experimental results do not as clearly reveal fundamental phys-
ical constants. Some of these ideas have therefore opened up entire new fields in
physics, whereas others provide surprising examples where topological invariants
manifesting themselves in macroscopic systems.

In photonic systems, i.e. optically refracting materials which can be engineered
to have a wide range of spatially non-constant refractive indeces n(r), many of the
same features seen in condensed matter systems reappear. Especially 2-dimensional
waveguides, in which light is trapped by total internal reflection, have seen much
research interest in recent years due to the freedom with which periodic structures
can be engineered, as well as non-linear optics which introduce photon-photon in-
teractions [18, 26, 54].

The Berry’s connection for a photonic band in such a system is

[Λk]λ,λ′ = −i~e†
λk∇k~eλ′k. (1.29)

Here λ and λ′ index the polarization of the photon as either clockwise or counter-
clockwise circular, and~e is a two-component unit vector describing the polarization
of the photon. It has been shown by Onoda, Murakami and Nagaosa [7] that a pho-
tonic wave-guide with transverse electric (TE) and transverse magnetic (TM) Bloch
bands has an associated Hall effect. Although it is not quantized it is anomalous in
that it arises as a consequence of the Berry’s curvature. Figure 1.6 shows the scalar
dielectric permeability of the waveguide, which forms a triangular lattice. The re-
sulting TE and TM modes have topological band-gaps due to the Berry’s curvature,
which here arises from a globally homogeneous gradient of the refractive index.

A very interesting example of a topological insulator is found in the vibrational
modes of a LEGO structure as shown by [8]. As is well known LEGO bricks are a
commodity allowing for play by construction of elaborate structures. Due to precise
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Figure 1.7: (a) A twisted kagome lattice built out of LEGO with a tunable twisting
angle θ. (b) and (d) are dual points with identical vibrational modes. (c) The self-
dual point which is found when the angle θ is halfway between two dual points
such as (b) and (d). Here the vibrational spectrum is globally degenerate due to
some hidden symmetry which arises at the self-dual point. At the Γ point a double
Dirac cone appears. Figure reproduced from [8].
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manufacturing of pieces with movable joints it is possible to build a structure such
as the one seen in figure 1.7. Here it is modeling a twisted kagome lattice with a
variable twisting angle.

The vibrational modes of this structure were calculated and as shown in fig-
ure 1.7, there is a duality transform defined by reflecting the twisting angle θ through
some critical angle θc. Interestingly, if θc is chosen as the twisting angle, the band-
structure of figure 1.7.c is obtained, which is globally doubly degenerate. This situ-
ation is similar to the Krämers’ degeneracy of time-reversal invariant electron trans-
port systems.

Here it is not time-reversal invariance which gives us a degenerate spectrum,
but it is rather the duality transformation itself which the system is now invariant
with respect to. Instead of spin degrees of freedom, we can think of this system
as having two equivalent decompositions of its vibrational modes. In addition to
this the spectrum has the usual three sublattices of the kagome lattice resulting in
three bands in the non-interacting theory. The reason this LEGO structure is dual
to a krämers’ degenerate electron system is that the duality transform acting on the
space of the vibrational modes is an anti-unitary matrix which commutes with the
dynamical matrix of the system.

To complete this analogy, one may introduce inversion asymmetry without re-
moving this duality transform symmetry. This introduces a topological band-gap at
the dual Dirac cone of figure 1.7.c with a Hall effect dual to the spin-Hall effect of
Kane and Mele [5] as well as topological edge modes.

There are many other interesting examples for the curious reader. Using classical
Newtonian physics, Süsstrunk and Huber were able to show how a large lattice of
coupled pendula exhibits helical edge-confined modes [24]. The topological protec-
tion of these modes is demonstrated. Another analogy is found in electronic circuits
made up of RLC blocks. Here the Su-Schrieffer-Heeger model is reproduced with a
topological band-gap [103].

1.4 Topological bands in magnets

As the previous examples show, it appears that topological insulators may be found
in a wide range of physical systems beyond condensed matter. We now turn to
the topologically insulating bands of magnetic excitations which are the focus of
this thesis. As with photonic systems, magnetic excitations are bosonic in nature.
Therefore the responses are not neatly quantized as they are in the electron transport
literature, and in order to observe a Hall effect in a magnetic band excitation, it is
enough that this band displays a Berry’s curvature, not necessitating topologically
non-trivial bands.

The magnon Hall effect was investigated by Katsura, Nagaosa and Lee in 2010
[33] who derived a transverse thermal Hall conductivity analogous to the TKNN
formula. It took the form

κxy = − 1
2T
=∑

α

∫
BZ

d2k
(2π)2 nα(~k) 〈∂kx uα(~k)|(H(~k) + ωα)|∂ky uα(~k)〉 . (1.30)
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Figure 1.8: This graphic shows (A) the unit cell of Lu2V2O7 which is com-
posed of cornersharing tetrahedra. (B) The symmetry allowed orientation of the
Dzyaloshinskii-Moriya interaction vector Di,j, which facilitates anti-symmetric ex-
change between spins i and j. (C) The magnon Hall effect. A wave-packet of
magnons is deflected by the Dzyaloshinskii-Moriya interaction which here takes
on the role of a vector potential. Figure reproduced from [9].

Here nα(~k) = (1− eβωα(~k)) is the Bose distribution. This is in contrast to the TKNN
expression, which assumes a band gap with a Fermi energy. At low temperatures
the lower bands are therefore assumed to be filled completely with the upper bands
being empty.

In the bosonic case here however, the Bose-distribution allows a much more com-
plicated response. The above expression does not reduce to an unweighted integral
over a Berry’s curvature and will therefore be non-zero in general, even when the
bands are topologically trivial. An important conclusion is therefore that the pres-
ence of a thermal Hall response does not necessarily imply topologically non-trivial
bands or topological edge modes.

The existence of a magnon Hall effect was verified by Onose et. al. that same year
[9] in Lu2V2O7. This was supplemented by a theoretical analysis which showed
that the Dzyaloshinskii-Moriya interaction affects the magnons of the spin-wave
Hamiltonian in much the same way as the tight-binding electrons of the Haldane
model are affected by a vector potential.

This can be seen by writing out the Hamiltonian in its spin-wave expansion.
Similarly to the tight-binding model, we now have a hopping Hamiltonian, where
matrix elements describe the on-site energy in case of diagonal terms and hopping
amplitudes otherwise. Hopping of a magnon from site i to j can be written as

〈i| − J~Si · ~Sj + Di,j · (~Si × ~Sj)z|j〉 = 〈i|
−J + iD

2
(S+

i S−j + S−i S+
j )|j〉

= − J̃
2

eiφi,j . (1.31)

Thus we see the reappearance of a complex hopping similar to the Haldane model.
As such the Dzyaloshinskii-Moriya interaction can be thought of as a type of orbital
magnetism arising due to spin-orbit coupling.
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It was later argued by Matsumoto and Murakami [34] that the rotational motion
as well as orbital motion of a magnon wave-packet would have an influence on
its thermal Hall response. Their argument is based on semi-classical equations of
motion. The center of mass coordinates of a wave-packet in real and reciprocal
space are related by

ṙn =
1
h̄

∂εn,k

∂k
− k̇×Ωn(k)

h̄k = −∇U(r).
(1.32)

The edge of the sample is modeled with a confining potential. Thus it is seen here
that the Berry’s curvature takes on the role of the Lorentz force with skipping cy-
clotron orbits appearing due to it at the edge of the sample in analogy to the elec-
tron. Another effect of the Berry’s curvature is to cause the wavepacket to rotate.
At mesoscopic scales, the wavepacket can be thought of as an area of the sample in
which magnetic moments are canted with respect to one-another. Such canting is as-
sociated with the appearance of an electric polarization in duality to the appearance
of magnetic dipoles due to rotating electric charges. It thus induces orbital angular
momentum onto itself through its rotation. This orbital motion can also be taken
into account as a deviation of the current operator in the linear response theory.

The full derivation may be found in [35]. It arrives at a corrected thermal Hall
coefficient

κxy =
2k2

BT
h̄V ∑

n,k
c2(ρn)Ωn,k. (1.33)

Here
c2(ρ) = (1 + ρ)(log

1 + ρ

ρ
)2 − (log ρ)2 − 2Li2(−ρ). (1.34)

For magnons the above equations show that topological invariants are not neces-
sary to guarantee a thermal Hall effect. Here it arises from a finite Berry’s curvature
which may arise on a single band. The contributions from this band are weighted
by a Bose factor and therefore even when the Chern number is zero a finite response
may arise.

However, the band topology of magnons has been investigated too, and it was
argued by Shindou [36, 37] that topological band-gaps in magnonic crystals should
be accompanied with protected topological edge modes. The Chern number is de-
fined for the generalized Bogoliubov de Gennes (BdG) Hamiltonian which must be
considered when anti-ferromagnetic order is studied.

The Hamiltonian considered by Shindou is the generalized generic BdG Hamil-
tonian

Ĥ =
1
2 ∑

k
[β†

k, β−k]Hk

[
βk

β†
−k

]
(1.35)

Here it is defined for some n-sublattice model reflected by the length of each vector
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Figure 1.9: Topologically non-trivial magnon bands of the kagome magnet with
Dzyaloshinskii-Moriya interaction is shown here. (a) The dispersion relation with
high symmetry points indicated. (b) The Chern numbers are indicated as well as
the Berry’s curvature of each band. (c) Here the contributions of each band per unit
energy to the transverse conductance is shown. Figure reproduced from [10].

βk. The matrix Hk will then contain four n× n sub-matrices and be of the form

Hk =

[
ak bk

b∗−k a∗−k

]
. (1.36)

The anomalous bk matrices describe particle-particle and hole-hole channels, which
are necessary when considering for instance an anti-ferromagnetically ordered state.
Due to their appearance in the BdG Hamiltonian the solution must be obtained by
a para-unitary transformation (see Chapter 2).

Shindou shows how one may calculate the Chern numbers of a magnonic wave-
function after obtaining the correct para-unitary transformation and constructs a
topological phase-diagram for the dipolar magnetic thin-film of an iron-YIG magnonic
crystal.

In Mook’s 2014 paper [104] the appearance of topological edge modes is investi-
gated on a kagome magnet which is cut into a loop like geometry similarly to the ar-
gument by Laughlin. The quantum edge modes are obtained by explicit calculation
of the semi-infinite geometry. This also allows the authors to show the appearance of
hybridized topological modes, which are composed of the trivial edge modes, when
their energy is such that they lie in the band-gap. In the same year the thermal Hall
effect of topologically non-trivial bands in such systems was investigated in detail
as well [10]. In figure 1.9 the thermal Hall effect of a kagome magnet is reproduced.
It shows how the distribution of Berry’s curvature in energy-space contributes to
the thermal Hall coefficient. Notably, because the response is weighted by a temper-
ature dependent Bose-distribution, there is a gradual decreasing dependence on the
Berry’s curvature at higher energies. On the experimental side, it is now possible
to resolve the thermal Hall effect of magnons down to the switching of the Berry’s
curvature between bands [105, 106]. Topological bands can arise from interactions
of magnon bound states [107] or material strain [108, 109], and a number of studies
have described instances of the magnon thermal Hall effect [110, 111]. There are
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Figure 1.10: The triplon band-structure of SrCu2(BO3)2 with Dzyaloshinskii-Moriya
interaction. On figure (a) is depicted a generic spin-1 Dirac cone with all three bands
touching. A transition between distinct topological phases can be identified by a
band-touching transition, in which this cone appears at high symmetry points (b) -
(e). The bands are tuned by an applied magnetic field, which acts differently on the
sz = ±1 components of the spin-space, thus breaking the degeneracy of the model
at high symmetry points. Figure reproduced from [11].

now studies which speculate about the use of topological magnons in spintronics
based on the Shastry-Sutherland lattices [112–114] and finally even Z2 topological
insulators have been discussed [13, 115, 116].

The dimerized quantum paramagnet SrCu2(BO3)2 has also been investigated for
its topological excitations [11, 117]. This material is to a very good approximation an
ideal quantum dimer magnet [118–121] as it only has small finite anisotropic inter-
actions in the form of Dzyaloshinskii-Moriya. The ground state of such a magnet is
a product state of dimer singlets, where each unit cell has one such bond. Thus, pos-
sible excitations in such a system come from the triplet levels of those bonds. These
are in general dispersive and are referred to in the literature as triplons [122–126].

It was shown through an application of bond-wave theory, a generalized treat-
ment of magnetic band-theory, that the topology of the resulting band-structure
could be tuned by application of a magnetic field to have distinct Chern numbers
[11]. These bands carry a thermal Hall effect similar to conventional ordered mag-
nets, but since the ground state does not break time-reversal symmetry, an applied
magnetic field is here required to engineer such a response.

In figure 1.10 the tuning of this model between distinct topological phases is
depicted. The bands acquire a finite Berry’s curvature as soon as time-reversal sym-
metry is broken. As the field approaches a critical value hc, which is determined by
the strength of the Dzyaloshinskii-Moriya interaction, the bands touch and form a
trivial band structure. Interestingly the breaking up of the spin-1 Dirac cone into
topologically non-trivial bands results in Chern numbers c = ±2.

In addition to the magnon and triplon Chern insulator, bilayer materials have
been proposed for the realization of a magnetic Z2 topological insulator. The classi-
cally ordered stacked honeycomb lattice with a pseudo time-reversal symmetry was
a first example of this [127–129]. Recently an example has been proposed which uses
the triplon excitations of a quantum paramagnet on a bilayer honeycomb magnet
[130]. It is worth mentioning also that topological magnons have been envisioned
to have applications in hybrid excitations [131, 132] and as accomplices in chiral
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phonon transport [133, 134] as well as analogues to Weyl magnons [135–137].

1.5 Conclusion

In this chapter we have briefly reviewed the history of topological insulators, start-
ing with the quantum Hall effect and following the theoretical developments from
the vantage point of electronic insulators. We have described how these ideas carry
over to a wide class of materials and how transport theories were developed in the
field of magnetic insulators.

The quantum Hall effect caught the attention of the physics community because
there was clearly a connection between fundamental physics and macroscopic mea-
surable quantities that hadn’t yet been understood. A physical response which was
quantized in units of fundamental constants required entirely new insights to prop-
erly understand. These were provided by gauge invariance and topologically in-
variant transport equations. With the band-gaps of these systems were also associ-
ated topological edge modes.

Lattice models which combined all of these features were later explored. They
would for the first time explicitly discuss the role of symmetries in relation to the
appearance of topological invariants. Thus a more systematic classification of topo-
logical insulators became possible. The lattice models of Haldane and Kane and
Mele are dual to the magnetic insulators discussed later in this thesis.

Heat transport in magnets with insulating magnon bands is subject to a Hall ef-
fect which has been investigated theoretically and experimentally. However, with
Bose-statistics there is no quantized response, which depends on the filling of topo-
logically non-trivial bands. Indeed, even topologically trivial magnon bands may
still support a thermal Hall response, as long as there is a finite Berry’s curvature.
One of the central questions of this thesis is therefore whether or not other signa-
tures of topological bands exist that more directly reveal the topology.

An interesting feature of magnetic insulators is that the types of excitations that
may appear depend on their ground-state structure. An example of this is the
triplon excitation which is a dispersive excited state that appears in certain quan-
tum disordered magnets. These carry spin degrees of freedom as well as energy,
and have been shown to realize a magnetic analogue of the Kane and Mele model.
This leads to the other main topic in this thesis, namely the triplon Z2 topology and
the validity of this topological phase of matter in a bilayer kagome magnet.

In Chapter 2 we will elaborate in more detail on magnetic insulators and their
band-theory. We will show how the Pauli exclusion principle together with Coulomb
repulsion gives rise to the anti-ferromagnetic Heisenberg interaction in magnetic in-
sulators. From here we will describe certain dispersive magnetic excitations includ-
ing magnons and some more non-trivial ones. We will conclude with some worked
examples.

In Chapter 3 we will give a more complete treatment of topological excitations.
This allows us to understand the appearance of topological-edge modes as well as
give a theoretical description of the topological band-gap as a consequence of the
non-trivial parametrization of the wave-function in k-space. We will also here intro-
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duce the pseudo-time-reversal operator and discuss how it is needed to protect a Z2
topological phase.

In Chapter 4 we review our work on the bilayer kagome interlayer antiferro-
magnet. We describe this lattice from a dimer singlet ansatz in which the dimers
connecting each layer is in a singlet state in the ground state. We describe the al-
lowed interactions and show that when bond-nematic interactions are accounted
for, the Z2 topology is destroyed.

In Chapter 5 we show that there is a link between magnon band-topology and
half-moon neutron scattering features in field aligned kagome. This connection
is shown by constructing a representation theory for the D6h(C6h) magnetic point
group on the space of magnon wave-functions. This gives us a way to analyze the
symmetry allowed components of the spin-wave Hamiltonian and thereby show
that both topological bands and half-moons arise as a natural consequence of the
lattice symmetry.
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Chapter 2

Quantum magnets and their band-like
excitations

Before discussing the topology of band-like magnetic excitations, we will in this
chapter elaborate on their origin and various ways they manifest in materials with
exchange interaction. We will begin by elaborating on the Mott-insulating state and
explain the origin of the exchange interaction. This is followed by a treatment of
spin-wave excitations in magnetically ordered materials. We generalize upon this by
describing the triplet excitations of a magnetically disordered quantum paramagnet.
This is then followed by a brief introduction to representation theory, where we
elaborate on some of the representations we will use in the rest of this work.

2.1 Mott-insulators and magnets

After its inception, the conventional band-theory of electrons was quickly recog-
nized to have great predictive power regarding the conductivity of certain materials.
It seemed to give a minimum criterion for a material to be conductive, namely that
the Fermi level would intersect the bands or be near enough to them that conduction
electrons and holes would be thermally excited.

There are certain phases where band-theory alone cannot account for whether
or not a material is conductive. An example of this is the well-known insulator
CoO [138]. If only band-theory without the Coulomb interaction between electrons
is taken into account, CoO would be classed as an insulator. Below we present
the Hubbard model, which gives an intuitive way to introduce such interactions
through a second quantized representation of localized orbitals.

The Hubbard model is a tight-binding model of electrons with an added Coulom-
bic interaction term.

Ĥ = −t ∑
〈i,j〉

∑
σ

(ĉ†
jσ ĉiσ + H. c.) + U ∑

i
n̂i↑n̂i↓ + εat ∑

i
n̂i. (2.1)

Here the Hamiltonian is written using fermionic field operators ĉ†
i (ĉi), which create

(annihilate) a Wannier state around site i. The Wannier basis is a set of position

23



24 Quantum magnets and their band-like excitations

Figure 2.1: This image shows (left) the energy levels in the atomic limit of the Hub-
bard model in terms of the onsite energy. (Right) the average band-occupation at a
given chemical potential. Figure reproduced from [12].

localized states. They are defined as the Fourier transform of the electronic Bloch
band ψk(~r) [139],

φR(~r) =
1√
N

∑
k

e−ik·Rψk(r). (2.2)

Here the gauge of ψk(r) is chosen so as to maximally localize φR(r). The reason the
Wannier basis is chosen is that it provides a convenient basis to express short range
interactions, which can here be expressed through the Hubbard interaction U.

The field operators obey the following commutation rules

{ĉi, ĉ†
j } = δi,j

{ĉi, ĉj} = {ĉ†
i , ĉ†

j } = 0,
(2.3)

and the number operators are
n̂i,σ = ĉ†

i,σ ĉi,σ. (2.4)

εat is the Fourier transformed band energy, now expressed as an onsite potential
energy. U is the on-site averaged Coulomb potential, which can be calculated as

U =
∫

d~r1

∫
d~r2|φ(~r1)|2|φ(~r2)|2

e2

|~r1 −~r2|
. (2.5)

The importance of U lies in stabilizing an insulating phase, known as the Mott-
insulating phase. U introduces a step-like energy distribution that plateaus at in-
teger site-fillings. In the limit of U � t, as soon as each site is filled, the energy
cost of adding another electron is approximately U. We can define the free energy
Hamiltonian

F̂ = Ĥ − µ ∑
i

n̂i. (2.6)

Now, tuning the chemical potential µ, we can add or remove particles to the system.
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The first barrier to adding single particles to the system is the onsite potential ε.
When µ is comparable in magnitude, the electronic bands of the system will start to
get filled until 〈n̂〉 = 1.

This is the lowest Mott sub-band. There is a gap to further excitations which
depends on the value of U. The Mott-insulating phase occurs when this band is
completely filled. This is because although the single-band picture would here tell
us that the electrons are dispersive, they are pinned due to the onsite interaction,
which acts as a barrier preventing hopping. This now describes why materials such
as CoO whose bands are half-filled, have a gap to excitations which cannot be seen
by a band-theory that does not take interactions into account.

This situation is illustrated in figure 2.1. In the atomic limit (t/U ∼ 0) the energy
depends only on the occupation number of each site. Here there is a gap between
states with 〈n̂〉 = 1, 2 of size U. While the lower band is partially filled or empty,
addition of an electron costs εat. We can imagine the lower band being completely
filled when µ > εat after which the cost of adding an electron is εat + U. Now,
increasing the hopping amplitude t introduces dispersion to the picture. The sub-
bands are broadened in a fashion similar to what is illustrated in figure 2.1. The thin
line does not come from an exact calculation of the band structure, but shows quali-
tatively the result of a finite energy gain caused by the kinetic term. While a subband
is partially filled the electrons can hop, but in the completely filled 〈n〉 = 1 state the
kinetic term vanishes as 〈ĉ†

i ĉj + H. c.〉 = 0. This is the Mott-insulating phase [12].

If t is comparable to U the Mott-insulating phase may break down, as the kinetic
term may be large enough to connect the bands. Interestingly, there is a broad range
of values of t/U for which the Mott-insulating phase persists at half-filling. In this
phase the bulk conductivity of the material vanishes, but as we show below, this can
give rise to antiferromagnetic ordering.

We can derive an effective spin Hamiltonian in the following way. First we will
consider two neighboring sites in the Mott-insulating phase. The full Hilbert space
of this two body problem is then spanned by the states

|↑↓, 0〉 = ĉ†
1↓ ĉ

†
1↑ |0〉

|↑, ↑〉 = ĉ†
1↑ ĉ

†
2↑ |0〉

|↑, ↓〉 = ĉ†
1↓ ĉ

†
2↑ |0〉

|↓, ↑〉 = ĉ†
1↓ ĉ

†
2↑ |0〉

|↓, ↓〉 = ĉ†
1↓ ĉ

†
2↓ |0〉

|0, ↑↓〉 = ĉ†
2↓ ĉ

†
2↑ |0〉

(2.7)

In the t = 0 limit, the four singly occupied states are degenerate ground-states.
We can now include the hopping through perturbation theory. To first order this
gives us a basis of perturbed states
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|↑, ↑〉(1) = |↑, ↑〉

|↑, ↓〉(1) = |↑, ↓〉+ t
U
(
|↑↓, 0〉+ |0, ↑↓〉

)
|↓, ↑〉(1) = |↓, ↑〉 − t

U
(
|↑↓, 0〉+ |0, ↑↓〉

)
|↓, ↓〉(1) = |↓, ↓〉

(2.8)

The above form is needed, since without the double-occupancy correction to the
ground state, the spins are effectively non-interacting. However, in this basis we can
calculate the matrix elements of the Hubbard Hamiltonian as

(1) 〈↑, ↓|Ĥ|↑, ↓〉(1) =(1) 〈↓, ↑|Ĥ|↓, ↑〉(1) = −2t2/U
(1) 〈↑, ↓|Ĥ|↓, ↑〉(1) =(1) 〈↓, ↑|Ĥ|↑, ↓〉(1) = 2t2/U.

(2.9)

The diagonal terms above can be expressed as

Ĥdiag = −2
t2

U
(
1/2− 2Ŝz

i Ŝz
j ). (2.10)

The off-diagonal terms can be expressed through spin raising and lowering opera-
tors as

Ĥoff = 2
t2

U
(
Ŝ+

i Ŝ−j + Ŝ+
i Ŝ−j

)
. (2.11)

They will have the usual commutator

[Ŝ+
i , Ŝ−j ] = 2δi,jŜz

i (2.12)

Taken together this can be expressed as the effective Hamiltonian

Ĥ ≈ 4
t2

U
(~Si · ~Sj − 1/4). (2.13)

This is the isotropic Heisenberg Hamiltonian, which accounts for spin interactions
in magnetically ordered Mott-insulators. It is noteworthy that this arises purely
from the Hubbard interaction U, which is a Coulomb potential, and the Fermionic
statistics of the electron, which prevent hopping from the |↑, ↑〉 and |↓, ↓〉 states. U
is necessarily positive, and because of this the Mott insulator in the half-filling limit
results in an anti-ferromagnetic interaction.

