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Direct numerical simulations are carried out to study the effect of finite Weissenberg
number up to Wi = 16 on laminar and turbulent channel flows of an elastoviscoplastic
(EVP) fluid, at a fixed bulk Reynolds number of 2800. The incompressible flow equations
are coupled with the evolution equation for the EVP stress tensor by a modified Saramito
model that extends both the Bingham viscoplastic and the FENE-P viscoelastic mod-
els. In turbulent flow, we find that drag decreases with both Bingham and Weissenberg
numbers, until the flow laminarises at high enough elastic and yield stresses. Hence, a
higher drag reduction is achieved than in the viscoelastic flow at the same Weissenberg
number. The drag reduction persists at Bingham numbers up to 20, in contrast to vis-
coplastic flow, where the drag increases in the laminar regime compared to a Newtonian
flow. Moreover, elasticity affects the laminarization of an EVP flow in a non-monotonic
fashion, delaying it at lower and promoting it at higher Weissenberg numbers. A hiberna-
tion phenomenon is observed in the EVP flow, leading to large changes in the unyielded
regions. Finally, plasticity is observed to affect both low- and high-speed streaks equally,
attenuating the turbulent dissipation and the fragmentation of turbulent structures.

1. Introduction

The manuscript considers unsteady and turbulent channel flows of non-Newtonian
viscoelastic and elastoviscoplastic fluids. The dynamics of non-Newtonian turbulence has
attracted a growing interest due to numerous industrial applications dealing with non-
Newtonian fluids. Real industrial and natural fluids often present several non-Newtonian
effects at the same time, such as plasticity (yield stress) and elasticity. Turbulent flows
of yield-stress fluids are found in several industries such as petroleum, paper, mining and
sewage treatment (Hanks 1963, 1967; Maleki & Hormozi 2017). Highly inertial flows of
elastoviscoplastic fluids can also be found in geophysical applications, such as mudslides
and the tectonic dynamics of the Earth (Oishi et al. 2017).

Yield-stress fluids behave like solids below a local stress threshold, and flow like liquids
above this threshold. Assuming that the material is a rigid solid at stresses lower than
the yield stress, purely viscoplastic models are obtained, such as the Bingham model
(Bingham 1922), where the solvent viscosity of the yielded fluid flow follows a Newtonian
law, and the Herschel-Bulkley model (Herschel & Bulkley 1926), where the yielded fluid
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flow is shear-thinning. However, many yield-stress fluids deform like elastic solids in the
unyielded state and behave as viscoelastic liquids in the yielded state, displaying elastic
(E), viscous (V) and plastic (P) properties.

A simple dynamic elastoviscoplastic (EVP) constitutive model that can be integrated
with direct numerical simulations was proposed by Saramito (2007). The model has
proven to capture viscoplastic and elastic effects (Cheddadi et al. 2011; Fraggedakis et al.
2016) and to properly match experimental results and observations (Holenberg et al.
2012) (common materials used to study this type of EVP fluids are Carbopol solutions
and liquid foams Firouznia et al. 2018; Zade et al. 2020). The model was extended by
the same author to account for shear-thinning effects (Saramito 2009), combining the
Oldroyd viscoelastic model with the Herschel-Bulkley viscoplastic model, with a power
law index that allows a shear-thinning behavior in the yielded state. When the index is
equal to unity, the model reduces to the one proposed in his previous work, i.e., Saramito
(2007). Apart from the models proposed by Saramito, many other elastoviscoplastic
models exist in the literature. The interested reader is referred to Crochet & Walters
(1983); Balmforth et al. (2014); Saramito & Wachs (2016); Saramito (2016); Saramito &
Wachs (2017) for a through review of models and numerical methods.

