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Abstract 

Tunicates are the closest extant relatives of vertebrates. Tunicates produce cellulose-

containing tunic and exhibit very characteristic lifestyles among animals. Their unique 

ability to synthesize cellulose results from a horizontally transferred cellulose synthase gene 

(CesA). Interestingly, a Glycosyl Hydrolase Family 6 (GH6) hydrolase-like domain exists at 

the C-terminus of tunicate CesA but not in cellulose synthases of other organisms. This led 

to the identification of another independent GH6-encoding gene, GH6-1, in tunicate 

genomes. These GH6-encoding genes exist exclusively in tunicates within the animal 

kingdom. The existence of GH6-encoding genes and the combination of GH6 and cellulose 

synthase domains raised the question of the evolutionary origin and function of GH6s in 

tunicates. To answer these questions, I first examined the phylogenetic relationship of GH6-

encoding genes by comparing their sequence signatures. Tunicate CesA and GH6-1 genes 

represent two independent orthologous groups, but the origin of these genes before a 

horizontal transfer event could not be ascertained. Secondly, I examined the expression of 

tunicate CesA and GH6-1 genes in Ciona intestinalis type A, a model ascidian tunicate. The 

gene expression in embryos at early developmental stages was examined by quantitative 

reverse transcription PCR and in situ hybridization. Obvious expression of both CesA and 

GH6-1 were found at embryonic stages of Ciona embryo at epidermis. The observed 

expression profiles were also compared with a set of single-cell transcriptome data provided 

by our collaborators. Embryonic cells of late tailbud stage I showed that both GH6-1- and 

CesA-expressing cells are mostly in cell clusters of epidermal identity. Localized signal in 

the reporter assay also suggest the existence of specific enhancers upstream to Ciona GH6-

1 gene. Finally, I used genome-editing technique to generate GH6-1 knockout larvae of C. 

intestinalis type A and observed that affected embryos show perturbed papillae formation 

and metamorphosis. My study showed that GH6-1, a gene very likely originated from 

horizontal gene transfer, is recruited to function in ascidian early development. This 

observation would help to address how tunicates evolved by obtaining their unique anatomy 

and ecology.  
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Introduction 

(1) Tunicates, the sister group to vertebrates 

Tunicates are a group of marine animals, consisting of approximate 3000 extant species 

(Appeltans et al., 2012). The name of tunicates stemmed from the tunic, also called the test, 

a cellulose-containing fibrous layer that covers their adult body (Satoh, 2014). Tunicates are 

classified into three classes: Ascidiacea, Thaliacea, and Appendicularia. Among the classes, 

ascidians are the most diverse and comprise of about 2,900 described species (Appeltans et 

al., 2012). Generally, ascidians have a benthic, sessile, filter-feeding adult stage and a larval 

stage swimming freely with a muscular tail (Lemaire, 2011). Anural larvae of a few ascidian 

species were described to be a derived character (Jeffery et al., 1999; Huber et al., 2000). 

Thaliaceans (the salps, doliolids, and pyrosomes) are phylogenetically nested within 

ascidians (Tsagkogeorga et al., 2009; Govindarajan et al., 2010; Delsuc et al., 2018); they 

swim by jet propulsion in open ocean. Different from ascidians and thaliaceans, 

appendicularians (larvaceans) do not maintain a rigid tunic but repeatedly secrete cellulose-

containing ‘house’, which directs water flow and facilitates filter-feeding. 

Tunicates, cephalochordates (lancelets), and vertebrates constitute the chordate phylum. 

However, historically tunicates had been recognized as mollusks by Aristotle or as 

echinoderms by Lamarck based on their adult appearance (Satoh, 2003; Satoh, 2014; 

Holland, 2016). In the 19th century, embryologist Alexander Kowalevsky carefully observed 

the anatomy of tunicate larvae and started a grouping of tunicates with other chordate 

animals (Kowalewski, 1866).  

Albeit the adult tunicates show somewhat peculiar morphology and structures, 

developing tunicate embryos share many important characters with vertebrates. While the 

notochord and dorsal tubular central nervous system are shared by all three major clades of 

chordates, the existence of ectodermal placodes and neural-crest like cells in tunicates 

support the close relation of tunicates and vertebrates (Manni et al., 2004; Mazet et al., 2005; 

Jeffery, 2007; Stolfi et al., 2015). Based on the embryonic characters and recent 

phylogenomics studies, tunicates are now recognized as the closest invertebrate relatives to 

vertebrates (Delsuc et al., 2006; Delsuc et al., 2008; Delsuc et al., 2018). 

Due to the important evolutionary position of tunicates, genomes of several tunicate 

species have been sequenced. Among those, the draft genome of Ciona intestinalis (Dehal 

et al., 2002) was released before the completion of human genome project in the year 2003. 

Available genomic resources and the ease of embryological manipulations have made 

tunicates good model animals for evolutionary and developmental biological studies in 

recent decades (Lemaire, 2011; Satoh, 2014). Comparative studies on genomes and 

embryonic development have shed light on the evolutionary history of chordates and 

vertebrates: genome evolution (Dehal et al., 2002), the origin of neural crest cells (Jeffery, 

2007), central nervous system development (Imai et al., 2009) are just a few of the important 

fields of study. 

Please note that the name of the species ‘Ciona intestinalis’ or ‘C. intestinalis type A’ 

used in this manuscript would match the species nomenclature of the first released “Ciona” 
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genome and archived sequence data in many public databases, including the National Center 

for Biotechnology Information (NCBI, U.S. National Library of Medicine). On the other 

hand, a few recent studies examined the divergence of Ciona intestinalis type A and type B 

lineages (Ohta et al., 2020; Satou et al., 2021), and C. intestinalis type A is sometimes called 

C. robusta (Brunetti et al., 2015). 

Aside from chordate common characters, tunicates have various lineage-specific 

diversification that made them very different from other chordate relatives. Among those 

diversification, the ability to utilize cellulose is unique in the animal kingdom (Satoh, 2016).  

 

(2) Tunicate cellulose synthase 

Cellulose is the largest biomass on Earth (Coughlan, 1985). Cellulose is produced by a 

taxonomically diverse group of organisms, including plants, algae, bacteria, protists, and 

fungi (Lin and Aronson, 1970; Matthysse, 1983; Brown and Saxena, 2007). Cellulose is a 

polymer composed of repeating β 1-4-linked D-glucose. Cellulose molecules form 

hydrogen-bonded microfibril that has a high tensile strength, and therefore cellulose is used 

as the physical barrier by various organisms. In plants, cellulose is synthesized by rosette-

like protein complexes [(Brown, 2006), and reviewed in (Endler and Persson, 2011)]. Within 

the complex, the most-studied component is cellulose synthase, encoded by CesA genes. The 

Arabidopsis thaliana genome contains 10 CesA genes (CesA1-10), which encode proteins 

with homology to bacterial cellulose synthases. It had been shown that CesA1-CesA9 

proteins had associations with CesA complexes during either primary or secondary cell wall 

formation, while the role of CesA10 is not yet clear (Endler and Persson, 2011; Griffiths et 

al., 2015).  

Animals do not synthesize cellulose, but the only exception is tunicates (Satoh, 2016). 

Scientist had noticed a fibrous component showing polysaccharide characters in the tunic 

and called it as tunicin, which was later confirmed to be a form of cellulose (Endean, 1961). 

In another definition, the tunicin was defined as “the alkali‐insoluble fibrous fraction of the 

tunic” and contains cellulose and other associated amino acids and proteoglycans (Van Daele 

et al., 1992). Before the identification of a tunicate cellulose synthase, cellulose synthesis 

complexes had also been observed with the freeze fracture technique in a colonial ascidian, 

Metandrocarpa uedai (Kimura and Itoh, 1996). 

With the aid of a draft genome, transcript of the first tunicate cellulose synthase gene, 

Ci-CesA, was identified in Ciona intestinalis (Dehal et al., 2002; Nakashima et al., 2004). 

Later, more tunicate cellulose synthase genes were also identified (Matthysse et al., 2004; 

Sagane et al., 2010; Nakashima et al., 2011). 

The predicted tunicate cellulose synthase (CesA) proteins are large. For example, Ciona 

intestinalis CesA protein (Ci-CesA) has the size of 1277 amino acids. The N-terminal part 

of Ci-CesA contains transmembrane helices and conserved motifs that are seen in members 

of the Glycosyltransferase-like Family 2 [GT2, PF13641 of the Pfam database (El-Gebali et 

al., 2019; Mistry et al., 2021)]. The molecular phylogenetics analysis also grouped the 

aforementioned ‘cellulose synthase domain’ of tunicate CesA with cellulose synthases of 

other organisms among GT2 members (Nakashima et al., 2004). 
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The cellulose synthesis ability of tunicate cellulose synthases were also examined 

(Matthysse et al., 2004; Sasakura et al., 2005): expression constructs of the C. savignyi 

cellulose synthase gene could restore the cellulose biosynthesis in a cellulose synthase 

mutant of Agrobacterium tumefaciens (Matthysse et al., 2004), and a transposon-mediated 

mutation that disrupted CesA expression made a mutant called “swimming juvenile (sj)”, in 

which C. intestinalis larvae lose cellulose microfibrils (Sasakura et al., 2005). 

Intriguingly, the C-terminal part of the tunicate CesA protein contains a hydrolase-like 

domain, which shows sequence similarity to cellulases of the Glycosyl Hydrolase Family 6 

(GH6, Pfam: PF01341). However, the GH6 domain of tunicate CesA proteins (tunicate 

CesA-GH6) have amino acid substitutions at the probable active site (Koivula et al., 2002; 

Matthysse et al., 2004; Nakashima et al., 2004; Sagane et al., 2010; Nakashima et al., 2011) 

and therefore it may lack hydrolytic activity. The physiological role of tunicate CesA-GH6 

has remained unclear. 

The origin of the tunicate CesA gene had also been questioned. Phylogenetic analyses 

clustered the tunicate cellulose synthase domain (GT2) closer to the corresponding bacterial 

synthases than plant cellulose synthases, while the analyses of the GH6 domain was not 

conclusive (Sagane et al., 2010; Nakashima et al., 2011). Based on molecular phylogeny and 

the unique structure of tunicate CesA, Nakashima et al. (2004) hypothesized that a bacterial 

genomic region that contained both a GT2/CesA gene and a GH6 gene, was transferred 

horizontally to ancestral tunicates, and that the two genes/domains later merged to form the 

tunicate CesA gene.  

 

(3) Horizontal gene transfer may have greatly affected tunicate biology 

Horizontal gene transfer (HGT, or lateral gene transfer) is the movement of genetic 

material between genomes that have no parent-offspring relationship. It could happen 

between different species or among organelle and nuclear genomes. Bacterial genomes are 

greatly shaped by HGT and some of them may contain more than 10% transferred genes 

(Garcia-Vallve et al., 2000; Koonin et al., 2001; Soucy et al., 2015). Although animals 

usually inherit genetic information from parents (Martin, 2017), many horizontally 

transferred genes are maintained in animal genomes and expressed (Dunning Hotopp, 2011; 

Boto, 2014; Husnik and Mccutcheon, 2018). HGT may well be one of the most important 

forces shaping animal evolution (Boto, 2014). 

Tunicate cellulose synthase, which is generally assumed to be originated by horizontal 

transfer (Sagane et al., 2010; Sasakura et al., 2016; Bhattachan and Dong, 2017), also shaped 

tunicate evolution. In addition to providing an important material for structural support of 

the tunic/house, the tunicate CesA gene also affects larva-to-juvenile metamorphosis in 

Ciona (Sasakura et al., 2005). In a mutant line of C. intestinalis, swimming juveniles (sj), a 

tandem array of Minos transposon was inserted 327–328 base pairs upstream of the Ci-CesA 

transcriptional start site. The sj mutant larvae showed an abnormal appearance of the tunic 

and a disrupted metamorphosis. Normally, swimming Ciona larvae first adhere to a substrate 

and retract adhesive papillae before the subsequent metamorphic events including tail 

resorption and body axis rotation (Cloney, 1982). However, the sj mutants started 
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metamorphic events of adhesive papillae retraction and body axis rotation, but they retained 

the larval tail and kept swimming (Sasakura et al., 2005). The trunk of sj metamorphosed to 

juvenile-like structures but the larval tail remained, therefore they were named as swimming 

juveniles. Also, the sj larvae had a lower efficiency of adhering to the substrate. Functional 

suppression of Ci-CesA with morpholino oligonucleotide injection led to a phenotype similar 

to that of sj: abnormal tunic and metamorphosis without tail resorption (Sasakura et al., 

2005). These results indicate that the Ci-CesA gene, the cellulose synthase protein, and the 

product cellulose not only are responsible for formation of the covering structures but also 

contribute to the control of metamorphic events. Although the metamorphic events were 

altered, the sj mutant could keep growing until sperm maturation, showing that the CesA 

gene and a cellulose-containing tunic were not necessary for the survival and maturation 

(Sasakura et al., 2005). In addition, the affected adult tunic was very soft, indicating that 

cellulose contributes to the physical strength of the tunic (Sasakura et al., 2005). 

The ascidians show a sessile adult stage, which is not seen in extant vertebrates or 

cephalochordates. The Ciona CesA gene affects the secretion of tunic and regulation of 

metamorphosis; these are both important in the evolution of a sessile lifestyle of ascidians 

(Sasakura, 2018a). 

In addition to the well-reported tunicate CesA gene, in another ascidian species, leathery 

sea squirt Styela clava, three cold-shock protein genes had been described to have originated 

from horizontal gene transfer (Wei et al., 2020). The expression of S. clava cold-shock 

protein genes responds to cold temperature and may provide low-temperature stress response 

(Wei et al., 2020). Furthermore, the rusticalin gene, which can be discovered in invertebrate 

chordates, coral, and placozoan animals, was also proposed to have entered tunicate genomes 

by horizontal gene transfer event (Daugavet et al., 2019). 

