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ABSTRACT

A cutting-edge software that adopts an optimized searching algorithm is presented to tackle the Newton–Euler equations governing the
dynamics of dense suspensions in Newtonian fluids. In particular, we propose an implementation of a fixed-radius near neighbors search
based on an efficient counting sort algorithm with an improved symmetric search. The adopted search method drastically reduces the com-
putational cost and allows an efficient parallelization even on a single node through the multi-threading paradigm. Emphasis is also given to
the memory efficiency of the code since the history of the contacts among particles has to be traced to model the frictional contributions,
when dealing with dense suspensions of rheological interest that consider non-smooth interacting particles. An effective procedure based on
an estimate of the maximum number of the smallest particles surrounding the largest one (given the radii distribution) and a sort applied
only to the surrounding particles only is implemented, allowing us to effectively tackle the rheology of non-monodispersed particles with a
high size-ratio in large domains. Finally, we present validations and verification of the numerical procedure, by comparing with previous sim-
ulations and experiments, and present new software capabilities.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0065655

I. INTRODUCTION

The physics of granular particles suspended in a fluid has become
of fundamental importance in the last few decades due to their heavy
involvement in many natural and industrial processes. For instance,
clarifying the behavior of blood flows is a high-priority topic since it
can potentially lead to the diagnosis and prevention of cardiovascular
diseases.1 From a geophysical viewpoint, phenomena like sediment
transport are highly attractive since dense suspensions contribute to
transporting nutrients and providing ecological habitats while shaping
the surrounding landscape.2 Industries working with paints or adhe-
sives, instead, are interested in the control of the flow to guarantee the
required performance and quality of the final products approaching
the market.3

The physics of the processes listed above is dominated by the
interactions between the particles and fluid that determine the flow-
ability properties of the granular suspensions. Unscrambling the cum-
bersome microscopic mechanisms of the interactions between the
particles shaping those materials and their flowing behavior has

become a high-priority topic, with a particular need for finding a phys-
ically meaningful constitutive law.4 Exceptionally challenging is the
rheological behavior shown by dense suspensions, i.e., suspensions
with a similar volume fraction of particles and liquid. In fact, under
stress, dense suspensions may show rheological behaviors that span
from a yielded behavior to discontinuous shear-thickening.5–8

Despite the practical relevance, a few analytical studies dealing
only with very dilute9 and semi-dilute10 granular suspensions have
been successfully carried out. The major mathematical difficulties
stand in the lack of proper analytical formulations that deal with
multi-body interactions, especially for very large volume fractions,
where enduring direct contacts becomes fundamental.6 Conversely to
theoretical approaches, numerical algorithms are ideal for tackling the
numerous particles interacting with each other. Numerical techniques,
spanning from molecular dynamics11,12 to the solution of the linear
Stokes equations for every suspended particle,13 stormed the field of
granular suspensions. Recently, since the work done in the seminal
paper by Cundall and Strack,14 the discrete (or distinct) element
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method (DEM) for studying dense suspensions and granular flows has
become the standard for the flow analysis. Modern approaches to
DEM reduce the description of the particle–fluid and particle–particle
interactions to minimal models able to correctly address the macro-
scopic behavior of the flow without excessive loss of information. On
this fashion, simplified relationships for short-range interactions have
been proposed, e.g., for hydrodynamic interactions15,16 and for adhesi-
ve–repulsive contributions (a satisfactory overview can be found in the
works of Refs. 16–19). Concerning contacts, the most implemented
technique is the soft-particle model, where contacts among several
particles and adhesion effects are handled.18 In particular, Luding20

developed a minimal model that, based on the original work by
Cundall and Strack,14 addresses the surface roughness of the particles
with tangential contacts replicating the sliding, rolling, and torsion
resistances, with the option of reproducing both static and dynamic
frictions. More advanced contact models contemplating non-linearity,
hysteresis, and complex effects can be found in his work.20 Many other
models have been adopted in the field of dense suspensions and
DEM;8,21 the interested reader is referred to the reviews by Li et al.18

and Guo and Curtis22 for a complete overview.
The major drawback of DEM is the expensive computation of

short-range interactions acting on every particle. The computational
cost, if care is not taken, may quadratically increase with the number
of particles considered, limiting the size of the domain analyzable or
the length of the simulated process. To reduce the computational cost,
algorithms of fixed-radius near neighbors search23 have been adopted
and become the standard in DEM implementations. A widely imple-
mented method is related to the use of Verlet lists.12 The Verlet list is a
data structure that stores and tracks all particles within a cutoff dis-
tance of each other. The list can be naively built by checking the
NðN � 1Þ=2 distances [cost OðN2Þ] between particles or, with more
modern techniques, through efficient cell-lists or tree-structures that
largely reduce the computational cost [O(N) for cell-lists, OðN logNÞ
for tree structures].24 In particular, the former consists of dividing the
computational box into a Cartesian lattice (with spacingD that accom-
modates the particles within a pre-selected cutoff distance) and assign-
ing the particles to the points of the lattice. After that, for each particle
a distance-checking procedure is applied to all the other particles
belonging to the 27 neighboring cells. This procedure, however, may
bring to a high computational and memory cost when dealing with
highly polydispersed particles, since the cutoff distance is usually cali-
brated with the largest particles; therefore, a cell may contain a large
number of small particles that must be enquired for neighborhood.
While computationally the extra-cost can be decreased by adopting a
cutoff radius that suits the smallest particle of the set, and extending
the size of the searching-stencil for the larger particles as done in
LAMMPS, memory-wise the cost will remain of the order OðN2Þ,
since the cell-list has to spatially cover the whole simulation box.

To further reduce the computational cost, the Verlet-lists are
updated every n time steps, calibrated such that within the n � 1
remaining steps the locations of the neighboring particles do not sig-
nificantly vary.12 This last point, however, is very delicate since updat-
ing the Verlet list too frequently is computationally expensive and, on
the contrary, increasing the time-period of the update can introduce
errors in the computation.