Turbulent flow of purely viscoelastic fluids has gained attention in the drag reduction
and flow control communities, since a tiny amount of polymers (parts per million) has
proven efficient in reducing friction drag in pipe flows (Virk 1971). Drag reduction by
polymers is related to their ability to modify coherent structures in wall-bounded tur-
bulence (Dubief et al. 2004, 2005). Polymers influence the turbulent cycle in two ways:
they attenuate near-wall vortices, but at the same time they also increase the stream-
wise kinetic energy of the near-wall streaks. The net balance of these two opposite actions
leads to a self-sustained drag-reduced turbulent flow. More recently, Xi & Graham (2010,
2012a,b) proposed that polymeric drag reduction is a time-dependent process: turbulent
flows with polymers spend relatively more time in hibernating phases, where the tur-
bulence is weak, and less time in active phases with strong turbulence. The turbulent
coherent structures, streamwise vortices and streaks, were found to differ in appearance
depending on whether the flow was in active or a hibernating phase. Biancofiore et al.
(2017) examined the secondary instability of streaks in viscoelastic flows, showing that
the streaks reach a lower average energy with increasing elasticity due to a resistive poly-
mer torque that opposes the streamwise vorticity and, as a result, opposes the lift-up
mechanism. Numerous studies have addressed the topic of polymeric drag reduction and
all cannot be reviewed here for brevity; the interested reader is referred to (White &
Mungal 2008) for a thorough introduction to this subject.

Turbulent flow of yield-stress fluids (plasticity) has been studied much less, despite its
relevance for applications. The reason is twofold. Time-resolved measurements in yield-
stress fluids are very challenging, even in laminar flows. Most real-life yield-stress fluids
are opaque and hence do not provide optical access. The transparent lab fluid Carbopol,
often used in these experiments, needs careful preparation to achieve well-controlled
properties (Tabuteau et al. 2018; Dinkgreve et al. 2018), and exhibits slip on smooth
surfaces that needs to be avoided or carefully controlled (Firouznia et al. 2018). On the
other hand, direct numerical simulations of yield-stress fluids have not been affordable
until recently. Rosti et al. (2018a) first studied the turbulent channel flow of a yield-stress
fluid in a near-viscoplastic limit using the Saramito elastoviscoplastic model (Saramito
2007), adding a tiny amount of elasticity to achieve numerical stability (the Weissenberg
number was Wi = 0.01). When Bingham number was gradually increased from zero,
the flow became less turbulent and more correlated in the streamwise direction, until it
completely relaminarized at Bi = 2.8. The velocity correlations revealed that the size and
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length of the near-wall streaks increased with the Bingham number. The friction factor
decreased with the Bingham number in the turbulent regime, while it increased with the
same in the laminar regime. Le Clainche et al. (2020) analysed further the simulation
data of Rosti et al. (2018a) using High-Order Dynamic Mode Decomposition (HODMD),
and compared the modes to those in Newtonian fluids, and also in purely viscoelastic
fluids. Their results indicated that elasticity and plasticity have similar effects on the
coherent structures; in both cases, the flow is dominated by long streaks disrupted by
rapid, localized perturbations. The Newtonian flow, on the other hand, displays short
streaks and more chaotic dynamics. Very recent experiments in a duct flow of Carbopol
confirmed that the energy content at low wavenumbers and streamwise anisotropy were
higher than in Newtonian turbulence (Mitishita et al. 2021), indicating that streamwise
near-wall structures (streaks) were enhanced in Carbopol. These experiments at higher
Reynolds numbers also confirmed the qualitative changes that viscoplasticity causes in
mean flow profiles and Reynolds stresses, as observed by Rosti et al. (2018a).

In addition, many earlier direct numerical simulation studies addressed the turbu-
lence in Bingham pseudoplastic fluids (obtained by regularizing the Bingham model by
a large viscosity) (Rudman & Blackburn 2006; Guang et al. 2011; Zhu et al. 2020), and
their shear-thinning version, regularized Herschel-Bulkley fluids by Rudman et al. (2004);
Singh et al. (2017). Very recently, Zhu et al. (2020) studied the turbulence of a Bingham
pseudoplastic fluid in a vertical channel with particles, at a higher bulk Reynolds number
(Rep = 8000) than Rosti et al. (2018a). They also obtained a drag reduction with an
increasing Bingham number, along with an increasing streamwise coherence of the flow
structures. They also observed that the turbulent statistics were asymmetric with respect
to the centerline at higher Bingham numbers.