 

(4) Another GH6-encoding gene in tunicate genomes 

To confirm whether a cellulose synthase homolog exist in animals other than tunicates, 

a previous study analyzed the genomic resources that have been greatly accumulated in the 

recent decades (Inoue et al., 2019). In that study, no cellulose synthase gene was found in 

the genome of non-tunicate animal taxa. It also revealed another independent gene (a group 

of possibly orthologous genes) in tunicate genomes, named GH6-1, which encodes a GH6 

domain protein (Inoue et al., 2019). The evolutionary origin and physiological role of this 

newly identified GH6-1 gene was unknown. 

To investigate the evolutionary origin of tunicate GH6-encoding genes, I first analyzed 

the sequence signature and phylogenetic relationship of tunicate GH6-1 genes. Then, in 

order to understand the physiological function of tunicate GH6-1 genes, I investigated the 

expression of GH6-1 in early developmental stages of Ciona intestinalis type A. Further, I 

prepared GH6-1 knockout animals to observe the physiological effects. 
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Chapter 1 Phylogenetic analyses of tunicate Glycosyl Hydrolase Family 

6 genes 

This chapter was based on and modified from a peer-reviewed publication (Li et al., 2020). 

1.1 Introduction 

Glycosyl hydrolases (also called glycoside hydrolases) are a widespread group of 

enzymes which hydrolyze glycosidic bonds. Glycosyl hydrolases are essential to animal 

physiology: examples include amylase (Buisson et al., 1987; Boehlke et al., 2015) for 

digestion, chitinase (Ohno et al., 2016; Patel and Goyal, 2017) for immunity and digestion, 

lysozymes (Blake et al., 1965; Uversky et al., 2010) for anti-bacterial defense, and 

hyaluronidase (Gmachl and Kreil, 1993; Modelski et al., 2014) for fertilization and bee 

venom. Based on amino acid sequence similarities, glycosyl hydrolases are grouped into 

families: as of September, 2021, there are 171 different families of glycosyl hydrolases on 

the Carbohydrate Active Enzymes database (Henrissat, 1991; Henrissat and Davies, 1997; 

Lombard et al., 2014). Meanwhile, enzymes of the same sequence-similar family may evolve 

to acquire new specificities of catalyzing substrates (Henrissat, 1991; Lombard et al., 2014).  

The Ciona intestinalis cellulose synthase, Ci-CesA, is the first reported animal protein 

that contain a Glycosyl Hydrolase Family 6 domain (GH6, Pfam: PF01341) (Nakashima et 

al., 2004). Tunicate CesAs show a unique combination of a Glycosyltransferase-like family 

2 (GT2) domain (Pfam PF13641, or CESA_CelA_like, Conserved Domain Database 

cd06421) and a GH6 domain (Matthysse et al., 2004; Nakashima et al., 2004; Sagane et al., 

2010; Nakashima et al., 2011). A recent report (Inoue et al., 2019) revealed the existence of 

GH6-1, another gene group in tunicate genomes that also encodes for GH6 domain. In Ciona 

intestinalis genome, other glycosyl hydrolases (families: 9, 18, 20, 23, 38, 47, 116) had also 

been predicted (Lo et al., 2003; Davison and Blaxter, 2005; Intra et al., 2008).  

Well-studied GH6 enzymes are cellulases, catalyzing cellulose hydrolysis (Henrissat et 

al., 1998; Koivula et al., 2002; Nakashima et al., 2004). Many herbivorous or xylophagous 

animals rely on symbiotic microorganisms, which have endogenous cellulases, to utilize the 

cellulose in the diet (Watanabe and Tokuda, 2001). Some animals were described to have 

acquired cellulase from horizontal gene transfer (Watanabe and Tokuda, 2001; Boto, 2014). 

Another gene family, Glycosyl Hydrolase Family 9, encoding for possible cellulases in a 

different family of glycosyl hydrolases, was found in five animal phyla (Lo et al., 2003; 

Davison and Blaxter, 2005). The sequence similarity and intron positions of these Glycosyl 

Hydrolase Family 9 genes led to the suggestion that a cellulase existed in a Metazoa ancestor 

(Lo et al., 2003; Davison and Blaxter, 2005). However, none of these cellulases of other 

animals belongs to the GH6 family. Until now, GH6-domain-containing genes have been 
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found only in bacteria, fungi, tunicates, and a few other non-animal eukaryotes. 

A hypothesis regarding the origin of tunicate CesA genes had been proposed 

(Nakashima et al., 2004): a bacterial genomic region that contained both a GT2/CesA gene 

and a GH6 gene, was transferred horizontally to ancestral tunicates, and that the two 

genes/domains later merged to form the tunicate CesA gene. This hypothesis was further 

strengthened, when it was observed that actinobacterial genomes contain sequences of high 

guanine-cytosine content (GC-rich) that can be transformed into enhancers in the tunicate 

cellular environment (Sasakura et al., 2016).  

Because of sequence divergence between the GH6 domain of tunicate CesA proteins 

(tunicate CesA-GH6) and GH6 proteins of other organisms, previous studies could not 

determine their evolutionary relationships (Nakashima et al., 2004; Sagane et al., 2010). 

Together with the newly found tunicate GH6-1, the evolutionary relationship of the tunicate 

GH6-encoding genes with other GH6 genes remains uncertain.  

In eukaryotes, conservation of splice sites (location of boundaries between exons and 

introns) is often found among orthologous genes (Rogozin et al., 2003; Putnam et al., 2007). 

Assuming that tunicate GH6-containing genes were transferred horizontally from bacteria, 

acquisition of spliceosomal introns in tunicate CesA-GH6 or GH6-1 genes could be 

interpreted as a eukaryote-specific character (Nixon et al., 2002; Patel and Steitz, 2003). A 

previous survey (Bhattachan and Dong, 2017) found that no splice sites were shared between 

the tunicate CesA genes and plant cellulose synthase genes; therefore, it was concluded that 

ancient CesA genes without introns transferred into tunicate genomes and plant genomes 

independently. 

The foregoing findings raised the question of how the tunicate ancestor acquired the 

precursor of the CesA-GH6 and GH6-1 genes. Three possible evolutionary scenarios have 

been proposed (Figure 1.1) (Nakashima et al., 2004; Inoue et al., 2019). Scenario 1: Two 

GH6 genes were transferred, one of which merged with a GT2-containing gene from the 

same prokaryote genomic region transferred to an ancestral tunicate and formed the tunicate 

CesA gene. The second GH6 gene gave rise to the current GH6-1. Scenario 2: A GH6 gene 

was transferred and duplicated. After a single transfer of prokaryote GT2-GH6 region into a 

tunicate genome, a duplication occurred. One copy did not include or retain the GT2 part 

and became GH6-1, while the other copy (an ancient ‘GH6 gene’) merged with the GT2 

domain and became part of tunicate CesA (joined GT2-GH6 domains). Scenario 3: A GT2 

gene and a GH6 gene were transferred independently into an ancestral tunicate. The GH6 

gene duplicated thereafter. One copy of the GH6 genes fused with the GT2 gene to form the 

tunicate CesA gene. The other copy remained an independent GH6-1 gene.  
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Figure 1.1. Possible scenarios on the origin of tunicate GH6 domain-containing genes 

Three scenarios have been proposed to explain the existence of two GH6 domain‐containing genes in 

extant tunicate genomes. 

In this chapter, I assessed possible origins of tunicate GH6s by examining phylogenetic 

relationships of GH6-containing genes in diverse organisms. I also compared sequence 

characters and exon boundaries among tunicate GH6 domains to understand their 

evolutionary changes in tunicate genomes.  
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1.2 Methods 

1.2.1 Genetic information acquisition  

To reanalyze the tunicate cellulose synthase gene (CesA) and GH6-1 genes and gene 

models [many of which were mentioned in previous studies (Table 1.1) (Matthysse et al., 

2004; Nakashima et al., 2004; Sagane et al., 2010; Inoue et al., 2019)], I retrieved the 

corresponding gene models and genomic information from these databases: NCBI GenBank 

[reported genes in literatures, Salpa thompsoni genomic sequence assemblies 

GCA_001749815.1 (Jue et al., 2016) and transcriptome GFCC00000000.1 (Batta-Lona et 

al., 2017), and the Ciona savignyi transcriptome GGEI00000000.1 (Wei and Dong, 2018)], 

the Ghost database (Kyoto University) for Ciona intestinalis type A (Satou et al., 2005; Satou 

et al., 2008), the Botryllus schlosseri Genome Project (transcripts only, Stanford University) 

(Voskoboynik et al., 2013), the OikoBase for Oikopleura dioica (Denoeud et al., 2010; 

Danks et al., 2013), and the Aniseed database (transcripts and genomes of all other species, 

as well as the genomes of C. savignyi and B. schlosseri) (Tassy et al., 2010).  
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Table 1.1. Tunicate GH6-containing genes or gene models and related genes analyzed in this chapter 

Species Domain 
Content 

Short Name of the 
Gene Used in this 
Chapter * 

Source Database Accession/ID of Gene, Transcript, or 
Protein  

Note 

Ciona intestinalis 
type A (C. robusta) 

GH6 CinGH6-1 GenBank XM_002119543.4 / XP_002119579.1  
 

CesA+GH6 CinCesA GenBank NM_001047983.1 / BAD10864.1 As reported in 
(Nakashima et al., 2004) 

Ciona savignyi GH6 CsaGH6-1 GenBank (Transcriptome) GGEI01013363.1 
 

CesA+GH6 CsaCesA GenBank AY504665.1 / AAR89623.1 As reported in 
(Matthysse et al., 2004) 

Salpa thompsoni GH6 SthGH6-1a GenBank (Transcriptome) GFCC01117283.1 Possible lineage-specific 
duplication 

GH6 SthGH6-1b GenBank (Transcriptome) GFCC01119318.1 No possible catalytic Asp; 
possible lineage-specific 
duplication. 

CesA+GH6 SthCesA GenBank (Transcriptome) GFCC01072613.1  

Molgula 
occidentalis  

GH6 MoxGH6-1 Aniseed database Moocci.CG.ELv1_2.S285391.g07021.01.t  

CesA+GH6 MoxCesAa Aniseed database Moocci.CG.ELv1_2.S469068.g15915.01.t Short GH6 part 

GH6 (MoxCesAbGH6) Aniseed database Moocci.CG.ELv1_2.S469068.g15914.01.t Very short  

GH6 MoxCesAcGH6 Aniseed database Moocci.CG.ELv1_2.S469068.g15913.01.t  

Molgula oculata GH6 MocGH6-1 Aniseed database Moocul.CG.ELv1_2.S112948.g12660.01.t 
 

CesA+GH6 MocCesAa Aniseed database Moocul.CG.ELv1_2.S71617.g04842.01.t Rhodopsin-like GPCR 
domain at upstream part 

GH6 MocCesAbGH6 Aniseed database Moocul.CG.ELv1_2.S69739.g04625.01.t 
 

* Gene names were assigned after considering phylogenetic information examined in this study and in that by Inoue et al. (2019). 

  



Chapter 1 Phylogenetic analyses of tunicate Glycosyl Hydrolase Family 6 genes 

 10 

Table 1.1. Tunicate GH6-containing genes or gene models and related genes analyzed in this chapter (continued) 

Species Domain Content Short Name of the 
Gene Used in this 
Chapter * 

Source Database Accession/ID of Gene, Transcript, or 
Protein  

Note 

Botryllus schlosseri GH6 BscGH6-1 Botryllus schlosseri Genome Project g9326 
 

GH6 (BscGH6-1b) Botryllus schlosseri Genome Project g61144 Short, similar to BscGH6-1 

GH6 BscCesAaGH6 Botryllus schlosseri Genome Project g44331 Similar to BscCesAbGH6 
(89.6% identity in the 
matching 222 AA region) 

GH6 BscCesAbGH6 Botryllus schlosseri Genome Project g45080 Similar to BscCesAaGH6 

Botrylloides leachii GH6 BleGH6-1 Aniseed database Boleac.CG.SB_v3.S133.g02304.01.t 
 

CesA+GH6 BleCesA Aniseed database Boleac.CG.SB_v3.S157.g03251.01.t 
 

Oikopleura dioica GH6 OdiGH6-1 OikoBase/GenBank GSOIDT00010490001 / CBY09680.1 
 

GH6 (OdiGH6-1b) OikoBase/GenBank GSOIDT00021901001 / CBY33927.1 98% identical to OdiGH6-1 

CesA+GH6 OdiCesA2 GenBank AB543593.1 / BAJ65326.1 As reported in (Sagane et 
al., 2010; Nakashima et 
al., 2011) 

CesA+GH6 OdiCesA1 GenBank AB543594.1 / BAJ65327.1 As reported in (Sagane et 
al., 2010; Nakashima et 
al., 2011) 

* Gene names were assigned after considering phylogenetic information examined in this study and in that by Inoue et al. (2019). 
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Although the recorded transcripts or annotated gene models were retrieved, I wished to 

confirm whether there is any hidden GH6-encoding genetic information that failed to be 

annotated as a gene model in each tunicate genome. Therefore, I recorded the genomic 

location (the coordinates on chromosomes, scaffolds, or contigs) of each predicted GH6-1 

and CesA gene. When the genomic locations of transcript/models were unknown, as in the 

cases of C. savignyi, S. thompsoni, and O. dioica, the GH6-containing transcripts were used 

to search (blastn in BLAST, Basic Local Alignment Search Tool, using default parameters) 

against its corresponding genome/genomic assembly: the databases used were listed as 

above. The genomic locations of tunicate GH6-containing genes were listed in Table 1.2. 