In this derivation, because we have only allowed for a single electronic orbital,
the resulting exchange interaction must have a positive interaction strength J = 4 t2

U .
However, effective exchange models similar to this may be derived while taking
orbital degrees of freedom into account, in which case J < 0 is also possible [12].

In the following we will briefly visit the ferromagnetic Heisenberg model with
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Figure 2.2: A depiction of ferromagnetic order on the square lattice. Spins are rep-
resented by arrows.

J < 0 to give an illustrative introduction into spin-wave theory. We will then shift
our focus back to J > 0 models for the remainder of this chapter.

2.2 Spin-waves

In this section we follow closely the treatment of [12]. The nearest neighbor Heisen-
berg Hamiltonian is

Ĥ = J ∑
〈i,j〉

~Si · ~Sj. (2.14)

Considering first the ferromagnetic case with J < 0, the ground state of this
model is obtained when all spins are oriented the same, as seen in figure 2.2. With L
being the number of sites in the system, there are 2LS+ 1 different spin-states which
satisfy this rule, and they only differ in the orientation of the collective spin. When
calculating quantities such as the magnetization this poses an interesting problem.
Since statistical mechanics tells us that each orientation ought to be weighted with
equal probability, we might make the naive conclusion that the magnetization is

m = 〈m〉 = 0. (2.15)

In practice, the statistical mechanics of spontaneously ordered magnets has an im-
portant caveat. The 2LS + 1 ground states are many spin-flips removed from each
other, and in the thermodynamic limit, no finite amount of changes to single spins
will connect a pair of them.

Even in a small finite lattice, the probability of a random walk from one ground
state arriving at another implies first taking a path through several excited states,
which implies a transition probability that tends exponentially to zero with system
size (except for 1-dimensional spin-chains). Because of this the ground state is very
stable, and the magnetization is not going to drift.

The approach is now to select one of these ground states and consider transitions
to low-lying excitations around this state obtained by a small number of spin-flips.
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In general such excitations are dispersive. They manifest as waves in the magneti-
zation density, and are referred to as spin-waves. A single quantum of these waves
is referred to as a magnon.

For convenience the 〈Ŝz〉 = S state is typically chosen to be the ground state.
We define second quantized magnon creation and annihilation operators â†

j and âj,
where j is an index selecting the jth site, we have the commutation relations[

âj, â†
i
]
= δi,j,

[
âj, âi

]
=
[
â†

j , â†
i
]
= 0. (2.16)

Due to how we have defined the ground state, the magnons will be Ŝz eigenstates.
In terms of the magnon creation and annihilation operators

Ŝz
j = S− â†

j âj. (2.17)

Now the objective is to be able to express the spin raising and spin lowering
operators Ŝ+

j and Ŝ−j in terms of â†
j and âj while keeping the angular momentum

algebra consistent. One must consider that

S(S + 1) |m〉 = ~S2
j |m〉 (2.18)

=
1
2
(Ŝ+

j Ŝ−j + Ŝ−j Ŝ+
j ) |m〉+ m2 |m〉 . (2.19)

=
1
2
(Ŝ+

j Ŝ−j + Ŝ−j Ŝ+
j )

1√
n
(â†

j )
n |0〉+ (S− n)2 1√

n
(â†

j )
n |0〉 . (2.20)

In the last equality we have here switched from the Ŝz |m〉 = m |m〉 basis to the
second quantized representation of the magnon.

In order to fulfill the above requirement, and requiring that Ŝ− = (Ŝ+)† we must
have

Ŝ+
i =
√

2S
(

1−
â†

i âi

2S

)1/2
âi

Ŝ−i =
√

2Sâ†
i

(
1−

â†
i âi

2S

)1/2
.

(2.21)

This is the well-known Holstein-Primakoff transformation of linear spin-wave the-
ory. Utilizing this language the Hamiltonian can be written in second quantized
notation up to any desired order in S. Typically a Taylor-expansion of the square-
root term is performed around the state with 〈â† â〉 = 0. To first order

(
1−

â†
i âi

2S

)1/2
≈
(

1−
â†

i âi

4S

)
. (2.22)

The appearance of the 1/S term gives us a way to express fluctuations about the
ground state. The single-particle picture of a magnon is only valid up to small
fluctuations in the ground state, where this term is small. When the system is suffi-
ciently thermally excited the magnon picture loses its meaning and we can no longer
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Figure 2.3: A depiction of a magnon on a one-dimensional lattice. This is the Bloch-
wave associated with a dispersive spin-flip excitation on a magnetically ordered
lattice.

expect this expansion to be valid.
Translationally invariant models may be solved with Bloch waves. We therefore

introduce the Fourier transformed operators

b̂†
~k
=

1√
L

∑
~j

e−i~k·~j â†
~j

b̂~k =
1√
L

∑
~j

ei~k·~j â~j

(2.23)

If the only interaction of the given model is a nearest neighbor spin-exchange
term as in equation (2.14) then the Hamiltonian can be written as

Ĥ = −1
2

JzS2L +
JzS
2
[
2b̂†

~k
b̂~k − (γ~k + γ−~k)b̂

†
~k

b̂~k
]
+O(1/S). (2.24)

Here z is the coordination number and

γ~k =
1
z ∑

~δ

ei~δ·~k. (2.25)

~δ is here the vector displacement between two spins.
It is thus fairly straightforward to diagonalize the linear spin-wave Hamiltonian

of a ferromagnetic material. Interestingly the dispersion becomes

ω~k = −JzS
[
1− (γ~k + γ−~k)/2

]
. (2.26)

In the long-wavelength limit this is quadratic in |~k|.
Due to the formulation of b̂~k we can think of the~k ∼ 0 state as an equally dis-

tributed single-magnon over the whole lattice. This is equivalent to application of
the spin lowering operator to the global spin, which does not incur an energy cost
as the Hamiltonian is symmetric with respect to changes to the orientation of the
total magnetic moment.

This is in fact the famous Goldstone mode, also known as the symmetry restoring
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Figure 2.4: The antiferromagnetic state on the square lattice.

mode of the lattice. It occurs as a consequence of the spontaneous breaking of the
global SU(2) symmetry of the Heisenberg model [12].

2.2.1 Anti-ferromagnets

In the preceding discussion the Heisenberg model was expanded around a ferro-
magnetically ordered ground state. This is a true ground state of that Hamiltonian
even including quantum fluctuations. However, with J > 0 , this approach is no
longer valid. We consider here a bipartite lattice with antiferromagnetic order as
depicted in figure 2.4.

The difficulty in determining the ground state arises from quantum fluctuations.
A single pair of S = 1/2 magnetic ions form a singlet in the ground state. This
minimizes its energy through the spin-flip terms

Ŝ+
i Ŝ−j + H. c.. (2.27)

The Néel state is not an eigenstate of this operator, so the true ground state must
contain some quantum fluctuation. These effects are most relevant for small spins
and the relative correction to the ground state energy is O(1/S).

If the Hamiltonian is expanded around the Néel state, two Holstein-Primakoff
bosons are needed. On sublattice A it is Ŝ− which lowers the spin and thereby
creates a magnon. On sublattice B the spin has to be increased by Ŝ+ in order to
create a magnon. This is expressed as

Ŝ+
A =
√

2S
(

1− â† â
2S

)1/2
â Ŝ−A =

√
2Sâ†

(
1− â† â

2S

)1/2
(2.28)

Ŝ+
B =
√

2Sb̂†
(

1− b̂†b̂
2S

)1/2
Ŝ−B =

√
2S
(

1− b̂†b̂
2S

)1/2
b̂. (2.29)
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Figure 2.5: A magnon is depicted here as a linear combination of two sublattice
bosons.

The propagating single-particle bosonic operators are then

ĉ†
k =

√
2
L ∑

j∈A
e−ik·j â†

j (2.30)

d̂†
k =

√
2
L ∑

j∈B
e−ik·jb̂†

j . (2.31)

Both sublattices together now form the repeating unit cell of the lattice, and
therefore the Bloch-waves will be formed by some linear combination of the above
states. But k remains a good quantum number for our bosons. However, notice that
this gives a phase and magnitude degree of freedom between the two sublattices.

Now the spin-wave expansion can be calculated. Following the same approach
as before and expanding spin operators in terms of Holstein-Primakoff operators up
to bilinear order, the Hamiltonian becomes

Ĥ = JzS ∑
k

[
γk(ĉkd̂−k + ĉ†

−kd̂†
k) + (ĉ†

k ĉk + d̂†
k d̂k)

]
. (2.32)

This expression is not diagonal in the bosonic operators because the spin-flip
terms couple ĉ†

k and d̂−k. The Hamiltonian does not commute with the number
operators of the c and d bosons and because of this they are not conserved. But we
can construct a mixed eigenoperators which contain contributions from both.

To do so, first the Hamiltonian must be reorganized so that

Ĥ = JzS ∑
k

[
γk(ĉkd̂−k + ĉ†

k d̂†
−k) + (ĉ†

k ĉk + d̂†
−kd̂−k)

]
(2.33)

= v†
k Mkvk (2.34)

with the kernel matrix Mk and

v†
k = [ĉk, d̂†

−k]. (2.35)

The solution at k is now a boson α̂k which is defined as a linear combination of ĉ†
k
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and d̂−k. This should be of the form

α̂k = uk ĉk − vkd̂†
−k

α̂†
k = uk ĉ†

k − vkd̂−k.
(2.36)

However this needs some care since bosonic commutation relations must be re-
spected. Requiring that

[α̂k, α̂†
k′ ] = δk,k′ , (2.37)

one obtains
u2

k − v2
k = 1. (2.38)

This defines a hyperbolic transform and a new basis in which the Hamiltonian be-
comes diagonal. This can be done by specifying a mixing angle θ, such that

uk = cosh θ (2.39)
vk = sinh θ. (2.40)

Interestingly we have obtained an additional mode

β̂k = vk ĉk + ukd̂†
−k

β̂†
k = vk ĉ†

k + ukd̂−k.
(2.41)

This mode has the property
[β̂k, β̂†

k′ ] = −δk,k′ , (2.42)

due to the bosonic condition on α̂k. This is a mathematical artefact of the increased
solution space allowed by the Bogoliubov transform, but does not represent any
physical modes.

Solving for these eigenmodes of the Hamiltonian the band-energy is

ε±k = 2JzS
√

1− γ2
k (2.43)

= 2JzS sin δk. (2.44)

This expression thus results in a linear dispersion around the Γ-point.

It’s important to point out that in obtaining this solution it is necessary to do
a Bogoliubov transform such as equation (2.36). However, in the limit of large S
where Néel order is a good approximation, we can apply a classical picture similar
to the one adopted for ferromagnetic magnons and express the solution in ĉ and d̂
space. Thinking of the ĉ and d̂ bosons as defining orthogonal polarization axes, we
can view α̂ and β̂ as two modes of polarization of the propagating magnon. This
is depicted in figure 2.5. As pointed out earlier, the addition of another sublattice
introduces a phase-degree of freedom, which means that there may be an offset in
the rotation of the two sublattice components of the wave-function, so that it need
not be as symmetric as depicted here.
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2.2.2 Generalized Bogoliubov de Gennes Hamiltonian

In the above section we showed how the Bogoliubov transform results in the correct
bosonic field operators, as long as they are normalized correctly. The Heissenberg
anti-ferromagnet is a special case where the anomalous pairing terms ĉkd̂−k are the
only dispersing terms in the Hamiltonian. In general, most magnets have more com-
plicated unit cells with anisotropies which result in a large variety of interactions. In
such cases it turns out to be very useful to express the problem using a generalized
Bogoliubov transformation [140].

Given a unit cell with N sublattice order in a Néel state, we may define N inde-
pendent magnons with quasi-momentum k as [ĉ1,k, . . . , ĉN,k]. Up to bilinear order in
the field operators we will then have a Hamiltonian like

Ĥ = ∑
k

[
∑
〈i,j〉

(γ
(1)
i,j ĉ†

i,k ĉj,k + γ
(2)
i,j ĉi,k ĉj,−k + H. c.) + ∑

i
εi ĉ†

i,k ĉi,k

]
(2.45)

= ∑
k

Ĥk (2.46)

The objective is as usual to get Ĥk in a diagonal form. We rewrite this as

Ĥ = ∑
k
(Hk + H−k)/2 (2.47)

≡∑
k

HBdG
k (2.48)

= ∑
k
~v†

k MBdG
k ~vk. (2.49)

Here we have written the Hamiltonian in terms of

~v†
k = [ĉ1,k, . . . , ĉN,k, ĉ†

1,−k, . . . , ĉ†
N,−k]. (2.50)

Now the objective is to obtain N independent eigenenergy solutions at each
quasi-momentum

α̂†
i,k = ∑

j
a(i)j,k ĉ†

j,k + ∑
j

b(i)j,k ĉj,k. (2.51)

The symmetrization of the Hamiltonian with respect to k means that each k
is counted twice. The interactions are halved, which means that we will recover
half the eigenenergies. This double-counting of k means that there is an additional
branch of eigenenergy solutions expressed by the conjugate eigenstate α̂i,−k, which
also is a solution to this Hamiltonian. This is a non-physical solution, which arises
as an artifact of the problem setup. It introduces an artificial particle-hole symmetry
to the Hamiltonian, since it will have opposite eigenenergy.

We can express the eigenstates through the linear transform

~α = T~v. (2.52)
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The normalization condition on~α may now be written as

Tkσ3T†
k = σ3. (2.53)

Here σ3 is a diagonal matrix with the upper left N entries equal to 1 and the rest
equal to −1.

We may instead look at the problem in the following way. The equations of
motion of ~v obtained from the Schrödinger equation are

~̇v = 2iσ3MBdG
k ~v. (2.54)

So to obtain the stationary states of the Schrödinger equation it suffices to diagonal-
ize the matrix

M̃BdG
k = σ3MBdG

k . (2.55)

Note that although this matrix is non-Hermitian, because it is the product of two
non-singular matrices, it too will be non-singular and can always be diagonalized.

When Tk is found which diagonalizes M̃k, it gives

Tk M̃kT−1
k =



ω1,k/2
. . .

ωN,k/2
−ω1,k/2

. . .
−ωN,k/2


. (2.56)

If some numerical routine is used to diagonalize M̃k, then each~ti,k column of Tk will
be normalized with respect to its Euclidian norm. The correct normalization can be
enforced by requiring that

~ti,k =~ti,k/|σz~ti,k|. (2.57)

The introduction of the Bogoliubov transform is important for the discussion
of unconventional magnetic models and it is necessary in the description of triplet
excitations. We shall go into detail with this after one more concrete example of
anti-ferromagnetic ordering.

2.2.3 The triangular anti-ferromagnet

An interesting case arises with the triangular anti-ferromagnet. For the pure Heis-
senberg model, the ~S · ~S interaction of each bond adds a competing interaction. Due
to the arrangement of the spins in equilateral triangles, it is impossible to minimize
the energy of each bond simultaneously, even in the large S limit. We here give the
linear spin-wave treatment of the problem. For a treatment of this problem in-field
see [141], and see also a detailed treatment of higher order processes such as decay
and two-magnon continua in the two papers [142, 143].

The lattice can be represented as a decorated triangular lattice in which each
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a1

a2

δ1

δ2

Figure 2.6: Triangular lattice with 120◦ order indicated. Also shown are lattice vec-
tors δj, aj of the chemical and magnetic unit cell.

point is an actual triangular configuraton of three spins that are oriented 120◦ with
respect to each other, defining three different axes of quantization. Excitations on
top of these spins are represented by three Holstein-Primakoff bosons âi, b̂i, ĉi.

The Holstein-Primakoff transformation now gives

Ŝx
ai
= S

(
â†

i

√
1−

â†
i âi

2S
+

√
1−

â†
i âi

2S
âi

)

Ŝy
ai = S

(
iâ†

i

√
1−

â†
i âi

2S
− i

√
1−

â†
i âi

2S
âi

)
Ŝz

ai
= S− â†

i âi

(2.58)

The operator Ŝz
ai

may be taken to define the quantization axes in the positive y-
direction of the plane. In terms of a set of spin operators Ŝα

i , then â actually creates
a −S eigenstate of the Ŝy

i operator. This means we have performed a rotation of
basis to rotate the spin z-axis into the y-axis. Therefore we must have

Ŝx
ai
= Ŝx

i

Ŝy
ai = −Ŝz

i

Ŝz
ai
= Ŝy

i

(2.59)
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We may obtain this by

Sai =

1 0 0
0 0 −1
0 1 0

 Si (2.60)

= Rx

(
−π

2

)
Si (2.61)

Where Rx(φ) is a rotation about the x-axis in euclidian space. In the same way,
the other spins are described as eigenfunctions of the Ŝz after a rotation of the Ŝz

a
operator in the (x,y)-plane. Thus

Sbi = Rz

(
−2π

3

)
Sai (2.62)

=

−1
2 −

√
3

2 0√
3

2 −1
2 0

0 0 1

 Sai . (2.63)

Bearing in mind that Ri(φ)
T = Ri(−φ) = Ri(φ)

(−1) holds for continuous rotations
in a Lie group, an expression for the Hamiltonian may be derived by considering
that there are three types of bonds, all of which have the following form

Sri · Srj = ST
ri

Srj (2.64)

= ST
a,ri

Rx

(
−π

2

)
Rx

(π

2

)
Rz

(2π

3

)
Sb,rj (2.65)

= ST
a,ri

Rz

(2π

3

)
Sb,rj . (2.66)

Now each Ŝ(i)
a,b,c may be expanded in terms of its Holstein-Primakoff bosons.

If the above approach is followed correctly and all of the bonds accounted for,
while S = 1/2 one may arrive at a Hamiltonian of the form

Ĥ = ∑
k

Ĥk (2.67)

with

Ĥk =
J

16

[
vk

v†
−k

]T [ hD
k hND

k
hND

k hD
k

] [
v†

k
v−k

]
. (2.68)

Here we have

hD
k =

 12 γ(k) γ(k)∗

γ(k)∗ 12 γ(k)

γ(k) γ(k)∗ 12

 (2.69)
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and

hND
k =

 0 −3γ(k) −3γ(k)∗

−3γ(k)∗ 0 −3γ(k)

−3γ(k) −3γ(k)∗ 0.

 . (2.70)

The vector

vk =

âk
b̂k
ĉk

 . (2.71)

Also
γ(k) = eiδ1·k + e−iδ2·k + ei(δ2−δ1)·k. (2.72)

The objective is now to determine the eigenstates of this Hamiltonian by a general-
ized Bogoliubov transformation. As it is written right now, the problem looks very
difficult, since it involves a 6× 6 matrix. However, there are also a lot of nice fea-
tures to this matrix, which one may take advantage of to make the problem more
tractable to analytical solution.

The matrices hD
k , hND

k are both Hermitian 3× 3 matrices. By inspection

hD
k = −hND

k /3 + 12 · 13×3. (2.73)

It is clear that the two matrices commute and therefore share eigenvectors. Denoting
the eigenvalues εD

η,k, εND
η,k , we infer that

εD
η,k = −εND

η,k /3 + 12. (2.74)

Here η ∈ {1, 2, 3} is an index running over the (possibly degenerate) eigenvalues
corresponding to each of three orthonormal eigenvectors, uη,k that appear in the
solutions.

The eigenvectors are

uη,k =

 1
ωη−1

ω−η+1

 , ω = −1
2
+ i
√

3
2

. (2.75)
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The corresponding eigenvalues are

εD
1,k =12 + 2(cos(kx) + cos(

√
3

2
ky −

1
2

kx) + cos(−
√

3
2

ky −
1
2

kx))

εD
2,k =12− cos(kx)− cos(

√
3

2
ky −

1
2

kx)− cos(−
√

3
2

ky −
1
2

kx))

+
√

3(sin(kx) + sin(

√
3

2
ky −

1
2

kx) + sin(−
√

3
2

ky −
1
2

kx))

εD
3,k =12− cos(kx)− cos(

√
3

2
ky −

1
2

kx)− cos(−
√

3
2

ky −
1
2

kx))

−
√

3(sin(kx) + sin(

√
3

2
ky −

1
2

kx) + sin(−
√

3
2

ky −
1
2

kx))

(2.76)

Eigenstates of the Hamiltonian must be created by bosonic operators of the form

α̂†
k = eâ†

k + f b̂†
k + gĉ†

k + hâ−k + ib̂−k + jĉ−k. (2.77)

We write down the Bogoliubov de Gennes Hamiltonian as discussed in the previous
section.

Mk ≡
[
13×3 03×3
03×3 −13×3

] [
hD

k hND
k

hND
k hD

k

]
(2.78)

=

[
hD

k hND
k

−hND
k −hD

k

]
. (2.79)

We know that the physical solutions are the positive eigenvalues of Mk, and that
for each one of them there exists a non-physical solution with the same magnitude
but opposite sign. We therefore guess the following form for a useful eigenvalue
equation

λη,k

[
α
β

]
⊗ uη,k =

J
8

[
hD

k hND
k

−hND
k −hD

k

] ([
α
β

]
⊗ uη,k

)
(2.80)

=
J
8

([
εD

η,k εND
η,k

−εND
η,k −εD

η,k

] [
α
β

])
⊗ uη,k. (2.81)

Here the factor of J/8 has been added so that λη,k become the actual eigenenergies.
In this way we have reduced the problem of diagonalizing a 6× 6 matrix to a 3× 3
and a 2 × 2 one. Here ⊗ is the tensor product operator which we have used to
simplify notation, such that the vector in the left hand side of equation (2.80) is 6-
dimensional containing the eigenvector uη,k repeated, and α, β are scalars that solve
the above equation. By writing the characteristic polynomial of the above matrix,
we get

λη,k = ±
J
8

√
εD

η,k
2 − εND

η,k
2. (2.82)
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Γ M K Γ
0

J

2J

Figure 2.7: This graphic shows the magnon dispersion relation of the anti-
ferromagnetic triangular lattice. High symmetry points are marked with letters Γ,
M and K. The solid lines have been obtained from the analytical expression of equa-
tion (2.83) and the dots are the result of numerically diagonalizing the generalized
Bogoliubov de Gennes Hamiltonian.

Therefore the eigenenergies are

ωη,k =
J
4

√
εD

η,k
2 − εND

η,k
2. (2.83)

Figure 2.7 shows the dispersion of the triangular lattice. One of the interesting
features of the analytic solution is that each band is equivalent. The three bands that
are seen in the 1st Brillouin zone can all be obtained by continuing the analytic ex-
pression obtained from equation (2.83) of a single band into neighbouring Brillouin
zones. By tracing a single band as it crosses the zone border it can be shown that it
smoothly merges into one of the other two bands, depending on where it crossed.
Thus the entire band structure can be obtained from a single band that is folded in
on itself.

2.3 Triplons and other generalized excitations

In certain materials classical order does not occur. In fact there are some materials
in which the ground state is disordered because a quantum mechanical state is pre-
ferred. This occurs for instance in the well-known quantum paramagnet SrCu2(BO3)2,
whose ground state is a dimer singlet product state [144–146].

The simplest model for magnetism in SrCu2(BO3)2 is the famous Shastry-Sutherland
model [147] shown in figure 2.8. This is a S = 1/2 model of orthogonal dimers. The
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Figure 2.8: This drawing shows the Shastry-Sutherland lattice. The bold bonds are
the dimers.

Hamiltonian is
Ĥ = J ∑

〈i,j〉∈

~Si · ~Sj + J′ ∑
〈i,j〉/∈

~Si · ~Sj. (2.84)

Here the sum with the dominant interaction J is taken over the solid dimer bonds
of figure 2.8 and S = 1/2.

If the dominant interaction in the system is J > 0, we can adopt a strategy where
the dimer bond energy is minimized and the inter-dimer bonds describe hopping.
First we consider a single dimer Hamiltonian

Ĥ〈i,j〉∈ = J~Si · ~Sj (2.85)

= J/2
[
(~Si + ~Sj)

2 − ~S2
i − ~S2

j
]

(2.86)

= J/2
[
~S2 − 3/2

]
. (2.87)

Here we introduced the total dimer spin ~S = ~Si + ~Sj. We can associate a spin
quantum number S with this vector quantity, so that

~S2 = S (S + 1). (2.88)

In the case of the S = 1/2 dimer this is diagonal in the basis1

|s〉 = |S = 0, Sz = 0〉 = (|↑, ↓〉 − |↓, ↑〉)/
√

2

|t1〉 = |S = 1, Sz = 1〉 = |↑, ↑〉
|t0〉 = |S = 1, Sz = 0〉 = (|↑, ↓〉+ |↓, ↑〉)/

√
2

|t−1〉 = |S = 1, Sz = −1〉 = |↓, ↓〉 .