Transitional flows of yield-stress fluids in pipes and channels have been addressed in
many studies, both experimentally and computationally. Asymmetric mean flow profile is
a characteristic feature observed in pipe flow experiments of yield-stress fluids (Escudier
et al. 2005; Peixinho et al. 2005; Esmael & Nouar 2008; Guzel et al. 2009), and for
fluids with a Herschel-Bulkley-type rheology (Escudier & Presti 1996). According to
Esmael & Nouar (2008), this was caused by an asymmetric nonlinear coherent structure
consisting of two counter-rotating vortices. Experiments on laminar steady flow of a yield-
stress fluid in a duct laden with particles were performed recently by Zade et al. (2020).
Computational studies on transitional flows have mainly focused on linear and nonlinear
stability of channel flows (Frigaard et al. 1994; Nouar & Frigaard 2001; Frigaard & Nouar
2003; Nouar et al. 2007; Metivier et al. 2010; Nouar & Bottaro 2010; Bentrad et al. 2017).
Most importantly, within the Bingham model, the central plug regions of a channel flow
remain unyielded despite linear perturbations, and hence the flow is always linearly stable.
In non-modal analysis, in contrast to Newtonian fluids, the optimal disturbance is found
to be an oblique wave (Nouar et al. 2007), associated with the lift-up effect (Schmid 2007;
Brandt 2014). However, Nouar & Bottaro (2010) found that a slightly perturbed mean
flow profile supports exponential amplification of streamwise travelling waves, indicating
another possible transition scenario for the plane channel flow of a yield-stress fluid.

Concluding, all previous studies on EVP turbulence focused on either purely viscoelas-
tic or near-viscoplastic fluids. The questions remains what happens when both elasticity
and plasticity effects are finite and interact with each other. The recent experimental
study by Mitishita et al. (2021) also raised the question how the findings of Rosti et al.
(2018c) would be affected by finite elasticity. The present study focuses on elastovis-
coplastic fluids at finite Weissenberg numbers, i.e., fluids with finite visco-elasticity and
yield stress.

In this work, we perform direct numerical simulations of turbulent channel flows of
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Figure 1: Sketch of the computational domain. XY and ZY planes in the middle of the
domain show instantaneous streamwise velocity contours with the scale ranging from 0
(blue) to 1.27U, (red). Green structures represent unyielded regions.

an incompressible elastoviscoplastic fluid and extend the one by Rosti et al. (2018¢) by
considering a wide range of the Weissenberg numbers 0 < Wi < 16 and Bingham numbers
0 < Bi <224, all at the bulk Reynolds number Re = 2800. The non-Newtonian flow is
simulated by solving the full unsteady incompressible Navier-Stokes equations coupled
with a modified version of the model proposed by Saramito (2007) for the evolution of
the additional elastoviscoplastic stress tensor.

The manuscript is organised as follows. In section 2, we first discuss the flow configu-
ration and the governing equations, and then present the numerical methodology used.
The new model with some test cases is reported in section 2.1, while the new results are
presented in section 3. In particular, we discuss the role of elasticity and plasticity on
a turbulent channel flow. Finally, a summary of the main findings and conclusions are
collected in section 5.

2. Formulation

We consider the laminar and turbulent flows of an incompressible elastoviscoplastic
fluid through a plane channel with two impermeable rigid walls. Figure 1(a) shows a
sketch of the geometry and the Cartesian coordinate system, where x, y and z (z1, x2,
and x3) denote the streamwise, wall-normal and spanwise coordinates, while u, v and w
(u1, ug, and ug) denote the respective components of the velocity field. The lower and
upper stationary impermeable walls are located at y = 0 and 2h, respectively, where h
represents the channel half height.