Here, following the work by Hoetzlein,25 we implement a highly
parallelisable method based on the cell-list approach that does not

require the explicit computation of a Verlet list, thus zeroing its
memory-cost, since the particles will be simply reordered within the
Cartesian lattice in a new array by means of a very efficient counting-
sort algorithm [computational cost O(N)]. Since the particles are
ordered by the cell, it is straight-forward to look for neighbors within
the adjacent cells. The counting-sort algorithm will be applied to the
particles at every time iteration, avoiding any loss of information on
the neighboring pairs. Within the framework of this manuscript, we
propose and validate the new software that combines the cutting-edge
algorithm just mentioned for the neighbors query with methods that
satisfactorily deal with complex rheological behaviors observed in
dense suspensions. For the latter problem, a rigorous mathematical
formulation will be provided. Finally, the software is parallelized within
the multi-threading architecture and is intended to be used without
accessing the expensive computational power provided by supercom-
puters or costly Graphics Processing Unit (GPU) accelerators.

The manuscript is organized as follows. Section II deals with the
mathematical formulation, focusing on the models adopted and detail-
ing the parameters that govern the flow. In addition, the numerical
integration scheme together with its implementation and parallel per-
formance are described. In Sec. III, we show the validation of the code
by studying the rheology of dense suspensions to ensure the reliability
of the results. Some benchmark tests on the potentiality of the code
are also proposed. Finally, in Sec. IV a summary of the code capabili-
ties and novelty ends the manuscript.

II. NUMERICAL METHOD

The in-house software used in this work models a dense, non-
Brownian suspension of quasi-inertialess, neutrally buoyant,
quasi-rigid spherical particles in a shear-flow defined by the shear-
rate, _c, and the strain-rate tensor, E1 (with the only non-zero
quantities, E112 ¼ E121 ¼ _c=2). The code tackles the Newton–Euler
equations that govern the translational and rotational dynamics of
the rigid particles,

mi
dui

dt
¼
X
M

FM
i ;

Ii
dxi

dt
þ xi � ðIixiÞ ¼

X
M

TM
i ;

8>>>><
>>>>:

(1)

where the subscript i indicates the particle i 2 ½1;N�, N being the
number of particles. In Eq. (1), FM

i and TM
i denote the force and tor-

que applied to the center of mass of the ith particle, with mass mi and
inertia tensor Ii. The translational and angular velocities are here
denoted by the symbols ui and xi, respectively. The superscript M
refers to the nature of the forces applied to system (1), resulting from
particle–particle and particle–flow interactions. In particular, here we
consider the contributions arisen from hydrodynamics, inelastic con-
tacts, and electro-chemical effects. Specifically, the right-hand-side of
Eq. (1) can be written as

X
M

FM
i ¼

XNH

j¼1
FH
ij þ

XNC

j¼1
FC
ij þ

XNE

j¼1
FE
ij ;

X
M

TM
i ¼

XNH

j¼1
TH
ij þ

XNC

j¼1
TC
ij þ

XNE

j¼1
TE
ij ;

8>>>>>><
>>>>>>:

(2)
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where the summations are performed on the number of particles
neighboring the ith particle considered, and the superscripts H, C, and
E stand for hydrodynamics, inelastic contacts, and electro-chemical
effects, respectively.

Concerning the hydrodynamics of the system, dense suspen-
sions of rigid particles immersed in a low-Reynolds-number flow
are subjected to a Stokes drag and a pair-wise, short-range lubrica-
tion force.26 The latter is caused by the relative motion of particles
that squeeze the fluid flowing in the narrow gaps between them.
Following the work of Ball and Melrose15 and Mari et al.,26 to rep-
licate those contributions we implement a linear relationship
between forces and velocities,

FH
i

FH
j

TH
i

TH
j

0
BBBBB@

1
CCCCCA ¼ � RStokes þRLub

� �
ij �

ui � U1ðxiÞ
uj � U1ðxjÞ
xi � X1ðxiÞ
xj � X1ðxjÞ

0
BBBB@

1
CCCCA

þ R
0ðEÞ
Lub

� �
ij

n

n

n?;i
n?;j

0
BBBB@

1
CCCCA; (3)

where n ¼ ðxj � xiÞ=jxj � xij is the center-to-center unit vector
(being xi the Cartesian position of the particle i), and n?;iðAÞ
¼ 2n� ½ðAi þ AT

i Þ � n� is a vector perpendicular to n (being Ai the
strain-rate tensor referred to the ith particle, E1i , in this case), RStokes

is a diagonal matrix that models the Stokes drag forces and torques,
including the Fax�en laws for non-uniform shear-flows,27 and RLub

and R0Lub are sparse matrices that approximate the far-field mobility
matrices, dropping the low moment contributions and considering a
pair resistance model with only divergent terms.15 In particular, those
sparse matrices model the contribution of the lubrication through the
squeeze, shear, and pump modes.26 The detailed formulation of the
matrices defining the hydrodynamics resistances is given in A.
Figure 1 sketches the lubrication forces and torques acting on the ith
particle (left) due to the presence of the jth particle (right). The dashed
red circumference highlights the region of influence of the lubricant

interactions, parameterized with dlub. Note that beyond this threshold,
i.e., even at mid-range distances between the particles, the hydrody-
namics is modeled only through the Stokes drag. We acknowledge
that this is an approximation; however in the context of dense suspen-
sions, it is acceptable since its contribution is minimal.

The contact contribution is modeled by the stick-and-slide
method20 that is able to describe frictional contacts. This method
mimics the inelastic contacts with spring-dashpot systems that
start operating when the surface distance between the spheres i and j,
dij ¼ jxi � xjj � ðai þ ajÞ (being ai and aj the particles radii), is nega-
tive (overlap). Considering two particles, i and j, the stick-and-slide
model can be written as

FC;nor
ij ¼ kndijnþ cnun;ij; (4a)

FC; tan
ij ¼ ktnij; (4b)

FC
ji ¼ �FC

ij ; (4c)

TC
ij ¼ ain� FC; tan

ij ; (4d)

TC
ji ¼ ðaj=aiÞTC

ij ; (4e)

where the Coulomb’s law jFC; tan
ij j � lCjFC;nor

ij j must be satisfied
(lC being the friction coefficient). The superscripts nor and tan indi-
cate the directions of the force (i.e., normal and tangential) and the
parameters kn, kt, and cn are the normal and tangential spring con-
stants and the normal damping constant, respectively. The velocity
un;ij ¼ n� n � ðuj � uiÞ is the normal velocity vector, while nij repre-
sents the stretch of the tangential spring. The latter is computed fol-
lowing the procedure described by Luding:20

nij ¼
T
Ð t
t0

ut;ij ds; if jnijj <
lCjFC;nor j

kt
;

lCjFC;nor j
kt

nij

jnijj
; otherwise;

8>>>><
>>>>:

(5)

where T ¼ I� n� n is the tangential projection tensor, ut;ij

¼ T � ðuj � ui � ðaixi þ ajxjÞ � nÞ is the tangential velocity vector,
and t0 is the time at the beginning of the collision between the
particles i and j [with nijðt0Þ ¼ 0]. A sketch of the model adopted
in this work is shown in Fig. 2. The possibility of adding
the rolling resistance to the model, as in Refs. 19 and 20, is
described in B.

