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Zebrafish capable of generating future state
prediction error show improved active avoidance
behavior in virtual reality
Makio Torigoe 1, Tanvir Islam1,2, Hisaya Kakinuma1,2, Chi Chung Alan Fung3, Takuya Isomura 4,

Hideaki Shimazaki 5, Tazu Aoki1, Tomoki Fukai 3 & Hitoshi Okamoto 1,2✉

Animals make decisions under the principle of reward value maximization and surprise

minimization. It is still unclear how these principles are represented in the brain and are

reflected in behavior. We addressed this question using a closed-loop virtual reality system to

train adult zebrafish for active avoidance. Analysis of the neural activity of the dorsal pallium

during training revealed neural ensembles assigning rules to the colors of the surrounding

walls. Additionally, one third of fish generated another ensemble that becomes activated only

when the real perceived scenery shows discrepancy from the predicted favorable scenery.

The fish with the latter ensemble escape more efficiently than the fish with the former

ensembles alone, even though both fish have successfully learned to escape, consistent with

the hypothesis that the latter ensemble guides zebrafish to take action to minimize this

prediction error. Our results suggest that zebrafish can use both principles of goal-directed

behavior, but with different behavioral consequences depending on the repertoire of the

adopted principles.
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Making optimal decisions according to the current sen-
sory input is essential for animals. One prevailing
model underlying this behavioral process is based on

the idea that the ultimate aim of choice is to maximize utility or
reward1. In addition to this, adaptive behavior requires animals to
generate an internal model of their environment and to take
actions to minimize surprise (i.e., improbability) about the state
they encounter in comparison with the state predicted from the
internal model2,3. How these mechanisms are actually adopted by
animals and are reflected in their behavior remains unknown4,5

Active avoidance has been regarded as the most typical model-
free decision-making behavior based solely on the basic principle
of reinforcement learning. The goal of reinforcement learning is
to maximize the predicted reward under a given spatial dis-
tribution of utility (reward or punishment associated with spatial
subregions)6–9. Another control process of this goal-directed
behavior could underlie the principle of minimization of surprise
(i.e., the prediction error between the real perceived state and
the predicted state) and has been theoretically formulated as
“active inference”2,3. However, there has been little experimental
data to confirm whether active inference indeed acts to correct
behaviors.

Adult zebrafish have the ability to learn various adaptive
behaviors, and their telencephalon has regions and neural circuits
that are evolutionarily homologous to those of other vertebrates,
including mammals10. These regions include the isocortex, hip-
pocampus, amygdala, and the cortico-basal ganglia circuit, which
is implicated in behavioral selection11–14. The zebrafish brain is
very small (3 mm3)15 as compared to that of mice (509 mm3)16 or
humans (1400 cm3)17, allowing us to observe neural activity in a
relatively wide brain region8. Further, the use of pigment-
deficient mutant strains18,19 enables observation of the tele-
ncephalic neural activity without opening the skull. Thus, adult
zebrafish can be an attractive animal model for investigating the
evolutionarily conserved and universal mechanisms of behavioral
control by the telencephalon.

To address whether zebrafish are able to use both value max-
imization and surprise minimization2,3, we established a closed-
loop virtual reality two-photon calcium imaging system in which
the surrounding scenery moved backward in response to the tail
beating of the fish (Fig. 1a). We used this system to study active or
passive avoidance behavior as an example of the simple beha-
vioral paradigm of goal-directed behaviors6–9. Our unsupervised
analysis method, non-negative matrix factorization (NMF)20,21,
partitioned the complex activity pattern of the entire neural
population into a linear superimposition of the neural activity of
multiple elemental ensembles.

Using this virtual reality system, we found that adult zebrafish
can learn both GO (active avoidance) and NOGO (passive
avoidance) tasks in a series of trials carried out within one day.
These tasks are commonly used also in mice and monkeys22–25.
Furthermore, by taking advantage of the virtual reality environ-
ment, we could change the task conditions at will or even impose
conditions that would be impossible in the real world, e.g., con-
verting the system from a closed-loop to an open-loop condition,
where the scenery did not respond to the fish tail beating.

Our results suggest that some zebrafish, if not all, can use both
of the two principles for achieving safe escape in active avoidance,
i.e., value maximization and surprise minimization. Further,
under limited time constraint of the trials, zebrafish using both
principles exhibit optimized escape behavior compared with
zebrafish behaving with only the reward-based principle.

Our work enables to study the cellular and molecular
mechanisms of action selection in vertebrates in the context of the
entire neural circuits at the finer levels that are impossible to
achieve using higher vertebrates.

Results
Establishment of the closed-loop virtual reality system with
two-photon real-time imaging of telencephalic neural activity
in transparent adult zebrafish. To reveal the mechanism of
appropriate behavior selection, we established a closed-loop vir-
tual reality two-photon calcium imaging system (Fig. 1a). The
calcium signals captured by this system, the top view of the tel-
encephalic region in tethered fish and the actual tail behavior and
movement of feedback scenery are shown in Supplementary
Movies 1, 2, and 3, respectively.

We fixed the heads of adult zebrafish by attaching a custom-made
harness with dental bond and cement (Fig. 1b). The detailed
procedure and apparatus are shown in Supplementary Fig. 1a, b. This
method enabled continuous imaging of the beating tail and the
neural activity of a wide area of the adult zebrafish telencephalon
during the trials. The head-fixed fish were put in a small tank
surrounded by four liquid-crystal displays (LCDs) on the left, right,
front, and bottom of the tank (Fig. 1a). The system alternated
between the presentation of the visual stimuli on the four LCDs and
the imaging of the neural activity by the photomultiplier tube (PMT)
of the microscope (Fig. 1e). During the scanning of each line
(650.24 µs), the gallium arsenide phosphide (GaAsP)-PMT detector
(Zeiss, BIG detector) was switched on and the displays were switched
off (Fig. 1e, green arrows). During the shift to the next line (~130 µs),
GaAsP-PMT was switched off and the displays were switched on
(Fig. 1e, blue arrows). To achieve this, we selected the TTL signal that
was generated at the onset of each line scanning from the two-photon
microscope. The electronic stimulator (SEN-3401, NIHON KOH-
DEN) received this TTL signal and sent a modified time TTL signal
based on the original TTL signal derived from the microscope. This
TTL signal from the stimulator was used to switch the display on and
off. The GaAsP-PMT switch was controlled by the custom-made
system by Zeiss.

As the fish beat their tail, the visual images of the scenery
presented on all the surrounding displays on the left, right, front, and
bottom sides of the tank were shifted backward according to the
calculated virtual traveling distance of the fish to make the system
closed-loop (Fig. 1a and “Methods”). The actual tail behavior and the
feedback scenery movement are shown in Supplementary Movie 3.
We performed calcium imaging of the neural activity in a wide
surface area of the telencephalon (384.9 × 384.9 μm) using a piezo
actuator, which allowed us to capture three or six slices of images
separated by 16 µm (approximately 300ms for three-slice imaging,
and thus ~3Hz: approximately 600ms for six-slice imaging, and thus
~1.5Hz; Fig. 1c, d).

The zebrafish telencephalon is reported to contain the homologous
regions of the isocortex (central zone of the dorsal pallium, Dc),
hippocampus (lateral zone of the dorsal pallium, Dl), and amygdala
(medial zone of the dorsal pallium, Dm26; Fig. 1c). The best way to
reveal the role of these regions in decision-making would be
to capture neural activity from all of these regions. However, due to
various technical limitations of conventional two-photon calcium
imaging at present, we focused our observation of neural activity
imaging mainly on the surface part of Dc, the putative zebrafish
homolog of the mammalian isocortex, because the isocortex plays an
important role in mammalian decision-making. (Fig. 1c, d). The area
we observed occupied the large surface part of the Dc and a part of
the other dorsal pallial regions, such as Dm and Dl (Fig. 1c, d). To
achieve the extensive labeling of the excitatory neurons, we used a
triple transgenic line for camk2a: gal4, vglut2a: gal4, and UAS:
G-CaMP7 (Fig. 1d).

Zebrafish can learn to avoid shock by training in virtual reality.
To reveal the mechanism of adaptive goal-directed behavior, we
designed GO and NOGO tasks in the virtual reality system
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(Fig. 2a). After the inter-trial interval (15 s) when fish perceived
white color with black stripes on the surrounding areas of the
displays, the GO or NOGO task was randomly initiated. In the
GO task, the surrounding color turned blue, and fish had to
escape to the red region in front of them within 10 s. For the
NOGO task, the surrounding color turned red, and the fish had to

stay in the red region for 10 s. If the fish did not behave as
indicated by the given task conditions, an electric shock (5 V/cm
for 1 s) was delivered from two needle electrodes on both sides of
the body (Fig. 1b). The fish had to determine whether to move
forward or to stay depending on the presented color to avoid
electric shock.

Fig. 1 The closed-loop virtual reality two-photon imaging system enables real-time capturing of neural activity in adult zebrafish. a Schematic diagram
of the closed-loop virtual reality setup. Four displays presented visual stimuli. Tail beating was captured by a camera and caused the scenery to move
backward to create the impression of forward swimming. The virtual traveling distance was calculated by [frequency of tail beats] × [gain]. b Schematic
drawing of the tethered adult zebrafish using a custom-made harness, dental bond, and cement. Two needle electrodes were placed on both sides of the
body to deliver electric shocks. c The imaged region in the telencephalon. The side (top) and dorsal (bottom left) views and coronal section (bottom right)
of the adult zebrafish brain. The blue box indicates the imaged region by surface three-plane imaging, and the red box indicates the additionally imaged
region by six-plane imaging. Dc, central zone of dorsal telencephalic area; Dl, lateral zone of dorsal telencephalic area; Dm, medial zone of dorsal
telencephalic area; OB, olfactory bulb; OT, optic tectum; Sy, sulcus ypsiloniformis; Tel, telencephalon. d Calcium imaging of neural activity in three focal
planes using the piezo actuator. Either left or right hemisphere was imaged. These images are averaged images of the left hemisphere in three focal planes.
Anterior to top; lateral to left; medial to right. Dl, lateral zone of the dorsal telencephalon; Dc, central zone of dorsal telencephalon; Dm, medial zone of
dorsal telencephalon10. e Schema of alternate switching of neural activity detection by a two-photon microscope and visual stimulation by displays. Green
arrows indicate the duration of scanning; in this setting, the detector is ON and displays are OFF. Blue arrows indicate the duration from the end of a line
scan to the onset of the next line scan; in this setting, the detector is OFF and displays are ON.
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Figure 2b presents the learning curve of the GO/NOGO trials.
During the adaptation stage in which fish perceived color changes
as shown in Fig. 2a but electric shock was not provided, the fish
tended to stop. Therefore, the apparent success rate of the NOGO
trials tended to be high from the beginning of the session. In
contrast, the success rate of the GO trials was low at the

beginning. However, as training proceeded, the fish gradually
succeeded in the GO trials and eventually, the success rate of both
GO and NOGO trials met the learning criterion, i.e., 80%, in both
trials, calculated from the past ten trials. We regarded that the fish
had learned at this time point. In the second session, the success
rate of both GO and NOGO trials met the learning criterion
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again. Of 129 fish, 45 met the learning criterion, of which
33 satisfied the learning criterion again in the following session.
Of these 33 fish, the imaging data of 32 exhibited little z-axis
deviation during the imaging period and could be used for
analysis. In these 32 fish, the number of trials required to meet the
learning criterion again after first reaching it decreased (Fig. 2c,
left panel). Compared with the control group (without shock, four
fish) and the unpaired group (with shock in the inter-trial
interval, five fish), the rate of successfully swimming forward in
the GO trials was higher in the learner group (Fig. 2c, right
panel), suggesting that fish could learn to escape by beating the
tail when perceiving blue color in the GO trials and could retain
the learned response. In contrast, because of the fish’s tendency to
stop tail beating under the tethered condition in the VR arena, we
could not conclude that fish actually learned to stay in the red
region in NOGO task only from these behavioral data. However,
we detected certain change in the neural activities following
repeated NOGO trials as described below.