(2.89)

The Sz quantity above is the eigenvalue of the bond operator

Ŝz = Ŝz
i + Ŝz

j , (2.90)

1See also the bond-operator formulation as it was originally presented by Sachdev et. al. [148].
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which is diagonal in this basis. The ground state energy in the J � J′ limit is mini-
mized by the singlet state |s〉. We can now write the Hamiltonian in terms of inter-
acting dimers whose on-site energy is given by

Ĥ = J
[
−3/4ŝ† ŝ + 1/4

1

∑
m=−1

t̂†
m t̂m

]
. (2.91)

Here we have used bosonic field operators for the dimer singlet and triplet states.
The inter-dimer coupling then needs to be written by expanding the on-site spin
operators in this basis. This results in

Ŝz
i =

1
2
(
t̂†
1 t̂1 − t̂†

−1 t̂−1
)
− (−1)i

2
(
t̂†
0 ŝ + t̂0ŝ†)

Ŝ±i =
1√
2

(
t̂†
± t̂0 + t̂†

0 t̂∓
)
± (−1)i
√

2

(
t̂†
± ŝ− ŝ† t̂∓

)
.

(2.92)

Here the i is 0 or 1 depending on whether the operator is applied to the first or
second spin in the dimer. For a discussion of quantum phase transitions on the
Shastry-Sutherland model using the series expansion method see [146] where a
quantum phase transition to an ordered state is predicted at J′/J = 0.677(2), or
the later iPEPS study [149], which locates the transition at J′/J = 0.677(2).

Now the Hamiltonian is written out by taking the sum over each dimer and
counting its coupling to sites. This bond-wave formalism [148] treats each strongly
coupled pair of spins as a composite particle. By diagonalizing the Hamiltonian
exactly at the bond level it is possible to express quantum mechanical effects, such
as entanglement exactly at the local level. The triplet states then propage in a fashion
similar to regular spin-waves. These quasiparticles are referred to as triplons. They
carry topological transport signatures such as the thermal Hall effect [11], and as we
shall see in Chapter 4 spin Nernst as well.

To diagonalize the Hamiltonian of this system we can make use of the hard-core
constraint on each dimer

ŝ† ŝ +
1

∑
i=−1

t̂†
i t̂i = 1. (2.93)

This can be expressed through the Holstein-Primakoff transform

ŝ = ŝ† =

√√√√1−
1

∑
i=−1

t̂†
i t̂i. (2.94)

This now gives us a way to express propagation of triplons in the background of
a quantum mechanically disordered singlet product state. Due to the global SU(2)
symmetry of the model the triplet spectrum is three-fold degenerate. Although the
unit cell contains two dimers, it can be reduced to an effective square lattice model
with a single site per unit cell. Here it is enough to imagine the dimers of figure 2.8
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as being contracted to single points. The spectrum can be worked out as

ω(~k) =
√

J2 − J J′(cos kx − cos ky). (2.95)

The triplet picture breaks down when J′ ≥ J/2, as the singlet is no longer energeti-
cally favorable due to the inter-dimer couplings.

In this chapter we have given an overview of the Heisenberg model and how
spin-wave theory can be used to treat magnon physics. We also gave a brief intro-
duction to generalized spin-waves and the treatment of triplon dispersion. Having
established these concepts we are ready to discuss the topology of magnon bands
and how it may be affected by the Dzyaloshinskii-Moriya interaction.



Chapter 3

Topological bands in insulating
magnets

In the previous chapter we discussed band-like excitations in magnetically ordered
solids and introduced key generalizations upon conventional spin-wave theory which
allow a description of excitations in quantum paramagnets. Having a theory of dis-
persing quasi-particles in magnets we can investigate the topology of these bands,
which is the topic of this chapter. With this we will be able to discuss the core re-
search questions of this thesis.

We start this chapter by introducing key concepts from topological band-theory.
As a first example of how topology plays a role in the physics of single particles we
consider the Hamiltonian of a generic two-level system. This will allow us to define
the Berry phase and curve as well as Chern numbers. In later chapters we will
frequently return to this prototypical system by reducing our analyses to effective
theories which are dual to this problem. For concreteness we derive all of these
quantities for the lattice Chern insulator as well. This allows us to discuss the role of
time-reversal symmetry breaking and robust topological features. Finally, we will
discuss Z2 invariants and the psuedo-time-reversal operator relevant for magnetic
excitations.

3.1 Generic two-level systems and their topology

In this section we will describe a generic two-level quantum system. A detailed
analytical description is very straightforward in such systems. It is also very infor-
mative as we may easily derive the Chern number, which is a topological invariant
which directly determines the quantum Hall coefficient of electronic insulators.

The strength of this approach lies in its ability to describe bandgaps caused by
some finite anisotropic interaction. Even in models with multiple sub-lattices, often
effective spinor models can be derived to which these concepts are applicable. For
a very thorough treatment of the content of this section see [21].

Given a two-level system with some set of parameters x, we can generically write
its Hamiltonian as

Ĥ(x) = ε(x)I + ~d(x) ·~σ. (3.1)

43
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Here the ~σ = (σx,σy,σz) are the Pauli matrices acting on the arbitrarily labelled
Hilbert space {|0〉 , |1〉}. The exact solution to this Hamiltonian can be found by
considering the vector ~d(x). We can parametrize it as

d1 = d0(x) sin
[
θ(x)

]
cos
[
φ(x)

]
d2 = d0(x) sin

[
θ(x)

]
sin
[
φ(x)

]
d3 = d0(x) cos

[
θ(x)

]
.

(3.2)

Here the angles are in the ranges θ(x) ∈ [0; π] and φ(x) ∈ [0; 2π). This can be
diagonalized by the eigenstates

|ψ+〉 (x) = eiφ(x)/2 cos[θ(x)/2] |0〉+ e−iφ(x)/2 sin[θ(x)/2] |1〉
|ψ−〉 (x) = eiφ(x)/2 sin[θ(x)/2] |0〉 − e−iφ(x)/2 cos[θ(x)/2] |1〉 .

(3.3)

Their eigen-energy is very simply

E± = ε(x)± d0(x). (3.4)

The eigenenergies are determined only by d0 and the diagonal ε whereas the an-
gles θ and φ determines the eigenstates. However, this parametrization may not be
possible for all x since as soon as d0 = 0 these angles are undefined.

Now, when we define the eigenstates, we are implicitly making a gauge choice
for them as well. There are certain situations where this gauge cannot be defined
continuously. Due to this phase singularity a Berry phase appears. We can define
this as follows. Imagine that the Hamiltonian is taken through an adiabatic change
of parameters. Then the eigenstates evolve as

Ĥ
(
x(t)

)
e−iθ(x(t)) |ψ±

(
x(t)

)
〉 = i

d
dt

e−iθ(x(t)) |ψ±
(
x(t)

)
〉 (3.5)

= ie−iθ(x(t)) d
dt
|ψ±

(
x(t)

)
〉+

( d
dt

θ(x(t))
)

e−iθ(x(t)) |ψ±
(
x(t)

)
〉 .

(3.6)

From this we recover an expression for the phase change during a time evolution as

∆θ =
∫ t

0

d
dt′

θ
(
x(t′)

)
dt′ (3.7)

=
∫ t

0
dt′E±

(
x(t′)

)
+ γ± (3.8)

Here we have the dynamical phase resulting from changes in the eigenergy E± as
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well as a Berry phase which for some adiabatic change in parameters x(t) is

γ± = i
∫ t

0
〈ψ±|

d
dt′
|ψ±〉 dt′ (3.9)

= i
∫

x(t)
〈ψ±|∇x|ψ±〉 · dx (3.10)

= i
∫ 〈

ψ±

∣∣∣∣ ∂

∂θ

∣∣∣∣ψ±

〉
dθ + i

∫ 〈
ψ±

∣∣∣∣ ∂

∂φ

∣∣∣∣ψ±

〉
dφ (3.11)

The change in coordinates from x to θ and φ is valid here because the wave-function
is a function of the parameters θ and φ, which are uniquely determined by x. This
motivates a definition of the Berry connection in terms of

Aθ,± ≡ i
〈

ψ±

∣∣∣∣ ∂

∂θ

∣∣∣∣ψ±

〉
Aφ,± ≡ i

〈
ψ±

∣∣∣∣ ∂

∂φ

∣∣∣∣ψ±

〉 (3.12)

as the vector
~A± =

[
Aθ,±
Aφ,±

]
. (3.13)

We observe that the Berry phase is a line integral, which may or may not be closed.
If the integral is over a closed curve C then

γ± = i
∮

C
~A± · dv (3.14)

= i
∫∫

D
∇× ~A±dθdφ. (3.15)

Here the 2D curl of ~A± is the Berry curvature

Fθ,φ = ∂θ Aφ − ∂φ Aθ. (3.16)

We have here used Stokes’ theorem to convert the line integral of ~A over the closed
curve c into an integral over the domain D enclosed by the Berry curvature. It is
worthwhile noticing that the Berry connection in general is gauge-dependent. This
can be shown quite easily as if we transform the wave-function |ψ〉 → eiα |ψ〉, we
will also get

~A→ ∇α + ~A (3.17)

Now the vector field defined by the gradient∇α is by definition a conservative one.
Its curl must be zero. Therefore the Berry curvature is gauge invariant. Using the
Berry curvature is often more convenient as we can diagonalize the Hamiltonian
without having to take into account the derivatives of the gauge we define.

The two-level Hamiltonian we introduced here in order to parametrize the wave-
function in terms of θ and φ is a generic one. Thus the exact Berry curvature in
this situation is also a general expression for two-level systems, given that such a
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parametrization exists. We obtain for each eigenstate

F±,θφ = ∂θ 〈ψ±|∂φ|ψ±〉 − ∂φ 〈ψ±|∂θ|ψ±〉 (3.18)

= ±sin(θ)
2

. (3.19)

We may now compute the integral. However, we should think carefully about how
this is done and there are some special cases that warrant our attention.

Each combination of θ and φ defines an eigenstate of the Hamiltonian. Thus, the
parametrization of the Hamiltonian may form a sphere if every combination of θ and
φ are accounted for. This is the so-called Bloch sphere, and interestingly due to this
parametrization, the gauge at the poles is undetermined. This is because the polar-
angle φ is ill-defined here, in exact analogy to the compass needle, which cannot be
oriented at the exact north and south poles of a globe. This phase-singularity can-
not be removed by some clever choice of gauge as long as the full globe is covered.
This is fundamentally because the topology of the sphere and the torus defined by
the product space of θ and φ are inequivalent closed surfaces. Although we could
construct a one-to-one map between them, this map would not be homeomorphic,
so if we define a unique gauge for every point on the Bloch sphere, there will al-
ways be some discontinuity in the phase of the wave-function. We shall see more
consequences of this below.

3.1.1 Enclosed topological charge

The Berry curvature can be generalized to yield an important intuition which will
help us characterize it. In terms of ~d we define a three-dimensional vector field with
components

F±,i = εi,j,k∂dj 〈ψ±|∂dk
|ψ±〉 (3.20)

= ±1
2

di/d0
3. (3.21)

Now we can define a 2-dimensional closed surface in d-space. We denote it by S
and require that it is given by the angular parametrization dS(θ, φ) ∈ S. We imagine
that this is the ~d which defines the Hamiltonian of a given problem, and now we
are interested in evaluating the Berry phase associated with this parameter space.
The Berry curvature is given by the flux-density of the above defined F through that
surface. We can take the surface integral

γ± =
∫∫

S
F± · dS. (3.22)

We notice that the field Fi is the field of a monopole centered at ~d = ~0. When we
take the surface integral over a S we get

γ± = ±2πn. (3.23)
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Here n is the Chern number [21]. The topological charge is centered at the origin, so
if the surface dS encloses the origin then n will be nonzero. If the surface is a sphere
then n will be 1, but in general dS could be parameterized for instance in such a way
that the φ angle is wound around twice during integration. Then n = 2.

In summary, whenever our Hamiltonian can be written as a spinor-model we
can simply look at the enclosed topological charge. Our Hamiltonian is defined
by some parametrized surface in ~d space and this parameterization determines the
Berry curvature.

To see the full derivation of equation (3.22) please see Appendix B, where we
also discuss some generic cases where this formulation is applicable.

3.2 Chern Insulators

Chern insulators are a class of materials characterized by having topological prop-
erties arising from the breaking of time-reversal symmetry. The prototypical lattice
model describing this phenomenon is the Haldane model of spinless electrons on
the honeycomb lattice. As introduced in Section 1.2 the Hamiltonian is given by

Ĥ = t1 ∑
〈i,j〉

ĉ†
i ĉj + H. c. + t2eiφ ∑

〈〈i,j〉〉
ĉ†

i ĉj + H. c. + M ∑
i∈A,j∈B

(ĉ†
i ĉi − ĉ†

j ĉj) (3.24)

The Hamiltonian of equation (3.24) is a tight-binding model of spinless electrons
in the presence of a magnetic field. The magnetic field in this case can arise from
spontaneous ordering of magnetic moments embedded in the honeycomb lattice.
This gives rise to a complex hopping between next-nearest neighbor sites, whose
sign depends on whether the hopping direction is clockwise or counterclockwise
around the hexagon of the honeycomb lattice. The complex phase of the hopping φ
is the line integral of the field taken from one site to its next-nearest neighbor.

In the spinor space of the two sub-lattices ~v~k = (ψA,~k, ψB,~k)
T we expand this

through a Fourier transform to give

Ĥ = ∑
~k

~v†
~k

Ĥ(~k)~v~k (3.25)

= 2t2 cos φ

(
∑

i
cos(~k ·~bi)

)
I + t1

(
∑

i

[
cos(~k ·~ai)σ1 + sin(~k ·~ai)σ2

])

+

[
M− 2t2 sin φ

(
∑

i
sin(~k ·~bi)

)]
σ3. (3.26)

Here each σi is a Pauli matrix describing the mixing of the two sub-lattices. In terms
of the coefficients of each Pauli matrix, the exact eigenstates can be found. We can
rewrite the Hamiltonian as

Ĥk = ε(~k)I + ~d(~k) ·~σ. (3.27)



48 Topological bands in insulating magnets

a) b)

c)

Figure 3.1: We here show the surface drawn out by the vector ~d(k) defined by the
Haldane model (see equation (3.26) and equation (3.28)) parametrized by~k. These
surfaces are drawn by evaluating ~d(k) at every point in the Brillouin zone, and the
origin corresponds to ~d(k) = 0. (a) with inversion and time-reversal symmetry, the
d3 component is zeroed out completely, and the surface drawn out by the d-vector is
flat and does not enclose any volume. (b) Here breaking of time-reversal symmetry
allows a finite d3. We draw the field F± with gray arrows from the origin out to the
surface defined by ~d(~k). With the topological charge enclosed, the Berry’s curva-
ture will here integrate up to ±2πn. (c) Both time-reversal and inversion symmetry
is broken thus allowing for an M term. Here the M term is large enough so that
field F± no longer originates from the surface of ~d(~k), so the Berry’s curvature will
integrate up to zero.

Each di is a coefficient belonging to the corresponding σi as they appear in equa-
tion (3.26).

We parametrize the vector ~d as

d1 = α~k = t1 ∑
i

cos(~k ·~ai)

d2 = β~k = t1 ∑
i

sin(~k ·~ai)

d3 = κ~k = M− 2t2 sin φ

(
∑

i
sin(~k ·~bi)

) (3.28)

Now we can discuss the role of time-reversal (τ) and inversion (i) symmetries in
a similar vein to Haldane’s original work [4]. To be clear, for the honeycomb lattice
we will discuss the inversion through the center of each bond. We describe their
action on the system in terms of their action on~k and the Pauli matrices σ1, σ2 and
σ3.
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We have
τ :~k→ −~k i :~k→ −~k
τ : σ1 → σ1 i : σ1 → σ1

τ : σ2 → −σ2 i : σ2 → −σ2

τ : σ3 → σ3 i : σ3 → −σ3

(3.29)

The α~k term is even under time-reversal since it is co-sinusoidal in~k. The β~k is odd
under time-reversal since it is sinusoidal, but σ2 is also odd under time-reversal
and their product therefore enters the Hamiltonian as an even term. The third term
however has a sinusoidal part, which is odd and a constant M which is even.

The Haldane model is an example where topological bands are caused by the
breaking of TR symmetry. The M arises from a constant on-site potential which
can appear in inversion asymmetric honeycomb lattices. This by itself introduces
a band-gap which has the effect of turning the Haldane model into a conventional
band-insulator. But the TR breaking second term in κ~k is inversion symmetric.

In summary, when τ and i are both symmetries of the Haldane model, d3(k)
must both be even and odd in k, and therefore it has to be zero. When only τ is
broken, t2 may be non-zero, which opens up the volume inside the surface defined
by ~d(k). If inversion symmetry too is broken then a non-zero M term may have
the effect of moving this volume up or down in ~d-space along the third axis. If |M|
is sufficiently large the surface will intersect the origin, meaning that there will be
some point in k-space where the two bands are degenerate. If it is larger still there
will be a topological phase transition to a trivial phase. This is evident from the fact
that the volume now does not enclose the origin in ~d-space. These three different
cases are summarized in figure 3.1.

3.3 Complex hopping and the Dzyaloshinskii-Moriya
interaction

In discussing the Haldane model in Section 1.1 we briefly visited how a complex
hopping is needed in order to originate topologically non-trivial bands. Specifically
it is the term

it2 sin φ ∑
〈i,j〉

ĉ†
i ĉj (3.30)

which allows a finite z-component of the ~d-vector. This term has to be generated by
some time-reversal breaking field, and in Haldane’s original paper it is speculated
that this could be achieved by spontaneous magnetic ordering of the lattice.

In real electronic conductors this type of interaction is difficult to realize, how-
ever in insulating magnets the combination of magnetic order and spin-orbit cou-
pling naturally gives rise to such terms in the magnon hopping Hamiltonian.

In Chapter 2 we did not give an account of the different types of spin interactions
generally present in magnets. In general, we may define the interaction of two spins
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through the tensor J as
ĤJ = ~SiJ~Sj. (3.31)

Now the exact form of J will depend on the symmetries present in the lattice. For in-
stance, consider the case where bond-inversion is present on the lattice. Bond inver-
sion has the effect of swapping the indices i and j, which is equivalent to transposing
J . In other-words bond inversion requires J to be a symmetric matrix. Therefore it
could take the form

J =

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 . (3.32)

We are left with terms that are even under permutation of spin-indices. If the model
preserves global SU(2) symmetry, then the diagonal terms will be equal and the
off-diagonal terms will be zero. That will leave us with the isotropic Heisenberg
model,

J =

 J 0 0
0 J 0
0 0 J

 . (3.33)

We can now consider what happens when interactions are allowed which break
bond-inversion symmetry. All we have to do is consider a more general form of
J . This is accomplished by considering off-diagonal terms of the form Jαβ = −Jβα,
which would not have been allowed with bond-inversion symmetry. Such terms are
summarized in the Dzyaloshinskii-Moriya (DM) interaction which is defined as

ĤDM = ~D · ~Si × ~Sj. (3.34)

Now we can consider how these terms are expressed in a BdG Hamiltonian after
a Holstein-Primakoff expansion is carried out as described in Section 2.2. We first
consider the case where only the z-component of ~D is non-zero. This is for instance
the case when our lattice has a horizontal mirror plane symmetry. In this situation
Ŝz commutes with the DM interaction, and therefore it does not prevent the ground
state of the model from being ferro-magnetically ordered. Assuming that the spins
are ordered with their magnetization axes aligned we have

ĤDM = Dz(Ŝx
i Ŝy

j − Ŝy
i Ŝx

j ) (3.35)

= −2S2Dz

[(
1−

â†
i âi

2S

)(
1−

â†
j âj

2S

)]1/2

(iâ†
i âj + H. c.) (3.36)

≈ −2S2Dz(iâ†
i âj + H. c.). (3.37)

The DM interaction originates from Anderson super-exchange with spin-orbit cou-
pling taken into account [150], and it is time-reversal invariant, as can be seen from
the way it is defined in equation (3.34). It is therefore interesting that it can give rise
to an imaginary hopping, which a route to bands with non-zero Chern numbers.

The DM interaction can be thought of as acting like an effective Lorentz force on
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the magnons much in the same way that the actual Lorentz force would affect the
electrons of the Haldane model. Its presence therefore results in a deflection of the
magnon wave-packet in much the same way. To understand how this is possible
without the DM interaction intrinsically breaking TR-symmetry, we can look at the
sign of the interaction. In equation (3.37) we implicitly defined the magnetization
axis to lie in the positive Ŝz direction. However, we could have equally well chosen
the opposite polarization. If we had done so the result would have been

ĤDM ≈ 2S2Dz(iâ†
i âj + H. c.). (3.38)

In other words, the DM interaction acting on spin-up and spin-down magnons is
equal and opposite. TR-breaking comes from the spontaneous ordering of the lat-
tice, but intrinsically there is no reason for the bands to be Chern insulating un-
less there is spontaneous or polarized order. If we have spin-up and spin-down
magnons existing side-by-side therefore the topology of the bands will be Z2 invari-
ant similar to electrons with spin-orbit coupling.

DM interaction appears in lattices where there is no bond-inversion symmetry,
and therefore it is quite common in magnetically insulating materials. As it is a rel-
ativistic effect, it is largest with heavier elements which support f electrons. The
kagome lattice model is a prime example of an interesting model which allows DM
and has many material realizations. Below we shall investigate its topological prop-
erties in the presence of DM and how it specifically affects the heat transport in
Lu2V2O7.

3.4 Magnon Chern insulators

The kagome lattice Heisenberg model is an important example of a magnon Chern
insulator. The lattice is composed of corner sharing triangular plaquettes , as de-
picted on figure 3.2. Kagome planes are realized in some 2D layered structures, or
in the ubiquitous pyrochlores, they can be found by taking planar cuts of the 3D
structure.

In works by Mook, Henk and Mertig [10, 104] the Hamiltonian with DM interac-
tion was considered. It can be written as

Ĥ = ∑
〈i,j〉

J~Si · ~Sj + ∑
〈i→j〉

~Di→j · ~Si × ~Sj −∑ hŜz. (3.39)

Here it is worthwhile to discuss the orientation of ~D dictated by symmetry. Fig-
ure 3.2 shows a kagome lattice in the plane which has horizontal mirror symmetry.
We have

σxy : Ŝx → −Ŝx

σxy : Ŝy → −Ŝy

σxy : Ŝz → Ŝz.

(3.40)
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A

C

B

Figure 3.2: The kagome lattice with unit vectors and sublattices indicated.

When applied to the DM term, the above transformation can be absorbed into ~D as

σxy : Dx → −D̂x

σxy : Dy → −D̂y

σxy : Dz → D̂z.

(3.41)

Since the Hamiltonian must be invariant under this transformation if the mirror is a
symmetry of the lattice, we can only have a non-zero Dz. However, in general this
may not be the case. If there is no horizontal mirror plane the transformation rules
are instead determined by the C3v symmetry of the lattice.

Considering first the bond connecting sublattices B and C , as seen on figure 3.2,
there is a vertical mirror plane σyz, which in addition to reversing Ŝy and Ŝz also
swaps B and C, so that the sign of ~D is reversed again. The result is that now the y
and z component only are allowed.

What we have done so far is simply to restate two of Moriya’s rules governing
~D in [150]. The vector ~D must lie in the mirror plane that bisects the bond between
B and C. This rule is true in general of ~D defined on a bond which has a mirror
perpendicular to the bond orientation located at its bisector. We will therefore have

~DBC = ŷDy + ẑDz

~DAB = (−
√

3/2x̂− 1/2ŷ)Dy + ẑDz

~DCA = (
√

3/2x̂− 1/2ŷ)Dy + ẑDz.

(3.42)

If the DM vector is further constrained by some embedding geometry, such as a
pyrochlore lattice, then the relationship between Dy and Dz may be fixed. This is
the case for pyrochlore as pointed out in [10].

For now we consider the effect of having only a finite Dz component of the DM
interaction. When the spins in the ground-state are ordered, either through spin-
polarization or spontaneous ordering, the single-magnon band-theory does not ex-
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press terms originated by Dy. Those terms manifest as third order terms in the
spin-wave expansion, so for investigating the topology of magnon bands we ne-
glect them.

We derive a spin-wave Hamiltonian of the form

Ĥ = ∑
k
~v†

kMk~vk. (3.43)

Here the vector
~vk = [âk, b̂k, ĉk]

T (3.44)

and

Mk =

 η γ∗1δ∗3,k γ1δ2,k
γ1δ3,k η γ∗1δ∗1,k
γ∗1δ∗2,k γ1δ1,k η

 (3.45)

with

η = h− 2J
γ1 = iDz + J

δi,k = eiλi·k/2 cos(λi · k/2).