The last contribution considered in this work is forces of conser-
vative nature that arise from the chemo-physical properties of the
solid–fluid and solid–solid interactions and play a fundamental role in
systems of dense suspensions.19,28 In particular, the model, sketched in
Fig. 3, addresses the contribution by adding an inter-particle, distance-
decaying repulsion force,

FR
ij ¼

�FER
�a
a0
; e�dij=kD n; if dij � 0;

�FER
�a
a0
; n; if dij < 0;

8>><
>>: (6a)

FR
ji ¼ �FR

ij ; (6b)

and an attraction force in van der Waals form,

FIG. 1. Sketch of the hydrodynamic interaction between the pair of particles, i, j,
having velocity and angular velocity ui, uj and xi ; xj , respectively. The hydrody-
namics effect starts acting when the minimum surface distance between the par-
ticles is below dlub.
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FA
ij ¼

A�a
12ðd2ij þ �2Þ

n; if dij � 0;

A�a
12�2

n; if dij < 0:

8>>><
>>>:

(7a)

FA
ji ¼ �FA

ij : (7b)

In Eq. (6), FER is the module of the force, a0 the reference radius,
�a ¼ 2aiaj=ðai þ ajÞ the harmonic radius, and kD is the Debye length
that controls the decay of the force. In Eq. (7), instead, A is the
Hamaker constant and � is a small regularization term (generally
� 	 0:01�a) introduced to avoid the singularity at contact, when dij¼ 0.
To simplify the notation, below the repulsive and attractive effects
may be gathered together in the electro-chemical contribution,
FE ¼ FR þ FA, marked by the E superscript.

The forcing contributions described above induce mechanical
stress in the suspension that can be computed using the stresslets
theory,27

R ¼ 2g0E
1 þ 1

V

XN
i¼1

XNH

j¼1
SH
ij þ

XNC

j¼1
SC
ij þ

XNE

j¼1
SE
ij

0
@

1
A; (8)

where R is the bulk stress tensor, g0 is the viscosity of the carrier fluid,
and V is the volume of the simulated box. The stresslets due to the
interactions, instead, are denoted by S and are defined as

SS
i ¼ 20=3pg0a

3
i 1þ a2i =10r2
� �

E1i ; (9a)

SL
ij ¼ 0:5 ðxj � xiÞ � FH

ij þ ððxj � xiÞ � FH
ij Þ

T
h i

; (9b)

SC
ij ¼ ðxj � xiÞ � FC

ij ; (9c)

SE
ij ¼ ðxj � xiÞ � FE

ij ; (9d)

where the hydrodynamic contribution (H) has been separated into the
Stokes (S) and lubrication (L) terms, i.e., SH

ij ¼ SS
i þ SL

ij . From the
bulk stress tensor, R, we can derive the quantities of rheological inter-
est, i.e., the shear-stress r, the normal stress differences N1 andN2, and
the pressure P, defined as r ¼ R12; N1 ¼ R11 � R22; N2 ¼ R22

�R33, and P ¼ �TrðRÞ=3. Normalizing the shear-stress and the
pressure with the properties of the carrier flow, we can define the rela-
tive viscosity and the dimensionless pressure as gr ¼ r=ðg0 _cÞ and
gn ¼ P=ðg0 _cÞ, respectively.

Several parameters dominate the physics of the suspension
described by System (1). We consider the translational equation of (1),

qa30U
T

du
i
dt

¼ g0a0U

XNH

j¼1
FH;

ij þ keqa0

XNC

j¼1
FC;

ij þ F

XNE

j¼1
FE;

ij ; (10)

where we gathered the dimensional quantities (being the non-
dimensional quantities marked with the superscript 
). In Eq. (10),
U ¼ a0 _c is the typical velocity in a shear-flow, T is the timescale intro-
duced by the particles (in this case, the particles introduce no additional
time-scales, therefore T ¼ 1= _c), keq is the equivalent spring constant of
the model represented in Fig. 2, and F is the module of the force intro-
duced by the electro-chemical interactions. Applying the Buckingham
Pi theorem, the parameters are reduced to a set of non-dimensional
numbers that can be tuned to outline the model desired. Considering
the dimensional quantities in Eq. (10), fq; a0; g0; _c; keq; Fg and

FIG. 2. Sketch of the contacts model between the pair of particles, i, j, having velocity and angular velocity ui, uj and xi ; xj , respectively. The spring-dashpot systems model-
ing the contacts start acting when the surface distance, dij, between the particles is negative (overlap).

FIG. 3. Sketch of the model adopted for the electro-chemical interaction between the pair of particles, i, j. The repulsive interaction starts appearing when the minimum surface
distance between the particles is below 20kD, while the attractive contribution when the minimum surface distance is below 4a0.
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choosing fa0; g0; _cg as independent fundamental quantities, three
non-dimensional groups emerge. The first one is the Stokes number,

St ¼ qa20 _c
g0
� 1; (11)

where the constraint St � 1 is applied to remain in the inertialess
regime. The non-dimensional stiffness, instead, governs the impor-
tance of the contacts contributions compared to the hydrodynamic
term,

k̂ ¼ kn
g0a0 _c

� 1; (12)

where k̂ � 1 forces the particles to be rigid; note that, the equivalent
stiffness constant,

keq ¼ kn 1þ kt
kn
þ cn _c

kn

� �
; (13)

has been approximated to kn by adding additional constraints kt � kn
and cn _c=kn � 1.26 Finally, the last non-dimensional group (the equiv-
alent shear-rate) refers to the timescale introduced by the electro-
chemical contribution,

_̂c ¼
Fðdij ¼ 0Þ

g0a
2
0 _c

¼ _c0
_c
; (14)

where we defined a new shear-rate, _c0 ¼ FðdijÞ=g0a20; thus, tuning F
(i.e., adjusting FER and the Hamaker constant) appropriately, a shear-
rate dependency can be imposed to the suspension.