Template-matching analysis revealed that a similar neural
population was activated when fish perceived blue color in the
GO trials after behavioral learning was established. To reveal
the neural basis of the appropriate behavior selection, we ana-
lyzed the calcium imaging data of the telencephalic neural
activity. We first identified regions of interest (ROIs) corre-
sponding to cells and calculated the fluorescent change (ΔF/F0) in
each cell (Fig. 2d). After correcting the x–y axis displacement of
the images obtained in the experiment, the ROIs corresponding
to the cells were defined based on a previously published
method27. In more detail, we calculated the “peaky-ness” corre-
sponding to the time change in fluorescence intensity for all
pixels. Focusing on the pixel with the highest peaky-ness, we
calculated the correlation between the temporal change in the
fluorescence intensity of the focused pixel and that of the sur-
rounding pixels, and the pixels with a correlation above threshold
were regarded as one cell. We then focused on the pixel with the
second-highest peaky-ness and performed the same calculation as
before. This process was continued until the peaky-ness was lower
than the set threshold. After detection of all cells, the cell with the
largest spatial size was used if there was a spatial overlap
between cells.

To determine how the recruited neural population changed
with behavioral learning, we first performed a template-matching
analysis28. For this analysis, we created a template by averaging
individual neurons’ activity from 0 to 2 s after the onset of the

trial in the successful GO trials or the successful NOGO trials
after fish reached the learning criteria. We calculated the
similarity with the template (Fig. 2e) at each time point by
sliding the template from the beginning to the end of the session.
The value of the similarity index varied from −1 (anti-
correlation) to +1 (perfect correlation). Of this index, 0 means
no correlation. When we calculated with the GO trial template,
the similarity at the onset of the GO trial increased after
behavioral learning criteria was met, but not in the adaptation
stage in 27 of the 32 fish (Fig. 2e, g, circles indicate the peak
values in each trial, and see also filled pentagonal stars of each fish
in Supplementary Fig. 2 where the similarity indices at various
stages of training are shown for all 32 examined fish. The
numbers attached to each graph in Supplementary Fig. 2
correspond to the fish numbers in Supplementary Table 1.). We
obtained similar results when using the NOGO template in 22 of
the 32 fish. Again, the similarity to the template was greater at the
beginning of the NOGO trial after the behavioral learning criteria
were met, but not in the adaptation and initial stages of training
(Fig. 2e, g, Supplementary Fig. 2 (filled hexagonal star in each
fish), and Supplementary Table 1). When we conducted the
analysis with the NOGO template, in six of the 22 fish,
the similarity increased also after reaching the red goal in the
successful GO trials after the behavioral learning criteria were met
(Fig. 2f, g, Supplementary Fig. 2 (filled heptagonal star), and
Supplementary Table 1). These results suggest that a similar
neural population was activated each time the fish perceived blue
color in the GO trial after the behavioral learning criteria were
met. Further, although the behavioral data indicated no difference
in the success rate of NOGO trials between the early and late
stage of training (Fig. 2c, right panel), the template-matching
analysis revealed that similar neural populations started to be
activated when a fish perceived red color, both at the onset of the
successful NOGO trials and after reaching the safe red goal in the
successful GO trials at a late stage of training when behavioral
learning for GO trials was established. The similarity increase was
not observed in the adaptation and initial stages of training.

Non-negative matrix factorization analysis revealed multiple
neural ensembles with one encoding the perception of blue
color. To further reveal the nature of the specific neural popu-
lations, which are impossible or difficult to identify by template
matching or by any other methods, such as regression analysis or
principal component analysis, we performed an unsupervised
analytical method, NMF (Fig. 3a)20,21. The timeline of neural

Fig. 2 Fish can learn the GO/NOGO tasks in the virtual reality system and the specific neural population of the telencephalon is activated when fish
perceive blue color. a GO/NOGO tasks in the virtual reality system. b The learning curve of GO/NOGO trials of a fish that met the behavioral learning
criterion. Horizontal dotted line, the criterion for behavioral learning; open circles, successful trials; solid circles, failed trials; vertical line, the initiation time
point of trials with electric shock; vertical dotted line, the initiation of the next session. c Left: the number of trials needed until the behavioral learning
criterion of GO and NOGO trials was satisfied in the Xth session and the next X+ 1th session (32 fish). Xth GO vs X+ 1th GO, ***P= 7.72 × 10−6; Xth
NOGO vs X+ 1th NOGO, **P= 4.03 × 10−3. Two-tailed paired t-test. Right: Comparison of the success rates among control, unpaired, and learner groups
at the 22nd GO trial and16th NOGO trial which were the average numbers needed to achieve the behavior criteria in standard learner fish. Control (w/o
shock) vs learner, ***P= 7.52 × 10−8; unpaired vs learner, ***P= 2.27 × 10−6, two-tailed unpaired t-test. Columns and error bars: mean ± SEM. Each circle
represents one fish. The numbers in parentheses are the number of fish used in the statistics. d Imaging data analysis procedure. See “Methods” for details.
e Similarity to GO and NOGO templates in the adaptation stage (upper panel), initial stage of training (bottom left panel), and after the establishment of
behavioral learning (bottom right panel). Horizontal bars in the upper and lower positions indicate the period of GO and NOGO trials, respectively. The bar
colors indicate the color of the environment at the position of the fish. f Enlarged view of the boxed area in (e, bottom right panel). g Comparison of peak
value of the similarities to both GO and NOGO templates in both trials in the adaptation stage, after behavioral learning, and after reaching the goal after
behavioral learning. Columns and error bars: mean ± SEM. Circles in the adaptation stage and after behavioral learning indicate peak similarities when the
fish was in the start color in the first five trials. Circles after reaching the goal indicate peak similarities after fish reached the goal in the first five GO trials
after behavioral learning. Adaptation vs after behavioral learning in GO trials GO template, **P= 1.56 × 10−3; after behavioral learning vs after reaching the
goal in GO trials GO template, ***P= 4.5 × 10−4; after behavioral learning vs after reaching the goal in GO trials NOGO template, ***P= 5.02 × 10−5;
adaptation vs after behavioral learning in NOGO trials NOGO template, ***P= 1.56 × 10−6. Two-tailed unpaired t-test.
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activity can be expressed by one matrix with each row corre-
sponding to the time-lapse activity of each neuron. NMF fac-
torizes this matrix into two, in which the columns of the first
matrix present the levels of contribution of individual constituent
neurons in typical ensembles of neural activity and the rows of

the second matrix indicate how frequently each ensemble is
activated at each time point. The number of ensembles was
determined according to the Akaike Information Criteria (AIC).
The AIC curves of all learner fish are shown in Supplementary
Fig. 3. We compared the activity timeline with the behavioral data
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to decipher the information encoded by each ensemble (see
“Methods”).

Consistent with the results of template-matching analysis, some
of the neural ensembles obtained by the NMF analysis were always
activated in the successful GO trials after establishment of the
behavioral learning (see Supplementary Fig. 4, which representa-
tively depicts the activities of all ensembles in one fish). Among
them, a neural ensemble that was activated when the fish
perceived blue color exhibited increased activity regardless of
whether the fish had learned the behavior (Fig. 3b, c, blue line, 3d).
All data concerning this fish (Fish 1 in Supplementary Table 1) are
summarized in Supplementary Fig. 5 (see also Supplementary
Figs. 6 and 7, and Supplementary Table 1 for other two fish, Fish 2
and Fish 3). Supplementary Figs. 5–7a show the activity changes of
ensembles during training. This result suggests that this neural
ensemble encodes the perception of blue color. The data obtained
from Fish 1 (Supplementary Fig. 5) were used to generate
Figs. 4e–h and 6g–i.

In this ensemble, approximately 20% of the total imaged
neurons showed larger than zero contribution within the
ensemble (Supplementary Fig. 8). To further reveal details of
this ensemble encoding the perception of blue color, we plotted
the contribution of each neuron within the ensemble (Fig. 3e,
upper panel and Supplementary Figs. 5–7b, middle panel in left
column, blue perception) and the correlation coefficient of each
neuron’s activity to the ensemble’s activity (Fig. 3e, bottom panel
and Supplementary Figs. 5–7b, bottom panel in left column, blue
perception). Supplementary Figs. 5–7b show the spatial distribu-
tions of various neural ensembles (Supplementary Figs. 5–7b,
upper panels), the contribution of neurons within the ensemble
(Supplementary Figs. 5–7b, middle panels) and the correlation
coefficient of each neuron’s activity to the activity (Supplemen-
tary Figs. 5–7b, bottom panels) of each ensemble. Although one
neuron had by far the highest level of contribution, other neurons
with relatively lower contributions also showed significantly high
levels of positive correlation. A further comparison between the
ensemble activity and each neuron’s activity revealed that the
neurons with lower levels of contribution but with relatively high
correlation coefficients showed coincidental activation with the
ensemble, but in an intermittent manner (Fig. 3f and Supple-
mentary Figs. 5–7c, upper left panels, blue perception).
Supplementary Figs. 5–7c show the activities of the ensemble
(top trace) and the five most-contributing neurons in the
ensemble (descending order from the top).

To evaluate the distribution of neurons within the ensemble, we
plotted the neurons with their weight of contribution in the
ensemble, but we did not identify the brain region where the

neurons within the blue perception ensemble preferentially
accumulated. Supplementary Fig. 9 shows the distribution of the
neurons within the blue perception ensemble across different fish.