(3.46)

The complex prefactor of each δi,k can be removed by applying a gauge transforma-
tion to the magnons, but the cost of doing so is to extend the Brillouin zone. It is
for the current analysis better not to do so, as we would have to define the wave-
function as a periodic function of k on this enlarged space. In general this could con-
tain a n additional topological charge for each original Brillouin zone it enclosed. λi
are lattice vectors of the kagome unit cell. In units of the lattice spacing, they are

λ1 = [1, 0]T

λ2 = [−1/2,
√

3/2]T

λ3 = [−1/2,−
√

3/2]T
(3.47)

At the Γ-point of the lattice we have

MΓ =

 η γ∗1 γ1
γ1 η γ∗1
γ∗1 γ1 η

 . (3.48)

The eigenenergies at this point are

ε0 = η + 2<γ1 = h

ε± = η + 2<ω∓1γ1 = h− 3J ±
√

3Dz.
(3.49)

Here ω = (ω∗)−1 = −1/2− i
√

3/2. We can define a basis for this problem based
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on the eigenstates at the Γ-point, which are the magnon basis functions

ψ̂†
0 = (â†

Γ + b̂†
Γ + ĉ†

Γ)/
√

3

ψ̂†
± = (â†

Γ + ω±1b̂†
Γ + ω∓1ĉ†

Γ)/
√

3.
(3.50)

The ψ± bands are split by the perturbative DM interaction. Although we consider
the magnitude of the DM term to be lower than J it is important to note that this
is not always the case as the DM interaction for 4f electrons for instance can be the
dominant component [151, 152]. There is a gap of size 3J to the upper ψ0 band. Near
the Γ point we can therefore construct an effective two-band model to see how the
DM term mixes those two bands and what it means for the topology. We first define

U =

1 1 1
1 ω ω∗

1 ω∗ ω

 /
√

3. (3.51)

In this basis the kernel matrix is

M̃k = UMkU† (3.52)

We extract the low-energy subspace by projecting down onto the lower right 2× 2
block of this matrix. Doing so gives us

M̃eff,k = (h− (2 + δk/3)J)I + ~d(~k) ·~σ, (3.53)

where

~d(~k) =

J/3(2 cos(λ1 · k)− cos(λ2 · k)− cos(λ3 · k))
J/3(−

√
3 cos(λ2 · k) +

√
3 cos(λ3 · k))√

3(Dzδk + Jδ̃k)

 . (3.54)

Here

δk =
1
3 ∑

i
cos2(λi · k/2)

δ̃k =
1
3 ∑

i
sin(λi · k/2) cos(λi · k/2)

(3.55)

This effective field model is only valid close to the Γ-point where the energy sepa-
ration between the lower bands and the top one is large. We therefore cannot at the
moment say exactly what happens throughout the entire Brillouin zone, but we can
infer the existence of a topological charge.

We can analyze the equations of this field for Dz � J. In the vicinity of the Γ
point, the third component of ~d is to a good approximation a constant

√
3Dz. The

first and second component can be found through a second order expansion in k.
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We obtain the approximate

~d(~k) ≈

 J
32(kx

2 − ky
2 +
√

3kxky)
J

32(
√

3kx
2 −
√

3ky
2 − kxky)√

3Dz

 (3.56)

The asymptotic form of the above field is that of a doubly-wound vortex. In other
words, if we fix |~k| at a sufficiently large value and draw the resulting ~d on the circle,
it will wind twice around the equator of the Bloch sphere. If Dz is small compared
to J then this asymptotic form will be reached close to Γ. However at the Γ-point ~d
will be oriented to the north pole of the Bloch sphere.

In Section B.1 we describe this scenario, where due to a broken symmetry (in this
case bond-inversion) a perturbative interaction can add a finite third component to
~d resulting in a Berry phase

γ± = ±πn (3.57)

Here n is the winding number of the polar angle φ(~k), which in the above case is 2.

This rudimentary analysis suggests that the bands are each endowed a Berry
curvature that integrates to ±2π. If there are no further contributions to the Berry
curvature on the given band, then this is sufficient to obtain the Chern number of
each band. However, we also have to consider topological charges elsewhere in the
Brillouin zone. Although the case described here is the one where Dz � J, as long
as the bands do not close, the topology will remain the same.

At the K and K′ points we may carry out a similar analysis. Here the kernel
Matrix is

M±K =

 η γ∗1ω∓1/2/2 γ1ω±1/2/2
γ1ω±1/2/2 η γ∗1ω∓1/2/2
γ∗1ω∓1/2/2 γ1ω±1/2/2 η

 . (3.58)

The basis we defined earlier again diagonalizes the Hamiltonian. At the K and K′

points we retain the C3 subgroup of the C3v(C3) magnetic point group governing
the lattice. When applied to the magnon wave-function this has identical basis func-
tions, which is why the Hamiltonian is diagonalized in the same way.

The eigenenergies are

ε± = h− 5J/2±
√

3Dz/2
ε0 = h− 3J.

(3.59)

It is now the two higher energy bands that are gapped by the DM interaction. We
may again expand M̃k in k, however this time the dispersion around the gap is
linear. We find to first order in k

~d(~k) =

 βJkx + αJky
−αJkx + γJky√

3
2 Dz

 . (3.60)
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a) Dz = 0, J = 1 b) Dz = 0.03, J = 1

c) Dz = 0, J = 1 d) Dz = 0.5, J = 1

Figure 3.3: We plot the effective field ~d in the vicinity of the Γ-point (a-b) and the K,
K′-points (c-d) respectively with a finite DM interaction (b), (d). Note that ~d winds
twice around the Γ-point, whereas it winds a single time around K and K′.
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Ω

E

Figure 3.4: (Left) we here plot the magnon bands of the kagome lattice with J = 1,
Dz = 0.1 and h = 5. The bands are colored according to the local Berry curvature.
(Right) The Berry curvature pr. unit energy is plotted here for the bands pictured.

Here we have made use of the parameters

α =
3
8
+

π

36
√

3

β = −
√

3
8

+
π

36

γ = −
√

3
8
− π

48
.

(3.61)

The texture drawn out by ~d(~k) here winds once around the K point. It therefore
contributes ±π to each band. The same texture exists at the K′ point though, and
it is define on those same bands. It therefore contributes the same Berry curvature
which in total integrates up to ±2π. However, here it is the top band which now
gains a Chern number +1, whereas the middle band gains −1. Therefore the total
Chern number is now expected to be 0 for the middle band, where the top and
bottom band get +1 and −1 respectively.

In figure 3.4 we plot the magnon bands of the spin-polarized kagome with J = 1,
Dz = 0.1 and h = 5. The bands are colored according to the local Berry curvature.
We note that the Berry curvature is concentrated near the band-gaps. Additionally
the middle band, while having a Berry curvature which integrates up to 0 is dis-
tributed comparatively broadly in energy-space. The lower part of the band will
carry a higher statistical weight and therefore contribute more to the thermal Hall
coefficient. The Berry curvature of a two-band effective mode is given by

F±,θφ = ±sin θ

2
. (3.62)
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Figure 3.5: Topologically non-trivial magnon bands of the kagome magnet with
Dzyaloshinskii-Moriya interaction is shown here. (a) The dispersion relation with
high symmetry points indicated. (b) The Chern numbers are indicated as well as
the Berry curvature of each band. (c) Here the contributions of each band pr. unit
energy to the transverse conductance is shown. Figure reproduced from [10].

Here θ is the azimuthal angle that ~d makes with the origin. In our effective models
on kagome Dz is a constant coefficient of σ3. Therefore, we can reason that the Berry
curvature will be highly concentrated around the high symmetry points in the cases
where Dz ≈ 0. Now if the Berry curvature is highly concentrated near a band-gap
and each of the bands carry equal and opposite curvature, while the band-gap itself
is small, then the contributions to the thermal Hall coefficient given by each band
will in the extreme case cancel out. We therefore see in contrast to the electronic
systems that there is here a gradual dependence of the Hall coefficient on system
parameters and it will in general vary smoothly from 0 when a topological band-
gap appears.

In summary, we can view each band-gap as defining a surface ~d(~k) through
which the flux of a topological charge centered at the origin determines the Berry
curvature. If the gap is closed, then ~d(~k) must at some point intersect the origin, and
the flux intersecting it is zero. Passing through this point completely inverts the flux
as we see in the above examples with kagome. This intuition gives us a way to un-
derstand and predict the Chern numbers arising on each band. However, the above
expressions are only approximate solutions near the band-gap and Chern numbers
are a global property of each band, which is obtained from integrating the Berry cur-
vature throughout the Brillouin zone. It is also possible to have a Berry curvature
that does not integrate up to 0, but here unlike in the electron band-theory this may
still cause a finite Hall effect.

3.4.1 The thermal Hall effect of Lu2V2O7

In electronic band-theory the quantum Hall-effect is a consequence of the Berry cur-
vature integrating up to an integral multiple of 2π as well as the fact that occupation
of each band is determined by Fermi statistics. In response to an applied voltage the
conductivity is related to the Chern number through TKNN’s formula [60].

In the case of bosonic chargeless excitations, although they do not give rise to
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Figure 3.6: This figure shows the bilayer kagome lattice with staggered magnetic
order. Figure reproduced from [13].

an electronic current, a heat gradient will result in a flow of energy mediated by
magnon excitations. This energy flow too will be subject to a Lorentz force deter-
mined by the Berry curvature. As stated in Chapter 1 this is given by the thermal
Hall coefficient

κxy =
2k2

BT
h̄V ∑

n,k
c2(ρn)Ωn,k. (3.63)

Here the Boltzmann factor of the n’th band is ρn. It must be enveloped by the func-
tion c2 which is found by solving

cq(ρn) =
∫ ρn

0
(log

1 + t
t

)qdt. (3.64)

Even without the c2 function, this expression does not yield 2πn due to a topological
band-gap. This was explained elegantly in [10]. In figure 3.5 the band-structure of
the kagome is depicted. In the vicinity of each gap the Berry curvature is sharply
peaked, however the thermal activation of the magnon bands depends on the tem-
perature and therefore the bands do not contribute equally. In fact the second band,
which has a Chern number of 0 gives a finite non-zero contribution to kxy, which
can be seen by plotting the energy density of kxy as it is distributed on this band. In
[10] κxy is compared with the experimental study of Lu2V2O7 carried out by Onose
et. al. in [9], and it is shown to exhibit the same field dependence. Importantly, it
also switches sign with the field, and there is a sharp transition at exactly zero field.

3.5 In search of Z2 index for magnetic insulators

Spontaneous TR symmetry breaking together with spin-orbit coupling results in
the complex hopping of magnons needed for them to display a thermal Hall effect.
They do so in analogy to the quantum Hall effect of electrons and we can map the
hopping Hamiltonian of the magnons to the Haldane model. Remarkably the inter-
actions needed are not that uncommon in magnetic insulators. The Haldane model
in contrast requires some kind of exotic magnetic order. In some sense the magnetic
analogue of the Haldane model is therefore more realistic.

A natural next question is then what happens if TR symmetry is unbroken? Is
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there a way to also realize an analogue of the Kane and Mele model and a quan-
tum spin Hall state in magnetic insulators? For this to happen, we require a model
which hosts both spin lowering and raising excitations. We also require some kind
of symmetry which acts to define pairs of these excitations, similar to Krämers pairs
of electrons and thereby prevent them from hybridizing. However, magnons by
definition only appear in TR breaking models. In place of TR symmetry there could
be some other symmetry operation that protects them.

In [13] the question of what this symmetry operator is was considered for bi-
layer magnetic insulators with staggered magnetic order. Here the layers are cou-
pled with an antiferromagnetic exchange interaction which ensures that the sponta-
neously ordered state has opposite magnetization on each layer. Thereby the imag-
inary component of hopping caused by the DM interaction will have opposite signs
for each layer, and in effect, they realize two Chern insulators with an opposite ther-
mal Hall effect. However, we can consider that they necessarily contribute the same
spin-current. As depcited in figure 3.6, the bilayer kagome with staggered ferromag-
netic order supports spin-down magnons in the top layer and spin-up magnons in
the bottom layer. If a temperature gradient is applied to the material the top layer
will contribute a thermal Hall signal which is opposite to the bottom one because the
excitations experience an opposite deflection due to the Berry curvature. However,
since they also carry opposite spin, they contribute the same spin-Hall signal.

In general we can consider the BdG Hamiltonian of a bilayer lattice to be of the
form

Ĥ = ∑
k
~v†

kMk~vk (3.65)

Here
~v†

k =
[
â†
↑,0,k, â†

↑,1,k, . . . , â↓,N,−k
]
. (3.66)

The operator â†
σ,i,k creates a magnon on the σ layer’s ith sublattice with quasi-momentum

k.
On the space of these magnon wavefunctions, we can define the pseudo-time-

reversal (PTR) operator by its matrix form

Θ = (σz ⊗ iσy ⊗ IN+M)K. (3.67)

Here the Pauli matrix σz acts on the particle-hole space of the BdG Hamiltonian
whereas σy acts to interchange the two layers and K is complex conjugation. The
identity operator acts on N spin-up and M spin-down sublattices of the bottom
layer. In the top layer these spins are reversed.

Clearly Θ2 = −1, as opposed to TR which for bosons squares to 1. Now, requir-
ing that −Θ̂ĤkΘ̂ = Ĥ−k is in matrix form expressed as

−ΘΣzMkΘ = ΣzM−k. (3.68)

Here

Σz =

[
I2(N+M) 0

0 −I2(N+M)

]
. (3.69)
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The most general Hamiltonian allowed by equation (3.68) is given by

Mk =


h1(k) h2(k) ∆2(k) ∆1(k)
h2(k)† h∗1(−k) ∆∗1(−k) −∆†

2(k)
∆†

2(k) ∆∗1(−k) h∗1(−k) h∗2(−k)
∆1(k) −∆2(k) hT

2 (−k) h1(k)

 (3.70)

An example of an ordered state which we can apply this operator to is the bilayer
kagome lattice ferromagnet with interlayer antiferromagnetic interactions. Here the
ground state is ordered such that the top layer has spins aligned ferromagnetically
in the positive Ŝz direction and the bottom layer is ordered oppositely.

The h1(k) block corresponds to the kernel matrix derived earlier for the mono-
layer kagome, i.e.

h1(k) =

 η γ∗1δ∗3,k γ1δ2,k
γ1δ3,k η γ∗1δ∗1,k
γ∗1δ∗2,k γ1δ1,k η

 . (3.71)

The difference here being the diagonal η = 2J + J′, where J and J′ are the ferromag-
netic and anti-ferromagnetic coupling respectively.

Since the bottom lattice magnons have a hopping Hamiltonian given by h∗1(−k),
it is as though they simply have an opposite DM interaction. This is enforced by
the PTR symmetry. The block coupling the two layers is h2(k). This matrix is in
general non-zero, even when PTR is included. It is worth considering the case where
h2(k) = 0 though. We also require that the ∆1 blocks are zero.

As there are no matrix elements connecting the top and bottom layer magnons,
the two layers are effectively disconnected. Each realizes a magnon Chern insula-
tor with an exactly opposite κxy due to psuedo-time-reversal symmetry. This is the
simplest sense in which we can realize Z2 topology. In the Chern insulators a topo-
logical band-gap was associated with an edge-mode which connects the two bulk
gaps. In this case the bulk gaps are composed of degenerate ↓ and ↑magnons, each
of which carries an edge-mode. The edge-modes are partners connected by PTR and
because of this they carry opposite quasi-momentum, but are degenerate. Follow-
ing the approach of [13] we can write the Berry connection and curvature of each
PTR pair as

An,σ(k) = ∑
l=1,2

An,l,σ(k), (3.72)

Ωn,σ(k) = ∑
l=1,2

Ωn,l,σ(k). (3.73)

Here the sum of the Berry connection and curvature is taken over each layer. The
band index is n and the particle-hole index is σ. TheZ2 index may then be calculated
as

Dn,σ =
1

2π

[∮
∂EBZ

dk ·An,σ(k)−
∫

EBZ
d2kΩn,σ(k)

]
mod 2 (3.74)

Here EBZ refers to the effective Brillouin zone, which has half the area of the first



62 Topological bands in insulating magnets

Brillouin zone. Each point in EBZ is associated with a time reversed point outside
of EBZ, which when taken together defines the full Brillouin zone.

The Z2 index defined here is valid also in the case where Ŝz is not a good quan-
tum number (in contrast to the spin Chern number which we define in Chapter 4
). and it also gives a rather intuitive view of the Z2 index in terms of the pseudo-
Krämer’s pairs’ Berry curvature and Berry connection. Another formulation can be
taken by considering the matrix elements of the PTR operator.

〈ψi(−k)|ΣzΘ|ψj(k)〉 = − 〈ψj(−k)|ΣzΘ|ψi(k)〉 (3.75)

= P(k). (3.76)

Here the ψi is the ith band wave-function. Each band defines a 2× 2 subspace
whose components can be connected by PTR. Especially, at the pseudo-time-reversal
invariant points where H(k) = H(−k), |P(k)| = 1. In the general case the zeros of
P(k) must be counted for each band l. From the definition of P(k) it is easily seen
that a zero at k∗ implies an additional zero at −k∗. The number of pairs of zeros
modulo 2 is a topological invariant of P(k). The reason is that each zero defines a
vorticity in P(k), which will be opposite at each ±k∗. A single pair of zeros can-
not annihilate unless they cross through a time-reversal invariant point, but at these
points |P(k)| = 1 trivially, so an uneven number of pairs of zeros can never annihi-
late. This feature is protected by PTR symmetry.

Although this in principle puts the PTR for magnons on even footing with TR for
electrons, it is unclear what physical symmetries actually result in a PTR operator.
In fact, for the bilayer kagome model presented here, in general anisotropic terms
are allowed which break PTR symmetry, while not breaking TR symmetry. This
destroys the Z2 topology of the bands in the given problem. How exactly the PTR
symmetry can be realized is the subject of Chapter 4 where we study this in the
context of a bond-wave Hamiltonian describing a quantum paramagnet on a bilayer
kagome lattice.



Chapter 4

Bilayer kagome quantum paramagnet
with triplon Z2 topology

As we have seen in Chapter 3 the Dzyaloshinskii Moriya interaction in a magnet
can generate a complex hopping, which acts similarly to the complex hopping of
electrons in the Haldane model [150]. By analyzing the bands it is clear that they
thereby obtain a non-trivial topology [104]. It could thus be said that these magnets
facilitate a bosonic version of the Haldane model. A natural next question is then
whether a bosonic version of the Kane and Mele model also exists.

It has been proposed in previous works that such a system should exist in a
bilayer honeycomb lattice [130] where it could be mediated by triplet excitations or
by conventional magnons in bilayer kagome or honeycomb lattices [13]. We may
then imagine that these systems could be accompanied by a spin Nernst effect, in
analogy to the spin-Hall effect of the Kane and Mele model.

In this chapter we propose a similar triplet bond-wave system, however, we take
into account a more general Hamiltonian than [130], where many more symmetry
allowed interactions are present. By doing so we find that for the bilayer kagome
magnet the Z2 topological phase breaks down. This is in-spite of the model being
TR symmetric. Additionally we investigate the pseudo-time-reversal operator that
would be needed to protect the Z2 topology in analogy to how TR protects it in the
Kane and Mele model.

The results described in this chapter are accessible in the preprint [1].

4.1 Symmetry allowed interactions

The point group symmetry of the bilayer kagome lattice we consider is isomorphic
to D6h. In figure 4.1 this is indicated graphically. The structure of the lattice is de-
picted along with the symmetry operators which make up D6h. The bilayer kagome
lattice has three sub-lattices A, B and C, and we define an index which specifies the
layers too.

In table 4.1 we list the generators of this group and their action on components
of spin as well as the sub-lattice and layer indices.

We now treat the symmetry allowed exchange terms of the Hamiltonian. We
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Table 4.1: We list the generators of D6h

Generator E C6 C2 σh

Spin component
Ŝx 1

2 Ŝx +
√

3
2 Ŝx Ŝx −Ŝx

Ŝy −
√

3
2 Ŝx + 1

2 Ŝy −Ŝy −Ŝy

Ŝz Ŝz −Ŝz Ŝz

Dimer label

A C’ B A
B A’ A B
C B’ C C
A’ C B’ A’
B’ A A’ B’
C’ B C’ C’

Layer index 1 1 2 2
2 2 1 1

δ1

δ3

δ2

Γ

K'

kx

ky

K
M1

M2

M3

(a) (b)

2

A

B

C

B'

C'

A'

C'2
C"2

σv
σd

1

C6

2

1

σh

A

B

C

x

y

Figure 4.1: The bilayer kagome lattice. (a) is the top-down view of the bilayer lattice
with lattice vectors δi indicated as well as the high-symmetry points of the Brillouin
zone defined by them. (b) shows the point group symmetries. C6 rotational symme-
try about the center of the kagome hexagon is indicated. Red and blue lines going
through this centerpoint define simultaneously the C2 axes of rotation and vertical
planes of reflection. Also indicated is the horizontal plane of reflection σh.
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will examine interactions which are quadratic in spin-operators. We require that the
Hamiltonian transforms according to the A1 irreducible representation of the group.
This is ensured if

∑
g∈D6h

g : Ĥ = ∑
g∈D6h

ΓA(g)ĤΓA(g)−1 (4.1)

= nĤ, (4.2)

where n is the order of the group and A is any representation of the group, for
instance matrices acting on the spin-space of the kagome lattice. The Hamiltonian
can be written as

Ĥ = ĤXXZ + ĤDM + ĤNematic. (4.3)

Here the term ĤXXZ contains the diagonal of the tensor, with the ŜxŜx and ŜyŜy

terms given equal weight. ĤDM includes the Dzyaloshinskii-Moriya terms, which
form the anti-symmetric part of the exchange tensor. Finally the ĤNematic includes
anisotropic terms which are invariant under bond-inversion. They include terms
composed of the bond-nematic operators

Q̂x2−y2

i,j = Ŝx
i Ŝx

j − Ŝy
i Ŝy

j

Q̂xy
i,j = Ŝx

i Ŝy
j + Ŝy

i Ŝx
j

Q̂yz
i,j = Ŝy

i Ŝz
j + Ŝz

i Ŝy
j

Q̂zx
i,j = Ŝz

i Ŝx
j + Ŝx

i Ŝz
j .

(4.4)

Below we elucidate which terms are allowed on each bond. The determination of
each of these terms is carried out by going through the point group elements of D6h
with each term required to obey equation (4.2).

4.1.1 Intra-dimer bonds

The vertical bonds which connect the layers will be referred to as the "dimers" of the
lattice. These dimers have contributions from the XXZ anisotropy

ĤXXZ = J‖∑
j
(Ŝx

j1Ŝx
j2 + Ŝy

j1Ŝy
j2) + J⊥∑

j
Ŝz

j1Ŝz
j2. (4.5)

Additionally intra-dimer nematic terms are allowed

Ĥnematic = K‖∑
j

nj ·Q
‖
j1,j2. (4.6)
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Here Q̂‖i,j = (Q̂x2−y2

i,j , Q̂xy
i,j ). The unit vectors nj depend on the sub-lattice index. They

are

nA =
(1

2
,

√
3

2

)
nB =

(1
2

,−
√

3
2

)
nC = (−1, 0).

(4.7)

There is no contribution from the DM-interaction as there is an inversion center
on each bond. By Moriya’s rules DM interaction is therefore not allowed on these
bonds. We thus find that there are in total three independent parameters determin-
ing the interactions on the dimers.

4.1.2 Inter-dimer nearest neighbor bonds

On the inter-dimer nearest neighbor bonds the Heisenberg terms have two indepen-
dent components

Ĥ1st
XXZ = J′‖ ∑

〈i,j〉
l=1,2

(Ŝx
il Ŝ

x
jl + Ŝy

il Ŝ
y
jl) + J′⊥ ∑

〈i,j〉
l=1,2

Ŝz
il Ŝ

z
jl. (4.8)

Additionally there are two components to the DM interaction. They are

Ĥ1st
DM = D′⊥ ∑

〈i,j〉
l=1,2

ẑ · Sil × Sjl + D′‖ ∑
〈i,j〉

l=1,2

nil,jl · Sil × Sjl (4.9)

The out of plane component is simply the third component of D, which is the same
for all nearest neighbor bonds. The rules governing the unit vectors nil,jl in the
above expression are that they must lie in the x, y-plane and that they must be per-
pendicular to the orientation of the il, l j bond. Additionally the vectors must be
related to each other by c6 rotations and in each layer they must have opposite ori-
entations.

There are two symmetry allowed components of the nematic interaction. The
first one is the in-plane component defined by

Ĥ1st
nematic,‖ = K′‖ ∑

〈i,j〉
l=1,2

ni,j ·Q
‖
il,jl. (4.10)
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The vector Q‖il,jl has the same form as before. The unit vectors now have the form

nAB′ = nA′B = (−1, 0)

nBC′ = nB′C =
(1

2
,

√
3

2

)
nCA′ = nC′A =

(1
2

,
−
√

3
2

)
.

(4.11)

Finally the out-of-plane component is

Ĥ1st
nematic,⊥ = K′⊥ ∑

〈i,j〉
l=1,2

ni,j ·Q⊥il,jl. (4.12)

Here Q⊥i,j = (Q̂yz
i,j , Q̂zx

i,j ). But now the vectors are

nAB′ = −nA′B = (−1)l(−1, 0)

nBC′ = −nB′C = (−1)l
(1

2
,

√
3

2

)
nCA′ = −nC′A = (−1)l

(1
2

,
−
√

3
2

)
.