A. Numerical algorithm

Following the work by Ge et al.,29,30 the governing equations (1)
are advanced in time with the modified velocity-Verlet explicit
scheme,31

xðnþ1Þi ¼ xðnÞi þ DtuðnÞi þ
Dt2

2
a
ðnÞ
i ; (15a)

uðnþ1=2Þi ¼ uðnÞi þ
Dt
2

a
ðnÞ
i ; (15b)

anþ1i ¼ F xðnþ1Þi ; uðnþ1=2Þi

� �
; (15c)

uðnþ1Þi ¼ uðnÞi þ
Dt
2

a
ðnÞ
i þ a

ðnþ1Þ
i

� �
; (15d)

where xðnÞi ; uðnÞi , and a
ðnÞ
i denote the position (orientation), velocity

(angular velocity), and acceleration (angular acceleration) vectors
of the particle i, respectively, at time t ¼ nDt, and F resembles the
right hand side of Eq. (1). The modified velocity-Verlet scheme is
second-order accurate in time and, being explicit, it requires a time
step Dt that resolves the smallest timescale of the system (typically
established by the stiffness of the contacts; a good approximation
of the time step can be computed through the time constant that
can be defined in the normal spring-dashpot system,
Dt _c ¼ cn _c=kn). Different from other approaches, e.g., considering
an over-damped system dropping the inertial terms,26 this
approach allows us to avoid the inversion of the resistance matrix
of the lubrication forces.

The domain is a box of size Lx � Ly � Lz (or L
3 if cubic) with a

shear-rate, _c, applied along the y direction. At the edges of the domain,
the Lees–Edwards boundary conditions32 are adopted to remove the
effect of the walls,

x ¼
ðx þ Lx � _cLytÞ mod Lx; if y > Ly;

ðx þ Lx þ _cLytÞ mod Lx; if y < 0;

ðx þ LxÞ mod Lx; otherwise;

8><
>: (16a)

y ¼ ðy þ LyÞ mod Ly; (16b)

z ¼ ðz þ LzÞ mod Lz; (16c)

u ¼
ðu� _ctÞ; if y > Ly;

ðuþ _ctÞ; if y < 0:

(
(16d)

The interaction between the particles represents the most expen-
sive part of the algorithm from a computational point of view with a
cost of OðN2Þ, if a brute force algorithm is used. To overcome the
problem, we adopted a highly parallelisable, fixed-radius near neigh-
bors algorithm.23,25 The algorithm is based on rearranging the particles
on a coarser lattice (cell-list) by adopting an efficient counting sort
algorithm25 that requires a computational cost O(N) and few memory
arrays of size N. The spacing of the cell-list D must suit the desired
searching distance; a sketch of it is shown in Fig. 4. By considering the
near points of the coarser grid in the search for neighbors, i.e., the
blue-filled region in Fig. 4 (considering a 3� 3 macro searching-cell)
the computational cost dramatically decreases to O(cN), where c� N
is the number of particles inquired as neighbors and depends on the
lattice space D. The dependence of c on D is related to the number of
particles that fit each macro-cell and an optimal choice of D is there-
fore related to the properties of the suspension. For instance, fixing
D ¼ 2amax , where amax is the radius of the largest particle in the sus-
pension, minimizes the number of macro-cells to be inquired for the
search of neighbors. This is ideal for monodisperse suspensions where
there may be at maximum one particle per cell and may look reason-
able when considering polydispersed suspensions with not-very-high
dispersion ratios. On the contrary, the choice may be detrimental for
suspensions with amin � amax (amin being the radius of the smallest
particle), since it may result in the presence of a high number of par-
ticles within each macro-cell, with the limit of c¼N when 2amax corre-
sponds to the size of the domain. In this case, to reduce the number of
particles within each searching cell, a better choice is to set D < 2amax

and increase the stencil of neighboring cells.24,25

As a drawback, the search shown in Fig. 4 implies that the forces
and torques acting on the pair of particles (i, j) are computed twice,
although this procedure guarantees a better load balance through the
processes when the code is parallelized. To avoid the double counting
of the forces keeping a good load distribution among the processes, we
propose a symmetric search, where the neighbors are scanned only
over half of the points of the macro searching-cell of the near
Cartesian lattice, as sketched in Fig. 5, thus obtaining an additional sig-
nificant speed-up by halving the computational operations. Note that
this procedure does not require any particular symmetry of the
problem.

Memory-wise, instead, the main problem arises from the compu-
tation of the tangential stretch, Eq. (5), where the history of all contacts
must be traced, with a potential memory cost OðN2Þ. To reduce the
cost, we use a reduced matrix with size N�M, where M is an
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overestimation of the maximum number of contacts per particle based
on the volume of the spherical shell surrounding the largest particle of
the suspension, with thickness Da ¼ 2a0. The contacts, once estab-
lished, are then recorded into a hash-map that charts them along with
the indexes of the particles involved. Then, every array of the map

(i, M) is sorted by the indexes, and the history of the contacts for the
particle i is sought over the sorted array (i, M). This procedure has an
actual memory cost O(N), adding little to the computational cost.

The parallelization of the solver is reached by implementing the
multi-threading paradigm on a single node with a multiprocessing sys-
tem, using the OpenMP directives. The high-scalability of the code,
obtained on a 2-socket AMD EPYC 7702 machine (zen2 microarchi-
tecture), is shown in Fig. 6. The scalabiltiy graph is obtained by fixing
the domain properties and varying the number of processes used. The
case considered is a bidispersed suspension with a high number of par-
ticles N¼ 65 536 to test also the memory-efficiency, volume fraction
/ ¼ 0:5, bidispersity ratio, and volume a2=a1 ¼ 3 and V2=V1 ¼ 0:25,
respectively. All the forcing contributions listed above in this section
have been considered. Referring to the configurations shown in Fig. 6,
the total time per iteration (on average) in seconds is reported in
Table I. The table also shows the breakdown (in percentage) of the
total time needed by the several parts sampled within the core of the
software. In particular, t1 corresponds to the time needed to update
the kinematical properties of the particles with the modified velocity-
Verlet scheme, t2 to sort the particles within the corresponding cells
(counting sort), t3 to compute the interactions between neighbors, and
t4 to sort the hash-map of the frictional contacts list, while the amount
of time needed for writing the outputs is negligible. The breakdown of
the total time per iteration shows how the counting sort algorithm is
convenient for reordering the particles within the searching cells, with

FIG. 4. Sketch of the fixed-radius near-neighbors algorithm adopted for finding the neighbors of the particle highlighted in blue, within a distance R marked by the red circle.
The domain (left panel) is subdivided, first, into a coarse lattice (central panel) and the particles are ordered via a counting sort algorithm. The search is then carried out only
on the 3� 3 neighboring cells (blue region, right panel).