Next, I used the GH6 domains in C. intestinalis type A predicted proteins of CesA (GenBank: 

BAD10864.1) and GH6-1 (NCBI: XP_002119579.1) as queries to search (tblastn in BLAST, 

with default parameters, e-value threshold = 1×10-10) against the other seven tunicates’ 

genomic databases or assemblies and used O. dioica predicted proteins (GH6-1, 

CBY09680.1 and CesA2, BAJ65326.1) to search (tblastn, with default parameters, e-value 

threshold = 1×10-10) the C. intestinalis type A genome and recorded the genomic locations 

of results. When I used C. intestinalis CesA-GH6 or GH6-1 sequences to search C. 

intestinalis genome, the only results passed the threshold were the same genomic areas 

encoding these two genes. Therefore, I used O. dioica predicted proteins to search against 

C. intestinalis genome to confirm that there is no other GH6-like sequence in C. intestinalis 

genome. I found that the location of retrieved transcripts/gene models mostly matched with 

the BLAST search (tblastn) results, with minor exceptions: a few additional open reading 

frames (ORF) or short gene models were newly discovered. For example, an ORF of M. 

oculata coding for a 39-amino-acid (AA) peptide and a gene model of B. schlosseri, 

Boschl.CG.Botznik2013.chr9.g44329, coding for a 166-AA peptide, were found in BLAST 

searches. These short peptides/gene models have similar sequences to a GH6 domain, but 

those are either far shorter (less than 140 AA) than a typical GH6 domain (Pfam PF01341, 

with sizes of around 300 AA) or were evaluated as ‘no significance’ in protein profile 

searches [hmmscan, HmmerWeb version 2.41.1 (Potter et al., 2018), searched against the 

Pfam database]. Therefore, I interpreted that there is no better hidden representative of GH6 

genes in these genomes. 
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Table 1.2. Selected tunicate GH6-containing genes (models) and genomic locations 

Species,  
Genome version 

Domain 
content 

Short name of 
the gene used in 
this manuscript 

Accession/ID of gene or 
transcript 

Chromosome or 
genomic scaffold 
location 

Ciona intestinalis type A 
(C. robusta), 
HT Reference Genome 
(2019 version, Ghost 
database) 

GH6 CinGH6-1 XM_002119543.4  Chr3: 2879389-
2883393  

CesA+GH6 CinCesA NM_001047983.1  Chr7: 3393711-
3406917 

Ciona savignyi, 
Ciona_savignyi_ENS81_G
enome (Aniseed 
database) 

GH6 CsaGH6-1 GGEI01013363.1 Reftig R35: 
1310928-1318413  

CesA+GH6 CsaCesA AY504665.1 Reftig R2: 2893501-
2913534 

Salpa thompsoni, 
GenBank assembly: 
GCA_001749815.1 (NCBI) 

GH6 SthGH6-1a GFCC01117283.1 Scaffolds: 3051, 
10336, and 13318 

GH6 SthGH6-1b GFCC01119318.1 Scaffolds: 26886, 
contig 211572 and 
272169 

CesA+GH6 SthCesA GFCC01072613.1 Scaffolds: 5822, 
14051, 39468, 
41682, 48268 

Molgula occidentalis, 
Molgula_occidentalis_ELv
12_Genome (Aniseed 
database) 

GH6 MoxGH6-1 Moocci.CG.ELv1_2.S285
391.g07021.01.t 

Scaffold 285391: 
1115-4105 

CesA+GH6 MoxCesAa Moocci.CG.ELv1_2.S469
068.g15915.01.t 

Scaffold 469068: 
7725-12872 

GH6 (MoxCesAbGH6) Moocci.CG.ELv1_2.S469
068.g15914.01.t 

Scaffold 469068: 
6382-7088 

GH6 MoxCesAcGH6 Moocci.CG.ELv1_2.S469
068.g15913.01.t 

Scaffold 469068: 
2541-4008 

Molgula oculata, 
Molgula_oculata_ELv12_
Genome (Aniseed 
database) 

GH6 MocGH6-1 Moocul.CG.ELv1_2.S112
948.g12660.01.t 

Scaffold 112948: 
22155-24431 

CesA+GH6 MocCesAa Moocul.CG.ELv1_2.S716
17.g04842.01.t 

Scaffold 71617:  
7004-16648 

GH6 MocCesAbGH6 Moocul.CG.ELv1_2.S697
39.g04625.01.t 

Scaffold 69739:  
3301-4739 

Botryllus schlosseri, 
Botryllus_schlosseri_botz
nik2013_Genome 
(Aniseed database); 
Botryllus schlosseri 
Genome Project 
(transcript GFF 
information, Stanford 
University) 

GH6 BscGH6-1 g9326/Boschl.CG.Botzni
k2013.chr9.g09326.01.t 

Chr9: 18,466,231-
18,474,930  

GH6 (BscGH6-1b) g61144 (only in the 
genome project 
transcript fasta/GFF) 

Contig 
botctg111009: 
2832-3434 

GH6 BscCesAaGH6 g44331/Boschl.CG.Botz
nik2013.chr9.g44331.01
.t 

Chr9: 15,780,634 
-15,782,886 

GH6 BscCesAbGH6 g45080/Boschl.CG.Botz
nik2013.chr13.g45080.0
1.t 

Chr13: 9,500,441-
9,502,510  

Botrylloides leachii, 
Botrylloides_leachii_SBv3
_Genome (Aniseed 
database) 

GH6 BleGH6-1 Boleac.CG.SB_v3.S133.g
02304.01.t 

Scaffold 133:  
25041-28636 

CesA+GH6 BleCesA Boleac.CG.SB_v3.S157.g
03251.01.t 

Scaffold S157: 
172941-185066 

Oikopleura dioica, 
Odioica_Assembly_refere
nce_unmasked_v3.0 
(OikoBase) 

GH6 OdiGH6-1 GSOIDT00010490001  Scaffold 33:  
182048-186143 

GH6 (OdiGH6-1b) GSOIDT00021901001  Scaffold 33:  
182048-185894  
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CesA+GH6 OdiCesA2 AB543593.1  Scaffold 314:  
1902-7896  

CesA+GH6 OdiCesA1 AB543594.1  Scaffold 80:  
135240-139503 

 

 

After retrieving tunicate CesA and GH6-1 gene models, I prepared an expanded 

sequence alignment including more bacterial/fungal GH6 sequences for the phylogenetic 

analysis. The same two C. intestinalis type A protein models (CesA, BAD10864.1 and GH6-

1, XP_002119579.1) were used as queries to perform BLAST searches of the NCBI non-

redundant protein sequences database (nr). The blastp (protein-protein BLAST) algorithm 

was selected, with default parameters (word size = 6; matrix = BLOSUM62; gap cost 

existence:11, extension:1; conditional compositional score matrix adjustment). A strategy 

was used to achieve broad sampling of GH6-containing proteins across different taxa. First, 

the query was used to search all nr sequences excluding tunicates, and the results with the 

lowest e-values were all sequences from the genus Streptomyces. A second search was 

carried out against “all data excluding tunicates and Streptomyces.” Several subsequent 

searches were performed stepwise, excluding higher taxa (Streptomycetales, Actinobacteria, 

or Bacteria). Another approach was to search only “Archaea”, “Fungi”, or “Eukaryotes, 

excluding tunicates and fungi.” A GH6 protein (NCBI: WP_094052291.1) from 

Streptomyces was also used as a query to expand the search results in several eukaryotic taxa 

(Table 1.3). However, two questionable ‘eukaryotic’ results, showing higher similarity to 

bacterial proteins and linkages to other probable bacterial genes, were excluded (Table 1.3). 

A few selected bacterial and fungal sequences that were used in a previous phylogenetic 

analysis (Sagane et al., 2010) were also included in later analyses. In search results, some 

long sequences included conserved domains other than GH6, which were confirmed using 

InterPro searches (online searches against all available databases). Those extra domains were 

excluded before downstream analyses. All the selected sequences (listed in Table 1.1 and 

Table 1.4) contained a GH6 domain (Pfam: PF01341), which was confirmed by a HMMER 

hmmscan examination [HmmerWeb version 2.41.1 (Potter et al., 2018), searched against the 

Pfam database]; a GH6 domain in each sequence was identified with an Independent E-

value smaller than 1×10-5.  
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Table 1.3. Existence of GH6 proteins in different taxa 

Taxa GH6 presence? 

Bacteria Present 

Archaea Not yet observed 

Eukaryota Opisthokonta Metazoa Tunicates Present 

Metazoa,  

except tunicate 

No? Contamination? *1 

Fungi Present 

Opisthokonta, except Metazoa and 

fungi 

Not yet observed 

Viridiplantae No? Contamination? *2 

SAR-Stramenopiles Present 

SAR-Alveolate Present 

SAR-Rhizaria Not yet observed 

Haptista Present 

Rhodophyta Present 

Other eukaryotes Not yet observed 

*1: A GH6 protein in the Lucilia cuprina (a dipteran) genome project, XP_023300643.1, was very similar 

to bacterial GH6 proteins. It was located at a genomic scaffold that contained other probable bacterial 

genes. *2: A GH6 protein found in the Gossypium hirsutum (upland cotton) genome project, 

XP_016733546.1, was highly similar to bacterial GH6 proteins and it was located at a genomic scaffold 

that contained other probable bacterial genes. The above two cases were the only results that 

contained GH6 domains in each search. I treated these two cases as bacterial contaminants. 
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Table 1.4. Other GH6-containing proteins used in phylogenetic analyses 

Taxa (taxa-) Genus Accession Number 
Actinobacteria, except Streptomyces unidentified Actinobacteria WP_054220290.1 

Actinoplanes WP_043523455.1 
Actinoplanes WP_043525061.1 
Brachybacterium WP_012804931.1 
Cellulomonas P07984.1 
Geodermatophilus PYG45136.1 
Geodermatophilus WP_163476570.1 
Kitasatospora WP_030394430.1 
Mycobacteriaceae WP_011562673.1 
Mycobacterium YP_001848433.1 
Mycobacterium YP_879613.1 
Mycolicibacterium WP_005142664.1 
Nocardioides WP_011758040.1 
Paraoerskovia SDS23371.1 
Paraoerskovia WP_043109784.1 
Saccharopolyspora WP_009943607.1 
Streptacidiphilus WP_034091765.1 
Thermobispora P26414.1 
Zhihengliuella WP_130448960.1 

Bacteria, except Actinobacteria  Cystobacter WP_095990604 
Granulicella WP_089840334.1 
Myxococcus WP_090493059.1 
Myxococcus WP_140855929.1 
Plesiocystis ZP_01907667.1 
Sorangium YP_001618727.1 
Uncultured bacterium AHL27895.1 
Vitiosangium WP_108069950.1 

Eukaryotes, except fungi and tunicates Alveolata- Stylonychia CDW82212.1 
Alveolata- Symbiodinium OLP73243.1 
Haptista- Chrysochromulina KOO25121.1 
Haptista- Chrysochromulina KOO25881.1 
Rhodophyta- Chondrus XP_005713951.1 
Rhodophyta- Chondrus XP_005717841.1 
Rhodophyta- Gracilariopsis PXF45697.1 
Stramenopiles- Achlya OQR88682.1 
Stramenopiles- Aphanomyces KAF0695776.1 
Stramenopiles- Saprolegnia XP_008620974.1 
Stramenopiles- Thraustotheca OQS00291.1 

Fungi Neocallimastix ORY54114.1 
Neocallimastix ORY77883.1 
Orpinomyces AAB92678 
Orpinomyces AAB92679.1 
Piromyces AAP30749.1 
Piromyces OUM68810.1 
Talaromyces APE61639.1 
Talaromyces ATQ35966.1 
Talaromyces BAA74458.1 
Termitomyces KNZ78466.1 
Volvariella AAT64008.1 

Streptomyces (genus) Streptomyces AAA26776.1 
Streptomyces WP_033308106.1 
Streptomyces WP_079662022.1 
Streptomyces WP_093802936.1 
Streptomyces WP_094052291.1 
Streptomyces WP_099499477.1 
Streptomyces WP_120721336.1 
Streptomyces WP_150216144.1 
Streptomyces WP_156692247.1 
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1.2.2 Bioinformatic analyses 

For phylogenetic analyses, the abovementioned GH6-containing proteins (or protein 

parts) were used to build a multiple sequence alignment with MAFFT v7 online server 

(strategy: L-INS-I iterative refinement; recommended for <200 sequences with one 

conserved domain and long gaps) (Katoh and Standley, 2013; Katoh et al., 2019). Poorly 

aligned regions were removed using trimAl v1.2 (Capella-Gutierrez et al., 2009) when more 

than 65% of the selected sequences showed gaps in a given position. The appropriate amino 

acid substitution model was selected using Prottest 3.4.2 (with default parameters) (Darriba 

et al., 2011) before a maximum likelihood phylogenetic analysis. Phylogenetic 

reconstructions were performed with MrBayes 3.2.7a (nucmodel = protein, aamodelpr = 

mixed, ngen = 2500000, nchains = 1) (Ronquist et al., 2012) or RAxML-HPC Blackbox 

v8.2.12 (substitution model: PROTCATWAGF, rapid bootstrap with automatic bootstopping) 

(Stamatakis, 2014) via CIPRES Science Gateway (Miller et al., 2010). Consensus trees were 

visualized with FigTree software (Rambaut). 