(4.13)

The interaction is opposite in the two-layers as we indicate with the inclusion of a
factor (−1)l. In total we obtain 6 independent parameters which govern the inter-
action on these bonds.

4.1.3 Inter-dimer next-nearest neighbor bonds

Additionally we considered the effect of next-nearest neighbor interactions. They
can be defined very similarly to the nearest-neighbor ones. The Heisenberg terms
are

Ĥ2nd
XXZ = J′′‖ ∑

〈〈i,j〉〉
l=1,2

(Ŝx
il Ŝ

x
jl + Ŝy

il Ŝ
y
jl) + J′′⊥ ∑

〈〈i,j〉〉
l=1,2

Ŝz
il Ŝ

z
jl. (4.14)

Additionally there are two independent components to the DM interaction. They
are

Ĥ2nd
DM = D′′⊥ ∑

〈〈i,j〉〉
l=1,2

ẑ · Sil × Sjl + D′′‖ ∑
〈〈i,j〉〉
l=1,2

nil,jl · Sil × Sjl. (4.15)

Once again the out of plane component D′′⊥is the same for all of these bonds. The
rules governing the unit vectors nil,jl in the above expression follow the same rules
as before, but because the next-nearest neighbor bonds are oriented at different an-
gles, these vectors in general will be different.

We again have an in-plane and an out-of-plane component of the nematic inter-
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action. The in-plane component is

Ĥ2nd
nematic,‖ = K′′‖ ∑

〈〈i,j〉〉
l=1,2

ni,j ·Q
‖
il,jl. (4.16)

The unit vectors are

nAB = nA′B′ = (1, 0)

nBC = nB′C′ =
(
−1

2
,−
√

3
2

)
nCA = nC′A′ =

(
−1

2
,

√
3

2

)
.

(4.17)

The out of plane component is

Ĥ2nd
nematic,⊥ = K′′⊥ ∑

〈〈i,j〉〉
l=1,2

ni,j ·Q⊥il,jl. (4.18)

Again Q⊥i,j = (Q̂yz
i,j , Q̂zx

i,j ). But now the vectors are

nAB = −nA′B′ = (−1)l(1, 0)

nBC = −nB′C′ = (−1)l
(
−1

2
,−
√

3
2

)
nCA = −nC′A′ = (−1)l

(
−1

2
,

√
3

2

)
.

(4.19)

4.2 Triplon BdG Hamiltonian

We showed in Section 2.3 that the Heisenberg interaction energy of a dimer can be
minimized by choosing a singlet state thereby minimizing the collective spin of the
dimer. We consider again this approach for our bilayer kagome lattice, but this time
focusing on the bonds connecting each layer.

The dominant interaction terms are the Heisenberg exchange terms ĤXXZ. These
terms all commute with the dimer magnetization, Ŝz

i, = Ŝz
i,1 + Ŝz

i,2. Therefore in the
limit of strong Heisenberg interaction the eigenstates must be singlets or triplets. If
the interactions are anti-ferromagnetic, then the lowest energy state will be the sin-
glet and the triplet states will form dispersive excitations on top of a singlet covered
lattice. These excitations are commonly known as triplons, and we will refer to them
as such. We therefore express this problem in the basis
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ŝ†
i |0〉 = |s〉i = (|↑1, ↓2〉i − |↓1, ↑2〉i)/

√
2

t̂†
1,i |0〉 = |t1〉i = |↑1, ↑2〉i

t̂†
0,i |0〉 = |t0〉i = (|↑1, ↓2〉i + |↓1, ↑2〉i)/

√
2

t̂†
−1,i |0〉 = |t−1〉i = |↓1, ↓2〉i .

(4.20)

The index i here is the dimer index, where each dimer has two spins in layers 1 and
2. The total basis is then expressed by the vector

t̃k =
(
t̂A1,k , t̂B1,k , t̂C1,k , t̂A0,k , t̂B0,k , t̂C0,k , t̂A−1,k , t̂B−1,k , t̂C−1,k

)
(4.21)

The task is now to represent spin-operators in this basis too. This will allow us to
fully develop the bond-wave theory. First we express the operators

Ŝ+
i,1 =

1√
2

[
t̂†
1,i(t̂0,i − ŝi) + (t̂†

0,i + ŝ†
i )t̂−1,i

]
Ŝ−i,1 =

1√
2

[
(t̂†

0,i − ŝ†
i )t̂1,i + t̂−1,i(t̂0,i + ŝi)t̂−1,i

]
Ŝz

i,1 =
1
2
[
t̂†
1,i t̂i,i + t̂†

0,i ŝi + ŝ†
i t̂0,i − t̂†

−1,i t̂−1,i
]

Ŝ+
i,2 =

1√
2

[
t̂†
1,i(t̂0,i + ŝi) + (t̂†

0,i − ŝ†
i )t̂−1,i

]
Ŝ−i,2 =

1√
2

[
(t̂†

0,i + ŝ†
i )t̂1,i + t̂−1,i(t̂0,i − ŝi)t̂−1,i

]
Ŝz

i,2 =
1
2
[
t̂†
1,i t̂i,i − t̂†

0,i ŝi − ŝ†
i t̂0,i − t̂†

−1,i t̂−1,i
]
.

(4.22)

This results in a bond-wave BdG Hamiltonian

Ĥ = ∑
k

[
t̃†
k

t̃−k

] [
M̃k Ñk
Ñ †
−k M̃ †

−k

] [
t̃k

t̃†
−k

]
. (4.23)

We note that the above form of the Hamiltonian in general contains terms such as
t̂†
±1,k t̂0,k. However, if we take into account the horizontal plane of reflection σh, then

these terms must disappear. The reason is that although σh has no effect on 〈Ŝz〉, it
still permutes the spin-1/2 of the top and bottom layer, which introduces a sign. In
other words σh : |↑, ↓〉 → − |↓, ↑〉 so that σh : t̂0,k → −t̂0,k. The result of this is that
the a separate hopping Hamiltonian may be written for the m = ±1 triplons and the
m = 0. We write these as

Ĥ(1.−1) = ∑
k

[
t†
k

t−k

] [
Mk Nk
N †

k M †
k

] [
tk

t†
−k

]
(4.24)
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and

Ĥ(0) = ∑
k

[
t†
0,k

t0,−k

] [
M0,k N0,k
N †

0,k M †
0,k

] [
t0,k

t†
0,−k

]
. (4.25)

Here

t†
k =

(
t†
1,k, t†

−1,k
)

t−k =
(
t−1,−k, t1,−k

) (4.26)

with
tm,k =

(
t̂Am,k , t̂Bm,k , t̂Cm,k

)
. (4.27)

For convenience in discussing our results we also define the total z-component of
spin

Ŝz
T = t†

1,kt1,k − t†
−1,kt−1,k. (4.28)

Interestingly the terms which are zeroed out by this procedure are the in-plane
DM and out-of-plane nematic components of the Hamiltonian. This is a consequence
of the fact that we have expressed the problem in the triplet basis defined by HXXZ
and treat these other components perturbatively. In general any Ŝz

i Ŝy
j and Ŝz

i Ŝx
j com-

ponents will due to reflection symmetry cancel in the triplon basis, and these are the
terms one obtains through ĤDM,‖ and ĤDM,⊥.

TheMk blocks are 6× 6 matrices, which couple the m = ±1 subspaces. Because
the |t〉0 subspace is decoupled due to the mirror symmetry, it defines a spinless 3-
sublattice bosonic hopping Hamiltonian with the 3× 3 blockM0,k. Both the spinfull
and spinless blocks have associated pairing terms which are captured by the corre-
sponding N-blocks.

In the following we express these blocks in terms of the 3× 3 identity matrix and
the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 i
0 0 0
−i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 (4.29)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =

1 0 0
0 1 0
0 0 −2

 .

The spinless block of the Hamiltonian is derived from Heisenberg exchange terms,
but does not contain contributions from the DM or nematic interaction.

M0,k =MXXZ
0,k = J‖I3×3 + J′⊥

[
cos(δ1 · k/2)λ4 + cos(δ2 · k/2)λ1 + cos(δ3 · k/2)λ6

]
.

(4.30)
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The pairing block has identical off-diagonal terms, but its diagonal is zero

N0,k =M0,k − J‖I3×3. (4.31)

The spinfull block on the other hand contains contributions from both the ne-
matic and DM terms.

Mk =MXXZ
k +MDM

k +Mnematic
k . (4.32)

This block operates on the space defined by the t̂±1,k triplons and therefore in gen-
eral will have terms which can be decomposed as sα ⊗ λβ, where sα are the spin
matrices projected onto the m = ±1 subspace. On the spinor space spanned by the
m = ±1 triplons each sα corresponds to the Pauli-matrix σα. The sx and sy matrices
may therefore in general mix the m = ±1 triplets.

The MXXZ
k block comes from Heisenberg exchange terms which commute with

the dimer Ŝz. It can be written as

MXXZ
k =

J‖ + J⊥
2

I2×2 ⊗ I3×3 + J′‖
(
cos(δ1 · k/2)I2×2 ⊗ λ4

+ cos(δ2 · k/2)I2×2 ⊗ λ1 + cos(δ3 · k/2)I2×2 ⊗ λ6
)

(4.33)

The coupling terms may then be written as

NXXZ
k = −MXXZ

k +
J‖ + J⊥

2
. (4.34)

As discussed earlier, the in-plane component of the DM interaction vanishes for
the triplon hopping Hamiltonian due to the mirror plane. The out-of-plane compo-
nent is

MDM
k =

(
D′⊥ cos(δ1 · k/2) + D′′⊥ cos((δ2 − δ3) · k/2)

)
sz ⊗ λ5

+
(

D′⊥ cos(δ2 · k/2) + D′′⊥ cos((δ3 − δ1) · k/2)
)
sz ⊗ λ2

+
(

D′⊥ cos(δ3 · k/2) + D′′⊥ cos((δ1 − δ2) · k/2)
)
sz ⊗ λ7. (4.35)

We also have pairing terms
NDM

k = −MDM
k (4.36)

This term is analogous to the spin-orbit coupling of the Kane and Mele model and
here it has exactly the same function. As long as the two spinful triplet bands do not
mix, the m = 1 triplet bands experience an imaginary hopping which is opposite,
but with equal magnitude on the m = −1 bands. Therefore the bands will in this
situation have equal and opposite Chern numbers and the thermal Hall signal from
each band adds up to zero. Now, because they have opposite spin, they should sup-
port a spin-Nernst signal. This may also be compared to the bilayer kagome magnet
with weak interlayer anti-ferromagnet interaction. Here the same term manifests as
a conventional DM-interaction for magnons with opposite sign on the two-layers.

However, in the presence of nematic interactions this is no longer the case. In
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general the nematic interaction may break the global m = ±1 degeneracy and cause
the bands to mix. For the nematic interaction, it is only the in-plane components
which contribute. They have the form

MNematic
k =

K‖
4
(
sx ⊗ λ8 −

√
3sy ⊗ λ3

)
+ K′‖ cos(δ1 · k/2)

(
−sx/2 +

√
3sy/2

)
⊗ λ4

+ K′‖ cos(δ2 · k/2)
(
−sx/2−

√
3sy/2

)
⊗ λ1

+ K′‖ cos(δ3 · k/2)sx ⊗ λ6. (4.37)

The corresponding pairing terms are obtained by removing the diagonal compo-
nent of this matrix. The off-diagonal elements are opposite in sign

NNematic
k = −MNematic

k +
K‖
4
(
sx ⊗ λ8 −

√
3sy ⊗ λ3

)
. (4.38)

Due to the appearance of sx and sy, these terms do not commute with Ŝz
T (see equa-

tion (4.28)) and therefore mix the spinful subspace. In the Kane and Mele model
such terms were allowed in the form of the Rashba spin-orbit coupling. However,
a key difference between these terms and the ones allowed in our triplon hopping
model is that our m = ±1 bands are not protected from hybridizing at the TRIM.
This can be readily seen by the fact that MNematic

k (equation (4.37)) has a constant
non-zero diagonal. Therefore the Z2topology of our model is not protected by time-
reversal symmetry, but only appears when the K‖ and K′‖ are both accidentally zero.

To see why time-reversal symmetry does not protect against the mixing of bands
at the TRIM consider the effect of time-reversal on the dimer. For an arbitrary S =
1/2 dimer we write

τ : |↑, ↑〉 → |↓, ↓〉
τ : |↑, ↓〉 → − |↓, ↑〉
τ : |↓, ↑〉 → − |↑, ↓〉
τ : |↓, ↓〉 → |↑, ↑〉 .

(4.39)

Here the sign of the |σ, σ̄〉 is reversed because of how the electrons are swapped. For
the |σ, σ〉 this reversal happens either twice or not at all, depending on how the elec-
tron gauge has been fixed, and so results in no change. Time-reversal therefore has
no effect on the singlet state. Its matrix form on the space of triplons [|t1〉 , |t0〉 , |t−1〉]
is

T =

0 0 1
0 −1 0
1 0 0

K. (4.40)

This matrix squares to the identity and therefore does not give a Krämers degener-
acy. Writing this operator in terms of its action on the spinful m = ±1 subspace,
where it acts as sx. We also include the sublattice degrees of freedom through the
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identity operator as
T = sx ⊗ I3×3K. (4.41)

This commutes with MNematic. Evidently, time-reversal is therefore not enough to
protect triplon bands from hybridizing.

In this section we have so far made several points that are worth summarizing
before moving on to results.

1. Nearest and next-nearest neighbor terms were included in this model in the
most general form allowed by the D6h point group. Due to the horizontal
mirror plane, there are no matrix elements which mix the m = 0 triplon with
the m = ±1 subspace. Because of the horizontal mirror symmetry the in-
plane component of the DM interaction does not affect the triplons to linear
order in the bond-wave theory. Neither does the out-of-plane component of
the nematic interaction.

2. The allowed component of the DM interaction corresponds to the spin-orbit
coupling in the Kane and Mele model, which gives us a way to realize the
Z2 topology. In our case the spinful bands m = ±1 are subject to an equal
and opposite complex hopping respectively. If the dimer Ŝz commutes with
the Hamiltonian, then the situation is analogous to the Kane and Mele model
where we can view each spin component as defining a Haldane model with
an opposite complex hopping.

3. The nematic term mixes the m = ±1 bands. It does so even at the TRIM
as there is no Krämer’s protection of the triplons. This is in contrast to the
Rashba spin-orbit term in the Kane and Mele model, which does not break the
Z2 topology of the model.

The Z2 phase of the triplon bands is not protected by a Krämer’s degeneracy in
the same way as the electron bands would be. As suggested by [13], it seems that
a pseudo time-reversal symmetry is needed. We will discuss what form this must
take and how it needs to be realized in bosonic systems later in the chapter. We will
also discuss the nematic term and its effect on the topological triplon edge-mode by
calculating the triplon spectrum in an open geometry.

Before discussing this aspect of the problem in detail we will first consider what
happens when we restrict interactions such that the Hamiltonian only contains U(1)
symmetric terms. This is achieved by setting K‖ = K′‖ = 0. We also include a
Zeeman term

ĤZeeman = −hz ∑
i

l=1,2

Ŝz
i . (4.42)

In the triplon BdG Hamiltonian this entersMσ,k as

MZeeman
k = −hzsz ⊗ I3×3. (4.43)

With this we will be able to study a Chern insulating TR breaking limit of the model
too.
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(a) (b)       (c)

Figure 4.2: Here the bulk bands are depicted for K‖ = 0, h = 0, J = 1 and J′ = 0.2.
(a) When the DM interaction is zero all of the bands coincide and there is a global
three-fold degeneracy as the model has SU(2) symmetry. (b) The band-structure is
depicted for D′′ = 0.01. The m = ±1 bands are globally degenerate and almost
coincide with the m = 0 if not for the DM-induced band-gaps. (c) The m = ±1
bands are depicted with m = 0 omitted.

4.3 Berry curvature and band-topology

In this section we restrict our attention to the case where K‖ = 0. In this case triplons
characterized by distinct m do not mix because the dimer Ŝz is conserved. We can
therefore decompose the Hamiltonian into three separate blocks. Each block is a
3 × 3 matrix acting on the sub-lattice space of the problem. As explained in the
previous section, the DM interaction contributes terms such as sz ⊗ λα, λα being a
Gell-Mann matrix. In each of the m blocks, this is simply replaced by mλα. Apart
from this, the Heisenberg interaction contributes through the ĤXXZ part. If we set
J⊥ = J‖ = J, the Heisenberg interaction is invariant to a global SU(2) rotation of the
spins. We can express this independently of m. Thus we obtain

M
U(1)
m,k =M

SU(2)
k +MDM

m,k , (4.44)

with

M
SU(2)
k = JI3×3 + J′

(
cos(δ1 · k/2)λ4 + cos(δ2 · k/2)λ1 + cos(δ3 · k/2)λ6

)
(4.45)

and

MDM
m,k = m

(
D′⊥ cos(δ1 · k/2) + D′′⊥ cos((δ2 − δ3) · k/2)

)
λ5

+
(

D′⊥ cos(δ2 · k/2) + D′′⊥ cos((δ3 − δ1) · k/2)
)
λ2

+
(

D′⊥ cos(δ3 · k/2) + D′′⊥ cos((δ1 − δ2) · k/2)
)
λ7. (4.46)

We also have the pairing terms given by

N
U(1)
m,k = JI3×3 −MU(1)

m,k . (4.47)

The band-dispersion is plotted in figure 4.2. The energy scale is given by J = 1,
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which defines the gap to excitations above the singlet state. J′ = 0.2 is what gives
the bands dispersion. The dispersion is calculated for the SU(2) symmetric case
where all three components of m are equivalent. When D′′ = 0.01 is included the
m = ±1 bands additionally obtain gaps at the high-symmetry points. We calculate
the band-gaps for the BdG Hamiltonian as outlined in Chapter 2 and obtain the
analytical form of the band-energies at the Γ-point

ω1,m(Γ) =
√

J(J − 2J′ −m∆Γ)

ω2,m(Γ) =
√

J(J − 2J′ + m∆Γ)

ω3,m(Γ) =
√

J(J + 4J′),

(4.48)

with
∆Γ = 2

√
3(D′ + D′′). (4.49)

At the K and K′ points they are

ω1,m(K) =
√

J(J − 2J′)

ω2,m(K) =
√

J(J + J′ −m∆K)

ω3,m(K) =
√

J(J + J′ + m∆K).

(4.50)

with
∆K =

√
3(D′ − 2D′′). (4.51)

The gaps at the Γ (K) points close when ∆Γ(K) are 0. This occurs at D′ = −D′′ and
D′ = 2D′′ respectively.

The Bogoliubov transform results in wavefunctions, |ψi〉 whose Berry’s curva-
ture must be calculated in the following way.

Fx,y
i = 〈∂kx ψi|Σz∂ky ψi〉 − 〈∂ky ψi|Σz∂kx ψi〉 (4.52)

From this the Chern numbers can be calculated by discretizing the Brillouin zone in
a way that is analogous to [153]. Doing so we obtain the topological phase-diagram
of figure 4.3. The combination of nearest and next-nearest neighbor DM interactions
in the form of D′ and D′′ means that the band-touching phase transitions at the
Γ-point and K and K′ points can occur separately. Each band-touching defines a
phase boundary, the ones at Γ-point being D′ = −D′′ and the K, K′ points being
D′ = 2D′′. Because of this we see the appearance of four distinct topological phases.
In figure 4.4 we show how the Berry’s curvature gets redistributed at these band-
touching points.
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Figure 4.3: In the U(1) symmetric model the Chern numbers can be calculated sep-
arately for each m component of the triplon wave-function. Doing so gives this
phase diagram with four distinct topological phases defined by regions on (D′, D′′)
space. The Chern numbers are listed for each band in order of increasing energy.
The dashed line at constant D′ defines a path taken in parameter space in generat-
ing figure 4.4.

(a) (b) (c)

Fxy

(d)

Figure 4.4: The distribution of the Berry’s curvature is shown here for the m = 1
bands following the dashed path shown on the topological phase diagram of fig-
ure 4.3. The parameters are J = 1, J′ = 0.2 and D′ = 0.01. The next-nearest
neighbor DM interaction is (a) D′′ = −0.0125 (b) D′′ = −0.0075 (c) D′′ = 0.0025
(d) D′′ = 0.0075. The band-touching at the Γ-point occurs at D′′ = −D′. Here the
Berry’s curvature is redistributed as seen in going from (a) to (b). The touching at
the K and K′ points occurs when D′′ = D′/2 and as seen the distribution of the
Berry’s curvature here inverts on the two bands that touch.
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4.3.1 Linear vs quadratic band-touchings

The band-touchings at the Γ point and at K and K′ points can be approximated by
effective two-band theories similarly to what was carried out in Chapter 3 for the
single layer kagome magnon dispersion. Here the dispersion was quadratic in k
near the Γ point and linear at the K and K′ points.

For the triplon bands of ĤU(1)
m,k the situation is identical as it is a 3-sublattice prob-

lem with imaginary hopping. The only difference here being that there is an addi-
tional next-nearest neighbor imaginary hopping taken into account here. In this
section we will derive analytical expressions for the Berry’s curvature near these
band-touchings. We will do so by considering effective two-band models at the
vicinity of the band-touchings.

In deriving these effective models we will consider only the number conserving
part of the Hamiltonian. Although there are some instances where pairing terms
can influence the topology of a system, they need be significant enough to make a
band-transition happen by closing one or more gaps. However, without the pairing
terms the triplon energies at the Γ-point are

ω1,m(Γ) = J − J′ −m∆Γ/2

ω2,m(Γ) = J − J′ + m∆Γ/2

ω3,m(Γ) = J + 2J′.
(4.53)

While at the K and K′ points they are

ω1,m(K) = J − J′

ω2,m(K) = J + J′/2 + m∆K/2

ω3,m(K) = J + J′/2−m∆K/2.

(4.54)

The band-touching point therefore does not change compared to the full BdG Hamil-
tonian. It is still given by ∆Γ(K) = 0.

The effective field model will take the form

M eff
k = d0(k)I2×2 + d(k) · σ. (4.55)

Here σ is the vector of Pauli-matrices. The above expression has an associated
Berry’s curvature given by

Ωkx,ky =
1
2

d ·
(

∂d
∂kx
× ∂d

∂ky

)
(d · d)3/2 . (4.56)

This is the Berry’s curvature of the lower of the two touching bands. The other band
is endowed with a curvature of−ΩK,K′ . We will project the three-sublattice problem
of each m onto the space defined by the bands which diagonalize the Hamiltonian
at a band-gap.
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Linear band-touching at K and K′

At the K point we may diagonalize the matrixMU(1)
m,k with

UK =


− 1√

3
− 1√

2
1√
6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6

 . (4.57)

The first column vector here corresponds to the low-energy eigenstate of MU(1)
m,k .

The second and third vector form a doublet at the K-point in the absence of DM
interaction. In this basis MU(1)

m,k becomes

UkM
U(1)
m,k U†

k =
J − J′ −1

4

√
3
2 J′ky + im 3

4
√

2
D′kx

1
4

√
3
2 J′kx + im 3

4
√

2
D′ky

−1
4

√
3
2 J′ky − im 3

4
√

2
D′kx J + J′

2 +
√

3
4 J′kx −

√
3

4 J′ky + im
√

3
(

D′
2 − D′′

)
1
4

√
3
2 J′kx − im 3

4
√

2
D′ky −

√
3

4 J′ky − im
√

3
(

D′
2 − D′′

)
J + J′

2 −
√

3
4 J′kx

 .

(4.58)

As seen above there is some mixing of the high-energy bands with the low energy
one at finite k, but to a good approximation we can consider them to be separate.
We can here write the effective field model

M lin
K = (J +

J′

2
)I2×2 + dK · σ, (4.59)

with

dx
K = −

√
3

4
J′ky

dy
K = −m

√
3

2
(D′ − 2D′′)

dz
K =

√
3

4
J′kx.

(4.60)

At the K′-point the model is written with (dx
K′ , dy

K′ , dz
K′) = (−dx

K, dy
K,−dz

K). The
Berry’s curvature is the same at the K, K′. Now equation (4.56) becomes

ΩK,K′(k) =
mJ′2(D′ − 2D′′)

(J′2k2 + 4(D′ − 2D′′)2)3/2
. (4.61)
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Figure 4.5: The Berry’s curvature near Γ and K points. It is here plotted as a func-
tion of the radial distance in k-space from the high symmetry point in terms of the
characteristic length-scale k0. The Dashed lines are the contributions to the Chern
number obtained by integrating ΩK,Γ from 0 up to k. Note that the Berry’s curvature
at K only integrates up to 1/2, but the Berry’s curvature is the same at K′ and so in
total both valleys contribute an integer Chern number.