However, to further evaluate the spatial distribution of the
neurons within the ensemble, we calculated the correlation
coefficient of the 10 neurons with the highest levels of
contribution to the ensemble. We then plotted the relationship
between the paired correlation coefficients and the distance of
these neurons after averaging the data derived from all 27 fish
that had the ensemble encoding blue color perception (Fig. 3g; for
individual fish, please see Supplementary Figs. 5–7d, upper left
panels, blue perception). The result showed that neurons with
highly correlated activity have a tendency to be localized at a
closer distance, implying that neurons in the zebrafish tele-
ncephalon encode the information in locally clustered popula-
tions. Supplementary Figs. 5–7d show the correlation between the
correlation coefficients of paired neurons’ activities and their
distance in each ensemble for individual fish.

Neural ensembles encoding the rules assigned to the colors
blue and red. Unlike the neural ensemble that simply encoded
the perception of blue color, in 24 of the 32 fish (Supplementary
Table 1, (+) in the “blue is dangerous” column), another neural
ensemble showed increased activity when fish perceived blue
color, but emerged only in repeated trials. This ensemble did not
increase its activity during the adaptation and initial stages of
training as shown with the cyan line in Fig. 4a (see also Fig. 4c; all
data concerning Fish 2 in Supplementary Table 1 is summarized
in Supplementary Fig. 6). This ensemble began to increase in
activity before meeting the behavioral learning criterion (Fig. 4a,
middle panel, cyan line, 4c, and Supplementary Figs. 5–7a, cyan
line, blue is dangerous), and continued to display activation after
behavioral learning was established (Fig. 4a, right panel, cyan line,
4c, and Supplementary Figs. 5–7a, cyan line, blue is dangerous).
These data suggest that the activity of this ensemble did not
merely represent the perception of blue color. The increased
activity of this ensemble was also observed in the failed GO trials
where fish did not perform the appropriate forward moving
behavior (Fig. 4a, asterisks, cyan line and Supplementary
Figs. 5–7a, cyan line, blue is dangerous). Focusing on one trial, the
activity of this ensemble increased when the fish was presented
with blue color and decreased as the fish reached the goal (Fig. 4b,
cyan line). These results suggest that the increased activity of this
ensemble was observed when fish perceived the blue color paired
with shock in repeated trials.

In 20 of the 32 fish (Supplementary Table 1, (+) in the “red is
safe” column), we observed another ensemble that contrastingly

Fig. 3 Non-negative matrix factorization analysis revealed the ensemble encoding the perception of blue color. a The formula to calculate the non-
negative matrix factorization (NMF; for details, see “Methods”). b The activity of the blue perception-coding ensemble as an example of an activity pattern
(the activity in this panel is a part of c, bottom left panel). The blue line indicates the activity of a neural ensemble normalized by the self-maximum value.
The horizontal bars in the upper and lower positions indicate the period of GO and NOGO trials, respectively. The bar colors indicate the color of the
environment at the position of the fish. Orange line, the tail bend angle. Black line, the distance that fish had traveled. Red line, the point of color change.
c The activity of the blue perception-coding ensemble in the adaptation stage (upper left panel), initial stage of training (upper right panel), and after
behavioral learning was established (bottom left panel). d Quantified activity of the blue perception-coding ensemble in the adaptation stage, initial stage of
training, and after behavioral learning was established. Columns and error bars: mean ± SEM. Circles indicate the peak value in each GO or NOGO trial. The
numbers in parentheses are the number of trials used in the statistics. Adaptation GO vs adaptation NOGO, **P= 3.06 × 10−3; initial stage of training GO
vs initial stage of training NOGO, ***P= 1.67 × 10−5; after behavioral learning GO vs after behavioral learning NOGO, ***P= 1.96 × 10−6, F(5, 92)= 26.25.
One-way ANOVA, Bonferroni’s multiple comparison test. e Contribution of each neuron within the ensemble (upper panel) and correlation coefficient of
each neuron’s activity to the ensemble’s activity (lower panel). f The activity of the ensemble (top trace) and the five most-contributing neurons in the
ensemble (descending order from the top). Dotted lines indicate the timing when the neurons showed simultaneous activation with the ensemble.
g Relationship between the correlation coefficient and distance for the 10 most-contributing neurons in the ensemble encoding the perception of blue. The
data were averaged from 27 fish with this ensemble. Black line denotes the averaged correlation from 27 fish. Red line denotes the average of averaged
10 shuffled data from 27 fish (see “Methods”).
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increased in activity when fish reached the red-color goal (Fig. 4b
and Supplementary Figs. 5–7a, magenta line, red is safe). This
type of ensemble also showed increased activity in the NOGO
trials in which fish perceived red color as the start color after the
establishment of behavioral learning (Fig. 4a, right panel,
magenta line and Supplementary Figs. 5–7a, magenta line, red

is safe). No activity of this ensemble was observed in the
adaptation and initial stages of training (Fig. 4a, left panel and
Supplementary Figs. 5–7a), suggesting that the ensemble did not
encode the simple perception of red color. The activity of this
ensemble was observed whenever the fish perceived red color,
which was not paired with shock, during repeated trials (Fig. 4d).
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In 17 of the 32 fish (Supplementary Table 1, (+) in both “blue
is dangerous” and “red is safe” columns), we observed both
ensembles. In 11 of these fish, emergence of the blue responsive
ensemble (cyan line) was followed by emergence of the red
responsive ensemble (magenta line) as training proceeded (Fig. 4a,
b and Supplementary Figs. 6 and 7a). In the remaining six fish,
the two ensembles emerged in reverse order (Fig. 4e–h and
Supplementary Fig. 5a).

In these blue and red responsive ensembles, approximately
20% of the total imaged neurons showed larger than zero
contribution within the ensemble (Supplementary Fig. 8). We
observed a similar tendency in the relationships of the activity of
individual neurons within an ensemble to the activity of the
whole ensemble as in the blue perception-coding ensemble.
Namely, even the neurons with lower levels of contribution
showed relatively high correlation coefficients to the ensemble
activity with intermittent coincidental activation with the
ensemble (Supplementary Figs. 5–7b, 2nd and 3rd columns from
the left show the results of the ensembles encoding the rule that
blue is dangerous and the rule that red is safe, respectively). These
neurons tended to be localized at a closer distance with highly
correlated activity (Fig. 4i; for individual fish, please see
Supplementary Figs. 5–7d), although these ensembles did not
have the particular brain region where the neurons within the
ensembles of the same nature accumulated across different fish.
Supplementary Figs. 10 and 11 show the distribution of the
neurons within the two color rule-encoding ensembles, i.e., blue is
dangerous and red is safe.

These ensembles showed increased activity depending on the
color that was paired with shock or not. The results tempted us to
test the possibility that these ensembles encoded rules assigned to
the color in these tasks. To address this, we reversed the rules. After
behavioral learning was established in a condition wherein blue
color was paired with shock and red was safe (original rule), we
reversed the rule such that the red color was paired with shock and
blue was safe (reversed rule; Fig. 5a). Figure 5b presents the learning
curve of GO and NOGO trials under both rules. Immediately after
the rule reversal, the fish tended to receive a shock and appeared to
freeze (Fig. 5b). Due to this freezing behavior, the apparent success
rate of NOGO in the following trials transiently increased and then
decreased again, but that of GO remained low. However, as training
proceeded, the fish gradually managed to swim forward in the GO
trials, and both the GO and NOGO success rates met the learning
criteria under the reversed rule. This suggests that learning is indeed

required to meet the learning criteria, even in NOGO trials,
although this was not evident under the original rule. Eighteen of
the 52 tested fish learned the original rule, but only seven of 18 also
learned the reversed rule. Among these seven fish, five fish had
sufficiently little displacement along the z-axis in their imaging data
for analysis. In four of these five fish, in the original rule, we could
identify the ensemble that increased activity when the fish perceived
blue color with repeated trials, but not in the adaptation and initial
stages of training (Fig. 5c, cyan line and 5d, left panel). In two of
these four fish, the trials in the reversed rule were continued, even
after the learning criterion was met. In this case, the ensemble that
was activated when the fish perceived blue color in the original rule
(Fig. 5c, upper left panel, cyan line and 5d, left panel) ceased to be
activated by blue color presentation when the appropriate behavior
was learned in the reversed rule (Fig. 5c, bottom right panel, cyan
line and 5d, left panel). In the remaining two fish, the trials in the
reversed rule were terminated when the success rate of GO trials in
the reversed rule reached 80% (Fig. 5e). In these fish, the activity of
the ensemble that originally responded to blue presentation did not
disappear fully during the NOGO trials, with blue color presented
at the beginning of the NOGO trial, even after behavioral learning
was established in the reversed rule (Fig. 5f, cyan line). These fish
tended to swim forward erroneously when they perceived blue color
in the NOGO trials with the reversed rule, although they still
managed to stay within the safe blue region (boxed area of Fig. 5f;
compare with the null traveled distance of NOGO trials in Fig. 5c,
bottom right panel). This observation supports that the ensemble
assigned a rule to the blue color, that blue is dangerous in the
original rule, and the effectiveness of this rule assignment may not
have waned fully in these two fish, even in the reversed rule.

Another group of fish (eight out of 32 fish) experienced only
the original rule but performed trials for a longer period than the
group of fish that experienced both rules. The averaged ensemble
activities in the last ten GO trials (L) in these eight fish were not
below the averaged ensemble activities immediately after the
establishment of behavioral learning (I) (L/I= 3.25 ± 0.97),
indicating that the ensemble that showed increased activity upon
presentation of blue color in repeated trials continued to be
responsive until the end of the experiment period. The continued
activation contradicts the possibility that habituation might cause
the diminished activity of the ensemble encoding the rule that
blue is dangerous after rule reversal.