 

1.2.3 Sequence comparison 

To understand the similarity or difference of tunicate GH6 domains and GH6 proteins 

of other organisms, signatures of a few tunicate GH6 proteins and a Hypocrea jecorina 

protein (UniProtKB: P07987.1) were compared with signature information on PROSITE 

(Sigrist et al., 2012). For signal peptide prediction of Ciona intestinalis GH6-1 protein, the 

SignalP-5.0 Server (Almagro Armenteros et al., 2019), selecting the 'eukarya' computation 

model, was used. Regarding the exon-intron structures, some genes or gene models in the 

databases had been annotated with exon boundaries. When exon information of genes or 

gene models was unknown, sequences of transcripts were used to search (blastn of NCBI 

BLAST, with default parameters) against the corresponding genomic databases: the Ghost 

database (Satou et al., 2005; Satou et al., 2019) for C. intestinalis type A, NCBI genome 

assembly GCA_001749815.1 for S. thompsoni genomic assembly (Jue et al., 2016), 

OikoBase (Danks et al., 2013) for O. dioica, and the Aniseed database BLAST tool for other 

tunicate species (Tassy et al., 2010). Coding parts of transcripts and genomic sequences were 

then compared with the Splign utility at NCBI (Kapustin et al., 2008), with default 

parameters. Tunicate GH6-containing proteins were aligned with MAFFT v7 server 

(strategy: L-INS-I) (Katoh and Standley, 2013; Katoh et al., 2019) for splice site (exon-

boundary) comparisons.  
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1.3 Results   

1.3.1 Tunicate CesA-GH6 domains and tunicate GH6-1 represent two independent 

monophyletic groups 

To determine whether GH6-1 genes represent a monophyletic group distinct from 

tunicate CesA genes and to understand the relationship of GH6-1 with GH6 proteins in other 

organisms, I used amino acid sequences of eight predicted tunicate CesA-GH6 domains, 

sequences of eight predicted GH6-1 proteins, and many predicted GH6 protein sequences 

from bacteria, fungi, and various eukaryotes (Table 1.4) to reconstruct phylogenetic trees 

(Figure 1.2 and Figure 1.3). Both Bayesian inference (Figure 1.2) and maximum likelihood 

(Figure 1.3) approaches provided trees supporting a close relationship of tunicate CesA-GH6 

and GH6-1. In addition, CesA-GH6 sequences and GH6-1 sequences formed two separate 

clusters, although the maximum likelihood bootstrap support values were only 83% for the 

GH6-1 clade and 61% for the CesA-GH6 clade. 
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Figure 1.2. Phylogenetic relationship of GH6-containing proteins by Bayesian inference  

(The figure legend is shown at the next page)   



Chapter 1 Phylogenetic analyses of tunicate Glycosyl Hydrolase Family 6 genes 

 19 

All tunicate sequences formed a cluster. The cluster was further divided into two subclusters of CesA‐

GH6 domains and GH6‐1 proteins. However, the clustering of tunicate GH6 sequences with GH6 

proteins of other organisms was not well‐supported. Rooting was arbitrary. Numbers next to internal 

nodes or branches represent posterior probabilities of the neighboring branch. The same trimmed 

multiple sequence alignment was used as input for this analysis and the analysis by maximum likelihood 

method. Bayesian inference was performed with MrBayes using a mixed substitution model (aamodelpr 

= mixed). The analysis was terminated after 2,500,000 generations as the standard deviation of split 

frequencies remained as a stable 0.126917 after generation 1,830,000, although this analysis could not 

reach an ideal convergence due to short sequence lengths and divergent data. The starting part of 

sequence names represents its source organism category, in alphabetical order: a, Actinobacteria, 

excluding Streptomyces; b, Bacteria excluding Actinobacteria; f, fungi; s, genus Streptomyces; T, 

tunicates. Scales represent expected changes per site.  
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Figure 1.3. Phylogenetic relationship of GH6-containing proteins by maximum likelihood 

method 

(The figure legend is shown at the next page)   
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Similar to the previous Bayesian inference analysis, all tunicate sequences formed a cluster. The cluster 

was further divided into two subclusters of CesA‐GH6 domains and GH6‐1 proteins. However, the 

clustering of tunicate GH6 sequences with GH6 proteins of other organisms was not well‐supported. 

Rooting was arbitrary. Numbers next to internal nodes or branches represent bootstrap support of the 

neighboring branch. The same trimmed multiple sequence alignment was used as input for the previous 

Bayesian inference analyses. This maximum likelihood analysis was performed with RAxML‐HPC 

BlackBox on CIPRES Science Gateway. The WAG amino acid substitution model with empirical base 

frequencies was selected and bootstrapping was automatically stopped after 804 cycles. The starting 

part of sequence names represents its source organism category, in alphabetical order: a, 

Actinobacteria, excluding Streptomyces; b, Bacteria excluding Actinobacteria; f, fungi; s, genus 

Streptomyces; T, tunicates. Fully‐expanded trees are shown as supplementary figures. Scales represent 

expected changes per site. 
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1.3.2 The origin of tunicate GH6 domains is hard to deduce 

These analyses failed to determine the relationship of tunicate sequences among other 

GH6 proteins. Although in these trees, tunicate sequences were clustered with many fungal 

GH6 proteins, some other eukaryotic GH6s [from red algae (Rhodophyta), Haptista, and the 

SAR supergroup], and a proteobacterial GH6 (YP_001618727.1, Sorangium cellulosum), 

the Bayesian posterior probability (Figure 1.2) and maximum likelihood bootstrap support 

(Figure 1.3) for this clustering were low. Notably, branches leading to tunicate sequences 

were longer than branches to other sequence clusters. 

 

1.3.3 Many tunicate GH6-1 proteins maintain the probable active site, in contrast to 

tunicate CesA proteins  

With the sequence alignment of tunicate GH6-1 and CesA proteins, I also compared 

their sequence signatures to those of other GH6 proteins. The enzymatic activity of 

Exoglucanase 2 (Cel6A) of Hypocrea jecorina (formerly Trichoderma reesei) was well 

characterized (Koivula et al., 2002). The aspartic acid at position 221 of H. jecorina Cel6A 

(Hje-D221) serves as the catalytic center (Koivula et al., 2002). I found that in many tunicate 

GH6-1 proteins, an aspartic acid can be aligned to the catalytic H. jecorina D221 (Figure 1.4 

A), except for SthGH6-1b (E197) and OdiGH6-1 (K211). However, the catalytic aspartic 

acid was not conserved in tunicate CesA-GH6 parts (Figure 1.4 A). These tunicate proteins 

also show a sequence environment that almost matches (8–9 out of 10 amino acids) the 

conserved ‘signature 2’ of GH6 (Figure 1.4 C: PROSITE PS00656: [LIVMYA]-[LIVA]-

[LIVT]-[LIV]-E-P-D-[SAL]-[LI]-[PSAG]).  

Another signature of GH6 that also contributes to catalytic ability is PS00655 (Figure 

1.4 B, including another important aspartic acid, D175, in the H. jecorina protein (Koivula 

et al., 2002), but this signature was not conserved in tunicate GH6-containing proteins. In 

the aligned region, ≤40% of amino acids matched the signature pattern. 

In addition, computational prediction by the SignalP-5.0 server (Almagro Armenteros 

et al., 2019) indicated that the first 24 amino acids of CinGH6-1 protein is a probable Sec/SPI 

type signal peptide (likelihood 0.5725, larger than the recommended threshold of 0.5), which 

is frequently seen in secreted proteins. 
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Figure 1.4. Amino acid conservation of tunicate GH6-domain-containing proteins  

 (A) GH6‐1 proteins from ascidians and the GH6‐1a from Salpa thompsoni have aspartic acids that 

correspond to the catalytic center of fungal Cel6A protein; however, another S. thompsoni GH6‐1 

protein (SthGH6‐1b), an Oikopleura GH6‐1 protein, and tunicate CesA proteins show other amino acids 

at this site. Similar amino acids under the BLOSUM62 matrix are color‐shaded. HjeCel6A: H. jecorina 

Exoglucanase 2, UniProtKB P07987.1. (B–C) Sequence logos of Glycosyl Hydrolases Family 6 Signature 1 

(PROSITE entry PS00655, panel B) and Glycosyl Hydrolases Family 6 Signature 2 (PROSITE entry PS00656, 

panel C), showing the amino acid frequency of each site.  
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1.3.4 Splice site conservation in tunicate GH6-1 or CesA Genes  

I arranged the positions of coding exon splice sites (exon boundaries) of tunicate GH6-

1 (Table 1.5) and the GH6 domain of CesA genes (Table 1.6) and then registered all sites to 

an aligned amino acid sequence matrix for comparison. For example, the splice site 

V217.frame+2 of CinGH6-1 means that the last nucleotide of an exon locates at the second 

codon position for amino acid 217 (valine) of C. intestinalis type A GH6-1 protein. Similarly, 

the site K316.frame+3 means that the last nucleotide of an exon is the nucleotide of the third 

codon position for amino acid 316 (lysine). 

Table 1.5. Splice site matches of tunicate GH6-1 proteins. 
 

Splice site name 

Cin217 Cin256 Cin316 

Protein Introns within coding region Splice site residue & frame 

CinGH6-1 3 V217, +2 G256, +1 K316, +3 

CsaGH6-1 3 V223, +2 G262, +1 K322, +3 

SthGH6-1a 6 E229, +2 G268, +1 P328, +3 

SthGH6-1b 5 K230, +2 G269, +1 K329, +3 

MoxGH6-1 3 R222, +2 G260, +1 A320, +3 

MocGH6-1 2 n.s.*1 (R222) G260, +1 A320, +3 

BscGH6-1 5 K335, +2 G373, +1 A433, +3 

BleGH6-1 4 K229, +2 n.s.*2 (G285) A345, +3 

OdiGH6-1 6 n.s.*1 (N244) n.s.*2 (G282) n.s.*1 (K343) 

OdiCesA1*3 8 n.s.*1 (R1001) n.s.*2 (G1040) R1100*3, frame +2 

All matching splice sites found in this study are C‐terminal to the possible catalytic center: positions 

178–187 in C. intestinalis type A GH6‐1. *1: No splice (n.s.) site at the aligned amino acid and the amino 

acid is not conserved; *2: No splice (n.s.) site at the aligned amino acid, although this position encodes 

a conserved glycine; *3: The splice site OdiCesA1‐R1100 could be aligned with splice site Cin316 of GH6‐

1 proteins at the amino acid level, but there is a one‐nucleotide position difference and it may not 

represent a shared splice site.  
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Table 1.6. Shared splice sites in the GH6 domain of tunicate CesA proteins. 

 Splice site name 

Cin853 Cin930 Cin976 *1 Cin1070 

Protein Splice site residue & frame 

CinCesA G853, +1 A930, +1 Q976, +3 R1070, +2 

CsaCesA G1137, +1 E1214, +1 Q1260, +3 R1354, +2 

SthCesA G870, +1 E947, +1 Q993, +3 M1087, +2 

MoxCesAa G938, +1 n.s.*2 (G1015) gap *3 gap  

MoxCesAcGH6 G38, +1 n.s. (G115) L161, +3 R255, +2 

MocCesAa n.s. (G1505) n.s. (G1582) n.s. (Q1628) R1722, +2 

MocCesAbGH6 n.s. (G33) n.s. (G110) n.s. (Q156) R250, +2 

BscCesAaGH6 n.s. (G2) G79, +1 Q125, +3 R219, +2 

BscCesAbGH6 gap gap Q22, +3 R116, +2 

BleCesA G946, +1 G1023, +1 Q1069, +3 R1163, +2 

OdiCesA2 n.s. (G848) n.s. (E925) Q971, +3 n.s. (R1065) 

OdiCesA1 n.s. (G866) n.s. (P943) n.s. (Q989) n.s. (R1083) 

*1: This shared splice site has been reported in previous studies (Sagane et al., 2010; Nakashima et al., 

2011) and used to infer evolutionary relationships of tunicate CesA genes. *2 n.s.: No splice site at this 

position/codon. *3 gap: A gap in this sequence in multiple alignment, possibly representing deletion of 

a segment or that the gene model is not complete. 

Several splice sites matched among tunicate GH6-1 proteins (Table 1.5), and these 

matching splice sites also have the same frame as the exon-intron boundary. Therefore, I 

interpret them as genuine shared splice sites. For example, the site Cin316 was shared by 

eight GH6-1 genes from seven tunicate species. 

An obscure case was that of the O. dioica CesA1 R1100 site. Although one O. dioica 

exon boundary was located in a codon for an arginine that could be aligned to the amino 

acids of splice site Cin316 of GH6-1 proteins, the location of the splice site was shifted by 

one nucleotide. The current results do not indicate that O. dioica CesA1 shares this splice 

site with tunicate GH6-1 genes. 

Excluding the foregoing case, I found no splice site shared between tunicate GH6-1 and 

CesA. However, several other splice sites are shared within CesA protein GH6 domains 

(Table 1.6).  
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1.4 Discussion   

1.4.1 Two GH6-containing genes exist in tunicate genomes 

In this chapter, I first tried to resolve the relationship of a recently discovered tunicate 

GH6-containing gene (GH6-1), the GH6 part of the tunicate CesA gene (called CesA-GH6), 

and GH6-containing genes from other organisms. The result was that tunicate CesA-GH6 

and GH6-1 sequences form two clusters (Figure 1.2 & Figure 1.3), indicating that these are 

two monophyletic groups and that both were inherited from the tunicate common ancestor. 

On the other hand, in phylogenetic reconstructions, the grouping of tunicate GH6-containing 

proteins and other GH6s was not conclusive (Figure 1.2 & Figure 1.3). There were long 

branches that thwarted conclusive results regarding the relationship of tunicate GH6-

containing proteins and those of other organisms. I suspect that the highly evolved tunicate 

GH6-containing-proteins cause long-branch attraction, adversely affecting tree topologies. 

Based on current phylogenetic trees, I could not confidently propose a non-tunicate GH6 

protein(s) that represents the closest relative(s) to tunicate GH6-containing proteins. 

Considering branch lengths and the tree topology of GH6 proteins, it is possible that an 

ancient GH6 gene evolved highly, soon after it was transferred into an ancestral tunicate. 

After the transfer event, this GH6 gene likely duplicated in the tunicate genome. I drew this 

conclusion because of clustering of tunicate CesA-GH6 and GH6-1 groups, in which no 

genes of other organisms were inserted. Therefore, either scenario 2 or 3 in Figure 1.1 could 

explain the origin of tunicate GH6-containing genes. However, as I could not propose a 

candidate donor species/lineage of tunicate GH6s, I cannot directly evaluate the two possible 

scenarios further. 

It could also be observed from the phylogenetic trees (Figure 1.2 & Figure 1.3) that the 

branch lengths of terminal branches are generally longer in tunicate GH6-1 sequences than 

those of CesA-GH6 parts. An interpretation is that CesA-GH6 domain may be under 

stabilizing selection. Although it may not have hydrolase activity, but it may have cellulose 

binding affinity and may be utilized to bind newly synthesized cellulose molecules. This 

conjecture would need affinity assays [for example, (Arola and Linder, 2016)] to validate. 

Another interpretation would be that different GH6-1 proteins in different tunicate species 

are under flexible evolutionary constraint or are positively selected to be divergent from the 

original form. 