Here k2 = k2
x + k2

y. We can introduce the characteristic quasi-momentum

k0 =
2(D′ − 2D′′)

J′
. (4.62)

This now gives a simplified form of the Berry’s curvature

ΩK,K′(k) =
mk0

2(k2 + k0
2)3/2

. (4.63)

Here we see that ΩK,K′ is highest at k = 0. The sign of ΩK,K′ is equal to the sign of
mk0. As with magnons on the kagome lattice, when a circular path in (kx, ky)-space
is taken around k = 0, the dK,K′ vector winds once.

Taking the integral of the Berry’s curvature in a disk of radius k, we get a contri-
bution to the Chern number as

CK,K′ =
1

2π

∫ k

0
ΩK,K′(k′)2πk′dk′ (4.64)

=
m
2

sgn(k0)

(
1− |k0|√

k2 + k0
2

)
. (4.65)

Here it is seen clearly that each valley contributes the same m sgn(k0)/2 to the total
Chern number. Crossing the D′ = 2D′′ phase boundary reverses the sign of k0, and
therefore changes the sign of the Chern number.

The Berry’s curvature and its integral is plotted in figure 4.5. This discussion so
far has been concerned only with contributions to the Chern number from the K and
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K′ points and is only valid near those high-symmetry points. However, each band
also has a contribution from the Berry’s curvature at the Γ point, which we explore
below.

4.3.2 Quadratic band-touching at Γ

In the previous discussion we expanded the Hamiltonian up to first order in k in
the vicinity of the K, K′ points. In order to understand the appearance of Chern
numbers due to a winding of the effective field vector dK,K′ , the leading first order
terms were enough.

However, the matrixMU(1)
m,k only has terms which are either cosinusoidal or con-

stant in k. Therefore, at the Γ point, any Taylor expansion performed will only con-
tain constant and second order terms. Clearly a constant d will not result in Chern
numbers, so it is here necessary to expand up to second order.

First we consider again a change of basis. Here we use

UΓ =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

 . (4.66)

Changing to this basis and expanding up to second order in k we obtain

UΓM
U(1)
m,k U†

Γ =
J − J′

8 k2 + 2J′ − J′

8
√

2
kxky − J′

16
√

2
(k2

x − k2
y)

− J′

8
√

2
kxky J − J′ + J′

8 k2
x −im

√
3(D′ + D′′) + J′

8 kxky

− J′

16
√

2
(k2

x − k2
y) im

√
3(D′ + D′′) + J′

8 kxky J − J′ + J′
8 k2

y

 . (4.67)

There are additional terms of the form k2D′ and k2D′′, however, these are vanish-
ingly small compared to the constant D′ and D′′ terms. We take the bottom right
block of the above matrix to be our effective field model

M
quad
Γ =

(
J − J′

(
1− k2

16

))
I2×2 + dΓ · σ, (4.68)

with

dx
Γ =

1
8

J′kxky

dy
Γ = m

√
3(D′ + D′′)

dz
Γ =

1
16

J′(kx
2 − ky

2).

(4.69)

Again, drawing a circular path around k = 0 the (dx, dz) components dΓ have a
non-zero winding number. However, here this feature winds twice and not once.
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We again calculate the Berry’s curvature of the lower band using equation (4.56).
We obtain

ΩΓ(k) =
4m
√

3(D′ + D′′)
(

J′k
8

)2

[
12(D′ + D′′)2 +

(
J′k2

8

)2]3/2 . (4.70)

We now define the reciprocal lattice length scale

k0
2 = 16

√
3
|D′ + D′′|

J′
. (4.71)

This allows us to rewrite

ΩΓ = m
2k2k0

2

(k4 + k0
4)3/2

sgn(D′ + D′′). (4.72)

In contrast to the Berry’s curvature of the linearly dispersing model the maximum
is now at k = 2−1/4k0 and it vanishes at k = 0 as well as k � k0. We have the
asymptotic forms

ΩΓ =

m sgn(D′ + D′′)2k2

k0
4 + . . . k→ 0

m sgn(D′ + D′′)2k0
2

k4 + . . . k� k0

. (4.73)

The Berry’s curvature forms a ring around the origin which contrasts with the lin-
early dispersing model at K, K′. Performing the integral over the disk with radius k
this time yields

CΓ(k) = m sgn(D′ + D′′)

(
1− k0

2√
k4 + k0

4

)
(4.74)

= m sgn(D′ + D′′)

(
1− k0

2

k2

)
, k� k0 (4.75)

We thereby have a Berry’s curvature which integrates up to m sgn(D′ + D′′) on the
lower band (the Berry’s curvature on the upper band is reversed in sign.) Now
one may simply add up the contributions from the Γ point and the K, K′ points to
determine completely the Chern numbers on each band. At the Γ point is the two
lower bands which touch, and therefore here the contribution to the total Chern
number depends on sgn(D′ + D′′). This completely determines the Chern number
on the lowest band, but the middle band will have an additional contribution from
the K, K′ point which depends on sgn(D′ − 2D′′). Thus it may be either 0 or ±m.
Finally the Chern number of the top band only depends on the band-touching at K,
K′. Thus we see how the phase diagram of figure 4.3 is reproduced.
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4.4 Z2-topology and pseudo-time-reversal operator

So far we have established the topology of the triplon bands without nematic terms.
We have concluded that we can analyze the bands separately in blocks of distinct m
quantum numbers. Here each m subspace acts as a separate hopping Hamiltonian
and the DM terms enact an imaginary hopping with opposite chirality for m = 1
and −1.

For m = 0 the hopping is purely real and the bands are topologically trivial. For
m = ±1 the two triplon bands experience an equal magnitude DM interaction with
opposite sign. The result is that the bands will have opposite Berry’s curvature and
Chern numbers.

This situation is similar to that of the Kane and Mele model [5] in the absence of
Rashba spin-orbit coupling. Each band has a time-reversed degenerate partner with
opposite Chern number. Taken together this results in a Chern number of 0. The Z2
topological invariant for such a system is the spin Chern number, i.e. for band i we
have

(Cm=1,i − Cm=−1,i)/2 mod 2. (4.76)

If this equates to 1 then topological helical edge-modes will appear. In figure 4.6 we
show these for different edge-geometries.

However, it is important to establish that the m = ±1 triplons are not true
Krämers pairs since they are bosons. Therefore, although they are connected by
time-reversal in the special case of K‖ = 0, in general time-reversal symmetry does
not prevent them from mixing. This is why symmetry allowed terms such as the
bond-nematic interaction are able to mix them.

The reason for the Krämers degeneracy to appear in fermionic systems with TR
symmetry, is that TR squares to−1 [154]. When acting on bosons, this is not the case,
which is why it was suggested by [13] that a different symmetry has to be present to
protect the bands from mixing. This is the pseudo-time-reversal (PTR), which acts
on the space of bond-operators (t†

k , t−k) and can be expressed as

Θ = I2×2 ⊗ iσy ⊗ I3×3K. (4.77)

The I2×2 matrix acts on the particle-hole space and iσy acts on the m = ±1 subspace
and K is complex conjugation. Physically this corresponds to a combination of TR,
which on this space is

τ = I2×2 ⊗ σx ⊗ I3×3K, (4.78)

as well as a U(1) rotation by π which induces an opposite phase on the m = ±1
bands. This is represented by

R = I2×2 ⊗ σz ⊗ I3×3. (4.79)

Evidently the PTR operator can be written in terms of R and τ as

Θ = Rτ. (4.80)

In the Kane and Mele model, the Rashba spin-orbit coupling commutes with TR.
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Figure 4.6: Triplon band structure in the absence of nematic interaction, calculated
for the open cluster geometries shown in (a-c). Here the appearance of topological
quantum edge-modes is evident in all three cases as seen by the band-dispersion
(d-e). Each pair of open or filled arrows of opposite orientation are a time-reversed
pair of triplon edge-modes. Each edge has a pair of topological modes with opposite
spin and momentum k due to time-reversal symmetry.
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Figure 4.7: Triplon band structure in the presence of nematic interaction, calculated
for the open cluster geometries shown in figure 4.6. (a-c) the parameters are J′ =
0.1J, D′′ = 0.01J, and K‖ = 0.02J. As seen in each case, within the band-gap the
edge-modes and avoid crossing the gap. (a) in the flat geometry this is easily visible
as the edge-modes do not approach each-other in the gap. (b) and (c) the edge-
modes approach the bulk bands where they hybridize and avoid crossing into the
bulk bands. (d-f) The J′ = 0.1J, D′′ = 0.01J, and K′‖ = 0.01J. Here the situation is
similar and we have qualitatively the same edge-modes. The inset of (f) shows how
the edge-modes themselves hybridize within the gap and thereby avoid crossing.
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This is why the Krämer’s degeneracy at TRIM is protected. However PTR is the rel-
evant symmetry of our system, and our model is not PTR invariant. Because of this
the Nematic terms are allowed, which do not commute with PTR. This is why we
do not have a Krämer’s degenerate system. When the triplon bands hybridize the
spectrum becomes gapped at the TRIM. We no longer have a protected degeneracy,
and therefore the Z2 topology is lost.

This can be shown by considering the commutation of the PTR operator with the
Hamiltonian. We will for convenience define

T = σz ⊗ I3×3. (4.81)

Within the particle (hole) subspace this acts as a PTR operator and we can recover
the total PTR operator as

Θ = I2×2 ⊗ T . (4.82)

We can now write the matrix form of the commutator as

ΘΣzH
(1,−1)
k − ΣzH

(1,−1)
k Θ = Σz

[
[T ,Mk] [T ,Nk]
[T ,Nk] [T ,Mk]

]
. (4.83)

SinceNk block can be obtained fromMk by removing the diagonal and multiplying
by −1, it is enough to consider the commutator with Mk. We have the following
equations which describe the effect of PTR on each term inMk

T (sα ⊗ λn)T † = −sα ⊗ λ∗n (4.84)

T (I2×2 ⊗ λn)T † = I2×2 ⊗ λ∗n (4.85)

T (sα ⊗ I3×3)T † = −sα ⊗ I3×3. (4.86)

From this we can conclude whether or notMk commutes with T . The terms I2×2⊗
λn commute if the Gell-Mann matrix λn is real, but not if it’s imaginary. Therefore
the MXXZ

k term commutes. The sα ⊗ λn terms commute only when λn is imaginary,
which means that the DM terms of MDM

k will commute, however MNematic
k does not.

This can be verified by calculating the bands of the open geometry. Returning to
the kagome lattice geometry of figure 4.6 we calculate the bands again, but this time
with a non-zero nematic interaction both on the dimer and nearest neighbor inter-
dimer. The results are shown in figure 4.7. The nematic terms mix the edge-modes
in such a way that they either hybridize with the bulk bands or with each-other. In
both cases they avoid crossing and merge back into the bulk.

4.5 Thermal Hall and spin Nernst coefficients

In the previous sections we discussed the topology of the bilayer kagome triplon
bands with and without the bond-nematic spin interaction. We showed that when it
is absent, the triplons separate into 3 blocks based on their m quantum number. Each
of these blocks are affected by a DM term which causes the bands to be topologically
non-trivial. In this regime the topological invariant of the bands is the spin-Chern
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Figure 4.8: (a) We compute the thermal Hall coefficient at finite temperatures for
a range of values of the next-nearest neighbor DM interaction D′′ with D′ = 0.01J,
following the dashed line of the phase diagram in figure 4.3. The two dashed vertical
lines correspond to the topological phase transitions of D′′ = −D′ and D′′ = D′/2
respectively. The magnetic field strength is hz = 0.2J. (b) The contributions to the
Thermal Hall coefficient of each m block is calculated over this same range of D′′.
Each line corresponds to a different temperature. (c) The contributions of each m
from (b) is here summed to obtain the total thermal Hall coefficient.

number.

We also showed that as soon as the nematic interaction is non-zero, the bands
belonging to different m hybridize and lose their global degeneracy. The Z2 topol-
ogy has to be protected by PTR symmetry, which in this case is broken by the spin-
nematic terms. These spin-nematic terms cause the bands belong to m = 1 and−1 to
hybdridize, thus opening a gap. This is verifiable by calculating the band-spectrum
with an open cylindrical geometry.

We now shift our focus to experimental signals that arise from these band-structures.
For this purpose we study the model in the absence of the nematic interaction. In
this case PTR is not broken and the triplet bands have Z2 topology. We can write it
very simply as

M̂Zeeman
m,k = −mhzI3×3. (4.87)

The effect of this term is to move each m block up and down in energy space. At
hz = 0 the bands will overlap and be concentrated around the excitation energy
of the dimer, which is given by J. Here the ±1 bands are globally degenerate, and
although the m = 0 bands are not affected by DM, the real part of their dispersion
is identical to that of the spinful bands.

By applying a heat gradient across the system a thermal energy current can be
generated. There’s a direct component to this current lying in the negative direction
of the thermal gradient, but there is also the thermal Hall component

jTH = κxyẑ×∇T. (4.88)
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Figure 4.9: (a) We compute the spin Nernst coefficient at finite temperatures for
a range of values of the next-nearest neighbor DM interaction D′′ with D′ = 0.01J,
following the dashed line of the phase diagram in figure 4.3. The two dashed vertical
lines correspond to the topological phase transitions of D′′ = −D′ and D′′ = D′/2
respectively. The magnetic field strength is hz = 0. (b) The contributions to the spin
Nernst coefficient of each m block is calculated over this same range of D′′. Each
line corresponds to a different temperature. (c) The contributions of each m from (b)
is here summed with a prefactor of m to obtain the spin Nernst coefficient.

For bosonic excitations the thermal Hall coefficient is

κxy = −i
1
β ∑

n,m

∫
BZ

c2(ρ(εn,m))Ωn,m(kx, ky)d2k (4.89)

= −i
1
β ∑

n,m

∫
BZ

mc2(ρn,m)Ωn,1(kx, ky)d2k (4.90)

Here Ωn,m(kx, ky) is the Berry curvature of the n’th band belonging to block m.
ρ(εn,m) is the Bose distribution. The last equality follows from the fact that the
Berry’s curvature of the spinless bands is 0 whereas Ωn,1(kx, ky) = −Ωn,−1(kx, ky).
Here

c2(x) =
∫ x

0
ln2(1 + t−1)dt. (4.91)

By tuning hz we can move the ±1 bands up and down in energy until they no
longer overlap. At finite temperatures, each band is populated according to the
Bose-Einstein distribution ρ(εn,m). Therefore, breaking the degeneracy with a finite
hz introduces a difference in occupation of the m = ±1 bands, which is necessary to
see a finite thermal Hall effect in the triplon system. With a magnetic field hz = 0.2J
we obtain the thermal Hall coefficient plotted in figure 4.8. Here the the value of
the thermal Hall coefficient has been for a range of temperatures and values of D′′

according to the dashed line of figure 4.3. Topological phase transitions are indicated
with dashed lines at D′′ = −0.01 and D′′ = 0.005. Due to their bosonic statistics, the
triplons do not yield a sharp step-like signature of these phase transitions. However,
at those points the change in thermal Hall coefficient is very large with respect to
D′′. This can be interpreted as a result of the Berry’s curvature of two bands being
swapped when they touch, as seen in figure 4.4.

If hz = 0, then the application of a heat gradient will result in the currents with
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m = 1 and m = −1 having opposite transverse components. Thus there will be no
net thermal Hall effect. However, those two components carry opposite spin, and
therefore will contribute an equal spin-current. This results in a spin-Nernst effect
with transport coefficient [129]

αxy = −i ∑
n,m

∫
BZ

mc1(ρ(εn,m))Ωn,m(kx, ky)d2k. (4.92)

Here
c1(x) =

∫ x

0
ln(1 + t−1)dt = (1 + x) ln(1 + x)− x ln x. (4.93)

This is computed in figure 4.9. Here the spin-Nernst coefficient is calculated again
along the dashed line of figure 4.3. We again indicate topological phase transitions
with dashed lines at D′′ = −0.01 and D′′ = 0.005. Again there are inflection points
due to the way the Berry’s curvature gets redistributed across the bands.

4.6 Conclusions

We have investigated the bond-wave Hamiltonian of a bilayer anti-ferromagnetic
kagome lattice model. Admitting only intra-dimer, nearest and next-nearest inter-
dimer terms, we find that the model does not support a Z2 topological phase even
though it is TR symmetric. We investigate the relevant pseudo-time-reversal sym-
metry of the model, and find that the nematic terms we describe violate it, although
in general they are allowed by the D6h point group. We supported this claim by
calculating the band spectrum with an open geometry with an without those terms
present. We thereby verified the presence of helical edge-modes when those terms
are not present. We also showed that when the nematic terms appear, they hybridize
those edge-modes and prevent them from connecting the bulk bands.

Additionally we have provided analytical results for the Chern numbers of the
effective two-band models associated with each band-gap in the limit where bands
are separable into 3 different Ŝz = m components. We also calculated the triplon me-
diated thermal Hall and spin Nernst coefficients. As expected these band-structures
give rise to responses which in principle can be measured experimentally. However,
although the existence of these topological phases implies that such signals will be
present, the converse may not be the case, as it is easy to imagine these signals ap-
pearing even for topologically trivial bands.



Chapter 5

From half-moons to Chern numbers

In previous chapters, we remarked that topological magnetic excitations can be as-
sociated with a thermal Hall effect. However, even in topologically trivial materi-
als, the thermal Hall signal may still be non-zero. The reason for this is that the
excitations we discussed, either triplons or magnons are bosonic in nature. Al-
though topologically trivial bands have a Berry curvature that integrates up to 0, the
Berry curvature may still be non-zero locally, and since the bosonically distributed
magnons have an energy dependent statistical weight, the contribution to the trans-
verse transport of the higher and lower energy parts will not in general cancel out.

In this chapter we instead focus on neutron scattering features and show how
they may reveal the topology of a magnon band-structure. In neutron scattering
experiments, two particular features tend to appear across a wide range of materials
with plaquette like structures. These are the so-called pinch-point and half-moon
features, which are often associated with pyrochlore and kagome materials [155,
156]. It has already been shown that these features are different projections of the
same phenomenon in the spin-spin structure factor [157]. We will therefore describe
them simply as half-moons here.

We analyze kagome in the field-aligned phase and show that half-moons here
arise from constraints imposed by symmetry and that they signal topologically non-
trivial bands. Using the magnetic point group of the spin-polarized phase we derive
constraints which guarantee topological band-gaps at high-symmetry points as well
as half-moon features on both of the touching bands. The remarkable finding here
is that both the non-trivial band topology and the characteristic spectral features
originate from the magnetic point-group symmetry.

As outlined in Section 3.4, the topology of magnon bands can be investigated
by constructing an effective field theory at the high-symmetry points where two of
the three magnon bands touch. The symmetries of the lattice impose a winding of
~dk around the high symmetry points of the Brillouin zone. Because of this, each
band-gap endows the bands with a Berry curvature. It is this same winding which
manifests as half-moons in the structure factor Sk(ω), and we find that the winding
number of ~dk is identical to the number of intensity minima and maxima observed.
This is similar to previous discussions about half-moons in the context of magnon
Weyl points [158].

This is supplemented with spin-wave calculations which support this claim. We
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A

C

B

Figure 5.1: The kagome lattice with unit vectors indicated.

also derive a topological phase-diagram and study the transition between a DM-
induced topological phase and one induced by Kitaev-like anisotropic interactions.

5.1 The kagome lattice geometry and point group

As a sufficiently general example, we consider a S = 1/2 magnet on a kagome
lattice, which has been fully polarized by an applied magnetic field. The symmetries
of the relevant point group D6h are indicated on figure 5.1. The Hamiltonian must
be invariant under application of the elements contained in this group. It is also
invariant under translation by the lattice vectors

δ1 = [1, 0]T

δ2 = [−1/2,
√

3/2]T

δ3 = [−1/2,−
√

3/2]T.

(5.1)

We also define the reciprocal lattice vectors

∆1 = 2π[0, 2/
√

3]T

∆2 = 2π[−1,−1/
√

3]T

∆3 = 2π[1,−1/
√

3]T.

(5.2)

A generic form of such a Hamiltonian would be

ĤGeneric = ∑
i,j

∑
α,β

Jα,β
i,j Ŝα

i Ŝβ
j . (5.3)

We can add a term which explicitly breaks TR symmetry as

Ĥ = ĤGeneric − hz ∑
i

Ŝz
i . (5.4)
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We now imagine that hz is large enough to saturate the spins. Now we may carry
out spin-wave theory using the fully polarized state with 〈Ŝz

i 〉 = S as the ground
state. Doing so results in a Bogoliubov-de-Gennes Hamiltonian of the form

ĤBdG
k = v†

k

[
Mk Nk
N †

k M ∗
k

]
vk (5.5)

with vk = [âk, b̂k, ĉk, â†
−k, b̂†

−k, ĉ†
−k]. For this very generic form of the Hamiltonian, we

will in the following sections elaborate on the allowed matrix elements. We do so by
considering the magnetic point group symmetry which remains after TR is broken
by either a spin-polarizing magnetic field hz or spontaneous magnetization (in the
case of a ferromagnet).

In the final section we will show results from spin-wave theory considering the
model

Ĥ = ∑
〈i,j〉

SiJi,jSj − hz ∑
i

Ŝi. (5.6)

Here the tensor Ji,j depends on the sub-lattices of i and j as

JB,C =

 Jx Dz 0
−Dz Jy 0

0 0 Jz

 JC,A =

 1
4(Jx + 3Jy)

√
3

4 (Jx − Jy) + Dz 0√
3

4 (Jx − Jy)− Dz
1
4(3Jx + Jy) 0

0 0 Jz


JA,B =

 1
4(Jx + 3Jy) −

√
3

4 (Jx − Jy) + Dz 0
−
√

3
4 (Jx − Jy)− Dz

1
4(3Jx + Jy) 0

0 0 Jz


(5.7)

This is the most general nearest-neighbor spin interaction model on kagome allowed
by the D6h point-group [159]. We will use this to numerically calculate the Chern
numbers of magnon bands.

5.2 Magnon irreducible representations

In this section we derive the irreducible representations of magnons under D6h(C6h).
Doing so will allow us to determine the allowed matrix elements of Ĥk in the basis
of magnon operators. Then, in the next section, we will make use of this to construct
the effective field model of touching bands.

The point group we use is D6h(C6h). This is the magnetic point group that ap-
pears when a material which is described by the symmetry group D6h orders in such
a way that the spins follow its subgroup C6h. This is the case for instance when the
material is polarized by a −hŜz term. The way that we construct D6h(C6h) from C6h
and D6h is to take the complement to C6h and apply time-reversal symmetry with
those operations.

D6h(C6h) = C6h ⊕ τ × (D6h\C6h) (5.8)
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σy

σπ/6

c6σh

a) τσy

τσπ/6

c6σh

b)

Figure 5.2: Here we depict the elements of (a) D6h and (b) D6h(C6h). The horizontal
plane of reflection σh, and the 6-fold rotation c6 are indicated on both figures. The
vertical planes of reflection in (b) must be applied together with time-reversal, which
we indicate by coloring them red, as opposed to (a) where they are gray.

The × operation here is defined as

A× {g1, g2, . . . , gn} = {Ag1, Ag2, . . . , Agn} (5.9)

Table 5.1: The generators of D6h(C6h). We tabulate their action on spin operators
including step up and down operators, as well as site indices. Here ω = ei2π/3.

D6h(C6h) c6 τσy σh

Ŝx 1
2 Ŝx +

√
3

2 Ŝy Ŝx −Ŝx

Ŝy −
√

3
2 Ŝx + 1

2 Ŝy −Ŝy −Ŝy

Ŝz Ŝz Ŝz Ŝz

αŜ+ −ωαŜ+ α∗Ŝ+ −αŜ+

αŜ− −ω∗αŜ− α∗Ŝ− −αŜ−

A B A A
B C C B
C A B C

Magnons are created by application of the Ŝ− operator to the ordered state and
therefore should transform in the same way. This is clear from the Holstein-Primakoff
transform which gives

Ŝ− = â†

√
1− â† â

2S
. (5.10)

Everything under the square root transforms as a scalar, so the magnon creation
operator must transform exactly as Ŝ−. Conversely, the annihilation operator must
transform as Ŝ+.

To continue, we first notice that inversion can be used as a generator in place of
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σh since
σh = c6

3i. (5.11)

This is more convenient, since the inversion symmetry acts as an identity operator
on spins and sublattice indeces. So for the purposes of writing up the irreducible
representations of magnons we can make use of only the subgroup generated by c6
and τσy. We can write up explicitly how each element acts on the magnons. Here
each magnon creation operator is labeled according to its sublattice. We also include
a complex prefactor α to account for the conjugation due to τ. We will also shorten
the notation and introduce σ̃θ = τσθ, where θ is the angle that the plane of reflection
makes with the y-axis.