In these four fish that experienced rule reversal, we observed
the other ensemble that showed increased activity whenever fish

Fig. 4 Repeated trials with the original rule with blue associated with shock and red associated with safety generated the ensembles activated by
presentation of blue or red. Notations in the figures are all the same as in Fig. 3b. a The activity of two neural ensembles (cyan and magenta lines) in the
adaptation stage (left panel) and the stages immediately before (middle panel) and after (right panel) behavioral learning was established. b Enlarged view
of the activity of the two ensembles in the boxed area in (a). The vertical gray line indicates the time point when the fish reached the goal. c Comparison of
the cyan ensemble’s peak activity in the GO trials in different learning stages. Columns and error bars: mean ± SEM. Each circle indicates the value in each
GO trial. The number in parentheses is the number of trials used in the statistics. Adaptation vs immediately before behavioral learning, ***P= 2.60 × 10−16;
adaptation vs after behavioral learning, ***P= 6.43 × 10−13, F(3, 55)= 82.85. One-way ANOVA, Bonferroni’s multiple comparison test. d Comparison of
the magenta ensemble’s peak activity when fish perceived red color in GO and NOGO trials in different learning stages. Columns and error bars:
mean ± SEM. Each circle indicates the value in each trial. The numbers in parentheses are the number of trials used in the statistics. Red GO before
behavioral learning vs Red GO after behavioral learning, **P= 7.91 × 10−3; red NOGO before behavioral learning vs red NOGO after behavioral learning,
**P= 6.48 × 10−3, F(7, 80)= 9.25. One-way ANOVA, Bonferroni’s multiple comparison test. e–h Results of the same analysis as (a–d) above for another
fish. g The numbers in parentheses are the number of trials used in the statistics. Adaptation vs immediately before behavioral learning, **P= 1.94 × 10−3;
adaptation vs after behavioral learning, ***P= 2.44 × 10−5, F(3, 56)= 13.02 One-way ANOVA, Bonferroni’s multiple comparison test. h The numbers in
parentheses are the number of trials used in the statistics. Red GO adaptation vs red GO intermediate stage, P= 0.295; red NOGO adaptation vs red
NOGO intermediate stage, ***P= 9.085 × 10−11, F(7, 88)= 31.67. One-way ANOVA, Bonferroni’s multiple comparison test. Red GO adaptation vs red GO
intermediate stage, **P= 1.42 × 10−3. Two-tailed unpaired t-test. i Relationship between the correlation coefficient and distance among the 10 most-
contributing neurons in the color rule-encoding ensembles (left, blue is dangerous rule; right, red is safe rule). The data were averaged from the fish with
these ensembles. Black line denotes the averaged correlation from all fish. Red line denotes the average of averaged 10 shuffled data from the fish (see
“Methods”).
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perceived blue color in a manner independent of behavioral
learning. This ensemble continued to be activated whenever fish
saw blue color, both in the GO trials under the original rule, and
in the NOGO trials after rule reversal (Supplementary Fig. 12,
blue line), supporting that this ensemble encoding the perception
of blue color was not subject to rule reversal.

In the two fish that experienced rule reversal, we also observed
the ensemble that got repeatedly activated upon perception of red
under the original rule. The activity of this ensemble diminished
after rule reversal (Supplementary Fig. 12, magenta line under
both original and reversed rules), further supporting our idea that

the ensemble encodes the rule that red is safe. Although we could
not conclude from the behavioral data that fish learn the stop
behavior in the NOGO task under the original rule, the
generation of the ensemble that is likely to encode the rule that
red is safe implies that fish might have learned to recognize safety
when fish perceived red color.

In three of five fish, we also observed the ensemble that
increased in activity when the fish perceived red color, which was
paired with shock, as training was repeated in the reversed rule
(Fig. 5c, bottom panels, red line). This ensemble previously
showed no activity in the trials under the original rule (Fig. 5c,
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upper left panel, red line and 5d, right panel), likely encoding an
association of the red-color scenery with danger. Altogether, our
results supported the hypothesis that these ensembles functioned
to assign rules to the colors, i.e., a rule that blue is dangerous, and
another rule that red is safe in the original rule.

A neural ensemble activated in open-loop GO and closed-loop
failed GO trials. Taking advantage of the virtual reality system,
we performed an open-loop experiment in all 32 learner fish
(Fig. 6a) after behavioral learning was established under the
original rule for GO and NOGO tasks in the closed-loop condi-
tion. In the open-loop condition, tail movement of the fish was
not programmed to induce a backward movement of the scenery,
and hence no sensory flow was detected by the fish, and the goal
was not reached. Accordingly, in the GO trial in the open-loop
condition, the activity of the ensemble that we interpreted to
assign a rule that blue is dangerous remained elevated until the
end of the GO trials. The fish continued beating the tail as long as
the blue color was presented (Fig. 6b, c, cyan line). In contrast, the
ensemble that we considered to assign a “red-safe” rule did not
get activated in the GO trials (Fig. 6b, c, magenta line), con-
firming that the perception of the color-induced activation of the
color-associated rule-coding ensembles.

Under the open-loop condition, as shown in the green line in
Fig. 6d, we noticed another type of ensemble that exhibited
continuously enhanced activity throughout the GO trials in the
open-loop condition in 10 of the 32 fish (Fig. 6d, upper left panel,
6f; all data of this fish are summarized in Supplementary Table 1
and Supplementary Fig. 7). Unlike the previously described
ensemble encoding the perception of blue color, this ensemble
was not activated in the successful GO trials after behavioral
learning was established in the original closed-loop condition
(Fig. 6d, upper right panel, 6e, right panel, 6f, and Supplementary
Figs. 5–7a, scenery flow prediction error (SFPE)). In nine of these
10 fish, this ensemble got activated specifically in the failed GO
trials in the closed-loop condition (Fig. 6d, upper right panel, 6e, left
panel, and Supplementary Figs. 5–7a, SFPE). In the GO trials in the
open-loop condition, the fish beat their tails vigorously, while in the
failed GO trials, the fish did not beat their tails. However, both in
the GO trials in the open-loop condition and the failed GO trials in
the closed-loop condition, the fish was not presented with the
backward moving scenery upon the presentation of blue color.

In summary, we observed that this neural ensemble was
activated during the GO task in the open-loop condition and in
the failed GO trials, but not in the successful GO trials, under the
original rule. In both situations in which this ensemble became

activated, the scenery did not move, although it should have
moved backward if the fish had successfully swum forward to
avoid receiving a shock.

As this ensemble was also activated in the failed GO trials in
which the fish did not beat their tails (Fig. 6e, left panel, orange
line), this ensemble was not simply copying motor commands to
beat the tail. In the inter-trial interval of this virtual reality with
white-color scenery, we switched off the feedback of the tail beats
to the virtual reality. This ensemble did not become activated
even when the fish beat their tails under this situation, which
further supports the notion that the ensemble was not simply
copying the motor commands.

In summary, this particular ensemble was activated when the
scenery did not flow backward upon blue color presentation when
the backward flow of the scenery should be perceived by the fish
as long as the fish responded appropriately by swimming forward
to avoid receiving shock. This suggest that this ensemble is likely
to encode the discrepancy between the real scenery perceived by
fish and the scenery predicted by fish as favorable. Hence, we call
this the ensemble putatively encoding the SFPE.

In five of the nine fish, this ensemble began to emerge after
behavioral learning was established (Fig. 6d–f and Supplementary
Figs. 6 and 7a, SFPE), but, in the remaining four fish, the activation of
this ensemble was observed preceding the establishment of behavioral
learning (Fig. 6g–i and Supplementary Fig. 5a, green line, SFPE).

In this ensemble, approximately 20% of the total imaged
neurons showed larger than zero contribution within the
ensemble (Supplementary Fig. 8). These ensembles also showed
a similar tendency in the relationships of the activities of
individual neurons within an ensemble to the activity of the
ensemble itself as we observed in the blue perception-coding
ensemble. Namely, even the neurons with lower levels of
contribution showed relatively high correlation coefficients to
the ensemble activity with intermittent coincidental activation
with the ensemble (Supplementary Figs. 5–7b, right column and
Supplementary Figs. 5–7c, bottom right panel, SFPE). These
neurons tended to be localized at a closer distance with highly
correlated activity (Fig. 6j; for individual fish, please see
Supplementary Figs. 5–7d, bottom right panel, SFPE) although
these ensembles did not have the particular brain region where
the neurons within the putative SFPE-encoding ensemble
accumulated across different fish. Supplementary Fig. 13 shows
the distribution of the neurons within the putative SFPE-
encoding ensemble across different fish.

We tested an alternative interpretation of the role of the
ensemble originally assigning a rule that blue is dangerous in GO
trials. The fish may expect that perceiving the red environment is

Fig. 5 Rule reversal revealed that each ensemble, which is activated when fish perceived each color as training proceeded, encodes the rule assigned
to that color. a GO/NOGO tasks with the original and reversed rules. b The learning curve of GO/NOGO trials with the original and reversed rules. Vertical
line, initiation of the original rule; vertical dotted line, initiation of the reversed rule. In the adaptation and with the original rule, the success rates of GO and
NOGO trials are indicated by blue and red lines, respectively. In the reversed rule, the success rates of GO and NOGO trials are indicated by red and blue
lines, respectively. Open circle indicates successful trial. Solid circle indicates failed trial. c The activity of two ensembles after behavioral learning was
established with the original rule (upper left panel), immediately after rule change (upper right panel), and immediately before (bottom left panel) and after
(bottom right panel) behavioral learning was established with the reversed rule. d Left: comparison of the cyan ensemble’s peak activity in (c) when fish
perceived blue color as a starting color with the original and reversed rules in the initial stage of training and after behavioral learning. Columns and error
bars: mean ± SEM. Each circle indicates the value in each trial. After behavioral learning of original rule vs after behavioral learning of reversed rule,
***P= 1.80 × 10−6, F(3, 75)= 14.28. One-way ANOVA, Bonferroni’s multiple comparison test. Right: comparison of the red ensemble’s peak activity in (c)
when fish perceived red color as a starting color with the original and reversed rules in the initial stage of training and after behavioral learning. Columns
and error bars: mean ± SEM. Each circle indicates the value in each trial. The numbers in parentheses are the number of trials used in the statistics. After
behavioral learning of original rule vs after behavioral learning of reversed rule, ***P= 9.73 × 10−10, F(3, 36)= 36.34. One-way ANOVA, Bonferroni’s
multiple comparison test. e The learning curve of GO/NOGO trials of another fish in which the cyan ensemble did not disappear. Notations are identical to
(b). f The activity of the two ensembles after behavioral learning was established with the reversed rule. The cyan and red lines indicate the ensembles
encoding the color rule that blue is dangerous and red is dangerous, respectively.
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favorable for future safety, and this ensemble may also encode a
prediction error between such expectation of future preferable
color (red) and real perceived color (blue). However, our
experimental results did not support this hypothesis as explained
in detail in the legend of Supplementary Fig. 14, which shows the
results of the goal color change experiment.

Fish with a putative SFPE swam straight toward the goal. As
mentioned above, we observed the ensemble assigning a rule that
blue is dangerous in 24 of the 32 fish (Fig. 4 and Supplementary
Table 1). Only eight of these 24 fish also had another ensemble
putatively encoding the SFPE (Fig. 6 and Supplementary Table 1,
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(+) in both “blue is dangerous” and “scenery flow prediction
error” columns). These data suggest that fish can succeed in the
GO trials, even with only the ensemble assigning a rule that blue is
dangerous. This result made us question the role of the additional
ensemble putatively encoding the SFPE in behavioral control.

To address this, we first compared the swimming patterns in
the successful GO trials of the fish with both ensembles and the
fish with only the ensemble assigning a “blue-dangerous” rule to
identify any difference in their swimming patterns (Fig. 7a, b and
Supplementary Data 1).

Intriguingly, the sum of the halt time en route to the goal was
significantly shorter in the fish with both ensembles (Fig. 7c, left

panel). The two groups did not differ in the number of halts and
the period of movement until the fish reached the goal (Fig. 7c,
middle and right panels).