FIG. 5. Symmetric fixed-radius near-neighbors algorithm. The search is carried out
only within the red region. The initial random distribution of particles within the
domain guarantees the load-balance in the case of parallelization.

FIG. 6. Scalability of the code. We considered a bidispersed suspension with num-
ber of particles N¼ 65 536 and volume fraction / ¼ 0:5. The bidispersity of sus-
pension is characterized by a bidispersion ratio a2=a1 ¼ 3 and volume ratio
V2=V1 ¼ 0:25. The graph is obtained by increasing the number of processes np.
The time spent per iteration by np processes, tnp, is normalized by the time spent
by a single process, t1.

TABLE I. List of the average time per iteration needed to advance the particles vary-
ing the number of threads and its breakdown. In particular, ttot is the total time in sec-
onds per iteration, t1 is the percentage of time taken by the modified velocity-Verlet
scheme, t2 is the percentage of time needed to sort the particles within the macro-
cells (counting sort), t3 is the percentage of time needed to compute the interactions
between neighboring particles, and t4 is the percentage of time needed for sorting
the hash-map of the lists for the history of the frictional contacts.

np 1 2 4 8 16 32 64 128

ttotðs=iterÞ 0.549 0.279 0.144 0.078 0.042 0.023 0.015 0.009
t1ð%Þ 0.8 0.8 1.0 2.1 2.9 5.5 8.5 8.6
t2ð%Þ 0.2 0.4 0.5 1.1 1.4 2.1 3.2 5.7
t3ð%Þ 92.4 92.5 91.8 88.0 85.2 79.0 69.7 70.1
t4ð%Þ 6.6 6.3 6.7 8.8 10.5 13.4 18.6 15.6
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its cost not exceeding the 6% of the total time in the configuration
considered.

For readers interested in the algorithm and in benchmarking the
software, the code is available at https://github.com/marco-rosti/CFF-
Ball-0x.

III. RESULTS

In this section, the robustness and accuracy of the method pro-
posed above for dense suspensions is investigated. We consider, first, a
relatively small domain with particles suspended in a uniform, plain
shear-flow, and we compare the data obtained with studies available in
the literature varying the volume fraction and the shear-rate; we then
increase the domain size to test the memory-efficiency of the software,
and we study the behavior of a dense suspension subject to a wavy
shear-flow, the wave acting on the stream-shear cross-plane. All initial

conditions used in this work are generated with the sphere-packing
software developed by Donev.33

A. Uniform shear-flow

The reliability of the code has been tested both in jamming tran-
sition scenarios and in a shear-dependent behavior of rheological
relevance.

For the jamming transition, we consider a cubic box containing a
bidispersed suspension (a2=a1 ¼ 1:4, in equal volumes V2=V1 ¼ 1) of
200 frictionless, rigid [see Eq. (12)] particles, with no electro-chemical
interactions. The side length of the box accommodates the volume
fraction / imposed, being a0 ¼ a1 ¼ 1. The parameters chosen echo
the validation carried out by Ge and Brandt29 and are listed in
Table II. Figure 7 shows the comparison between the simulation
results and the data available in the literature with a satisfying agree-
ment between the computed relative viscosity, gr, and the power-law
fitting of Mari et al.26 for frictionless particles (solid black curve).

We then activate the friction (lC ¼ 1), and we increase the num-
ber of particles to N¼ 1000 (see Table II). Figure 7 shows the compari-
son between the computed relative viscosity gr and the data fitting
obtained by Mari et al.26 (solid red curve) and Cheal and Ness34

(dashed red curve) with excellent agreement.
The shear-dependent behavior of the particles suspended in a

uniform shear-flow is obtained by considering all contributions listed
in Sec. II. At first, we will show the results obtained from a bidispersed
dense suspensions (size ratio a2=a1 ¼ 1:4) with volume fraction
/ ¼ ½0:45; 0:50; 0:55�, to see if the software is able to catch the typical
shear-dependent behavior.26 The set of parameters for carrying out
these simulations have been chosen to mimic those by Mari et al.26

and are listed in Table III. Note that for these simulations, the electro-
chemical contribution is purely repulsive (FR=FA ¼ 1), as set in Mari
et al.26 Figure 8 (left panel) shows the trend of the relative viscosity gr
varying the shear-rate applied to the suspension _c= _c0. In particular,
we see that the three suspensions show the same qualitative behavior,
with values of the relative viscosity substantially increasing (especially
at higher shear-rates) with the volume fraction. From Fig. 8, we can
notice that at low shear-rates the suspensions show the typical shear-
thinning behavior with a similar slope in the three cases considered, as
already observed by Mari et al.26 At those shear-rates, the repulsive

TABLE II. Parameter choice for the frictionless (FL) and frictional (FR) configurations. Here, a0¼ a1 represents the reference length scale.

N a2=a1 V2=V1 St k̂ kt=kn cn _c=kn lC _c= _c0 dlub=a0

FL 200 1.4 1 10�3 4� 105 2/7 10�7 0 1 f0:05; 0:2g
FR 1000 1.4 1 10�3 4� 105 2/7 10�7 1 1 f0:05; 0:2g

FIG. 7. Relative viscosity, gr (filled markers), varying the volume fraction. The solid
curves represents the power-law fitting of the data from Ref. 26. The black solid
curve, gr ¼ 1:4ð1� /=/JÞ�1:6, with jamming volume fraction /J ¼ 0:66, is
obtained for frictionless particles, while the red solid curve, gr ¼ 0:71ð1
�/=/JÞ�2:3, with jamming volume fraction /J ¼ 0:575, is obtained for frictional
particles with lC ¼ 1. The red dashed line, instead, is obtained from the numerical
data by Cheal and Ness34 for frictional particles with lC ¼ 1.

TABLE III. Set of parameters used for simulating the behavior of dense suspensions varying the shear rate. Here, a0¼ a1 is the reference length scale.