Table 5.2: The action of the magnetic point group on magnons on sublattices A, B
and C respectively. Here ω = ei2π/3. We label each plane of reflection τσv ≡ σ̃θ, with
the θ being angle that the plane makes with the y-axis. Each σ̃θ of the bottom row is
obtained by the composition σ̃θ = g ◦ σ̃0◦ , where g is from the top row. For instance
σ̃π/6 = c6 ◦ σ̃0

g e c6 c3 c2 c3
2 c6

5

g : αâ† αâ† −ω∗αb̂† ωαĉ† −αâ† ω∗αb̂† −ωαĉ†

g : αb̂† αb̂† −ω∗αĉ† ωαâ† −αb̂† ω∗αĉ† −ωαâ†

g : αĉ† αĉ† −ω∗αâ† ωαb̂† −αĉ† ω∗αâ† −ωαb̂†

g σ̃0 σ̃π/6 σ̃π/3 σ̃π/2 σ̃2π/3 σ̃5π/6

g : αâ† α∗ â† −ω∗α∗ ĉ† ωα∗b̂† −α∗ â† ω∗α∗ ĉ† −ωα∗b̂†

g : αb̂† α∗ ĉ† −ω∗α∗b̂† ωα∗ â† −α∗ ĉ† ω∗α∗b̂† −ωα∗ â†

g : αĉ† α∗b̂† −ω∗α∗ â† ωα∗ ĉ† −α∗b̂† ω∗α∗ â† −ωα∗ ĉ†

By taking linear combinations of sublattice bosonic field operators â†, b̂† and ĉ†

we can obtain the basis-functions

ψ̂†
0 = (â† + ω∗b̂† + ωĉ†)/

√
3

ψ̂†
+ = (â† + b̂† + ĉ†)/

√
3

ψ̂†
− = (â† + ωb̂† + ω∗ ĉ†)/

√
3.

(5.12)

These basis functions in turn define three irreducible representations of the group
D6h(C6h). We have labeled them in such a way that each ψ̂†

j transforms according to
Γj. Now, we label the magnon created on the unit cell centered on ri as ψ̂†

j,i. Then we
define the Fourier transformed

ψ̂†
j,k =

1√
L

L

∑
i=1

eiri·kψ̂†
j,i. (5.13)

The elements of D6h(C6h) applied to ψ̂j,k, in addition to their irreps listed in table 5.3
also transform k. Their action on k can be represented by O(2) matrices according
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Table 5.3: We list three irreps of D6h(C6h). Here K is complex conjugation.

g e c6 c3 c2 c3
2 c6

5

Γ0(g) 1 −1 1 −1 1 −1
Γ+(g) 1 −ω∗ ω −1 ω∗ −ω
Γ−(g) 1 −ω ω∗ −1 ω −ω∗

g σ̃0 σ̃π/6 σ̃π/3 σ̃π/2 σ̃2π/3 σ̃5π/6

Γ0(g) K −K K −K K −K
Γ+(g) K −ω∗K ωK −K ω∗K −ωK
Γ−(g) K −ωK ω∗K −K ωK −ω∗K

to the given rotation/reflection which is being applied. Denoting the matrix repre-
sentation of the element g asA(g), we have for instance

A(c2) = −I2×2. (5.14)

The reflections are combined with time-reversal which has the effect of reversing
k due to complex conjugation. Finally, while inversion does not act on spins, it
reverses k.

5.2.1 K and K’ subgroups

At the K and K′ points, the k index is invariant under application of some of the
group elements. Specifically the subgroup C3v(C3) transforms k into itself at these
points. We can tabulate the group and its irreps as shown on table 5.4. Here the

Table 5.4: We list three irreps of C3v(C3). Here K is complex conjugation.

g e c3 c3
2 σ̃0 σ̃π/3 σ̃2π/3

Γ0(g) 1 1 1 K K K
Γ+(g) 1 ω ω∗ K ωK ω∗K
Γ−(g) 1 ω∗ ω K ω∗K ωK

basis functions are obtained from equation (5.13) as ψ̂†
j,K and ψ̂†

j,K′ . Note that in this
instance, although we can use this to establish the eigenstates of the Hamiltonian
at high symmetry points, in general the ψ̂†

j,k do not diagonalize the Hamiltonian at
arbitrary k. It is worth noting that each of these irreps are one-dimensional, meaning
that there are no symmetry-protected degeneracies at the high-symmetry points.

We have so far not discussed the role of number non-conserving terms in the
Hamiltonian. In general they imply that the true eigenstates must be obtained by
Bogoliubov transform

Ψ̂†
i,k = κi,kψ̂†

i,k + γi,kφ̂i,k. (5.15)

Here φ̂i,k, κi,k and γi,k are chosen such that the Hamiltonian can be written entirely
in the space of Ψ̂†

i,k. We describe this in Appendix C. The Ψ̂i,k must be constructed
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in such a way that they transform in the same way as φ̂i,k, and therefore the same
observations about the representations of D6h(C6h) apply here. In the rest of this
chapter we will use Ψ̂†

i,k and the kernel matrix describing the dispersion in this space
is M̃k. However, everything that follows is equally valid for ψ̂†

i,k andMk.

5.3 Allowed magnon hopping terms

We now return to the question of which terms are allowed in the magnon hopping
Hamiltonian. We consider the matrix elements of M̃k, which we introduced in the
previous section. This matrix can be written as

M̃k =

 ε1,k m1,k m∗3,k
m∗1,k ε2,k m2,k
m3,k m∗2,k ε3,k

 (5.16)

= ∑
j

αj,kλj + β j,kηj + ej,kνj. (5.17)

Here we introduce the real coefficients αj,k and β j,k defined by mj,k = αj,k + iβ j,k. We
also define

ei,k = (ε1,k − ε2,k)/2
e2,k = (ε2,k − ε3,k)/2
e3,k = (ε3,k − ε1,k)/2

(5.18)

For convenience, rather than writing M̃ in the basis of Gell-Mann matrices, we have
chosen a basis

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 0 0
0 0 1
0 1 0

 , λ3 =

0 0 1
0 0 0
1 0 0


η1 =

 0 i 0
−i 0 0
0 0 0

 , η2 =

0 0 0
0 0 i
0 −i 0

 , η3 =

0 0 −i
0 0 0
i 0 0


ν1 =

1 0 0
0 −1 0
0 0 0

 , ν2 =

0 0 0
0 1 0
0 0 −1

 , ν3 =

−1 0 0
0 0 0
0 0 1

 .

(5.19)

For each j, the three matrices λj, ηj and νj form an SU(2) sub-algebra. We will now
apply the symmetries of our lattice to this Hamiltonian, under which we require it
to be invariant. By doing so we will show that the mj,k off-diagonal elements, which
mix the basis functions [Ψ̂0,k, Ψ̂+,k, Ψ̂−,k]

T, follow certain constraints.
One of the elements of D6h(C6h) is the reflection through the x, z-plane combined

with TR. In table 5.3 we wrote this as σ̃π/2. This operation defines a line in k-space,
kx = 0 where k is transformed into itself, first by reflection through the x, z-plane,
then by TR. Along this line, we can represent the action of σ̃π/2 by its action on the



96 From half-moons to Chern numbers

α(k)

β(k)

kx

ky
Γ

K'K

Figure 5.3: We here plot the orientation of mj,k = αj,k + iβ j,k of equation (5.17) in the
complex plane at points in the Brillouin zone where it is fixed by symmetry.

[Ψ̂0,k, Ψ̂+,k, Ψ̂−,k]
T space, which is

A(σ̃π/2) =

−1 0 0
0 −1 0
0 0 −1

K. (5.20)

Here K is complex conjugation. We have

A(σ̃π/2)M̃kx=0A(σ̃π/2) = M̃kx=0, (5.21)

so σ̃π/2 puts a constraint on the Hamiltonian, which we can restate simply by recog-
nizing that

A(σ̃π/2)ηjA(σ̃π/2) = −ηj. (5.22)

This means that along the kx = 0 line in the Brillouin zone β j,kx=0 = 0, or equiv-
alently mj,kx=0 is real. This does not reveal anything about the magnitude of these
coefficients or their sign. However, we can now relate each mj,kx=0 with its corre-
sponding value elsewhere in the Brillouin zone. Starting at some point k′ = (0, ky),
the c6 rotation must take this point into k′′ = (−

√
3ky/2, ky/2). At the same time, it

acts on the [Ψ̂0,k, Ψ̂+,k, Ψ̂−,k]
T as

A(c6) =

−1 0 0
0 −ω∗ 0
0 0 −ω

 . (5.23)
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The inverse of c6 is c6
5. We can equate

M̃k′′ = A(c6)M̃k′A(c6)
5 (5.24)

=

 ε1,k ωm1,k ω∗m∗3,k
ω∗m∗1,k ε2,k ωm2,k
ωm3,k ω∗m∗2,k ε3,k

 . (5.25)

Thus it will take mj,(0,ky) = αj,(0,ky) into mj,(−
√

3ky/2,ky/2) = −αj,(0,ky)/2+ i
√

3αj,(0,ky)/2.
In other words c6 performs a U(1) rotation on mj,k by the constant ω. Successive ap-
plications of c6 amounts to rotations in k and in the complex plane of (αi,k, βi,k).

We visualize the effect of this rotation in figure 5.3 where we have drawn arrows
corresponding to the allowed orientations of mi,k in the complex plane at points in
the Brillouin zone that are connect by c6. Here it is clear that a winding feature is
drawn out by mi,k, twice around the Γ-point and once around K and K′. We cannot
relate the magnitudes of mj,k with distinct j, and in general they could have different
signs as well.

5.4 Two-band effective models

The rules we derived above define a winding feature for each mj,k. Here m1,k is the
matrix element which mixes Ψ̂†

0,k and Ψ̂†
+,k, and so on. Each j combination of the λj,

ηj and νj matrices together with the 2× 2 identity matrix form an SU(2) sub-algebra,
where they correspond exactly to Pauli matrices.

In the spin-polarized phase, if the model has pure Heisenberg interactions, there
will be a degeneracy at the Γ point where the two lower-energy bands touch, as
well as at the K and K′ points where it is the higher energy bands that become
degenerate. When a gap is introduced due to some perturbative interaction, to a
good approximation we can treat the Hamiltonian in the vicinity of the gap as a
2× 2 effective model, whilst neglecting the third band.

In doing so we are also not including corrections which would follow from a
canonical basis transform. These terms would be O(t2/∆), where ∆ is the gap in
energy from the 2× 2 block to the third band, and t is an off-diagonal matrix element
connecting them. To see in detail how this is done and the implications, we formally
treat the pairing terms through a canonical transform in Section C.1.

At the Γ point the effective 2× 2 model is written in the [Ψ̂0,k, Ψ̂−,k]
T basis, at

K and K′ it is [Ψ̂+,k, Ψ̂−,k]
T and [Ψ̂+,k, Ψ̂0,k]

T respectively. Writing up the effective
model gives us

M̂eff
j,k = (εj,k + εj+1,k)I2×2/2 + αj,kσx + β j,kσy + ej,kσz (5.26)

= (εj,k + εj+1,k)I2×2/2 + dj,k · σ. (5.27)

In Section 3.1 we described the topology of such two-band models in terms of a
topological flux through a surface defined by the dj,k vector. We have no constraints
on the ej,k, and therefore we cannot make any comments on the sign of dz

j,k or its
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magnitude. We can however make comments about αj,k and β j,k, which must wind
around the high-symmetry points of the Brillouin zone. As explained in Section 3.1,
for a constant dz

j,k, this winding ensures that the Berry’s flux integrates up to πn,
where n is the winding number.

At the Γ-point, the bands which touch are Ψ̂0,Γ and Ψ̂−,Γ. At the K point they are
Ψ̂+,Γ, Ψ̂−,Γ and at K′ they are Ψ̂0,Γ, Ψ̂+,Γ. Although ej,k has to be the same at K and
K′ due to inversion symmetry, it is generally different at Γ. If the sign of both are
known then the Chern numbers of each band can be determined.

The band-gap at the Γ-point only guarantees an added ±1 to the Chern number
of the bottom and middle bands, but we cannot tell from these arguments alone
which band gets which contribution. We cannot tell what the total Chern number
on the middle band integrates up to either, but the bottom band must be non-zero,
as there are no other band-gaps which can endow it with a Chern number. At K
and K′ the band-gaps each contribute ±1/2 to the Chern number due to the single-
winding feature. By a similar logic, the top band must also have a non-zero Chern
number. This is summarized in table 5.5.

Table 5.5: We tabulate the Chern numbers here depending on the sign of e3,Γ and
e1,K = e2,K′ . The Chern numbers are labeled ci according to band energy in ascend-
ing order.

sgn(e3,Γ) sgn(e1,K) c1 c2 c3

+1 +1 −1 0 1
+1 −1 −1 2 −1
−1 +1 1 −2 1
−1 −1 1 0 −1

In this derivation we have not made any assumptions about model parameters
or even whether they are nearest-neighbor or next-nearest neighbor. Our finding
is that the topology of magnon bands in kagome arises from the point group sym-
metry, which imposes constraints on the matrix elements of the magnon hopping
Hamiltonian. Thus spin-polarized or ferromagnetic kagome is always accompanied
by topologically non-trivial magnon bands.

5.5 Implications for the structure factor

The effective field models we have defined using dj,k imply an orientation on the
Bloch sphere that can be parametrized by a set of angles θj,k and φj,k, such that

dx
j,k = αj,k = d0

j,k sin θ cos φ

dy
j,k = β j,k = d0

j,k sin θ sin φ

dz
j,k = ej,k = d0

j,k cos θ.

(5.28)
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Figure 5.4: (a) Here we show the spectrum of kagome magnon bands. Ψ̂†
−,k and Ψ̂†

0,k
touch at Γ, Ψ̂†

0,k and Ψ̂†
+,k at K and Ψ̂†

+,k and Ψ̂†
−,k at K′. (b) The 1st Brillouin zone,

and its nearest neighbors. Here the phase ∆φ must be taken into account when
calculating the structure factor. This picture shows where the band-touching points
of (a) lie in k-space.

At Γ, K and K′, the only non-zero component of dj,k is dz
j,k. Moving away from this

point, in the limit of cos θ → 0 the mixing of the bands results in two eigenstates
defined by

Θ̂†
±,p,q,k = (Ψ̂†

p,k ± eiφj Ψ̂†
q,k)/
√

2. (5.29)

We may calculate the dynamical structure factor in the vicinity of one of the recip-
rocal lattice vectors q = ±∆j. For reader convenience we rewrite them here

∆1 = 2π[0, 2/
√

3]T

∆2 = 2π[−1,−1/
√

3]T

∆3 = 2π[1,−1/
√

3]T.

(5.30)

Here it is Ψ̂†
0,k and Ψ̂†

−,k which mix, so we set Θ̂†
±,k = Θ̂†

±,0,−,k. We then have

Sk(ω) =
1

2π

∫
dte−ωt 〈Sk · Sk(t)〉 (5.31)

=
1

2π

∫
dt ∑

j
e(ωj−ω)t| 〈∑

α

Sα
k |Θ̂

†
±,k〉 |2 (5.32)

≈ 1
2π

∫
dt ∑

j
e(ωj−ω)t| 〈∑

α

Sα
q |Θ̂†

±,k〉 |2 (5.33)
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Here the expectation value in the first line is taken with respect to the ground state.
The inner product evaluates to

| 〈∑
α

Sα
q |Θ̂†

±,k〉 |2 =

{
Θ̂†

+,k : | − 2eiφ/2 cos(φk/2 + ∆φ)|2 = 4 cos2(φk/2 + ∆φ)

Θ̂†
−,k : | − 2ieiφ/2 sin(φk/2 + ∆φ)|2 = 4 sin2(φk/2 + ∆φ).

(5.34)
The spin structure factor depends on the angle φk, which is the complex angle of
mj,k. In addition, one must take care to add an angle ∆φ, depending on which lattice
vector is chosen. This is shown in figure 5.4. We already know by symmetry that
φk must wind twice around the Γ-point. The above result shows that there will be
two intensity minima on a circle around Γ and two maxima. This is exactly what the
half-moon features commonly observed in neutron scattering spectra look like.

This calculation can be repeated at K and K′ points. If this is done the same
expression for Sk(ω) is obtained. The phase that must be added at each K and K′

point is indicated in figure 5.4. On this figure we also indicate which of the basis
functions must be picked for Θ̂†

±,p,q,k at each high-symmetry point.

In figure 5.5 results from spin-wave theory are shown. We calculate the structure
factor at constant energy cuts. This allows us to resolve the half-moon features both
near the Γ-point and the K and K′ points. The q = ∆1 lattice vector was chosen
for the (a) and (b) subfigures. We have also superimposed the winding pattern of
figure 5.3.

5.6 Topological phases caused by Kitaev-like anisotropy

In addition to the well-known result that the DM interaction causes topological
magnon bands [10, 104], band-topology may also be altered by Kitaev-like parity
even anisotropic interaction [160]. We here refer to the J− term of equation (5.6).

Since we have shown that there must be a winding of dk around the high-symmetry
points, as long as there is a finite perturbation that can lift the degeneracy exactly at
those points, then the band-gap must be accompanied by Chern numbers. Even par-
ity anisotropic interaction breaks the U(1) symmetry of the otherwise Ŝz conserving
model. This results in pairing terms, which must be treated by a Bogoliubov trans-
form which results in a gap.

We refer back to equation (5.6), which defines the most general nearest neighbor
exchange Hamiltonian allowed by the D6h point group.

Ĥ = ∑
〈i,j〉

SiJi,jSj − hz ∑
i

Ŝi. (5.35)

Following the procedure outlined in Chapter 2, we derive a BdG Hamiltonian

ĤBdG
k = v†

k

[
Mk Nk
N †

k M ∗
k

]
vk. (5.36)
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a) b)

c) d)

Figure 5.5: We here plot the topological magnon bands with the structure factor cal-
culated through constant energy cuts for Jx = Jy = Jz = 1, Dz = 0.1. A transparent
flat surface shown alongside the bands shows the energy that the structure factor is
being calculated at. (a) the energy cut is taken just below the bottom band. There
is here a half-moon feature consistent with the double-winding expected at the Γ-
point. (b) here the energy cut is taken just above the band-gap. Again a half-moon
feature is visible, but the intensity minima and maxima have swapped. (c) at higher
energies the effective field winds only once around each K and K′ point. This is visi-
ble as the intensity only has one minimum and maximum. (d) the intensity minima
and maxima swap when we move to the upper band.
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Here

Mk =

 h/2− Jz −iDz/2 + J+/2 cos[δ3 · k] iDz/2 + J+/2 cos[δ2 · k]
iDz/2 + J+/2 cos[δ3 · k] h/2− Jz −iDz/2 + J+/2 cos[δ1 · k]
−iDz/2 + J+/2 cos[δ2 · k] iDz/2 + J+/2 cos[δ1 · k] h/2− Jz


(5.37)

and

Nk =

 0 J−/2 cos[δ3 · k] ω J−/2 cos[δ2 · k]
J−/2 cos[δ3 · k] 0 ω∗ J−/2 cos[δ1 · k]

ω∗ J−/2 cos[δ2 · k] ω J−/2 cos[δ1 · k] 0

 . (5.38)

Here

J+ = (Jx + Jy)/2 (5.39)
J− = (Jx − Jy)/2 (5.40)

and once again

ω = −1/2 + i
√

3/2. (5.41)

To obtain the correct eigenstates, this must be diagonalized via a generalized Bogoli-
ubov transform as outlined in Section 2.2.2. Doing so allows us to derive the exact
energies at the high-symmetry points.

At the Γ-point Ψ̂†
0,k and Ψ̂†

−,k are gapped due to J− and Dz. Their band-energies
are

ε0
Γ =
−3
2

J+ −
√

3
2

Dz + 2

√(h
2
− Jz +

J+
4
−
√

3
4

Dz

)2
− J−2

4
(5.42)

ε−Γ =

√(h
2
− Jz −

J+
2

+

√
3

2
Dz

)2
− J−2. (5.43)

At the K-point it is the higher energy Ψ̂†
+,k and Ψ̂†

−,k which are gapped due to J−
and Dz. Their band-energies are

ε−K =
3
4

J+ +

√
3

4
Dz + 2

√(h
2
− Jz −

J+
8

+

√
3

8
Dz

)2
− J−2

16
(5.44)

ε+K =

√(h
2
− Jz +

J+
4
−
√

3
4

Dz

)2
− J−2

4
. (5.45)

At K′ the gapped bands are Ψ̂†
+,k and Ψ̂†

0,k. Their band-gap is identical to the one at
K.

Each of these sets of equations define curves in parameter-space where the band-
gaps close. Thus by drawing up the regions and calculating Chern numbers in each
case we are able to construct the phase diagram of figure 5.6. This phase-diagram
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c = (1,0,-1)

c = (-1,2,-1)c = (-1,2,-1)

c = (-1,0,1)

Figure 5.6: We here show the Chern numbers obtained for different sets of parame-
ters J− (first axis) and Dz (second axis). There are three distinct topological phases
obtainable by tuning the DM interaction and the Kitaev anisotropy. The phases are
labeled by their Chern numbers. It is worthwhile noting that the axis are scaled so
that the DM interaction is almost two orders of magnitude lower than the Kitaev
anisotropy.

shows 3 distinct phases as categorized by Chern numbers, which are labeled in order
of ascending band-energy. There are two phases which are caused by DM interac-
tion, and they have opposite Chern numbers. The phase caused by J− is character-
ized only by one set of Chern numbers, both when J− is positive and negative. Note
also that the axes of the phase-diagram are not equal. The range of J− is more than
an order of magnitude larger than that of Dz.

5.7 Conclusions

In this chapter we started by considering the D6h(C6h) magnetic point group and
the representations of magnons under this group. We arrived at a representation
theory that allowed us to describe magnon basis functions of the kagome lattice.

By writing the spin-wave Hamiltonian in this basis we were able to show how
D6h(C6h) imposes constraints on the Hamiltonian in k-space. These constraints re-
sult in the appearance of a characteristic winding of [d1(k), d2(k)] near the high
symmetry points. Due to this winding the bands are endowed with a Berry curva-
ture as well as easily distinguishable half-moon features in Sk(ω). These findings
are supported by spin-wave calculations where DM and Kitaev-like anisotropies
have been taken into account.

It is remarkable that these features arise directly from symmetry considerations.
Our results suggest a connection between band-topology and halft-moon features
in Sk(ω). This connection becomes clear when the effective two-band model of a
band-touching is considered with the constraints imposed by symmetry. A natural



104 From half-moons to Chern numbers

open question is then how general this result is and whether it applies to spectral
features in other magnetic materials.

While preparing the final draft of this thesis, it has come to our attention that an-
other study on magnon representation theory and its consequence for band topol-
ogy has been published in the preprint [161]. Here the spin-space groups are in-
troduced which are used to discuss symmetry enforced degeneracies in the magnon
band structure. Upon introduction of spin-orbit terms, the spin-space and real-space
groups cannot be treated seperately and here the spin-space groups are isomorphic
to magnetic space-groups. Although this has similarities with our work, the model
studied here is a honeycomb lattice model. The authors show that the bands poten-
tially have Berry curvature and must be gapped as a consequence of the spin-space
group representations. In our study we go beyond this by examining the winding
feature of d enforced by symmetry as well as the topology this causes. Furthermore
we establish a link between this and the spin structure factor.



Chapter 6

Summary and conclusions

In this thesis we addressed aspects of topology in band-like excitations in magnets.
There are certain invariants that can be associated with these as well as experimen-
tal signatures. Our main discussions have been about the Z2 topological phase of
bilayer S = 1/2 kagome, as well as the connection between the spin-spin structure
factor and Chern numbers in kagome magnon bands.

Previous studies on these topics have concluded that magnetic insulators ex-
hibit topologically non-trivial magnon bands. Studies of the thermal Hall effect of
magnons by Katsura et. al. [33] showed that a formula for the thermal Hall co-
efficient could be derived which is analogous to the TKNN formula. This famous
work shows that the heat current mediated by magnons, should have an associated
transverse component which depends on the Berry curvature. This was used to cal-
culate the thermal Hall coefficient in a kagome lattice [10] in order to shed light on
Onose’s famous Lu2V2O7 experiments [9]. In connection to this, additional work on
topologically non-trivial band-structures in kagome was undertaken [104] to clarify
the existence of topological magnon edge-states.

Unlike the electronic quantized Hall current, the response found in magnetic
band-structures is weighted thermally by a Bose distribution. The topology of the
magnon bands could therefore in principle be trivial even when a finite thermal Hall
effect is observed. This naturally merits the question, do more direct signatures of
band topology exist in magnets? and are there ways to infer the magnon band-
topology from symmetry? These are the main questions we set out to address in
our study on the symmetry origins of half-moons in Sk(ω) of the spin-polarized
phase of kagome.