The putatively SFPE-encoding ensemble was observed in eight
out of 24 fish that possessed a color rule-encoding ensemble. We
examined the possibility that the failure to detect the putatively
SFPE-encoding ensemble in the remaining 16 fish might result
from the limitation in the scanning volume of the telencephalon.
To address this question, we extended imaging into a deeper
telencephalic region by increasing the number of imaging planes
from three to six (Supplementary Fig. 15a shows the averaged
calcium images of six planes). NMF calculations were performed

Fig. 6 A specific neural ensemble got activated by the absence of perception of visual backward movement upon blue color presentation. Notations
in the figures are identical to Fig. 3b. a The open-loop experiment in which feedback was turned off. The scenery did not move in response to the tail beat.
b, c The activity of the two ensembles encoding the color rules that blue is dangerous (cyan line) and that red is safe (magenta line) in the open-loop
condition. b Data from the fish used in Fig. 4a–d. c Data from the fish used in Fig. 4e–h. d The activity of an ensemble in the open-loop condition (upper left
panel), after behavioral learning was established (upper right panel), in the adaptation (middle left panel), and in the initial stage of training (bottom left
panel). The activity of the ensemble increased in the GO trial in the open-loop condition and the failed GO trial but not in the successful GO trials in the
closed-loop condition. e Left: enlarged view of a failed GO trial (boxed area of the dotted line in (d) upper right panel). Right: enlarged view of a successful
GO trial (boxed area of the dashed line in (d) upper right panel). Red rectangle indicates the timing of shock. f Comparison of peak activity of the ensemble
when fish perceived the starting color in the adaptation stage, initial stage of training, successful GO trials, failed GO trials, and open-loop GO trials.
Columns and error bars: mean ± SEM. Each circle indicates the value in each GO trial. The numbers in parentheses are the number of trials used in the
statistics. Successful GO vs failed GO, ***P= 7.79 × 10−13; successful GO vs open-loop, ***P= 2.54 × 10−34, F(4, 110)= 101.97. One-way ANOVA,
Bonferroni’s multiple comparison test. g–i Results of the same analysis as (d–f) above for another fish. The timing of the increased activity along with
behavioral learning was different from the data shown in (d–f). i The numbers in parentheses are the number of trials used in the statistics. Successful GO
vs failed GO, ***P= 5.02 × 10−4; successful GO vs open-loop, ***P= 8.93 × 10−6, F(4, 53)= 23.86. One-way ANOVA, Bonferroni’s multiple comparison
test. j Relationship between the correlation coefficient and distance among the 10 most-contributing neurons in the putatively SFPE-encoding ensemble.
The data were averaged from 9 fish with this ensemble. Black line denotes the averaged correlation from 9 fish. Red line denotes the average of averaged
10 shuffled data from 9 fish (see “Methods”).

Fig. 7 Fish with the scenery flow prediction error ensemble swam straight toward the goal with shorter halts than fish with only the color rule-coding
ensemble. a, b The traveled distance in five successful GO trials after the establishment of behavioral learning in a fish with both ensembles encoding the
color rule that blue is dangerous and the scenery flow prediction error (a) and a fish with only the ensemble encoding the color rule that blue is dangerous
(b). The black line indicates the traveled distance. The red line indicates the goal. c Comparison of the period of halts (left panel), number of halts (middle
panel), and period of movement (right panel) between two groups. The number of fish which has color rule-coding and putative SFPE ensembles is 8 and
that of fish which has only color rule-coding ensemble is 16. Columns and error bars: mean ± SEM. Each circle indicates the value in each fish. Left:
*P= 0.028 (Cohen’s d= 0.978302). Middle: P= 0.455. Right: P= 0.457. One-tailed unpaired t-test, n.s., not significant.
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in the deeper three planes and the superficial three planes
separately and compared. In one out of four learner fish, we
identified the putatively SFPE-encoding ensemble. Consistent
with the previous results, this fish showed shorter halt periods
than the fish with only the color rule-encoding ensemble
(Supplementary Fig. 15b). Supplementary Fig. 15b shows the
halt period of the two groups. The putatively SFPE-encoding
ensemble was observed in the surface planes but not in the deeper
planes (Supplementary Table 2 summarizes results of identified
ensembles in surface and deeper planes in the four fish), implying
that the surface three-plane imaging might be enough to capture
the putatively SFPE-encoding ensemble.

The permutation test of randomly dividing all 28 fish into two
groups of nine and 19 fish revealed that the difference of halt
periods between two groups randomly made for 1000 times rarely
exceeded the actually observed difference between the two groups
categorized by the presence or absence of a putatively SFPE-
encoding ensemble (permutation P-value= 0.011 < 0.05), con-
firming that the shorter halt period of fish with both color rule
and putatively SFPE-encoding ensembles was not accidental.

Therefore, this statistical analysis confirmed that the fish with
both ensembles swam forward more efficiently, i.e., swam straight
toward the goal, than the fish with only the ensemble assigning a
“blue-dangerous” rule, which paused for a longer period on the
way to the goal (Fig. 7a, b and Supplementary Data 1).

Computational models replicate behavioral differences. Based
on the aforementioned empirical observations, we developed a
neural network model of fish. We supposed that the input from
the blue perception neurons (BP neurons; Fig. 8a, blue circle)
activated downstream neurons that generate motor signals to
make fish swim forward (SF neurons; Fig. 8a, red circle). The
strength of the input was updated through an activity-dependent
plasticity regulated by signals of two ensembles encoding the
reward prediction error (RPE) and SFPE (Fig. 8a, green and cyan
circles). We further supposed that the SFPE ensemble computed
the difference between the bottom-up backward flow signals and
the top-down backward scenery flow prediction (SFP); whereas
the SFP ensemble was self-organized through plasticity mediated
by the RPE ensemble. This model could simulate the emergence
of the SFP and SFPE ensembles in the network through an
association between visual perception and punishment—con-
sistent with our empirical observations of the emergence of the
SFPE ensemble in the training stage (Fig. 8b; compare with
Fig. 6d).

Using this computational model, we examined whether our
observation—i.e., the straight swimming pattern of the fish with
the SFPE ensemble—could be explained by the hypothesis that
the SFPE played a role in facilitating taking optimal action to
minimize the prediction error between the real observed scenery
and the predicted backward moving scenery.

At each time point on its way to the goal during blue color
presentation, we can assume that the fish makes a decision whether
to go forward or stop depending on how strongly the input from
the BP neurons can activate downstream neurons that make fish
swim forward (i.e., SF neurons). If the aforementioned hypothesis is
true, every time the fish stops en route to the goal during blue color
presentation and the backward flow of the scenery is interrupted,
the fish would experience the activation of the SFPE ensemble. The
SFP ensemble would expect its presence, inducing the SFPE signal.
Here, the SFPE signal would act to strengthen the connection
between the BP and SF neurons. This would hinder the fish from
stopping and favor a GO choice with a gradually higher probability,
because the SFPE can be minimized by this behavioral choice. After
repetition of this process, the fish would eventually learn to swim

straight to the safe goal without choosing to stop at any point on its
way to the goal. This swimming pattern is consistent with our
observations, and the simulated fish model could replicate
empirically observed fish behaviors (Figs. 7a and 8a, c). These
results support the role of the SFPE ensemble in the strengthening
of the connectivity between BP and SF.

In contrast, the fish with only the ensemble assigning rules to
colors learn the escape behavior according to the naive reinforce-
ment learning, as we described previously9. Here, receiving
punishment by staying in the blue region brings about an expected
reward level, and avoiding punishment by moving into the red
region generates a positive RPE. In this case, the connectivity
between the BP and SF neurons is strengthened relatively
infrequently, i.e., only when the fish happens to successfully reach
the safe red goal. Moreover, the strengthening of this connectivity
ceases at a relatively early stage of the training; as soon as it reaches
a level enough to bring the fish to the goal within the given time
limit before shock is given. With this still relatively low level of
connectivity, the activation of the BP neurons cannot always
activate the SF neurons. Thus, the fish would keep the tendency to
stop on its way to the goal, even after they become able to
constantly reach the safe goal (Figs. 7b and 8a, d). Hence, we could
attribute the mechanisms underlying two different swimming
strategies we observed to the facilitation of the connectivity between
the BP and SF neurons induced by the SFPE ensemble.

Discussion
In this study, we trained adult zebrafish in closed-loop and open-
loop virtual reality environments for active and passive avoidance,
and analyzed the activities of neural populations in the wide
surface area of the telencephalon by using the unsupervised
method, NMF. We could successfully demonstrate that such
training induced the generation of two types of neural ensembles,
one encoding rules attached to a specific color and the other
putatively encoding the SFPE (Fig. 9). We addressed the problem
of multiple comparison to exclude the possibility that these
ensembles were identified by chance. For this purpose, we created
the semi-automatized selection method and applied it to the
NMF ensembles generated from the neural population with
randomly shuffled neural activity (for details please see “Meth-
ods” and Supplementary Figs. 16 and 17). As a result, no
ensemble was found to meet the criteria in the automatized
selection method (Supplementary Fig. 17), suggesting that the
ensembles we selected were not obtained by chance.

The capacity of zebrafish to generate putative SFPE demon-
strates that zebrafish are capable of predictive coding of the
favorable state based on the internal model of the outer cognitive
world, as exemplified in other higher vertebrates25,29–36, although
it may be rudimentary, to derive the state prediction error by
comparing reality with prediction2,3.

Importantly, fish with only the ensemble encoding a rule
assigned to the surrounding color managed to reach the safe
region by intermittent swimming on their way to the goal. In
contrast, fish with both the color rule-encoding and the putative
state prediction error-encoding ensembles showed a more efficient
swimming pattern, i.e., straight swimming toward the goal
without rest.

This behavioral difference, taken together with computational
modeling, supports that the fish can utilize the putative SFPE
ensemble for efficient behavioral optimization by trying to mini-
mize the state prediction error (surprise), i.e., the discrepancy
between real sensory inputs and model-based sensory predictions
(Fig. 9). Nonetheless, further experiments are necessary to
unequivocally prove this hypothesis, such as using targeted
optogenetic manipulation to change the activities of the neurons
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in this ensemble. The process of improving the goal-directed
behavior by minimizing the state prediction error, observed in fish
with two ensembles, was consistent with a theoretically advocated
fundamental mechanism underlying human and animal beha-
vioral control termed active inference2,3. This contrasted

significantly with the outcome of naive reward value maximization
observed in fish with only one ensemble.