/ N a2=a1 V2=V1 St k̂ kt=kn cn _c=kn lC _c= _c0 dlub=a0 kD=a0 FR=FA

0.45 512 1.4 1 10�3 4� 105 2/7 10�7 1.0 f10�5;…; 10g 0.10 0.05 1
0.50 512 1.4 1 10�3 4� 105 2/7 10�7 1.0 f10�5;…; 10g 0.10 0.05 1
0.55 512 1.4 1 10�3 8� 105 2/7 10�7 1.0 f10�5;…; 10g 0.10 0.05 1
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contribution dominates the mechanics of the suspensions (higher FE,
lower _c=_c0), holding the particles off at a mid-range distance. On the
other hand, at higher shear-rates the contacts become dominant, trig-
gering the typical shear-thickening behavior, with a growing slope as
the volume fraction is increased, eventually leading to a quasi-
discontinuous shear-thickening at / ¼ 0:55. When considering dense
suspensions, to characterize the strain-induced anisotropy of the fluid,
two additional rheologically meaningful functions are usually mea-
sured: the two independent normal stress differences N1 and N2. Fig. 8
shows the first (middle panel) and the second (right panel) normal
stress differences, respectively, of the shear-dependent suspensions
considered (see Table III). In particular, the trend observed is similar
to the one reported by Mari et al.,26 proving the capability of the soft-
ware to catch the strain-induced anisotropies of the suspensions.

Next, we consider a dense suspension with volume fraction
/ ¼ 0:46, and we compare our numerical results with experimental
data obtained from quasi-neutrally buoyant silica colloidal particles,
processed through the St€ober method,35,36 suspended in a glycerol–water
solution with relative concentration 80%� 20%, respectively. The
electro-chemical properties of the suspension were altered by adding
sodium-chloride (NaCl) to the solution, as done in Rathee et al.37 In par-
ticular, the numerical and experimental parameters are reported in
Table IV. Figure 9 shows a very good agreement between the relative vis-
cosity, gr, obtained from the numerical and experimental data, for both
salt concentrations considered. For the experimental results, the shear-
rate _c has been normalized to match the domain span of the numerical
data. The two suspensions behave very differently at lower shear-rates,
i.e., in the shear-thinning region. In that regime, the electro-chemical
potential acting on the suspension dominates its mechanics. Increasing
the salt concentration, the electro-chemical properties of the suspension
are modified, with the contribution due to the van der Waals attractive
forces becoming more important (lower FR=FA). This induces the

formation of large clusters that highly contribute to the higher resistance
of the suspension to flow,37 and this is reflected in Fig. 9, with the red
curve showing much higher values of gr. Conversely, at higher shear-
rates, where the contacts between particles dominate, the behavior of the
suspension does not depend on the salt concentration; therefore, the two
suspensions have similar values of relative viscosities (see Fig. 9).37

The typical size of the cluster of particles for the suspension with
higher salt concentration is shown in Fig. 10. In particular, the two
panels show the size distribution of the clusters at the extrema of the
curve in Fig. 9, i.e., at shear-rate _c= _c0 ¼ ½10�5; 100�, when the

FIG. 8. Shear-dependent rheological quantities of dense suspensions with / ¼ ½0:45; 0:50; 0:55�, indicated by the black, blue and red lines, respectively. Left panel: relative
viscosity, gr; middle panel: first normal stress difference N1 normalized with the shear stress of the carrier fluid; right panel: Second normal stress difference N2 normalized
with the shear stress of the carrier fluid.

TABLE IV. Parameters set used for numerical simulations (SI) and experiments (EX) of particles suspended in a varying uniform shear-flow. Here, a0 (¼ a1 in the simulations)
stands for the reference length scale.

N a2=a1 V2=V1 St k̂ kt=kn cn _c=kn lC _c= _c0 dlub=a0 kD=a0 FR=FA

SI 512 1.09 1 10�3 4� 105 2/7 10�7 0.5 f10�5;…; 10g 0.25 ½0:0225; 0:0065� ½19; 1�
a0 g0 qfluid lC kD NaCl

EX 20865 nm 0:108 Pa s 1:12 g=cm3 0.5 ½4:5; 1� nm ½0:4; 0�M

FIG. 9. Relative viscosity, gr, varying the shear-rate, _c= _c0, where for the experi-
ments, the value _c0 has been chosen to match the shear-rate domain of the simula-
tions. The symbols outline the numerical data, while the solid lines represent the
experimental results. The black data are obtained from a salt-free suspension, while
the red data represent the solution with salt concentration 0:4M.
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suspension reaches its steady-state regime. From Fig. 10, we can see
that the distributions show two peaks, the leftmost one concerning
small clusters and the rightmost large ones. Comparing the distribu-
tions of the latter at the two shear-rates considered, we can see that the
peak is narrower in the region where the van der Waals forces domi-
nate the behavior of the suspension (left panel), with the particles gath-
ering in a spherical-shaped cluster. A snapshot of the structures for the
case with a salt concentration of 0:4M is shown in Fig. 11 (left panel),
where the two peaks seen in the distributions can be clearly recog-
nized. In the right panel of Fig. 11, instead, a snapshot during the time
evolution of the clusters is shown, with the large cluster fragmented in
many smaller ones.

B. Wavy shear-flow

The examples discussed above show that the code is able to tackle
particles suspended in a uniform shear-flow.We extend here the simu-
lations to non-uniform shear-flows that activate the Fax�en contribu-
tion introduced in the Stokes drag. In particular, we introduce a wavy
shear-flow,

U1 ¼
_cy þ U sin 2pn

Ly
y

� �
0

0

0
BBBB@

1
CCCCA; (17)

FIG. 11. Snapshot of the cluster of contacting particles at _c= _c0 ¼ 10�5. Left panel: steady-state regime; right panel: transient regime. The total number of particles is
N¼ 512. The smaller cluster plotted has a size of five particles; smaller clusters are not shown for clarity of the images.

TABLE V. Parameters set for dense suspensions in a uniform shear-flow (NW) and in a wavy one (YW), following Eq. (17). Here, a0¼ a1 represents the reference length scale.

N a2=a1 V2=V1 St k̂ kt=kn cn _c=kn lC _c=_c0 dlub=a0 kD=a0 FR=FA U= _ca0 n

NW 216 3 0.25 10�3 4� 105 2/7 10�7 1 1 0.25 0.02 19 0 0
YW 216 3 0.25 10�3 4� 105 2/7 10�7 1 1 0.25 0.02 19 20 1

FIG. 10. Average size distribution of clusters of contacting particles for the strongly attractive suspension (i.e., salt concentration 0:4M). Left panel: _c= _c0 ¼ 10�5; right panel:
_c= _c0 ¼ 100. The total number of particles is N¼ 512. The size distributions are averaged over 100 snapshots.
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where U is the amplitude of the wave and n imposes the number of
spatial periods within the domain. This is a condition of relevant inter-
est as it can be used for example to reproduce the wall effects that
appear in a rheometer when attempting to replicate a uniform shear-
flows or to take into account the back-reaction of the particles on the
flow itself.