Assuming that tunicate GH6-genes were acquired via HGT event(s), no other tunicate 

genes would help to resolve the current, ambiguous tree topology. On the other hand, it is 

intriguing that many, but not all, GH6 proteins from other eukaryotes (including GH6s of 

fungi, the SAR supergroup, Haptista, and red algae) were clustered close to two tunicate 



Chapter 1 Phylogenetic analyses of tunicate Glycosyl Hydrolase Family 6 genes 

 27 

GH6 subclusters. Recently, it was shown that some fungi retain many genes acquired from 

bacteria (Murphy et al., 2019). Therefore, future disclosures of eukaryotic genes similar to 

tunicate GH6 genes may provide important information on possible horizontal gene transfer 

events. As I found no GH6 genes in Archaea (Table 1.3), GH6 genes may have been 

transferred from bacteria to multiple eukaryotes in parallel. Alternatively, GH6 genes could 

also have been transferred between different eukaryotic organisms. 

The separate genomic locations of tunicate CesA genes and GH6-1 genes (Table 1.2) 

imply that the two genes did not stem from recent tandem duplication events, so these genes 

have been regulated in different genomic contexts.  

 

1.4.2 Lineage-specific gene content change and partial sequence signature 

conservation 

I found multiple transcripts or gene models representing GH6-1 (or CesA-GH6) in the 

genomes of some tunicate species (Table 1.1 and Table 1.2). Some of them may represent 

true lineage-specific duplications, as in the case of the two CesA genes of O. dioica (Sagane 

et al., 2010). For example, the two S. thompsoni GH6-1 proteins have only 35% identical 

amino acids when aligned and compared. They also showed long terminal branches in 

phylogenetic trees. In addition, although the current S. thompsoni genome had been 

assembled into sub-chromosome level scaffolds, these two GH6-1 genes corresponded to 

different genomic scaffolds. However, some gene models and open reading frames are 

highly similar to (around 90% amino acid identity) and shorter than another gene model in 

the same genome. For example, one GH6-1 protein model of B. schlosseri (BscGH6-1b, 

g61144, chromosome unassigned) showed 97.5% identity to BscGH6-1 (g9326, 

chromosome 9). These could be more recently duplicated genes. Alternatively, these may 

just be different alleles annotated separately due to imperfections of software-based genome 

assembly and may not represent a true species-specific duplication. Some gene models 

contain the GH6 part, but not the CesA/GT2 part, of the tunicate CesA gene. Based on our 

knowledge that a typical, complete tunicate CesA gene contains a CesA/GT2 part and a GH6 

part, it is possible that the CesA/GT2 part of a complete tunicate CesA gene was erroneously 

predicted as another gene model in the aforementioned cases, similar to a previous 

observation on a sea urchin genome (Tu et al., 2012) and several amphioxus gene models 

(Li et al., 2014). I also found that one CesA model of M. oculata (MocCesAa, 

Moocul.CG.ELv1_2. S71617.g04842.01.t) is obviously larger. It also encodes a rhodopsin-

like G protein-coupled receptor domain (InterPro: IPR000276) at its upstream end. It would 

require further studies to confirm whether it is a true merged gene, a mistake in genome 
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assembly and annotation, or a polycistronic operon. Polycistronic operons exist in O. dioica 

and C. intestinalis type A (Ganot et al., 2004; Satou et al., 2006), but the CesA genes of these 

species were not specifically verified to be a part of polycistronic transcripts.  

This analysis of GH6-1 and CesA-GH6 sequence signatures shows that, although both 

tunicate GH6-1 proteins and CesA-GH6 domains contain a region that almost matches the 

conserved GH6-signature 2 (PROSITE PS00656), the probable catalytic aspartic acid exists 

only in GH6-1 proteins and not in CesA-GH6. This aspartic acid is conserved in most non-

tunicate GH6 proteins (56 out of 58 sequences compared in this study). Mutation of this 

possible catalytic site in tunicate CesA probably occurred very early in an ancestral tunicate 

before the branching of the larvacean (Appendicularia) clade. Despite the loss of the aspartic 

acid of CesA-GH6, the conservation of other amino acids at the signature site may imply 

that this domain acquired novel function in tunicates. Nevertheless, whether tunicate GH6-

1 proteins or CesA-GH6 domains possess any catalytic activity remains to be determined. 

 

1.4.3 Shared splice sites indicate an ancient history of tunicate GH6 genes 

In this study, I found several shared splice sites among tunicate GH6-1 genes. I also 

extended the comparison of shared splice sites of CesA genes to other tunicate species. As 

previously reported (Sagane et al., 2010), 17 splice sites in CesA genes of C. intestinalis type 

A and C. savignyi are still conserved after about 100 million years of independent evolution 

(Delsuc et al., 2018). In addition, a splice site shared by CesA2 of O. dioica and O. 

longicauda, CesA of Halocynthia roretzi, Molgula tectiformis, and two Ciona species was 

interpreted as support for common ancestry of all tunicate CesA genes (Nakashima et al., 

2011). In this study, although I found no other sites shared between genes of O. dioica and 

other tunicates, I found that many shared splice sites are present among GH6-containing 

genes from three other major clades of tunicates (Thaliacea + Phlebobranchia + 

Stolidobranchia). It is reasonable to assume that many shared introns were acquired after the 

branching of larvaceans and before the subsequent divergence of major tunicate clades. The 

finding of shared introns in tunicate GH6-1 genes is similar to the observation of another 

animal glycosyl hydrolase gene family, Glycosyl Hydrolase Family 9, in which orthologous 

genes share introns across animal phyla (Lo et al., 2003; Davison and Blaxter, 2005). 

There was no well-supported splice site shared between GH6-1 and CesA-GH6. 

Assuming that only one GH6 gene was transferred horizontally into an ancestral tunicate 

genome, the lack of shared splice sites between GH6-1 and CesA-GH6 may indicate that the 

ancient GH6 gene had no introns when it was transferred into the tunicate genome. This 

supports a previous interpretation about the tunicate CesA transfer event (Bhattachan and 
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Dong, 2017).  

The obscure O. dioica CesA1 splice site (R1100) differs by just one nucleotide from the 

Cin316 splice site of GH6-1 genes. It may simply have resulted from an independent intron 

acquisition event. Alternatively, this could represent a shared splice site that experienced a 

one-nucleotide intron shift (Fekete et al., 2017), but this requires further investigation. 

Moreover, no other CesA genes examined show a splice site here. If the GH6 part of the 

ancient CesA gene contained that intron, other CesA genes must have undergone intron loss. 

Therefore, it is not a parsimonious explanation. 

The presence of two CesA genes in O. dioica raised another question of whether 

tunicate CesA was duplicated before larvaceans diverged (Sagane et al., 2010) (see also 

Figure 1.2 and Figure 1.3). The observation that Ciona CesA genes share a splice site with 

OdiCesA2, but not OdiCesA1, may favor the scenario of early duplication (Sagane et al., 

2010). In my analysis, the splice site discussed previously, Cin976, was found in the 

OdiCesA2 and CesA genes of at least six other tunicate species (Table 1.6), but this splice 

site was not found in M. oculata. Therefore, it is possible that O. dioica had a lineage-specific 

duplication of the CesA gene and that one copy (CesA1) lost this intron. In addition, the 

phylogenetic trees shown in Figure 1.2 and Figure 1.3 also support the interpretation that 

larvaceans have their own lineage-specific CesA duplication. 

 

1.4.4 Perspectives  

It is likely that a GH6-containing gene was transferred to and duplicated in ancient 

tunicate genomes before major tunicate lineages diverged. The two tunicate GH6-containing 

genes acquired different introns and have preserved part of that sequence signature. Future 

larvacean transcriptomic studies that are complementary to recent larvacean genome projects 

[for example, Naville et al. (2019)] may provide a better understanding of tunicate GH6-

containing genes and tunicate genome evolution.  

In plants, activity of cellulase is required to regulate cellulose synthesis and growth of 

cell walls (Vain et al., 2014). The prediction of a signal peptide at the N-terminus of CinGH6-

1 protein also raised the question of whether this protein is secreted to the extracellular space, 

where ascidians normally accumulate cellulose and other tunic-forming macromolecules. 

Therefore, it is important to examine whether tunicate GH6-containing proteins have any 

hydrolase activity and whether GH6-1 genes would influence cellulose synthesis and 

physiology. To examine enzymatic activity of tunicate GH6-1, it is possible to use a proxy 

microorganism similar to a previous study (Matthysse et al., 2004) Alternatively, I may first 

synthesize GH6-1 protein with in vitro cell-free protein synthesis reagent kits or may prepare 
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recombinant GH6-1 protein using bacterial or eukaryotic cells and purification 

(Spriestersbach et al., 2015). After obtaining purified GH6-1 proteins, enzymatic assays 

similar to described assays (Sharma et al., 2018) could clarify the enzymatic activity of 

tunicate GH6-1. Another approach to understand the biological function of tunicate GH6-1 

would be to genetically manipulate animals using genome-editing methods (Sasaki et al., 

2014; Treen et al., 2014). These questions were considered in my continued studies described 

in the next chapter. 
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Chapter 2 Expression and possible functions of GH6-1 gene in early 

Ciona development 

2.1 Introduction  

As revealed in the previous study by Inoue et al. (2019) and my study described in the 

last chapter and in Li et al. (2020), tunicate genomes contain an orthologous group of GH6-

1 genes. The GH6-1 genes show sequence similarity to the GH6 part of tunicate CesA gene, 

these two gene groups are inherited from the common ancestor of extant tunicates and 

probably originated from horizontal gene transfer (HGT) and subsequent duplication. 

Although the sequences of these genes were revealed in genome projects and bioinformatic 

studies, the biological significance of these genes remained unknown. 

For a horizontally transferred gene to be kept in a host genome, it usually provides extra 

advantage to either the gene itself or the host (Soucy et al., 2015). It was also proposed that 

a transferred gene has to cost minimal harm to the host at the early stage of ‘domestication’ 

before the host could recruit it to produce adaptive benefit later (Soucy et al., 2015). 

According to the ‘complexity hypothesis’, the host, having a different genomic content and 

cellular components than the donor, usually lack the molecular partners that would interact 

with the product of transferred gene in their original cellular context (Jain et al., 1999). In 

many known HGT cases in bacteria, the products of transferred genes are located at 

periphery of metabolic network (Pál et al., 2005) and may provide the host with additional 

abilities to utilize environmental resources in new or changing environments (Boto, 2014). 

Among the genes that are considered to be originated from horizontal gene transfer, 

tunicate cellulose synthase (CesA) may be one of the examples that a transferred gene being 

recruited to affect more complex characters. As previously mentioned in the Introduction 

chapter, tunicate cellulose synthase provides the cellulose synthesis ability to tunicates. In 

addition, the study by Sasakura et al. (Sasakura et al., 2005) reported that the disruption of 

Ci-CesA expression in Ciona affected not only the tunic properties but also the larva-to-

juvenile metamorphosis. Knockdown of one CesA copy (Od-CesA1) in larvacean tunicate 

Oikopleura dioica inhibited cellulose production at the larval tail and caused failures of 

notochord cell morphogenesis and of tail elongation (Sagane et al., 2010). The Od-CesA1-

knockdown embryos also failed to hatch (Sagane et al., 2010). These examples showed that 

tunicate cellulose synthase gene and/or its product have been incorporated into an essential 

position of tunicate developmental program.  

The epidermal expression of C. intestinalis CesA was interpreted as a location 

consistency of gene expression and cellulose biosynthesis (Nakashima et al., 2004; Sasakura 
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et al., 2005). The study on O. dioica CesA genes also showed that different expression time 

and spaces of two Od-CesA genes closely match two genes’ physiological functions: Od-

CesA1 is expressed at the lateral sides of the tail in tailbud embryos and is essential for tail 

development, whereas Od-CesA2 is expressed at a specialized trunk epithelium (oikoplastic 

epithelium) and contributes to the secretion of the filter-feeding house of adults (Sagane et 

al., 2010).  

If a transferred gene is not turned into a pseudogene, it needs to be expressed in the new 

host to provide any effects. However, after a gene was transferred between distant organisms, 

it usually needs corresponding evolution to fit into the gene expressing system of the new 

host. In the case of Ciona intestinalis CesA (Ci-CesA) gene, transcription factor AP-2 binds 

directly to a non-coding DNA segment upstream to Ci-CesA and is necessary for the 

epidermal expression of Ci-CesA (Sasakura et al., 2016). It was proposed that high guanine-

cytosine actinobacterial genomic content could easily be transformed into AP-2 binding sites 

and contributed to the domestication of tunicate CesA precursor (Sasakura et al., 2016). 

These studies inspired me to investigate the following aspects of the recently found 

tunicate GH6-1 gene: (1) gene expression, (2) expression control mechanisms, and (3) 

physiological function. To investigate these aspects, I used Ciona intestinalis, a model 

ascidian tunicate widely used in evolutionary and developmental biological studies (Lemaire, 

2011; Satoh, 2014). Many established methods are available for investigating gene 

expression and function in C. intestinalis (Christiaen et al., 2009; Satoh, 2014; Sasakura, 

2018b). The genomic resources and previous expressed sequence tag (EST) studies of C. 

intestinalis also provided evidence of GH6-1 (corresponding gene model KY.Chr3.452 in 

the HT version genome) expression in tailbud embryo, larva, juvenile, and adult: raw EST 

count were recorded and can be viewed on the Ghost database (Satou et al., 2003; Satou et 

al., 2019). 

To understand how the GH6-1 gene is utilized in C. intestinalis type A, firstly I 

examined expression profile of GH6-1 in early developmental stages of. Secondly, I 

performed a reporter assay to check the existence of GH6-1-related enhancer in genomic 

DNA. Finally, I used Transcription Activator-Like Effector Nuclease (TALEN) technique to 

specifically knock out GH6-1 and observe the phenotypes of embryos and larvae.  

 

2.2 Methods  

2.2.1 Animal acquisition, fertilization, and embryo culture 

I obtained Ciona intestinalis type A adults, with the help from the National BioResource 
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Project (NBRP) under Japan Agency for Medical Research and Development. After arrival, 

these animals were kept in dark and fed with diatom Chaetoceros calcitrans in small 

seawater-containing bucket overnight. For each 20 animals, about 30–100 milliliter of 

diatom was given. The concentrated diatom product ‘sun culture’, was provided by Nisshin 

Marinetech (Yokohama, Kanagawa, Japan). Then the animals were transferred to seawater 

aquarium, which was maintained at 18 °C. This seawater aquarium was maintained in 

continuous lighting to stimulate gamete production (Joly et al., 2007) and prevent 

autonomous gamete spawning (Lambert and Brandt, 1967). 