Whether animals adopt the reward value maximization and/or
the surprise minimization principle for goal-directed behavior in
real life has been the subject of debate4,5. We showed here that

Fig. 8 Computational models replicate behavioral differences. a Schematic circuit diagram to select swimming forward. The neural network comprises
ensembles encoding the perception of blue (BP, blue) and swimming forward (SF, red). Moreover, two additional units represent mutually different
prediction errors. The reward prediction error (RPE, green) ensemble computes the difference between the (negative) reward prediction (RP) and actual
punishment. Whereas, the scenery flow prediction error (SFPE, cyan) computes the difference between the scenery flow prediction (SFP) and actual
backward flow. Here, the RPE ensemble took a positive value when the fish could avoid the punishment contrary to its expectation; otherwise, it took zero.
The SFPE ensemble self-organized in the early stage of training to take a positive value when the fish sensed the SFPE at a given time point or take zero
otherwise. The synaptic potentiation of W occurred only when the fish detected those errors, leading to minimization of those errors. b Emergence of the
SFPE activity. Left: time-lapse activity changes in the three GO trials in the initial (left), intermediate (middle), and later (right) stages of training. Right:
learning curve depicting the increase in activity of the SFPE ensemble. First 40 GO trials are shown. In the model, this increase occurred as a consequence
of the emergence of an ensemble that encodes scenery flow prediction, because the SFPE ensemble is activated when the prediction exceeds the actual
scenery flow sensation. c Behavior of synthetic fish in the presence of the RPE and SFPE-coding ensembles. Left: trajectories in the last three GO trials. The
red line indicates the goal position. Right: the period of halts in GO trials over the training period. Because the fish sensed the SFPE whenever it stopped in
the blue colored area, the SFPE signal potentiated the synapse more efficiently than the RPE alone, leading to behavior involving reaching the goal with
shorter halts. d Behavior of synthetic fish in the RPE-coding ensemble. Left: trajectories in the last three GO trials. The red line indicates the goal position.
Right: the period of halts in GO trials over the training period. The blue circles and red crosses denote successful and failed GO trials, respectively.
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zebrafish in fact can adopt either the former alone or both prin-
ciples, leading to different consequences in behavioral control.

With regard to the two ensembles associating a “blue-danger-
ous” rule (anticipation of danger) to blue color and a “red-safe”
rule (anticipation of safety) to red color (Fig. 9), the generation of
these ensembles preceded the establishment of correct behaviors.
The activation of this ensemble, when sensing blue color, was
observed even in the failed GO trials with the original rule. These
observations suggested that the process of learning to assign rules
(danger or safety) to the cognitive inputs (blue or red) is separate
from learning appropriate behaviors to achieve the maximum
reward (safety). This two-step learning process differs from
conventional model-free reinforcement learning, which directly
attaches values to motor outputs for the selection of best-
rewarding behavior1,37,38. In mammals, the prefrontal cortex has
been implicated in value assignments39. Whether it imparts
values to cognitive inputs, or to motor outputs or to both, has
been debated40,41. Our results show that these processes are
separable in goal-directed behaviors.

Recently, Huang et al. developed another closed-loop virtual
reality system for freely swimming fish independently from us,
and observed in the telencephalon a population of neurons that
were activated only when there was a mismatch in the visual
feedback in response to fish movement36. Similar neural activity
was also observed in the visual cortex of mice31,32. These activities
would encode the error between the visual input and the pre-
dicted image converted from the efference copy of the motor

output by the forward model4,5. In contrast, the ensemble puta-
tively encoding the SFPE got activated independently of the
motor efference copy, because the putative SFPE was activated in
failed GO trials wherein fish did not beat their tails.

We identified the neural ensemble putatively encoding the
SFPE only in one-third of the fish that successfully learned active
avoidance. It is unclear why only a part of the fish could generate
this ensemble. Fish with, and fish without, this ensemble required
a comparable number of trials until behavioral learning was
established (Supplementary Fig. 21), suggesting it is unlikely that
only the fish requiring more trials to learn escape behavior
eventually generated this additional ensemble.

Putative SFPE signals are expected to be generated by the
mismatch between top-down signals that encode predicted sen-
sory states and bottom-up signals conveying the actual sensory
states and are canceled out by bottom-up signals when the real
states fit with the predicted states42. Therefore, to reveal how
neural ensembles self-organize to encode the putative SFPE,
future work will need to discriminate the activities of both exci-
tatory and inhibitory neurons and analyze how they interact with
each other in computing state prediction errors.

In summary, our results propound that zebrafish are capable of
assigning rules to the scenery they see, and of generating a state
prediction error by comparing reality with a prediction derived
from an internal model2,3. Observed refinement of the escape
behavior by fish with state prediction error provided supporting
evidence for the hypothesis that this future state prediction error

Fig. 9 Schematic illustration showing the relationship between the generated neural ensembles and behaviors. Adult zebrafish formed a cognitive map
by assigning rules to presented colors and generated the ensemble putatively encoding the scenery flow prediction error (SFPE). Activation of the putative
SFPE ensemble improved active avoidance behavior.
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is indeed used for behavioral optimization as proposed in the
active inference theory2,3.

The ensemble activated by the perception of blue exhibited
significant overlap in neural populations with the ensemble
assigning a rule that blue is dangerous and with the ensemble
putatively encoding the SFPE (Supplementary Fig. 18). This
suggests that these overlapping neurons were not simply involved
in color perception but, after several trials, became activated again
in the process of cognitive rule assignment to the perceived
scenery (colors) and to the derivation of future prediction error.

We found that paired neurons with a high correlation coeffi-
cient in their activity are located at a closer distance when we
focused on the 10 most-contributing neurons in each ensemble
(Figs. 3g, 4i, and 6j), implying the generation of a localized unit of
neurons that encode similar information in the telencephalon of
adult zebrafish. Similarly, closely located neurons showed similar
activity patterns in the striatum, the downstream target of cortical
excitatory neurons in mice43. In zebrafish, this cortico-striatal
projection exists and is considered to play an important role in
decision-making10,13. Further study is necessary to reveal the
relationship between these localized units in the dorsal pallium
and their downstream target to elucidate the mechanisms of
behavioral choice.

In this study, we reported ensembles encoding blue perception,
the rule that blue is dangerous, the rule that red is safe and
putative SFPE. Although a majority of the fish generated each of
these ensembles except the one putatively encoding the SFPE
(Supplementary Table 1), some fish lacked some of these
ensembles. This raises the possibility that we might have missed
these ensembles because our imaging did not cover the entire
telencephalon. Indeed, we still missed the ensemble encoding
perception of blue in one out of four fish, even in the larger
volume imaging (Fig. 1c, red rectangle region and Supplementary
Table 2). In the case of the putatively SFPE-encoding ensemble,
we found this ensemble only in the surface region of the tele-
ncephalon, even when imaging a larger volume (Fig. 1c, red
rectangle region and Supplementary Table 2), implying the pos-
sibility that the putative SFPE was represented in the surface
region of the telencephalon, although further study for imaging
the whole telencephalon is necessary to confirm this point.

Although we observed neural activity in a relatively wide region
of the dorsal telencephalon, we could not cover the entire dorsal
telencephalon. In fact, although electrophysiology studies in
percomorphs revealed the visual sensory input to the dorsal part
of the Dl region from the preglomerular nucleus, suggesting the
equivalence of this region to the primary visual cortex in
mammals44, we could not fully image this area in this study. This
may be why we missed the ensemble encoding blue perception in
some fish. Further experiments for capturing neural activity in the
wider and thicker areas of the telencephalon are necessary to
address this limitation.

As with many cases of adaptive behavioral learning in mam-
mals, the fish evolutionary equivalents of the mammalian stria-
tum and globus pallidus in the basal ganglia, the dorsal
subpallium and entopeduncular nucleus, could also be involved in
assigning cognitive rules and in learning correct behaviors based
on future prediction. In addition, the zebrafish brain has neuro-
modulatory systems, such as those of dopamine and serotonin as
in the mammalian brain9,45,46. All these structures play important
roles in decision-making behaviors.

The small size of the zebrafish telencephalon will allow us in
the future to observe the coordinated in vivo neural activity of
these brain areas simultaneously by applying advanced technol-
ogies for wide, deep, and fast imaging, such as advanced laser
scanning methods47,48, three-photon microscopy47,49, and adap-
tive optics50,51.

Methods
Animals. All surgical and experimental procedures were reviewed and approved by
the Animal Care and Use Committees of the RIKEN Center for Brain Science.
Zebrafish (Danio rerio) were bred and raised under standard conditions52. In this
study, we used TgBAC(camk2a:GAL4VP16)rw0154a; TgBAC(vglut2a:Gal4)53;
Tg(UAS:G-CaMP7) rw0155 zebrafish aged >6 months in the nacre18 or casper19

background. We used camk2a containing BAC clones zH278O8 to establish
TgBAC(camk2a:GAL4VP16) as reported previously9 and the UAS:G-CaMP754

plasmid provided by Drs. Koide and Yoshihara55.

Virtual reality. The virtual reality environment consisted of four LCDs (Good
display, Model No. GD70MLXD), which presented the visual stimuli. In this
environment, fish can swim and stop along a one-dimensional track consisting of a
white, blue, or red background color with black stripes perpendicular to the
direction of swimming. The tail movement was captured by a web camera
(BSW20KM11BK, iBUFFALO) with some modifications i.e., the filter was replaced
with the infrared sharp cut filter (IR 76 FUJI FILTER, FUJIFILM) to avoid inter-
ference from the display light. The tail was illuminated with infrared LED light
(850 nm; ILR-IO16-85NL-SC201-WIR200, intelligent LED solutions). The virtual
reality system was controlled by custom-written programs based on LabVIEW
(National Instruments), Matlab (MathWorks), and OMEGA SPACE (Solidray Co.
Ltd.). The virtual reality environment was created using OMEGA SPACE software,
which provides built-in tools for the creation of virtual space. As the fish was fixated
inside the tank, it could move its tail, and the tail beat frequency was continuously
detected to cause forward-only motion in the virtual space. We used the following
method to investigate the frequency. The body of the fish was detected using a
camera placed at the top of the tank, and a custom program based on Matlab
Computer Vision Toolbox and LabVIEW. The camera was placed in such a manner
that the body of the fish was along the vertical (Y) axis of the image taken by the
camera. For each time frame of 100ms, a centerline lying along the body was
calculated by connecting the midpoints of the body in every row of the image. The
upper points of the centerline corresponded to the upper portion of the body. The
uppermost portion of the body in view did not move during tail-bending; thus, we
took the five uppermost points of the centerline and calculated a straight line, which
was at 90° of inclination to the horizontal axis of the image. We then took the five
lowermost points in the centerline and fitted a straight line comprising these. When
the fish bent its tail, this second line created an angle of inclination to the initial
straight line. When the fish did not move its tail, this angle was 180°, and the angle
was reduced when the fish moved its tail. Thus, we subtracted this angle from 180°
to determine how much the tail shifted from the reference position. This subtracted
value was used as the tail beat angle. Furthermore, we observed that there was bias
in the direction of the tail angle depending on the fish; we therefore took a com-
paratively large moving time window of 10 s and averaged the tail beat angles in that
window to set the reference angle of the tail. In each time step, the difference
between the reference and the tail beat angle was calculated to obtain the actual tail
bend angle, which was used for the calculation of tail beat frequency. To calculate
the frequency, we performed a Fourier transform using the current and nine pre-
vious values of the tail beat angle, corresponding to 1 s of length in our system. The
calculated frequency was multiplied by the arbitrary gain constant to use as the
forward speed of the fish in the virtual reality space, as the speed of the fish was
considered to have a linear correlation with the tail beat frequency56.