We consider a cubic box containing a bidispersed suspension
with volume fraction / ¼ 0:5. The ratio between the radii of the
two dispersed phases is a2=a1 ¼ 3:0, while the volume percentage
ratio of the largest dispersed particles to the smallest one is
V2=V1 ¼ 0:25. We set the number of particles to N¼ 65 536 to test
the memory-efficiency of the software. The side length of the box
accommodates the volume fraction / ¼ 0:5, being a0 ¼ a1 ¼ 1.
The particles composing the suspension are considered to be rigid
with a non-smooth surface (i.e., with a friction coefficient lC ¼ 1),
electrically charged with a screening length kD ¼ 0:02a0. The

equivalent shear-rate, Eq. (14), is set to _̂c ¼ 1 (i.e., within the
shear-thickening region of Fig. 9), with a ratio FR=FA ¼ 19
when the pair of particles (i, j) are at contact. The wave was
chosen to have a single spatial period, n¼ 1, with a large amplitude
U ¼ 20 _ca0 to amplify the effects of the wavy shear. Table V wraps
up the set of parameters chosen and a snapshot of the domain and
particles is shown in Fig. 12.

A wave with a large amplitude, such as the one applied in the
case described above, significantly affects the local shear-rate, as shown
in the left panel of Fig. 13. This local effect has a direct impact on the
suspension as half of it is located in a low shear-rate region, while the
other half feels a high shear-rate. Thus, the non-uniformity impacts
the rheology of the suspension modifying the relative viscosity gr of
the suspension, as shown in the right of Fig. 13. Note that both cases
analyzed started from an identical initial condition.

Next, in Fig. 14 we plot the shear-wise diffusivity (left panel) and
the autocorrelation function of the shear-wise velocity fluctuations
(right panel), respectively, defined as

Dy ¼
1
a20 _c
h yðtÞ � yðt0Þ½ �2i

2ðt � t0Þ
; (18)

and

Cv ¼
hv0ðtÞv0ðt0Þi
hv0ðtÞ2i

; (19)

where in both equations, the h i brackets indicate the average over all
the particles and t0 is the initial time; y(t) and v0ðtÞ are the time-
dependent shear-wise location and velocity fluctuations, respectively,
of the particles. The figure shows how the particles, on average, diffuse
more (twice more) when the wavy-shear rate is applied to the suspen-
sion, due to the non-uniformity of the shear rate. Moreover, the auto-
correlation function of v0 shows a higher integral timescale for the
suspension with the non-uniform shear-rate.

Finally, to understand the temporal behavior of the suspension,
we show the distribution of the local volume fraction along the shear-
wise direction. Figure 15 shows the distribution of the particles in the
shear-wise direction separated by the size of the suspended phase. In

FIG. 13. Left panel: streamwise velocity profile of the carrier flow applied in the shear-wise direction, y. Right panel: time history of the relative viscosity gr, being c ¼ t _c the
number of strains. In both panels, the black line represents the suspension in a uniform shear-flow, while the red line the suspension in a wavy one.

FIG. 12. Snapshot of the large domain simulation with N¼ 65 536 and a2=a1 ¼ 3.
The volume fraction is / ¼ 0:5, with a volume contribution of the bidispersed par-
ticles V2=V1 ¼ 0:25.
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particular the figure is organized as follows: in the left panel, the local
distributions of the large (solid line) and the small (dotted line) par-
ticles of the suspension at the initial time are shown; in the middle
panel, the same quantities are shown for the particles suspended in a
uniform shear-flow at c¼ 10; in the right panel, the local distributions
are shown for the particles suspended in a wavy shear-flow at c¼ 10.
While the distribution of the particles in the case where a uniform
shear-rate is applied to the suspension remains similar to the initial
condition with the particles uniformly distributed along the shear-wise
direction, in the case where the particles are suspended in a non-
uniform shear flow, two clear peaks in the distribution of the large par-
ticles appear. This suggests that the large particles are migrating
toward such region that, in particular, coincide with the location of
zero-shear.

IV. SUMMARY AND OUTLOOK

We have presented an efficient software (freely available at
https://github.com/marco-rosti/CFF-Ball-0x) that tackles the dynam-
ics of dense suspensions. First, the models of the contributions adopted
to simulate the particle–particle and the particle–flow interactions
have been presented. The models mimic the ones already available in
the literature, echoing in particular, the implementation of Mari
et al.26 and Ge et al.29,30 The core of the algorithm, i.e., the fixed-radius

near neighbors search, follows the idea of Hoetzlein25 with an
improved symmetric search that guarantees a speed-up in the near
neighbors inquiry and a good load-balance among processes when the
parallelization is adopted. Particular attention has been also given to
the memory efficiency aspect of the implementation as the representa-
tion of rheological suspension with a large number of non-smooth
particles is of high interest, especially to cope with particle suspensions
having a high size ratio, as a limited number of large particles would fit
into small domains.

The aforementioned features of the implementation have been
proved in the examples carried out in Sec. III. First, we verified the reli-
ability of the method by comparing our results with data available in the
literature obtained from other codes or experiments. Then, we carried out
sample simulations with a high number of particles N ¼ 216, comparing
the rheology of suspensions driven by a uniform and a wavy shear-flow.

The present code can be extended in a series of ways. Models
in consideration for future implementations concern the possibil-
ity of reproducing Brownian particles and the introduction of
walls that constrains the particles in any of the three directions.
The present code is meant to be used for studying the rheology of
particle suspensions in several configurations, to unravel some of
the complex phenomena arising when dealing with dense
suspensions.38

FIG. 15. Local distribution of the volume fraction along the shear-wise direction. The solid lines represent the distribution of the large particles, while the dotted lines the distri-
bution of the small particles. Left panel: initial condition; middle panel: uniform shear-rate; right panel: wavy shear-rate. The distributions are averaged over 100 snapshots.