For embryo culture use, seawater was filtered through 0.22 micrometer pore 

polyethersulfone vacuum filter (Sartorius). Eggs and sperm were obtained surgically (Zeller, 

2018). After insemination, eggs were dechorionated with solution [filtered seawater 

containing 0.1 % w/v Actinase E (protease E) and 1% sodium thioglycollate, adjusted to pH 

10 before applying], washed with filtered seawater, and kept in filtered seawater containing 

50 mg/L of streptomycin (streptomycin-seawater) in agarose-coated petri dishes and 

cultured at 18-20 °C.  

 

2.2.2 Reverse transcription quantitative PCR  

To understand the CesA and GH6-1 expression in early developmental stages of C. 

intestinalis type A, I extracted total RNA from eggs, embryos, larvae, and young juveniles. 

Fifty to 100 individuals were first collected in microcentrifuge tubes with minimum 

remaining seawater (less than 100 µl), then depending on the sample volume, the samples 

were mixed with 600-1000 µl of TRIzol reagent (Invitrogen-Thermo Fisher Scientific). They 

were homogenized by 15-second vortex (for eggs and embryos) or manual grinding (hatched 

larvae and metamorphosing juveniles) with BioMasher II homogenizer (Nippi Inc., Tokyo, 

Japan). Later, the total RNA was extracted following manufacturer’s protocol of TRIzol. The 

extracted total RNA was reverse-transcribed to complementary DNA (cDNA) with 

PrimeScript RT reagent Kit Perfect Real Time (Takara Bio, Kusatsu, Shiga, Japan). 

Dual-labeled FAM-TAMRA probe and primer pairs for quantitative PCR (qPCR) were 

designed and synthesized by TaKaRa Bio based on these reference sequences: NCBI 

reference sequence XM_002131188 for GAPDH, NM_001047983 for CesA, 

XM_002119543 for GH6-1. For qPCR reaction, complementary DNA, probe-primer sets, 

and Premix Ex Taq polymerase mix (TaKaRa Bio) were prepared following the 

manufacturer’s protocol and processed on a StepOnePlus thermal cycler (Applied 

Biosystems, Thermo Fisher Scientific). The expression level of GAPDH was used as the 

normalization standard. 
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2.2.3 Examining gene expression: in situ hybridization and microscopy 

Fixation and in situ hybridization of Ciona samples follows published protocols (Satou 

et al., 1995) with minor modifications described below.  

Embryos, larvae, and young juveniles of C. intestinalis type A were fixed in 4% 

paraformaldehyde dissolved in MOPS buffer (0.1M 3-Morpholinopropane-1-sulfonic acid, 

0.5 M NaCl, pH 7.5) for either overnight (12-16 hours) at 4 °C or 1 hour at room temperature. 

After fixation, the samples were washed with phosphate-buffered saline then with 75% 

ethanol. They were stored in 75% ethanol at -30 °C until use. The embryo staging follows 

the tunicate anatomical and developmental ontology website TUNICANATO and previous 

publications (Hotta et al., 2007; Hotta et al., 2020). 

Antisense ribonucleic acid probe (riboprobe) synthesis: total RNA mixture of neurula, 

tailbud, and larvae were extracted with TRIzol (Invitrogen-Thermo Fisher Scientific) and 

reverse-transcribed to complementary DNA using SuperScript® III First-Strand Synthesis 

SuperMix (Thermo Fisher Scientific). Then, the cDNA mixtures were used to specifically 

amplify a few cDNA fragments (size 800-1100 bp) of the hybridization target genes via PCR. 

The amplicons were cloned into either pCRTM Blunt II TOPO® vector (Invitrogen-Thermo 

Fisher Scientific) or pGEM®T-Easy vector (Promega). The amplified cDNA were used as 

templates for digoxigenin-labeled riboprobe synthesis using DIG RNA labeling mix (Roche 

Diagnostics) and T7 or SP6 RNA polymerase (Roche Diagnostics). Sense strand riboprobes 

were also synthesized for control experiments.  

In situ hybridization: embryos were rehydrated with PBS, treated with proteinase K, 

post-fixed, treated with triethanolamine and acetic anhydride following to the protocol 

(Satou et al., 1995) before 1 hour of pre-hybridization. Hybridization of riboprobes at 42 °C 

was extended to 18 to 30 hours. After anti-digoxigenin-antibody incubation, samples were 

washed for 10 times in PBST (0.1% Tween-20 in phosphate-buffered saline). The BM purple 

solution (Roche Diagnostics) was diluted [50% v/v, in alkaline-phosphatase buffer (Satou et 

al., 1995), pH 9.5] before applied as color development substrate. After color development, 

samples were washed in EDTA-PBS (10 mM EDTA in phosphate buffered saline) to stop 

enzyme reaction. Then, they were washed in 30%, 50%, and 75% ethanol, rehydrated with 

PBS, and mount in 70% Glycerol/30% PBS before imaging. 

Images of the samples were recorded by an AxioCam HRc camera mounted on Axio 

Imager Z1 microscope (Zeiss). To ease identifying the signal, brightness of some images 

were adjusted, without creating image artefact, with Fiji/ImageJ software (Schindelin et al., 

2012). For some embryos in which signals were distributed at different depths, the Extended 
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Depth of Field plugin (Forster et al., 2004) of Fiji was applied to combine images of different 

depths. 

 

2.2.4 Single-cell transcriptome data analysis 

A publicly available single-cell transcriptome dataset (accession number GSE131155 

on Gene Expression Omnibus), which was originally reported in the work by Cao et al. 

(2019), was utilized to further confirm the expression of GH6-1 and CesA genes in 

developing Ciona embryos. The initial data processing steps were done with help by Kanako 

Hisata, Marine Genomic Unit, OIST: the raw read FASTQ files were processed with the 

CellRanger software (10X Genomics) to generate cell identifier barcodes and gene reads 

matrix based on a reference genome (Satou et al., 2019). 

Then, I used the Seurat toolkit version 3.2.1 (Stuart et al., 2019) in RStudio version 

1.2.5019 (Rstudio Team, 2020) to analyze gene expression of a late tailbud stage I sample 

(corresponding to Gene Expression Omnibus accession: GSM3764780). Low-quality 

droplets/cells were excluded based on the published method (Cao et al., 2019): (1) cells with 

less than 1000 expressed genes were discarded, (2) only the genes that was expressed in at 

lease 3 cells were retained, (3) cells with unique molecular identifiers (UMIs) of five 

standard deviation above the mean were excluded. Cells passing this filtering (5034 cells) 

were kept. The expression of each cell was log-normalized. Genes with the top 1,000 highest 

standard deviations were denoted as highly variable genes and used in principal component 

analysis. I selected to use dimensions 1 to 20 of the principal component analysis result for 

running a graph-based clustering approach in the Seurat method and the clustering 

partitioned the cells into 30 clusters of cells. Gene expression was examined by various 

plotting methods in the Seurat package: violin plot, FeatureScatter, and FeaturePlot. 

 

2.2.5 Reporter assay and electroporation 

To investigate the existence of enhancers that may drive the endogenous expression of 

GH6-1 in Ciona, I extracted parts of the genomic information of Ciona intestinalis type A, 

C. savignyi, and Molgula occidentalis from the databases mentioned in section 1.2.1. I used 

the VISTA comparative genomics computational tools (Frazer et al., 2004) to visualize 

genomic segments that share similar sequences. Conservation cutoffs (threshold) was set as: 

minimal 65% identity over each 50-nucleotides window. Next, I designed primers based on 

Ciona intestinalis genomic information to amplify a 2.8 thousand base pairs (kbp) genomic 

DNA segment upstream to the predicted GH6-1 gene model KH.L63.12 (Table 2.1). The 

amplified DNA segment was cloned into a customized Kaede expression vector (a generous 
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gift from Dr. Keisuke Nakashima, Marine Genomics Unit, OIST) with In-Fusion HD 

Cloning Kit (TaKaRa Bio) to construct a reporter plasmid. 

 

Table 2.1. Primers used for Ciona GH6-1 upstream genomic DNA cloning 

Lower case letters represent homologous adaptor sequences used for In‐Fusion recombination cloning. 

GH6 upstream forward 5’‐TTTCTAACTTTGTAAAATTTAAAATTGA 

In‐Fusion forward 5’‐tgcctgcaggtcgacTTTCTAACTTTGTAAAATTTAAAATTGA 

GH6 upstream reverse 5’‐ TTTGGTTCCTTGATCGAATTTTT 

In‐Fusion ATG‐reverse 5’‐aatcagactcaccatTTTGGTTCCTTGATCGAATTTTT 

 

To introduce the customized reporter plasmids, electroporation experiments were 

performed based on a published protocol (Corbo et al., 1997) with minor modifications. 

Dechorionation steps were similar to the aforementioned method (section 2.2.1) but was 

applied to unfertilized eggs before the insemination step. After washing, eggs were fertilized, 

and then the dechorionated-fertilized Ciona eggs with minimal filtered seawater were added 

into mannitol solution (0.77 M mannitol in 10% v/v filtered seawater). Then, for each 

electroporation group, 15-60 µg of plasmid DNA (dissolved in 80 µl of TE buffer) were 

combined to 720 µl of abovementioned egg-mannitol mix, making final 800 µl volume for 

each electroporation group. Electroporation (50 volts, 20 milliseconds, in 4-millimeter 

cuvette) was performed by a GenePulser Xcell pulser (Bio-Rad). After pulsing, the eggs 

were carefully transferred into streptomycin-seawater in agarose-coated or gelatin-coated 

plastic petri dishes. After 12 hours of incubation at 18 °C, embryos were fixed with the same 

method described in section 2.2.3. 

 

2.2.6 Gene knockout experiments by TALEN-mediated genome editing 

To understand the physiological function of GH6-1 in C. intestinalis type A, I 

assembled two sets of transcription activator-like effector nuclease (TALEN) pairs following 

the method described by Sakuma et al. (2013) and Treen et al. (2014) and the TALEN 

assembly protocols released on the NBRP-Ciona intestinalis Transgenic line RESources 

(CITRES) website . The Platinum Gate TALEN Kit was acquired from the Addgene plasmid 

repository. For expressing the TALEN in Ciona, EF1a>TALEN-NG::2A::mCherry vector 

provided by Dr. Yasunori Sasakura (see also the NBRP-CITRES website) was used for the 

second step assembly target. Optimal TALEN-binding targets in coding sequence of Ciona 

GH6-1 gene were selected with the assistance of TAL Effector Nucleotide Targeter 2.0 
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(Doyle et al., 2012). The customized TALENs were designed to excise and disrupt the coding 

part of GH6-1 gene. A TALEN pair (GH6-TL1) targets CGGC-CTAC-TGAA-GGTC-T and 

ATTT-CGAA-CTGG-GATT (spanning the 394-442nd nucleotide of assumed coding 

sequence); a second TALEN pair (GH6-TL2) targets TTCG-AACT-GGGA-TTAT and 

ATTT-CTAC-CTGG-ACAG (429-478th nucleotide). These targets are both upstream to the 

probable active site of Ciona GH6-1 protein (as described in Chapter 1). Therefore, these 

TALEN pairs were expected to disrupt the function of Ciona GH6-1 protein. 

The TALEN-encoding plasmids were introduced to dechorionated-fertilized eggs by 

electroporation as described in section 2.2.5. For electroporation control, a plasmid 

containing promotor of Ciona forkhead gene (Ci-fkh) and monomer Venus fluorescent 

protein gene (a generous gift from Dr. Koki Nishitsuji, Marine Genomics Unit, OIST) was 

used. Twenty to 60 micrograms of DNA (10 to 30 micrograms for each plasmid of two units 

of a TALEN pair) were used in one experiment. After electroporation, the eggs were 

transferred to streptomycin-seawater and incubated at 18 °C.  

A few embryos were used for checking the specific editing efficiency. Genomic DNA 

of 15-30 embryos (12-16 hours post fertilization) were extracted with Maxwell® RSC Blood 

DNA Kit on a Maxwell® RSC Instrument (Promega). The extracted genomic DNA were 

amplified with primers targeting a part of GH6-1 gene; Forward: 5'-

GCCTCGCTACAAGAACCACC and Reverse: 5'- ACACAATGACTTTTCGAGCGC. The 

amplicon was purified, cloned into pGEM®T-Easy vector (Promega), and sequenced with 

BigDyeTM Terminator v3.1 kit on SeqStudio Genetic Analyzers (Thermo Fisher Scientific).  

The electroporated embryos were examined after reaching neurula stage (about 10 

hours after fertilization) under a Leica M205-FA microscope. The embryos that actually 

received and expressed the introduced plasmid showed red fluorescence of the mCherry 

protein. Only these embryos were used in later steps.  

Crystallized cellulose of these Ciona larvae was examined by staining and microscopy. 

The staining method below was modifed from a previous study (Nakashima et al., 2011). 

Commercialized green fluorescent protein tagged carbohydrate binding module 

(Carbohydrate Binding Module 3A, GFP-CBM3, origin: Bacteroides cellulosolvens) was 

purchased from NZYtech. The protein was centrifuged and redissolved in an assay buffer 

(20 mM Tris-HCl, pH 7.5, 20 mM NaCl, 5 mM CaCl2) according to manufacturer’s protocol. 

It was diluted to 1/6 concentration in the assay buffer before application. The Ciona embryos 

or larvae were fixed and preserved as described in section 2.2.3. These samples were 

rehydrated in three washes (10 minutes each) of phosphate buffered saline containing 0.1% 

Tween-20 (PBSTw), incubated in blocking solution [PBS with 1% Blocking Reagent 
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(Roche)] for 1 hour at room temperature, washed two times in Tris-buffered saline 

containing 0.1% Tween-20, rinsed two times in the assay buffer, stained with the diluted 

GFP-CBM3 assay solution for 12-20 hours at 4 °C, washed 8 times in Tris-buffered saline 

+ 0.1% Tween-20 buffer, and transferred to VECTASHIELD Antifade Mounting Medium 

(Vector Laboratories) before microscopic imaging. 
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2.3 Results 

2.3.1 Expression of GH6-1 and CesA at Ciona embryonic epidermis  

The quantitative expression of GH6-1 and CesA in early developmental stages was 

examined by RT-qPCR and the results are shown in Figure 2.1. The expression of GH6-1 

remained at low level until mid-tailbud stage (10 hpf at 18 °C). The late tailbud stages and 

hatching larvae (18 hpf) showed higher levels of GH6-1 expression. However, the larvae 

after hatching (24 hpf) and settled juveniles showed lower expression.  