Fixation of living adult zebrafish. To capture the tail movement and image the
telencephalic neural activity, fish were tethered to the custom-made harness. Adult
zebrafish were briefly anesthetized with 0.02% tricaine (ethyl 3-aminobenzoate
methane sulfonate salt, Sigma-Aldrich) diluted in fish rearing water and mounted
on a hand-made surgery apparatus. During surgery, fish rearing water with 0.02%
tricaine was continuously perfused to keep fish alive and maintain anesthesia. First,
the skin above the skull over the telencephalon and the tectum was removed using
micro knives (10315-12, Fine Science Tools; Supplementary Fig. 1a1). After drying
the surface, the dental bond (Scotchbond Universal Adhesive, 41255, 3I) was
pasted on the skull using a toothpick and illuminated with blue LED light for 10 s
(Supplementary Fig. 1a2). A U-shaped metal was placed on the skull (Supple-
mentary Fig. 1a3) and then fluidic dental cement (Filtek Supreme Ultra, 6032XW,
3I) was placed on the skull (Supplementary Fig. 1a4). Blue LED light was used to
harden the cement and fix the U-shaped metal on the skull (Supplementary
Fig. 1a4). The base of the fixation apparatus, the assembled harness, and the plastic
ceiling to hold the fish body (Supplementary Fig. 1a5) were fixed (Supplementary
Fig. 1a6). The tips of the U-shaped metal were inserted into the slits in the small
part of assembled harness (Supplementary Fig. 1a7), additional dental cement was
placed on the contact point between them, and blue LED light was applied for 10 s
(Supplementary Fig. 1a8). After recovery from the anesthesia by perfusion with fish
rearing water, the tethered fish and the fixation apparatus were transferred to the
tank with the virtual reality environment (Supplementary Fig. 1a9). The tethered
fish was kept in the dark condition for ≥30 min under the microscope to allow it to
habituate to the tethered situation with continuous perfusion of fish rearing water.

GO/NOGO tasks. Fish were trained for the GO task (active avoidance) and the
NOGO task (passive avoidance) in the virtual reality environment under the
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microscope. Prior to the training, fish were kept separated in individual 1 L tanks
overnight. After fixation to the custom-made harness followed by habituation to
the tethered state, visual stimuli from four displays started to be presented and the
adaptation session for visual stimuli was started. This adaptation session consisted
of 20 GO/NOGO trials (ten GO trials and ten NOGO trials in random order)
without the application of electric shocks. After the adaptation session, we started
the training session with electric shocks. One training session consisted of 60 GO/
NOGO trials. We mixed ten GO and ten NOGO trials in a random sequence in the
first, middle, and last 20 trials. Each fish performed 2–5 sessions. The inter-session
interval continued for 15–20 min without the presentation of visual stimuli. In the
inter-trial interval in which the feedback of the tail beat to the virtual reality was
off, the fish was presented with a white background with black stripes. In the GO
trial, the background color in the vicinity of the fish in the virtual space changed to
blue and that of the area ahead of the fish changed to red. In the NOGO trial, the
color of the near-side changed to red and that of the far-side changed to blue.
Success in the GO trial was defined by a correct escape to the red region by tail
beats, which was initiated within 10 s after the change in the background color.
Success in the NOGO trial was defined by a correct stay without tail beats in the
red region for the 10 s after the change in the background color. Failure in the GO
trial was a stay behavior without tail beats in the blue region after 10 s. Failure in
the NOGO trial was an incorrect forward swim with tail beats into the blue region
within 10 s. If the trials resulted in failure, an electric shock (5 V/cm for 1 s) was
delivered from two needle electrodes placed on both sides of the body (Fig. 1b). In
some fish, the color associated with the electric shock was reversed after learning
with the original rule was achieved.

In the open-loop experiment, we changed the arbitrary gain constant from 10 to
0. In this situation, the fish tail beat frequency was multiplied by 0 and no feedback
to the virtual reality space was generated. In the goal color change experiment, we
changed the goal background color from red to green or white as soon as the fish
reached the goal position.

Two-photon imaging. To visualize calcium signals, we used two-photon
microscope LSM710-AX10 (Zeiss) with a water-immersion objective lens (W
Plan-Apochromat, 20x, NA 1.0, Zeiss) and a mode-locked Ti:sapphire laser
(Chameleon vision2, Coherent) at a wavelength of 890 nm. A 690 nm short-pass
dichroic mirror (LP-690, Zeiss) was used to separate the excitation laser from the
emitted fluorescence. Fluorescence emissions were collected using a GaAsP
photomultiplier tube (BiG, Zeiss). The laser intensity was adjusted to <30 mW
under the objective lens. The scanning was performed in bidirectional raster
scanning with line step, 4. The imaging speed was 97.75 ms per frame. The
imaged field was 384.9 × 384.9 μm (512 × 512 or 256 × 256 pixels). Imaging was
performed using a custom-made piezo actuator, which allowed us to cover three
planes separated by 16 µm.

Analysis of neural activity. Image data analysis was performed using scripts
written in ImageJ (ImageJ 1.50i and 1.51p, NIH), LabVIEW (National Instru-
ments), and Matlab (MathWorks). The imaging data derived from one slice were
collected using the custom macro of ImageJ. The collected image data of each
slice were processed to remove the displacement of the x–y axis during the
experiment. As a reference image for such image registration, we used the
average of 1000 images with minimal displacement from the dataset. We used
two-dimensional Fourier transformation to determine the displacement of
individual images compared to the reference image in the frequency space. In
case of displacement in an image, with reference to the reference image, the
distance or degree of displacement in the frequency domain was calculated in the
number of pixels along the x and y axes using cross-correlation. After calculating
such relative displacement, each image was corrected for the shift in the x and y
axes. This method provided easier and more effective image registration than the
TurboReg plugin module for ImageJ. After displacement correction, a median
filter (radius, 2) was used to smooth the image. The images were then downsized
from 512 × 512 to 256 × 256 to reduce the amount of further calculation time. In
the next step, cell-like ROIs were detected from the image data. To define the
ROIs corresponding to individual neurons, we used the following method: from
the imaging data, the peaky-ness of all pixels, as described by Ahrens et al.,
201227, was calculated. This peaky-ness corresponded to the change in the
activity of each pixel over time. Pixels inside a cell body generally had a high
peaky-ness value, as the activity of the cell caused greater deviation in the pixels
inside the body than in pixels that did not belong to a cell. In the next step, we
ranked the pixels by their peaky-ness values. A threshold peaky-ness value was
calculated for later use by taking the average of these values. We took the pixel
with the highest peaky-ness, and calculated the correlation of intensity with time
between this pixel and the surrounding pixels (51 × 51 pixels). We set a
threshold value of correlation empirically, and if the correlation between this
pixel and one neighboring pixel was higher than the threshold, that neighboring
pixel was considered to be in the same cell as this pixel. Using this process, a
boundary of a cell body could be obtained. We then looked for the pixel with the
second-highest peaky-ness value in the updated list, and repeated the procedure
described above to identify another cell body. This process was repeated to
identify cell bodies until the peaky-ness value of the pixel being considered was

reduced to less than the threshold peaky-ness value calculated earlier. After the
detection of potential cells using this method, we checked the spatial overlap
between the cells. If two cells overlapped, the cell with the smaller area was
removed. In addition, cells detected in the area of the image where there was
apparently no brain tissue were also removed after careful visual observation.
After these procedures, the fluorescence timeline of each cell was obtained. For
each cell, the fluorescence timelines of each pixel belonging to that cell were
calculated from the image data, and an average timeline was calculated as the
fluorescence of that cell. The fluorescence timelines for all cells from each slice/
layer were calculated for each session of the experiment. As we recorded cellular
activity from three layers, we gathered timelines of fluorescence for cells detected
in all three layers. However, as each cell had only one intensity value in every
three microscopic frames due to intra-layer switching, we used the spline
interpolation (built-in function in LabVIEW) method to infer missing fluores-
cence values for each frame. With these, we could finally gather all of the cells
detected over three layers with equal lengths of intensity timelines. We calcu-
lated the baseline intensity of every cell by averaging the baselines of their pixels,
which were calculated by taking the average fluorescence intensity over the
whole experiment. To match the behavior data to the fluorescence data, we
checked the frame number of the corresponding images taken by the microscope
during the experiment, and cut the time points from the fluorescence data that
did not correspond to the behavior data. Finally, we calculated the ΔF/F0 for
each cell using the baseline defined above.

Template matching. Template matching was performed as previously described28 to
evaluate whether specific neural activity patterns emerged during successful trials in
both GO and NOGO trials. Briefly, this method can quantify the similarity between a
neural activity pattern (template) during a certain time window and other time win-
dows of the same length. In our case, we aimed to determine if there were specific
activity patterns among neurons responsible for the successful avoidance of electric
shocks in a trial, and also whether the pattern emerges during the initial phase of a trial.
For the creation of templates, we considered all GO and NOGO trials after the fish
successfully (success rate >80%) met the learning criterion, as the neural activity during
these trials might have exhibited a specific pattern for success. We created a successful
GO template using the initial 2 s of neural activity for all successful GO trials after the
behavioral learning criterion was met, and taking the average over the number of such
trials. We created a successful NOGO template in the same manner. Then we used the
neural activity data of the entire experiment, and calculated the similarity indices
between the above-mentioned templates and sliding time windows of 2 s lengths of the
total experimental data. We could then derive two graphs of similarity indices, one for
each template.

Non-negative matrix factorization. To further investigate the encoded informa-
tion in neurons, we performed NMF (Fig. 3a)20,21. NMF separates synchronized
neural activity, which enabled the analysis of the neural ensembles. The data matrix
D stores neural activity represented by their ΔF/F0, where each column vector
stores neural activity in each time frame. NMF searches for two factor matrices (P
and T) such that matrix D can be best approximated by the product of matrices P
and T by minimizing the error function: Error ¼ kD� PTk2. A gradient descent
method was used to minimize the error function for each given matrix D. In each
case, there were five independent attempts with randomly assigned P and T
matrices. The maximum number of iterations for each attempt was set to 4000. The
factorization minimizing the error function was taken to be the best factorization.
The column vectors of the factor matrix P indicate typical neural activity patterns,
i.e., neural ensembles. The corresponding row vectors of the factor matrix T
indicate the time course of patterns. The number of patterns, i.e., the number of
columns in the left factor matrix was determined by AIC.