Inspired by the discovery of the Z2 topological phase in electronic band the-
ory, notable papers have been published which investigated similar phenomena in
magnets. Joshi et. al. introduced the triplet bond-wave Hamiltonian of the bilayer
honeycomb lattice [130] in which it was stated that triplons should enjoy a similar
protection mechanism as degenerate Krämer’s pairs in electronic band theory.

However, the proper formulation of a pseudo-time-reversal operator for magnons
was treated in a separate publication by Kondo et. al. [13], where the protection
mechanism is much more carefully introduced and explained. Using the pseudo-
time-reversal operator defined in [13], it is possible to give a much more rigorous
treatment of the Z2 topological phase in a wide range of bilayer S = 1/2 lattices.
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What conclusions can we draw about the Z2 phase in bilayer models involving
triplon excitations based on the PTR protection mechanism? In this thesis we set
out to answer this question using the PTR symmetry.

6.1 Z2 topology and pseudo-time-reversal

The theoretical investigation of the pseudo-time-reversal (PTR) symmetry for bi-
layer magnetic insulators [13] has inspired questions to further the understanding
of what conditions are needed for a Z2 band topology in a magnetic insulator. We
explored this question in great depth focusing on the bilayer kagome lattice with
triplet excitations.

The role of PTR symmetry is to protect the Z2 from being broken except by very
large perturbations. It is therefore an interesting question whether it appears also in
bands of magnetic excitations. We found in our study that it indeed has no physical
origin in the bilayer kagome lattice.

There are at least two ways that this can be shown, and we have done both. One
is by including those interactions that are allowed by lattice and global symmetries
and explicitly showing that some of them break PTR symmetry. We did so, and we
found that the bond-nematic interaction, which we describe in detail, breaks PTR
symmetry. The other method, which we also used, is to show explicitly that these
interactions cause the helical triplon edge-modes to hybridize.

The question then remains, how exactly is PTR symmetry realized in magnetic
insulators, and is there even a sense in which it is possible for a system of bosonic ex-
citations? This question arises primarily because bosons do not automatically form
Krämer’s pairs under time reversal, in contrast to fermions. Some additional mech-
anism is needed for bosonic pseudo-Krämer’s degeneracy to arise, which would
endow the excitations with the same protection properties. We found that what is
needed here is a U(1) symmetry in combination with TR.

It is an open question which systems possess such symmetries. However, per-
haps there are ways that they can be generated. An example could be through mag-
netic point groups. When a material orders magnetically, its symmetry may be low-
ered in such a way that TR is no longer a symmetry of the system. However, TR
in combination with lattice symmetries, such as reflection, may still be. There are
certain cases where these can be represented by a U(1) phase rotation together with
complex conjugation. This may be a promising direction to look.

6.2 Half-moons and Chern numbers in kagome lattice

In the spin-polarized phase of the kagome anti-ferromagnet, we were able to show
that there is a concrete connection between magnon band topology and the spin-
spin structure factor. The approach we took was to derive representations of the
magnetic point group on the space of magnon basis functions. In doing so we were
able to derive the relationship between matrix elements of the Hamiltonian in dif-
ferent parts of k-space.
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Around the high symmetry points in the lattice, these rules predict winding fea-
tures which are indicative of topological bands. Furthermore, these same rules pre-
dict features in the structure factor which are directly compatible with half-moon
features seen in experiments.

Does this mean that half-moons in a more general context predict topological
bands? This is an interesting open question. In the kagome lattice, which we stud-
ied, the winding feature in Sk(ω) comes from the mixing of basis functions, which at
high symmetry points are exact eigenstates of the Hamiltonian. This same winding
is what makes the band-topology non-trivial.

Here we used the basis functions of a magnetic point-group to prove the con-
nection between the two in a very specific case. Doing so for general magnetic
excitations may not be easy. Not least because of the variety of magnetic order. Ad-
ditionally, we have here only described single-magnon bands. The situation could
be further complicated by interaction with other magnons, and we have not treated
such matrix elements.

But perhaps there are other applications. An interesting implication of our work
is that by placing constraints on the Fourier transformed Ĥ(k) without writing out
the concrete form of the real-space Hamiltonian, we make no restrictions about the
range of interactions. They could be nearest-neighbor, next-nearest and so on. This
potentially offers a different approach to investigating quite general symmetry al-
lowed spin-wave Hamiltonians. On a broader level it could be generalized to also
describe bond-wave or other types of magnetic excitations.
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Appendix A

Magnetic point groups

Group theory is a topic with very wide applicability in physics. In many cases, the
laws governing particle dynamics are the consequence of some symmetry in nature.
This is the case in particle physics certainly, but there are also profound new laws
that can be discovered and applied only to interacting particles.

In this section we will briefly list the definitions of group theory. This will then
allow us to introduce the point group C3v, which describes for instance the kagome
(without site centered inversion) and triangular lattice. We then discuss how the
symmetry is lowered during spontaneous ordering and how this leads to the ap-
pearance of a magnetic point group C3v(C3). For a good reference, which discusses
all of this in great detail, please see any one of [162–164].

A.1 definitions

A group is a collection G of elements g ∈ G with a product⊗. It obeys the following
conditions.

1. The product of any two elements of the group is itself an element of the group.

2. ⊗ is associative, that is ga ⊗ (gb ⊗ gc) = (ga ⊗ gb)⊗ gc.

3. There exists an identity element e ∈ G such that e ⊗ g = g ⊗ e = g for any
g ∈ G.

4. For any g ∈ G there exists an inverse element g−1 such that gg−1 = g−1g = e.

An example of a continuous group is the set of real numbers R under the op-
eration of addition +. Clearly the sum of any two real numbers is a real number.
Addition is an associative operator, and the identity element is 0. Each real number
also has an inverse element obtained by changing the sign of that number.

As an example of a discrete group, consider the symmetry operations on the
triangle. The group is then

C3v = {e, c3, c3
2, σ1, σ2, σ3}. (A.1)
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Figure A.1: Here the symmetry operations of C3v are depicted on the triangle. The
triangle is invariant to the planes of reflection and rotations of this group.

Here c3 is a 120◦ rotation in the x, y-plane. c3
2 is just the same rotation applied

twice. The σi elements are reflections. σ1 is a reflection through the y, z-plane, and
the two other planes of reflection can be constructed by rotating the plane of reflec-
tion. σ2 = c3σ1 and σ3 = c3

2σ1 (see figure A.1).
To be more concrete we can consider the effect of those operations on a vector in

the plane. A set of matrices that does this for us shown on table A.1

Table A.1: The point group c3v represented by its action on a 3 component coordi-
nate space ~R = [x, y, z]T.

g e c3 c3
2

MR(g)

1 0 0
0 1 0
0 0 1

 −1/2 −
√

3/2 0√
3/2 −1/2 0
0 0 1

  −1/2
√

3/2 0
−
√

3/2 −1/2 0
0 0 1


g σ1 σ2 σ3

MR(g)

−1 0 0
0 1 0
0 0 1

  1/2 −
√

3/2 0
−
√

3/2 −1/2 0
0 0 1

  1/2
√

3/2 0√
3/2 −1/2 0
0 0 1


This is one possible matrix representation of C3v. By showing how it acts on an

arbitrary coordinate vector ~R = [x, y, z]T, we now have a construction where each
group element is a matrix. It may be checked very easily that under matrix multi-
plication this representation obeys all of the rules that a group should.

We notice however, that the z-coordinate is left invariant under this group, re-
gardless of which operation is being applied to it. It is therefore possible to write a
representation of C3v applied to z separate to the 2× 2 matrix representation of C3v
applied to the [x, y]T vector.

This is an example of an irreducible representation. In the case of C3v there are 3
irreducible representations, which we tabulate as

Here the two-dimensional point group E describe how the coordinates x and y
transform into one-another. We say they are partners under this point group. z is an
example of a basis function, which transforms according to the irrep A1.
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Table A.2: The irreducible representations of the point group C3v.

g e c3 c3
2 σ1 σ2 σ3

ΓA1(g) 1 1 1 1 1 1
ΓA2(g) 1 1 1 −1 −1 −1

ΓE(g)
[

1 0
0 1

] [
−1

2 −
√

3
2√

3
2 −1

2

] [
−1

2

√
3

2
−
√

3
2 −1

2

] [
−1 0
0 1

] [
1
2 −

√
3

2
−
√

3
2 −1

2

] [
1
2

√
3

2√
3

2 −1
2

]

Now, we can look at how a different class of objects transform. We can start by
defining the angular momentum operator

Lz = xvy − yvx. (A.2)

Realizing that vx and vy are partners under this group according to E, in the same
way as x and y are partners, simply substituting in the transformation rules allows
one to show that Lz transforms according to A2. To see this, we can take

c3 : xvy → (−x/2 + y
√

3/2)(−vy/2− vx
√

3/2) (A.3)

= xvy/4− yvx3/4 + xvx
√

3/4− yvy
√

3/4, (A.4)

as well as

c3 : yvx → (−y/2− x
√

3/2)(−vx/2 + vy
√

3/2) (A.5)

= yvx/4− xvy3/4− yvy
√

3/4 + xvx
√

3/4. (A.6)

Taking the difference between these terms, we see that

c3 : Lz = Lz. (A.7)

We also have
σ1 : xvy → −xvy (A.8)

and
σ1 : yvx → −yvx. (A.9)

Which gives
σ1 : Lz = −Lz. (A.10)

This together with the group algebra shows that Lz transforms according to A2.
The common intuition one has of angular momentum is of a vector oriented in

the direction perpendicular to the plane in which the given object is spinning or
rotating. If we instead of imagining an angular momentum vector we think of a
vortex-like current lying in this plane encircling the origin, we can intuitively see
that vertical reflections through the origin should reverse this current and thus re-
verse Lz. This is an example of an axial vector.

As it happens, spins too are axial vectors. If we write up the matrix representa-
tion of C3v acting on a spin we find
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Table A.3: The point group C3v represented by its action on a 3 component spin
space with Ŝz orthogonal to the plane.

g e c3 c3
2

MS(g)

1 0 0
0 1 0
0 0 1

 −1/2 −
√

3/2 0√
3/2 −1/2 0
0 0 1

  −1/2
√

3/2 0
−
√

3/2 −1/2 0
0 0 1


g σ1 σ2 σ3

MS(g)

1 0 0
0 −1 0
0 0 −1

 −1/2
√

3/2 0√
3/2 1/2 0
0 0 −1

  −1/2 −
√

3/2 0
−
√

3/2 1/2 0
0 0 −1


We see that Sz is a basis function transforming according to A2 whereas Sx and

Sy transform according to the E irrep as partners. Although it isn’t written in the
same way as in table A.2, this is a result of the chosen basis. If we replace Ŝx → Ŝy,
and Ŝy → −Ŝx, then the result will be the same.

There is a fundamental symmetry in nature we have not yet discussed. Angular
momenta are not time-reversal invariant, which complicates some of the symmetry
analysis involved since reversing the arrow of time reverses each spin. This is highly
relevant in studying spontaneous magnetic order.

A.2 Spontaneous magnetic order and magnetic point
groups

Magnetic insulators unless under some applied field are time-reversal symmetric at
high temperatures. Apart from the point group which is dictated by the structure
of the material, they also have time-reversal as a symmetry element. Thus we may
write up the symmetry group describing for instance a kagome lattice as

G∆ = τ ⊗ C3v. (A.11)

At temperatures where the material is a paramagnet, the system transforms trivially
according to this point group. In the space of the spin-configuration of the entire lat-
tice, each symmetry operation, including time-reversal, acts as the identity element.

As the material is cooled down, spontaneous order sets in. This occurs because
the favourable low-energy states of the material are very far from each other in
phase space. The ground states no longer transform trivially, but instead transform
according to one of the irreps of the point group.

When the kagome lattice orders, it does so in a number of ways each correspond-
ing to an irreducible representation of G∆ [159, 165]. For now we will consider the
ferromagnetic state in which all spins are aligned. The total symmetry group acting
on this state can now be represented as

In this example we see that there is a subgroup of G∆ with respect to which this
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Table A.4: Action of the group τ ⊗ C3v on the ferromagnetic state.

g e c3 c3
2 σ1 σ2 σ3 τ τc3 τc3

2 τσ1 τσ2 τσ3

Γ(g) 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

state is invariant. This is the group

C3v(C3) = C3 ⊕ τ × C3v\C3. (A.12)

This is an example of a magnetic point group, a type of point group which de-
scribes the symmetries of magnetically ordered states. They are constructed from
a regular point group in the following way. First the invariant subgroup of the or-
dered material is identified (in this case C3). The rest of the regular point group is
combined with time-reversal and the union of those to sets are taken. In the above
example this results in the magnetic point group C3v(C3), which is isomorphic to
C3v, but still is able to describe magnetically ordered kagome.
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Appendix B

Topological Charge

In Chapter 3 we stated the equation for the Berry phase as

γ± =
∫∫

S
F± · n̂(dS,1, dS,2)dS. (B.1)

Here F± has the elements

F±,i = εijk∂dj 〈ψ±|∂dk
|ψ±〉 . (B.2)

This can be shown in the following way. The Berry curvature is

F± = ∂θ 〈ψ±|∂φ|ψ±〉 − ∂φ 〈ψ±|∂θ|ψ±〉 (B.3)

= ∑
i,j

(∂di

∂θ

∂dj

∂φ
− ∂di

∂φ

∂dj

∂θ

)
∂di 〈ψ±|∂dj |ψ±〉 (B.4)

= ∑
i

det(Ji)F±,i. (B.5)

Here each pairwise combination of di and dj define a Jacobian

J1 =

[
∂d2
∂θ

∂d2
∂φ

∂d3
∂θ

∂d3
∂φ

]
, (B.6)

and so on for J2 and J3. Returning to the parameterization of d from Chapter 3 with

d1 = d0 sin θ cos φ

d2 = d0 sin θ sin φ

d3 = d0 cos θ

. (B.7)

Then
F± = sin θn · F±d0

2. (B.8)

The unit vector n is d/d0.
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We can therefore write the Berry phase as

γ± =
∫∫

F±dθdφ (B.9)

=
∫∫

F± · n sin θd0
2dθdφ (B.10)

=
∫∫

F± · ndA (B.11)

=
∫∫

F±dS. (B.12)

In the last equality we have gone from the area element of the sphere of radius d0 to
that of the general surface S with normal vector n̂.

B.1 Generic cases

We can first imagine that the Hamiltonian is periodic in the parameters x. Equiva-
lently, then ~d must be periodic in x and θ(x), φ(x) must necessarily be as well. There
are some cases which are now of interest. We can imagine a trivial one first, in which
θ = 0 and φ(x) changes from 0 to 2π. Here the Berry curvature is a constant 0 and
therefore the Berry phase too evaluates to 0 upon integration.

We can imagine this being the case if we have some symmetry in our system
which takes σz → −σz. This would ensure that there is no third component of the
d-vector. For the sake of argument, we can imagine that

~d = [sin x1k1, sin x2k2, 0]T. (B.13)

Now let us imagine a finite perturbation

H′ = δ(1 + cos(x1k1) cos(x2k2))σz (B.14)

which breaks this symmetry. At the edges defined by x1k1 = ±π or x2k2 = ±π, ~d
is still constrained to lie on a circle. In a real physical system this constraint could
come about as the result of an applied uniform field. In this case we have

γ± = ±
∫∫ sin(θ)

2
dθdφ (B.15)

= ±1
2

∮
dφ. (B.16)

The value of the last integral depends on how many times the angle φ winds around
the equator of the Bloch sphere, which again depends on its parametrization with
regards to parameters x. Here we will define the winding integer n, such that

γ± = ±πn. (B.17)

So, in this case taking the adiabatic evolution through a closed path in the space of
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parameters x results in a Berry phase of ±π. The intuition is that due to the sym-
metry breaking term δσz, the northern hemisphere of the Bloch sphere is covered a
number of times which depends on the winding number.

If on the other hand we add a perturbation

H′ = δ cos(x1k1) cos(x2k2)σz (B.18)

we will obtain the result
γ± = ±2πn. (B.19)

This is analogous to Gauss’ law. Whenever we have an enclosed surface and we
calculate the flux through it we can associate it with an enclosed charge. With open
surfaces we cannot define an enclosed charge, but we may still have a finite Berry
curvature. As in the previous case where d forms a half-sphere.
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Appendix C

Bogoliubov de Gennes basis-functions

Our treatment of the magnon wave-function ultimately results in a set of rules for
matrix elements which mix the basis functions near the high symmetry points of the
Brillouin zone, which we will elaborate on in the next section. However, these basis
functions may in general be obtained by a Bogoliubov transform which results in
bosons that have a Hermitian conjugate component added to their wave-function.
We show here how to construct these wave-functions so that they still transform
according to the irreps we outlined above.

We briefly restate that the general eigenstate of a BdG Hamiltonian is obtained
through a Bogoliubov transform (see Section 2.2.2). In general there may be non-
pairing terms, which require eigenstates of the form

Ψ̂†
k = αa,k â†

k + . . . + αc,k ĉ†
k + βa,k â−k + . . . + βc,k ĉ−k. (C.1)

Requiring Ψ†
k to be bosonic then leads to the normalization requirement

∑
i
|αi,k|2 − |βi,k|2 = 1. (C.2)

At the high symmetry points, we require that Ψ†
k transforms according to the irreps

we have written. We rewrite the basis functions as the more general

Ψ̂†
j,k = αj,kψ̂†

j,k + β j,kφ̂j,−k. (C.3)

Now the index j = 0,+,− specifies which irrep Ψ̂†
j,0 transforms as. The choice of

αj,k and β j,k will usually be such that Ψ̂†
j,0, Ψ̂†

j,K and Ψ̂†
j,K′ are eigenstates. In general

the above construction does not yield eigenstates at arbitrary k, but it allows us to
define a symmetrical basis in the same way as equation (5.13). At Γ we now have

Ψ̂†
j,0 = αj,0ψ̂†

j,0 + β j,0φ̂j,0. (C.4)

Now we can take some g ∈ D6h(C6h) and

g : Ψ̂†
j,0 = Γj(g)(αj,0ψ̂†

j,0) + (g : β j,0φ̂j,0). (C.5)
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If Ψ̂†
j,0 is to transform according to Γj, then evidently so must φ̂†

j,0. However, while
the magnon creation operator transforms as Ŝ− as we noted, the annihilation oper-
ator transforms as Ŝ+. Because of this, we find the basis functions

φ̂0,0 = ψ̂0,0 = (â + ωb̂ + ω∗ ĉ)

φ̂+,0 = ψ̂−,0 = (â + ω∗b̂ + ωĉ)

φ̂−,0 = ψ̂+,0 = (â + b̂ + ĉ).

(C.6)

This results in

Ψ̂†
0,0 = αkψ̂†

0,0 + βkψ̂0,0

Ψ̂†
+,0 = αkψ̂†

+,0 + βkψ̂−,0

Ψ̂†
−,0 = αkψ̂†

−,0 + βkψ̂+,0.

(C.7)

The derivation can be repeated for the K, K′ points with the sub-group C3v(C3)
which yields

Ψ̂†
0,K = αkψ̂†

0,K + βkψ̂0,K′

Ψ̂†
+,K = αkψ̂†

+,K + βkψ̂−,K′

Ψ̂†
−,K = αkψ̂†

−,K + βkψ̂+,K′ .

(C.8)

In the case of a BdG Hamiltonian, one may pick αj,k and β j,k in such a way that
the pairing terms are transformed away. In general this can be accomplished via a
canonical transformation of the basis. In other words given a Hamiltonian of the
form

ĤBdG
k = v†

k

[
Mk Nk
N †

k M ∗
k

]
vk = ṽ†

k

[
M̃k 0
0 M̃ ∗

k

]
ṽk (C.9)

We select αj,k and β j,k such that our new basis ṽk puts ĤBdG
k in a block diagonal

form. The derivations of the following section then apply to the transformed block
M̃k which has matrix elements that connect each Ψ̂†

i,k. This is relevant to the effective
2-band field theories we derive later. In the event that ĤBdG

k does not contain pairing
terms M̃k = Mk and Ψ̂†

i,k reduces to ψ̂†
i,k. However the analyses we will present in

the following section still holds.

C.1 Canonical transformation

We may obtain some intuitions about how the Kitaev like terms result in a topo-
logical band-gap by deriving the canonical transform. With the Hamiltonian in the
form

Ĥ = ∑
k

v†
kGkvk, (C.10)
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Out[ ]=

Γ K M Γ

Exact
Canonical Form

Figure C.1: We calculate the band energies with parameters Jx = 0.5, Jy = 1.5,
Jz = 1 and h = 5 exactly and with the canonical transformation.

with vk = [âk, b̂k, ĉk, â†
−k, b̂†

−k, ĉ†
−k] and

Gk =

[
Mk Nk
N †

k MT
−k

]
. (C.11)

We wish to derive the effective Hamiltonian

Ĥeff = eW Ĥe−W = H + [W, H] + [W, [W, H]] + . . . (C.12)

Ideally then W is chosen such that to first order in the above expansion the pairing
terms are zeroed out so that we can return to a pure hopping Hamiltonian. If Mk
and Nk are similar, then this is fairly straightforward. In this case they are not, but
we can still cancel out these terms up to some desired order in η.

We do so by picking some genericVk and fitting its parameters to give the desired
result.

Vk = λ

[
0 Ck
−Ck 0

]
(C.13)

Now we define the matrix

σ3 =

[
I3×3 0

0 −I3×3

]
(C.14)

Then the matrix form of the commutator [W, H] is

Vkσ3Gk −Gkσ3Vk = λ

[
−CkN

†
k −NkC†

k −CkM
T
k −MkCk

−C†
kMk −MT

k C†
k −C†

kNk −N †
k Ck

]
. (C.15)

Since we wish to zero out the off-diagonal blocks of Gk, we require that the upper
right block of [Vk,Gk] is equal to −Nk + O(1/η). This gives us

λ(CkM
T
k +MkCk) = Nk + O(1/η). (C.16)

This is at the same time equivalent to requiring the lower left block to equal −N †
k .
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The above equation is solved by setting

λ =
1

2η
(C.17)

and
Ck = Nk. (C.18)

The effective Mk block is now the new hopping Hamiltonian. After applying the
correction this is

M eff
k =Mk −NkN

†
k /η (C.19)

=

 η (γ1)
∗ cos (λ3 · k) γ1 cos (λ2 · k)

γ1 cos (λ3 · k) η (γ1)
∗ cos (λ1 · k)

(γ1)
∗ cos (λ2 · k) γ1 cos (λ1 · k) η


− γ2

2
η

 ∆2,3 ω∗δ1,2 ωδ3,1
ωδ1,2 ∆3,1 ω∗δ2,3
ω∗δ3,1 ωδ2,3 ∆1,2

 . (C.20)

For simplicity we have introduced the variables

η = h/2− Jz

γ1 = J+ + iDz

γ2 = J−.
(C.21)

As in Chapter 5 J± = (Jx ± Jy)/2. We also define

∆i,j = cos2(λi · k) + cos2(λj · k)
δi,j = cos(λi · k) cos(λj · k).

(C.22)

We here see how the correction to results in a complex hopping, in this case with a
γ2

2
η =

J2
−

h/2−Jz
prefactor. This also explains why there is only one type of Kitaev-like

topological phase, the sign of J− does not affect the correction.

On figure C.1 we compare the band energies of the pure hopping model ap-
proximated by a canonical transform and the exact energies derived from the BdG
Hamiltonian. Even the lowest order correction gives fairly accurate results.

We may also write up the effective field at the band-gaps by expanding the above
expression in k and projecting down onto the relevant 2 × 2 block. Doing so we
obtain at the Γ point

d1 = (kx
2/4 + kxky

√
3/4− ky

2/4)(J+/8 + J−2/(16h− 32Jz))

d2 = (kx
2
√

3/4− kxky/4− ky
2
√

3/4)(J+/8 + J−2/(16h− 32Jz))

d3 = [(kx
2 + ky

2)/16− 1]
√

3Dz − [(kx
2 + ky

2)/8− 1](3J−2)/(h− 2jz).

(C.23)
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At the K (K′) point we obtain

d1 = (
1
2

α +
2
3

β)kx + (−
√

3
2

α +
2

3
√

3
β)ky

d2 = (

√
3

2
α− 2

3
√

3
β)kx + (

1
2

α− 1
2

β)ky

d3 =

√
3

2
Dz +

3J−2

8h− 16Jz
.

(C.24)

Here the coefficients are

α = −
√

3
4

J+ +

√
3

32
J−
η

β =
π

24
J+ +

√
11π

192
J−
η

.

(C.25)

This analysis gives a straightforward approximation to the band-gap physics of
spin-polarized kagome. It also confirms our assertions about the topology of these
gaps, as the (d1, d2) vector has the winding that we expect to see. Additionally,
this approximate solution shows why there is a phase with Chern numbers c =
(−1, 2,−1).
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