In parallel, I also examined the temporal expression profile of the tunicate cellulose 

synthase gene, CesA. In accordance with results of a previous study (Nakashima et al., 2004), 

expression of CesA was detected in the tailbud embryos and larvae. The CesA expression 

level rose at the mid tailbud stage and became highest at late tailbud stage (about 16 hpf at 

18 °C). Although the hatching larvae (18 hpf) also show high level of CesA expression, the 

expression was greatly reduced in the 24 hpf larvae and settled juveniles.  

Interestingly, both GH6-1 and CesA genes showed higher levels of expression at late 

tailbud stages and hatching larvae, and then showed decreased level of expression several 

hours after hatching. This observation shows that both the expression of genes is 

dynamically regulated, implying their functions in larval physiology.    
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Figure 2.1. Quantitative level of the expression of Ciona GH6-1 and CesA genes during early 

development of Ciona intestinalis type A  

X‐axis: developmental time and stages. Y‐axis: the expression of each gene was first normalized to 

GAPDH and then the expression level of each gene at 6 hours post fertilization was set as 1 for 

normalization. The developmental staging follows the TUNICANATO website. 

The spatial embryonic expression of GH6-1 was determined by in situ hybridization 

(Figure 2.2). The GH6-1 expression was not detected in gastrulae (Figure 2.2A), and first 

appeared at the epidermis of future tail tip of late neurula (Figure 2.2B). The tail tip 

expression persisted in early and mid tailbud stages (Figure 2.2C, D). Later, at the late tailbud 

stage I, dorsal and ventral midline epidermis of the tail and many of the trunk epidermal cells 

also showed expression (Figure 2.2E, Ea-Ec); specifically, three clusters of anterior trunk 

cells showed stronger signal (open arrows in Figure 2.2E, Ea). These locations may 

correspond to the future papillae. At the late tailbud stage II, while the anterior trunk and tail 

tip expression was still strong, the tail midline expression was decreased and hard to detect 

(Figure 2.2F). Control embryos treated with sense riboprobe showed no clear signal at all 

stages examined (Figure 2.2G-L). 

This GH6-1 expression was compared with the expression of CesA gene, another 

horizontally-transferred gene (Figure 2.3). Although these two genes are both expressed at 

the epidermis, the CesA expression appears ubiquitous in all of the epidermis (Figure 2.3) 

while the GH6-1 expression is more localized.  
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Figure 2.2. In situ hybridization of the GH6-1 gene in Ciona intestinalis type A 

No clear expression was observed in gastrula stage (A). Epidermal expression was first observed at tail‐

tip (arrows in panels B, C, and D). Expression was expanded in late tailbud stages (E, Ea‐Ec, and F). In 

panel E, filled arrows ea and eb represent the viewing aspect of panel Ea and Eb, respectively. Control 

embryos (G‐L) were treated with sense riboprobe and showed no clear signal. Panels A‐E, Ea, and F are 

the same magnification as panel A, in which a scale bar represents 100 micrometers. Scale bars in Eb 

and Ec also represent 100 micrometers. Panel G shows a scale bar of 100 micrometers; panels H‐L are 

in the same magnification as panel G. The d footnote in A, B, and Eb denotes dorsal‐view.   
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Figure 2.3. In situ hybridization of the CesA gene in Ciona intestinalis type A 

The CesA appeared to show ubiquitous epidermal expression. The scale bar in panel A representing 100 

micrometers applies to all panels.  

In addition, analysis of the single-cell transcriptome also showed that the cells that 

express the GH6-1 or CesA genes may be most likely identified as epidermal cells. In this 

analysis, data from late tailbud stage I embryos (Cao et al., 2019) was analyzed. Cells with 

different gene expression profiles were separated to 30 clusters (Figure 2.4A): cells in the 

same cluster shared similar gene expression patterns (Figure 2.4). The intermediate filament 

protein IF-C gene (KY.Chr3.1290 on the Ghost database HT version; see also 

LOC100175966 on the NCBI Gene database) (Wang et al., 2002; Cao et al., 2019) was 

selected as a marker of the epidermal cell identity. The IF-C gene was highly expressed at 

cell clusters number 0, 1, and 5 (Figure 2.4B). The same three clusters also contained many 

cells that expressed GH6-1 (Figure 2.4C) and/or CesA (Figure 2.4D). This observation 

agreed with the in situ hybridization result as described in the previous text.  

The gene expression of each cell was further analyzed by scatter plots, showing the 

normalized expression level of IF-C, CesA, and GH6-1 genes (Figure 2.4E). Although in the 

cluster-level of grouping, IF-C expressing clusters matched with GH6-1 expressing clusters 

and CesA expressing clusters, the individual cells (transcriptomes) may either show high 

level of both two genes or high level of one gene and no/low expression of another. 

The GH6-1 and CesA expression level were plotted onto the dimension reduction plots 

(Figure 2.4F). Within these target clusters, while many of the cells show higher level of 

either gene, only few cells showed high expression of both GH6-1 and CesA (yellow dots, 

bottom-right inset). These results showed additional information, which are difficult to 

observe by in situ hybridization method alone, on cell heterogeneity within the same tissue 

type (the same cluster of cells). The CesA expression examined by traditional in situ 

hybridization method showed seemingly ubiquitous epidermal expression (Figure 2.3). On 

the other hand, GH6-1 expression was seen in the anterior-most and posterior-tip epidermal 
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cells (Figure 2.2). Therefore, the GH6-1 expressing cells are likely to co-express CesA in the 

two tip regions. In this single-cell transcriptome analysis, the quantified expression data 

showed that although there were cells co-expressing these two genes, usually only one gene 

was highly expressed. In other words, there is only a moderate correlation of expression 

strengths of these two genes.  
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Figure 2.4. Single-cell transcriptome analysis showed GH6-1 and CesA expressions 

correspond to epidermal cell identity 

(The figure legend is shown at the next page)   
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(A) Dimension reduction plot shows representation of the late tailbud stage I embryonic cells, separated 

to 30 clusters (numbered 0 to 29). Dimensions were reduced by the uniform manifold approximation 

and projection (UMAP) technique in the Seurat package. Each dot represents the transcriptome of a 

single cell. Cells in the same cluster have similar gene expression profiles. Number and color labels 

denote the cluster identity. (B‐D) Violin plots showing the expression level of three genes. X‐axis: cell 

cluster identifier. Y‐axis: normalized expression level of each gene. (B) The IF-C gene (KY.Chr3.1290) was 

selected as an epidermal marker of the cell identity of clusters. It was highly expressed at the cells in 

clusters No. 1 and 5 and to a lesser extent in cluster No. 0. (C, D) The GH6-1‐expressing cells and CesA‐

expressing cells were mostly in the clusters No. 0, 1, and 5. (E) Scatter plots showing relationships of 

normalized expression of IF-C, CesA, and GH6-1. Each dot represents the transcriptome of a cell and are 

colored by cluster identity. The X‐ and Y‐axes are normalized expression level. Pearson correlation 

between the two features is displayed above each plot. (F) UMAP‐dimension reduction plots showing 

normalized expression level of GH6-1 and CesA genes. Although expression of these two genes were 

shown mostly in the same cell clusters (no. 0, 1, and 5), only few cells show high expression of both 

genes (yellow dots). Enlarged dashed rectangle area is shown as inset at bottom‐right. 
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2.3.2 Reporter assay for the existence of enhancers upstream to Ciona GH6-1 gene  

Non-coding genomic regions around orthologous genes from moderately distant 

species sometimes show sequence similarity, and this may correspond to the existence of 

conserved regulatory elements (Sean et al., 2004; Yue et al., 2016). In order to understand 

the mechanism regulating GH6-1 expression in tunicates, I compared the genomic regions 

around GH6-1 genes of three tunicates species (Figure 2.5). A few non-coding regions 

showed sequence similarity between Ciona intestinalis type A and C. savignyi; one small 

region of similarity was also found between C. intestinalis type A and the more distantly 

related Mogula occidentalis. Therefore, I hypothesized that the genomic region upstream to 

C. intestinalis type A GH6-1 gene contains elements regulating GH6-1 expression. 

 

 

Figure 2.5. Comparison of genomic segments revealed regions of sequence similarity around 

tunicate GH6-1 genes.  

Genomic segments of three tunicate species were compared with the VISTA tools. The reference (C. 

intestinalis type A) is only represented by the gene‐exon line symbols at the top. For C. savignyi and M. 

occidentalis genomic DNA (gDNA) segments, the regions of high sequence similarity are denoted as 

colored peaks: the blue‐colored peaks show similarities of coding‐regions, and the pink‐colored peaks 

show non‐coding sequence similarity regions. For clarity, only the upstream three exons of Ciona GH6-

1 gene (total: 4 exons) were shown. Under the same threshold setting, there is no region of high 

sequence similarity in the third intron. 

 

In the reporter assay, I combined an about 2.8-kbp long Ciona GH6-1 upstream 

genomic segment to a gene Kaede, which encodes a fluorescent reporter protein. This 

upstream genomic DNA segment successfully induced Kaede signal in Ciona embryos 

(Figure 2.6). The location of Kaede expression partially represented the endogenous 

expression of GH6-1 gene. Therefore, I interpreted that this segment of non-coding genomic 
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DNA contains enhancers that can activate the endogenous GH6-1 expression in normal 

embryogenesis. However, the location of the expression did not perfectly match the 

endogenous expression of GH6-1: the endogenous strong expression of GH6-1 at anterior 

trunk epidermis was not clearly represented in the reporter experiment. Also, in the reporter 

experiment, the central nervous system, trunk mesenchyme, and tail muscle showed weak 

Kaede expression (Figure 2.6G). These fluorescence-expressing parts did not correspond to 

any endogenous expression of GH6-1 gene. 

In the 28 embryos observed, 26 individuals (92.9%) showed fluorescence at the tail-tip. 

The proportion of each tissue showing the Kaede fluorescence was summarized in Table 2.2. 

 

Table 2.2. Percentage (and number) of embryos in reporter assay showing fluorescence at 

each tissue/structure 

  Tail-tip Tail-muscle 
Mesenchyme 
(posterior trunk) 

Central 
nervous 
system 

Trunk 
epidermis 

Percentage (%) of embryos 
show fluorescence at 
tissue/structure (n=28) 

92.9 
(26) 

60.7 
(17) 

57.1 
(16) 

64.3 
(18) 

28.6 
(8) 
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Figure 2.6. Fluorescent reporter gene expression was activated by Ciona GH6-1 upstream 

genomic DNA  

In the dechorionated control group (A and B), fertilized egg developed without any artificial DNA. In the 

‘Kaede control’ group (C and D), eggs were electroporated with an ‘empty’ vector, which contains only 

the Kaede coding sequence but no enhancer/promotor. In both dechorionated and Kaede‐only control 

groups, only dim background green light was shown. In the reporter group (GH6ups>Kaede) (E, F, and 

G), a plasmid construct, containing Ciona GH6-1 upstream genomic sequence and Kaede gene, was 

introduced to the fertilized egg by electroporation. The Kaede expression was turned on and therefore 

a few parts of the tailbud embryo showed bright green light. The first row (A, C, E) and second row (B, 

D, F) shows the same embryo observed with DIC visible light and green fluorescence filtered light. 

Tissue/structure labels: epi, epidermis; me, trunk mesenchyme; mu, tail muscle; N, central nervous 

system; tt, tail‐tip. 
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2.3.3 TALEN-mediated knockout of GH6-1 affects adhesive papillae formation and 

metamorphosis 

To understand the physiological significance of GH6-1 gene, I also used TALEN-

mediated genome editing to knockout the GH6-1 gene. Customized TALEN-expressing 

plasmids were introduced to fertilized Ciona eggs by electroporation. In a pioneer 

experiment, the genome-editing efficiency of two TALEN pairs were evaluated by 

sequencing. The TALEN pair 1 had an editing efficiency of 57% and the TALEN pair 2 had 

an efficiency of 63%. Therefore, the TALEN pair 2 was selected for the rest of study. The 

target site was 429-478th nucleotide of assumed coding sequence of GH6-1, and I observed 

a higher proportion of phenotypically affected individuals (described below). 

In electroporation-control experiments, a plasmid containing Ciona forkhead gene (Ci-

fkh) promotor and monomer Venus fluorescent protein gene was used. When embryos 

develop to hatching larva stage (17.5-18 hours post fertilization at 18 °C), the larvae have 

three normally protruding adhesive papillae at the anterior trunk, as shown in the control 

group (Table 2.3 and Figure 2.7A). However, a majority (74%) of the TALEN-affected 

larvae did not develop the protruding papillae (Figure 2.7C).  

As it is questioned whether the GH6-1 protein would participate in cellulose 

metabolism, I also examined the existence and abundance of cellulose of the larval tunic, 

which normally is formed shortly before Ciona larvae hatch. Larvae were stained with GFP-

linked carbohydrate binding modules (Figure 2.7B, D). In the control animals, the larva 

showed cellulose signal at the larval tunic external to the epidermis. Notably, at the epidermis 

of anterior trunk, an area surrounding the future papillae, less cellulose signal was observed 

compared to other parts of trunk epidermis (arrows in Figure 2.7B). TALEN-affected 

animals also showed cellulose signal at larval tunic (Figure 2.7D). However, I found that 

anterior epidermis of these affected animals showed a signal strength similar to other parts 

of trunk epidermis (asterisks in Figure 2.7D). In other words, the anterior epidermis of 

affected animals showed a relatively stronger cellulose signal than the corresponding part of 

control animals.  