Simulations. The neural network model was formulated in the form of rate coding
neurons with a sigmoid activation function. Ensembles encoding the reward pre-
diction error xRPE and the scenery flow prediction error (SFPE) xSFPE provided
modulatory signals that induced synaptic plasticity. An ensemble xSF received the
input from a blue perceiving ensemble xBP and determined the probability of
swimming forward. The network was modeled as xSF tð Þ ¼ sig WxBP t � tl

� �� h
� �

,
where t indicates the current time step, W denotes the synaptic strength, h is the
fixed firing threshold, and tl is the time delay. Decision to select swimming (as
opposed to stopping) at time t was made by following
Prob swimming

� � ¼ xSF t � tl
� �

. In the absence of the SFPE ensemble (Fig. 8d), the
synaptic strength was potentiated depending only on the RPE:
ΔW ¼ W t þ 1ð Þ �W tð Þ ¼ ηRPExRPE tð Þ, which happened when the fish could
avoid the punishment contrary to its expectation. Whereas, in the presence of the
SFPE ensemble (Fig. 8c), W was updated depending on both xRPE and xSFPE:
ΔW ¼ ηRPExRPE tð Þ þ ηSFPExSFPE tð Þ. Note that ηRPE and ηSFPE denote the learning
rates. Here, xBP tð Þ ¼ 1 held when the fish watched the blue color at each time step;
otherwise, xBP tð Þ ¼ 0.

Moreover, the SFPE ensemble was modeled to compute the difference between
the bottom-up backward flow sensation xBF and the top-down scenery flow
prediction xSFP, xSFPE tð Þ ¼ ReLU xSFP tð Þ � xBF tð Þ� �

, where ReLU xð Þ ¼ max x; 0½ �
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denotes the activation function in the form of the rectified linear unit. It took a
positive value when and only when the predicted scenery flow exceeds the actual
sensation. Here, xSFP was characterized as xSFP tð Þ ¼ sig UxBP tð Þ � h0

� �
using a

synaptic strength U . The synapse was updated by ΔU ¼ η0xRPE tð Þ, through an
association between sensation and punishment. Consequently, in the early stage of
training, xSFP learned to represent xSFP tð Þ � 1 when the fish sensed the backwardly
moving scenery at each time step and otherwise xSFP tð Þ ¼ 0 (Fig. 8b). In addition,
xRPE tð Þ ¼ ReLU xRP tð Þ � p tð Þ� �

was determined by the gap between the actual
punishment p and the (negative) reward prediction xRP. xRPE took a positive value
when xRP was positive in the absence of punishment (i.e., p ¼ 0); otherwise it took
zero. The prediction about the punishment xRP was characterized as xRP tð Þ ¼
sig VxBP tinit

� �� h00
� �

using a synaptic strength V and the blue perception at the
beginning of each trial xBP tinit

� �
. The synapse was updated by ΔV ¼ �η00xRPE tð Þ.

In the simulations, h ¼ 2:4, tl ¼ 10, ηRPE ¼ 0:2, ηSFPE ¼ 0:002, h0 ¼ 6,
η0 ¼ 1:6, h00 ¼ 4, and η00 ¼ 1:6 were used; W and U were initialized as 0; and V
was initialized as 8. Each trial continued 100 steps. The MATLAB code for the
simulations is available upon request from the authors.

Permutation test. To confirm that the observed difference in the halt periods
between the two groups of fish distinguished by the presence or absence of the
putatively SFPE-encoding ensemble did not occur by chance, we performed a
random shuffling test. For this analysis, we included four fish that possessed
color rule-encoding ensembles while recording the deeper region of the dorsal
telencephalon. Thus, among the total 28 fish, 19 fish expressed ensembles
encoding color rules, whereas nine fish additionally possessed the putatively
SFPE-encoding ensemble. The average halt periods of the 28 fish were randomly
divided into two groups while the number of data in each of the two groups was
fixed (group A: 9 fish data, group B: 19 fish data). After calculating the average
value of halt periods in each group, we subtracted the average value of group B
from that of A. We repeated this random grouping 1000 times to obtain a
surrogate distribution of the differences in the halt periods, and computed the P-
value as a fraction of the cases in which the difference became larger than the
observed difference.

The relationship between correlation coefficient in activity and distance in
paired neurons. To examine the relationship between activity similarity and the
distance between neurons within ensemble, we calculated Pearson’s correlation
coefficient in activity between neurons and the distance. For the distance between
neurons, we calculated Euclidean distance. The 10 most-contributing neurons in
each ensemble were used for these calculations. The distance and correlation
coefficient were plotted. For averaging trace, we divide the distance into 37.6 μm
bins and averaged the correlation coefficient within each bin. For the shuffled data,
we randomly chose 10 neurons in the same fish and, after shuffling their position,
we calculated the correlation coefficient and the Euclidean distance. This procedure
was repeated 10 times and the data were averaged.

Identification of each ensemble. To identify the ensembles encoding blue per-
ception (Fig. 3), blue is dangerous (Fig. 4), red is safe (Fig. 4) and SFPE (Fig. 6), we
introduced two flow charts (Supplementary Figs. 19 and 20). In these flow charts,
we first selected the candidates that encode the information we focused on by
observing the activities of NMF ensembles under the open-loop condition. Among
the ensembles which showed increased activity under the open-loop condition, the
ensembles which met the criteria in the flow chart in Supplementary Figs. 19 and
20 were regarded as blue perception, the two color rules and putative SFPE-
encoding ensembles. The ensembles which did not show the specificity in the
activation to each color under the closed-loop condition or the constant activation
in GO or NOGO trials under the open-loop condition or only showed increased
activity to red in GO or NOGO trials were abandoned. For the fish which did not
experience the open-loop condition but rule reversal, we first observed the activity
of ensembles after establishment of behavioral learning instead of under the open-
loop condition and followed the second step in the two flow charts (Supplementary
Figs. 19 and 20).

Multiple comparison problem. To address the problem of multiple comparison,
we semi-automatized the procedure for selecting the ensembles of our interest. We
first calculated the correlation coefficient between environment-dependent vari-
ables, B(t) and R(t), and NMF ensembles calculated from shuffled neural activity
under the open-loop condition in each fish. B(t) is +1 if fish is in the blue region,
but otherwise the variable is 0. If the correlation coefficient to environment-
dependent variables was higher than 0.25 (a threshold for the selection), the
ensembles were regarded as candidates of the ensembles encoding the information
we focused on. Among the candidates, the ensembles that met the criteria in the
flow charts in Supplementary Figs. 19 and 20 were regarded as the ensemble
encoding blue perception, the two color rule and putative SFPE-encoding
ensembles. We first applied them to the original data from Fish 1 in Supplementary
Table 1 as an example (Supplementary Fig. 16), showing the validity of these
procedures for semi-automatic selection of the candidate ensembles of our interest.

By further using this method, we confirmed that the correlation coefficients rarely
reached the value higher than the threshold value 0.25 by calculating correlation
coefficient between NMF ensembles made from randomly shuffled neural activities
derived from the Fish 1 original data and B(t) or R(t) (Supplementary Fig. 17). For
the shuffling, two values in each neuron’s activity in the time line were randomly
selected and swapped, and this process was repeated n times, where n is the total
bin number of the time line of each neuron’s activity. We generated three sets of
shuffled neural activity in each fish and these three shuffled neural activity sets were
processed for NMF after determining the number of typical ensembles by calcu-
lating AIC in each set. After NMF calculation, we calculated the correlation
coefficient between the environment-dependent variables B(t) and R(t) and all
NMF temporal time lines in each fish.

Quantification of activity of neural ensemble. For quantification of the similarity
to GO/NOGO templates (Fig. 2g), the peak values when fish perceived the start
color in the first five trials of the adaptation, initial stage of training, and after
behavioral learning was established were compared by two-tailed unpaired t-test.
For quantification of the similarity to the GO/NOGO templates (Fig. 2g, after
behavioral learning and after reaching the goal), the peak values before and after
reaching the goal in the first five GO trials when fish met the behavioral learning
criterion were compared by two-tailed unpaired t-test.

For quantification of the change in the activity of the ensemble encoding the blue
perception (Fig. 3d), the peak values during GO and NOGO trials in the adaptation,
in the first ten trials, which corresponded to the initial stage of training, after
behavioral learning was established were compared by one-way ANOVA and
Bonferroni’s test. The change in the activity of the ensemble encoding the color rule
that blue is dangerous (Fig. 4c, g), the peak values during GO trials in the adaptation,
the initial stage of training, the stages immediately before the establishment of
behavioral learning and after behavioral learning were compared by one-way
ANOVA and Bonferroni’s test. The change in the activity of the ensemble encoding
the color rule that red is safe (Fig. 4d, h), the peak values when fish perceived red color
in GO and NOGO trials in the adaptation, the initial stage of training, the
intermediate stage of training, and the stages immediately before the establishment of
behavioral learning and after behavioral learning were compared by one-way
ANOVA and Bonferroni’s test. The change in the activity of the ensembles encoding
putatively the SFPE (Fig. 6f, i) was also similarly compared among the adaptation, the
initial stage of training, in the successful GO trials after behavioral learning, in the
failed GO trials after behavioral learning, and in the open-loop GO trials. The activity
of the ensemble activated when fish perceived the goal colors that differed from red
(Supplementary Fig. 14d) was also similarly compared between the states when the
goal was the original red color and when the color of the goal was changed to either
green or white. For the quantification in Fig. 5d, the peak values when fish perceived
blue as the start color during the GO trials in the stages during adaptation and after
behavioral learning under the original rule, during the NOGO trials in the initial stage
of training and the stage after behavioral learning under the reversed were compared
by one-way ANOVA and Bonferroni’s test. For comparison, the activity normalized
by self-maximum value was used.

For the quantification in Fig. 7c, total halt period, stop number and moved
period in the successful GO trials when fish satisfied the learner criteria were
compared by one-tailed unpaired t-test.

One-way ANOVA and Bonferroni’s tests were performed using script written in
Matlab and t-tests were performed using Excel (Microsoft Office 2007).

Statistics and reproducibility. The images shown in Fig. 2d and Supplementary
Fig. 15a show averaged images of the calcium imaging data during the experiment
for each fish. The averaged images of calcium imaging data of all the fish used in
the experiment were similar. We randomly selected one fish’s data from them and
used it as the image of the figure.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data mainly mentioned in this study (Fish 1, 2, 3 in Supplementary Table 1) are
available in the repository (https://doi.org/10.5281/zenodo.5195611). The original
remaining data are available from the corresponding author upon request. Source data
are provided with this paper.

Code availability
The codes used to prepare the neural activity for NMF and perform NMF and the
simulation of Fig. 8 in this study are available in the repository (https://doi.org/10.5281/
zenodo.5195611). The remaining custom codes are also available from the corresponding
author upon request. Although the OMEGA SPACE, software used for the creation of
the virtual space in this study, is not freely available, we also established the virtual space
using free software whose control system is compatible with the system used for the
OMEGA SPACE. Although the free software was not used in this study, the system made
with the free software is also available upon request.
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