FIG. 14. Left panel: time-history of the shear-wise (y-direction) diffusivity of the particles. Right panel: time history of the autocorrelation function of the shear-wise velocity fluc-
tuations v0. The non-dimensional time is plotted in term of strains, c ¼ t _c . In both panels, the black line represents the suspension in a uniform shear-flow, while the red line
the suspension in a wavy one.
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APPENDIX A: HYDRODYNAMIC RESISTANCES

The hydrodynamics of a dense suspension is dominated by
contribution of the close approaching particles.15 In a Stokesian
framework, this translates in dropping the full description of the
flow and modeling the hydrodynamics contribution acting on the
suspension with only close-range terms, described by the resistance
matrices in Eq. (3).

Following the description in Mari et al.26 and adding
the Fax�en laws,27 the matrices for rigid spheres can be written
as

RStokes;ij¼

6pg0aið1þa2i =6r2Þ 0 0 0

0 6pg0ajð1þa2j =6r2Þ 0 0

0 0 8pg0a
3
i 0

0 0 0 8pg0a
3
j

0
BBBBBBBB@

1
CCCCCCCCA
;

(A1)

RLub;ij ¼

XA
ii Nþ YA

ii T XA
ij Nþ YA

ij T YB
ii N� YB

ji N�

XA
jj Nþ YA

jj T YB
ij N� YB

jj N�

sym YC
ii N� YC

ij N�

YC
jj N�

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(A2)

R0 Eð Þ
Lub;ij ¼

XG
ii PiIþ YG

ii Qi XG
ji PjIþ YG

ji Qj

XG
ij PiIþ YG

ij Qi XG
jj PjIþ YG

jj Qj

YH
ii YH

ji

YH
ij YH

jj

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (A3)

where N ¼ n� n is the normal projection operator, T ¼ I�N is
the tangential projection operator (being I the identity matrix), and
N� ¼ n� is the cross-product operator. The ad hoc defined opera-
tors, PiI and Qi, can be written as

PiI ¼ E1i : N� 1
3
TrE1i

� �
I; (A4)

Qi ¼ 2E1i � 2 E1i : N
� �

I: (A5)

Finally, the scalar coefficients X and Y contain the diverging terms
of the lubricant interactions,

X ¼ gX
1

d
ij þ e
; Y ¼ gY log

1
d
ij þ e

; (A6)

being d
ij ¼ 2dij=ðai þ ajÞ the normalized particle–particle surface
distance and e is a small positive coefficient that avoids the singular-
ity when the particles are at contact. The coefficients gX and gY,
instead, are defined as follows:

gX
A
ii ðaÞ ¼ 2ai

a2

1þ að Þ3
; gX

A
jj ðaÞ ¼ agX

A
ii ða�1Þ;

gX
A
ij ðaÞ ¼ �2ðai þ ajÞ

a2

1þ að Þ4
; gX

A
ji ðaÞ ¼ gX

A
ij ða�1Þ;

gY
A
ii ðaÞ ¼ 4ai

15
a 2þ aþ 2a2ð Þ

1þ að Þ3
; gY

A
jj ðaÞ ¼ agY

A
ii ða�1Þ;

gY
A
ij ðaÞ ¼ �

4ðai þ ajÞ
15

a 2þ aþ 2a2ð Þ
1þ að Þ4

; gY
A
ji ðaÞ ¼ gY

A
ij ða�1Þ;

gY
B
ii ðaÞ ¼ �2a2i

15
a 4þ að Þ
1þ að Þ2

; gY
B
jj ðaÞ ¼ �a2gY

B
ii ða�1Þ;

gY
B
ij ðaÞ ¼ 2ðai þ ajÞ2

15
a 4þ að Þ
1þ að Þ4

; gY
B
ji ðaÞ ¼ �gYB

ij ða�1Þ;

gY
C
ii ðaÞ ¼ 8a3i

15
a

1þ að Þ ; gY
C
jj ðaÞ ¼ a3gY

C
ii ða�1Þ;

gY
C
ij ðaÞ ¼ 2ðai þ ajÞ3

15
a2

1þ að Þ4
; gY

C
ji ðaÞ ¼ gY

C
ij ða�1Þ;

gX
G
ii ðaÞ ¼ 2a2i

a2

1þ að Þ3
; gX

G
jj ðaÞ ¼ �a2gX

G
ii ða�1Þ;

gX
G
ij ðaÞ ¼ �2ðai þ ajÞ2

a2

1þ að Þ5
; gX

G
ji ðaÞ ¼ �gX

G
ij ða�1Þ;

gY
G
ii ðaÞ ¼ a2i

15
a 4� aþ 7a2ð Þ

1þ að Þ3
; gY

G
jj ðaÞ ¼ �a2gY

G
ii ða�1Þ;

gY
G
ij ðaÞ ¼ �

ðai þ ajÞ2

15
a 4� aþ 7a2ð Þ

1þ að Þ5
; gY

G
ji ðaÞ ¼ �gY

G
ij ða�1Þ;

gY
H
ii ðaÞ ¼ 2a3i

15
a 2� að Þ
1þ að Þ2

; gY
H
jj ðaÞ ¼ a3gY

H
ii ða�1Þ;

gY
H
ij ðaÞ ¼

ðai þ ajÞ3

15
a2 1þ 7að Þ
1þ að Þ5

; gY
H
ji ðaÞ ¼ gY

G
ij ða�1Þ;

(A7)

where a ¼ aj=ai is the radii ratio.
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APPENDIX B: ROLLING RESISTANCE

In this appendix, we describe the model used to introduce a
rolling resistance between two contacting particles that can be
included when necessary. We follow the work of Luding20 and
apply the same algorithm used for the frictional model,

FC;r;

ij ¼ krn

r
ij; (B1a)

TC;r
ij ¼ aijn� FC;r;


ij ; (B1b)

TC;r
ji ¼ �TC;r

ij ; (B1c)

where aij ¼ 2ðaiajÞ=ðai þ ajÞ is the reduced radius. The sub- and
superscript r state the rolling contribution, while the 
 reports the
nonphysical nature of the pseudo-force associated with rolling
effects. In fact, FC;r;


ij passively contributes to the rhs of Eq. (1)
through the rolling torque. The linear stretch nr;ij associated with
the rolling spring is computed as in Eq. (5), with the rolling velocity
ur ¼ aijðn� xi � n� xjÞ and the rolling spring stiffness kr (with
the constraint kr=kn � 1) substituting the relative tangential veloc-
ity of the contact points ut and the frictional spring stiffness kt,
respectively. Note that the limitation introduced by the Coulomb’s
law is still applied. For more details, the reader is referred to
Ref. 20.
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