For a normal Ciona larva, the adhesive papillae secrete mucus and are important for 

adhesion to substrate (Pennati and Rothbächer, 2015; Zeng et al., 2019). Although the 

TALEN-affected animals did not form the normal papillae, about two-thirds of these larvae 

could still adhere to Petri dish bottom at 2 days post fertilization. However, for all the settled 

animals at 3 days post fertilization, while a majority (40/44, 91%) of control group animals 

continued to metamorphose (axis rotation, adult structure formation), 78% (38/49) of the 

TALEN-treated larvae stopped further development required for metamorphosis after 
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settlement: in these attached larvae, the tail was not resorbed, the trunk region shrank, and 

no adult organ were seen. Therefore, the functional GH6-1 protein contributes to essential 

physiology during the metamorphosis stages.  

 

Table 2.3. Phenotypes of TALEN-affected Ciona larvae. 
 

Control TALEN pair no.2 

Development of three adhesive papillae 100% (n=20) 26% (n=23) 

Production of cellulose 100% (n=7) 100% (n=9) 

Reduced cellulose at anterior trunk 100% (n=7) 29% (n=7) 

 

 

Figure 2.7. Knocking out of GH6-1 by TALEN affects development of larval structures  

(A, B) A hatching larva of electroporation control group, showing protruding adhesive papillae (ap in A) 

and reduced cellulose signal at the anterior trunk epidermis (arrows in B). (C, D) A hatching larva 

expressing TALENs targeting the GH6-1 gene. The adhesive papillae fail in development (asterisks in C) 

and the cellulose signal at the anterior epidermis was slightly stronger than the corresponding part of 

control larvae. 
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2.4 Discussion 

2.4.1 Dynamic expression of GH6-1 gene in developing Ciona embryos and larvae and 

the implication to its possible function 

In this chapter, firstly I examined and compared the quantitative and spatial expression 

profiles of GH6-1 and CesA genes in C. intestinalis embryos and larvae. The stronger 

expression of GH6-1 was observed in late embryonic stages before hatching. As CesA also 

showed strong expression at late embryonic stages, it is possible that the expression of two 

genes are temporally correlated and may be regulated by a similar set of upstream regulators. 

The epidermal expression of GH6-1 at late embryonic and early larval stages could be 

interpreted as that translated GH6-1 protein contributes to epidermal/larval structure 

formation or larval physiology. Alternatively, GH6-1 could merely share a similar regulation 

status to other genes that are controlled by an upstream developmental regulatory network 

(Davidson, 2010). For example, the pathways patterning epidermal sensory neurons include 

tail midlines-specific transcription factor (Pasini et al., 2006). 

The epidermal expression also implies that GH6-1 has a function different from 

nutritious digestion. Based the conserved signature analysis in section 1.3.3, tunicate GH6-

1 may be able to catalyze cellulose hydrolysis. However, the epidermal expression is clearly 

different from the expression profiles of many ‘digestive cellulases’ of other animals, which 

are expressed at digestive systems: salivary glands (termites), midgut (insects), or 

hepatopancreas (crayfish and snail) (Watanabe and Tokuda, 2001). Also, the larva of Ciona 

does not have a functional mouth/oral siphon and does not eat food particles (Chiba et al., 

2004; Hotta et al., 2020). 

A Ciona hatching larva has protruding papillae at the anterior of the trunk and 

extracellular larval tunic covering its surface. The larval tunic at the tail expands outwardly 

in the dorsal and ventral directions and the tail-tip to form a tail-fin (Sasakura et al., 2005). 

The cells showing stronger expression of GH6-1 coincides with the location of these 

protruding structures. 

The papillae include protruding, elongated cells and hyaline caps (Zeng et al., 2019). 

On the other hand, the larval tunic itself is acellular and external to the epidermis, although 

in the wild type animals the test cells are attaching to the exterior of the larval tunic (Sato et 

al., 1997). If the prediction of signal peptide in Ciona GH6-1 (section 1.3.3) holds true, and 

if the Ciona GH6-1 protein is able to hydrolyze or interact with cellulose or other 

polysaccharides, the secreted GH6-1 proteins could regulate or alter the composition of local 

polysaccharide macromolecules. Since the extracellular matrix can affect the shape of cells, 

it is possible that the GH6-1 participated in the formation of both kinds of protruding 
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structures. If Ciona GH6-1 is able to digest cellulose or other extracellular polysaccharides, 

the tunic at the site of GH6-1 secretion would be softened and allow the adhesive papillae 

cells to grow outward. 

 

2.4.2 The GH6-1 gene obtained expression regulation after horizontal gene transfer 

In my reporter assay, the position of reporter fluorescent protein signal partially 

represented the endogenous GH6-1 expression in Ciona. Possible explanations are listed 

below. (1) The intergenic, GH6-1 upstream genomic segment I used to construct the reporter 

plasmid probably contains not only the regulatory cis-elements of the GH6-1 gene but also 

cis-elements of the neighbor gene. This 2.8 kbp non-coding genomic segment includes 

regulatory components of two genes: the GH6-1 gene and the neighboring gene model 

KY.Chr3.453 (the genome HT version), which is in the opposite direction. Ciona intestinalis 

has a compact genome, and most enhancers are located within 1.5 kbp upstream to the 

transcription start sites of each gene (Satoh, 2003; Q. Irvine, 2013). Therefore, it is likely 

that the cis-elements of KY.Chr3.453 gene also induced expression of the reporter at the 

locations that do not correspond to GH6-1 expression. (2) The GH6-1 gene may have other 

enhancers and silencers at other genomic locations. One candidate would be the introns of 

GH6-1 gene. In the comparison of genomic sequences, regions of sequence similarity 

between C. intestinalis and C. savignyi were also found at the first and the second introns 

(Figure 2.5). While the first intron is small (170 bases), the second intron is the largest intron 

of this gene and has a size of about 2.2 kbp. These introns may also contain cis-elements that 

regulate the expression of GH6-1 gene, and the endogenous expression of GH6-1 is under 

the integrative regulation from all relevant cis-elements. Therefore, without these elements, 

my reporter assay represented only part of the endogenous GH6-1 expression. 

Athough I have not clarified the detailed locations and properties of all cis-elements 

relevant to GH6-1 gene, this gene is expressed at the embryonic epidermis with local 

regulation. This shows that the GH6-1 gene, after horizontally transferred to tunicate 

genomic context, obtained expression regulation in the cellular environment of the new host. 

This is similar to the incorporation of CesA gene into expression regulation, in which an 

endogenous epidermal transcription factor AP-2 could turn on the horizontally transferred 

Ci-CesA gene at epidermis (Sasakura et al., 2016). However, the details of expression 

regulation of GH6-1 is different from that of CesA. Both in situ hybridization and single-cell 

transcriptome analysis results showed differences of the two genes: different expression 

strength at different locations. The current observation would lead to future studies on 

clarifying what the exact regulation mechanisms are and when these mechanisms were 
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linked to these transferred genes. 

 

2.4.3 Ciona GH6-1 is likely incorporated into metamorphosis regulation 

In this chapter, it has been revealed that knocking out GH6-1 gene in Ciona intestinalis 

type A affects three biological processes: the adhesive papillae development, cellulose 

accumulation, and larva-to-juvenile metamorphosis. These phenotypes of larvae suggest 

significant roles of GH6-1 gene in early Ciona development.  

Metamorphosis in ascidians, in which a swimming larva starts to transform into its 

sessile life, is a complex set of events (Cloney, 1982; Chambon et al., 2002; Sasakura et al., 

2005; Nakayama-Ishimura et al., 2009). Among the Ciona larval organs, papillae are thought 

to be a key player in metamorphosis (Nakayama-Ishimura et al., 2009; Wakai et al., 2021). 

The mucous secretion and adhering to a surface of substrate by papillae are considered as 

the first events in metamorphosis (Cloney, 1982; Sasakura, 2018a). The GH6-1 knockout 

larvae could still attach to the bottom of Petri dishes, implying that the GH6-1 is not 

necessary in mucus-secretion and adhesion. 

Knocking out of Ciona GH6-1 gene affects the cellulose distribution of the anterior 

face of trunk. This is somewhat an expected outcome as I had proposed that GH6-1 protein 

might have catalytic activity, based on the conserved signature analysis in Chapter 1.  

More surprisingly, the knockout animals also showed failure of establishing papillae 

protrusion and failed to continue metamorphic events after settlement. The abnormal 

papillae may be related to my hypothesis that GH6-1 could digest/affect extracellular 

components and ease the growth of protruding structures (section 2.4.1). The mechanisms 

of how GH6-1 or abnormal papillae caused the failure of later metamorphosis is unknown 

for now, but it is possible that the neurons in abnormal adhesive papillae were also affected. 

Metamorphosis in Ciona includes the collaborative works of various types of cells and 

cellular processes: adhesion of papillae to substrate and subsequent neuronal activities 

(Matsunobu and Sasakura, 2015; Wakai et al., 2021), neurotransmitter and neuropeptide 

signaling (Kimura et al., 2003; Kamiya et al., 2014; Hozumi et al., 2020), and apoptosis 

(Chambon et al., 2002). Either of the process could be directly (or indirectly) affected when 

GH6-1 is lost. Although the GH6-1 knockout larvae still have mucus-secreting or adhering 

ability at the papillae, it will be important to examine whether the neurons in these adhesive 

papillae cannot sense the attachment physical stimuli or cannot send neuronal signals. 

Different metamorphic events of Ciona depend on different pathways (Nakayama-

Ishimura et al., 2009; Hozumi et al., 2020). For example, growth of adult organs requires 

neurotransmitter gamma-aminobutyric acid (GABA) but does not rely on existence of Ci-
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CesA/cellulose nor gonadotropin-releasing hormone (GnRH) (Sasakura et al., 2005; Hozumi 

et al., 2020). Clarifying the detailed mechanism of how GH6-1 affects downstream 

metamorphic events will be valuable for understanding ascidian metamorphosis.  

 

2.4.4 Perspectives 

Although my current investigation did not include the biochemical analysis of 

enzymatic activity, that analysis would be necessary to reveal whether the tunicate GH6-1 

can catalyze cellulose hydrolysis or interact with any other carbohydrates. Possible methods 

were described in section 1.4.4. In addition, as described in previous sections, another family 

of genes, Glycoside Hydrolase Family 9, in tunicate genomes (Lo et al., 2003; Davison and 

Blaxter, 2005) is another endogenous family of possibly active cellulase, but the character 

of this gene family in tunicate biology is not well known. Confirming the characters of all 

possible cellulases with experimental evidence would be helpful to understand how tunicates 

utilize and regulate extracellular cellulose. This knowledge would also shed light on the 

evolution of tunic and unique tunicate life forms. 

After metamorphosis, the adult ascidians may still express CesA gene and synthesize 

cellulose to build and maintain their tunic. This is supported by a low level of CesA 

expression in an EST dataset of Ciona on the Ghost database (Satou et al., 2003; Satou et al., 

2019). However, the same dataset showed very low or no expression of GH6-1 gene in adult 

samples. It would be valuable to know the detailed expression of CesA and GH6-1 genes in 

adult Ciona and how adult ascidians maintain their tunic structure. 

In other animals, some of the horizontally transferred genes also play important roles 

in development. The insect oskar gene, originated from combining bacterial and eukaryotic 

genetic information, has multiple roles in insect development and is critical for fruit fly 

(Drosophila melanogaster) germ plasm formation (Ewen-Campen et al., 2012; Blondel et 

al., 2020). Mammalian syncytins, originated from multiple integrated retroviral envelope 

genes, are influential to placenta development (Frendo et al., 2003; Feschotte and Gilbert, 

2012). Following the observation that Ciona CesA affects metamorphosis, this study showed 

that Ciona GH6-1 gene is also important to Ciona early development. I expect future studies 

on GH6-1 would provide a more comprehensive view on tunicate development, physiology, 

and evolution. 
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Conclusion 

In this study, I first investigated the phylogenetic relationships, sequence signatures, 

and exon-intron structure of tunicate GH6-1 genes. I found that (1) GH6-1 genes have no 

homologs in non-tunicate animal taxa and (2) GH6-1 sequences, forming an independent 

orthologous group, show close relationship with the GH6 domain part of tunicate CesA 

(CesA-GH6). Also considering the findings of splice sites (intron location) analysis, I 

propose that a GH6-encoding gene of a microorganism was transferred to an ancestral 

tunicate and this ancient GH6 gene duplicated in tunicate genome and later became GH6-1 

and CesA-GH6. Based on analysis of the predicted GH6-1 protein sequences, tunicate GH6-

1 proteins may be secreted cellulases, but biochemical evidence is yet lacking.  

To investigate the expression of tunicate GH6-1 gene, I used Ciona intestinalis type A 

as an experiment model. Quantitative expression analysis by RT-qPCR showed GH6-1 

expression at late embryonic and hatching larval stages. This temporal expression profile is 

reminiscent of Ci-CesA gene expression profile. Spatial expression analysis by in situ 

hybridization showed epidermal expression of GH6-1 in Ciona embryos and showed locally 

enhanced expression in a few locations: tail tip, tail midlines, and anterior trunk epidermis. 

Analysis of single-cell transcriptome of a late tailbud stage I dataset showed that both GH6-

1- and CesA-expressing cells are mostly in cell clusters of epidermal identity, but not many 

cells show strong co-expression for both genes. Localized signal in the reporter assay 

partially represented the endogenous GH6-1 expression, suggesting the existence of specific 

enhancers upstream to Ciona GH6-1 gene.  

As a preliminary study on the function of Ciona GH6-1, I prepared GH6-1 knock out 

Ciona by TALEN-mediated genome editing. The affected embryos show perturbed papillae 

formation and metamorphosis, as well as altered cellulose amount. Most of these affected 

larvae could settle to a surface but did not continue the metamorphic events. 

My study provided an example of a horizontally transferred gene in tunicate genome 

being expressed in early development and utilized in metamorphic regulation. Tunicate CesA 

gene, another horizontally transferred gene, provides tunicates the ability to utilize cellulose 

and also contributes to metamorphic regulation in Ciona (Sasakura et al., 2005). As cellulose 

of tunicates and the sessile life form of ascidians are among the most known characters of 

tunicates, my current observations and future studies on GH6-1 would help us understand 

how horizontally transferred genes influenced tunicate evolution. 
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