The fluid motion is governed by the conservation of momentum and the incompress-
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ibility constraint:
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where p is the fluid density and o;; the total Cauchy stress tensor, which is written as
0ij = —p0;; + 2usD;; + 75, where p is the pressure, py the fluid molecular dynamic

viscosity (also called solvent viscosity), J the Kronecker delta and D,; the strain rate
tensor defined as D;; = (Ou,;/0x; + Ou;/0x;) /2. The additional elastoviscoplastic stress
tensor 7;; accounts for the non-Newtonian behavior of the fluid, here described by a
modified version of the model proposed by Saramito (2007). In the original model, when
the stress o is below the yield stress 7y, the system predicts only recoverable Kelvin-
Voigt viscoelastic deformations, while when the stress exceeds the yield value 7y, the
fluid behaves as an Oldroyd-B viscoelastic fluid. Thus, the total strain rate ¢ is shared
between an elastic contribution €. and a plastic one €, (Cheddadi et al. 2011). Since the
Oldroyd-B model assumes infinitely stretched dumbbells, the range of application of the
model is limited to low elasticity. To overcome this drawback, we instead use the FENE-P
model. Thus, the instantaneous values of all the components of the stress tensor 7;; are
found by solving the following transport equation
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Here, A is the relaxation time, ., is an additional viscosity, L is the maximum polymer
extensibility, 7o the yield stress and |74| represents the second invariant of the deviatoric
part of the added stress tensor. The elastoviscoplastic parameters fif, fim, A and 7o can
be obtained by experimental data following the procedure detailed by Fraggedakis et al.
(2016), based on the determination of the linear material functions, i.e., the storage
modulus G’ and the loss modulus G”. The above constitutive equation gives a Kelvin-
Voigt solid in the limit F =~ 1, which is the case in the unyielded state, and a behavior
like a FENE-P fluid in the yielded state. The previous equation can be rewritten in terms
of the conformation tensor Cj; as
0C;;  OukCyj Ju; ou,;

where the elastoviscoplastic stress tensor 7;; is related to the conformation tensor by the
relation

We use the log conformation method to overcome the well known high Weissenberg
number problem (Fattal & Kupferman 2004; Hulsen et al. 2005; Izbassarov & Muradoglu
2015; De Vita et al. 2018). In this approach, equation (2.4) is rewritten in terms of the
logarithm of the conformation tensor through an eigen-decomposition, i.e., ¥ = log C,
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which ensures the positive definiteness of the conformation tensor. The core feature
of the formulation is the decomposition of the gradient of the divergence free velocity
field Ou;/0x; into two anti-symmetric tensors, {2;; (pure rotation) and N;;, and into a
symmetric tensor, B;;, which commutes with the conformation tensor, i.e.,

8Uj

o, — Stis T Bij + NijCii. (2.6)

The modified transport equation to be solved is thus

oV;;  OugpVy, / _
8t] + 8xk J (Qiklpkj — \I/Zkﬂk]) — 2B¢j = X ((6 ‘I})ij — F(SZJ) . (27)
Once this equation is solved, the conformation tensor can be obtained using the inverse

transformation C = e¥.

Finally, the full system of equations can be rewritten in a non-dimensional form as
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where we have used the same symbols to define the non-dimensional variables for simplic-
ity. Four non-dimensional numbers appear in the previous set of equations: the Reynolds
number Re, the Weissenberg number W4, the Bingham number Bi and the viscosity
ratio 3, defined as Re = pUL/ g, Bi = 10L/poU, Wi = XU/L and 8 = ps/po, where U
and L are a characteristic velocity and length scales of the flow, p the fluid density and
o the total viscosity, i.e., o = fif + fim.

The equations of motion are solved with an extensively validated in-house code (Izbas-
sarov et al. 2018; Rosti et al. 2018c; De Vita et al. 2018; Rosti & Brandt 2017; Shah-
mardi et al. 2019; Alghalibi et al. 2019). The governing equations are discretised with the
second-order centered finite difference scheme on a staggered uniform grid, except for the
advection term in equation (2.7) where the fifth-order WENO (weighted essentially non-
oscillatory) scheme is adopted (Shu 2009; Sugiyama et al. 2011). The time integration is
performed with a fractional-step method (Kim & Moin 1985) and a third-order explicit
Runge-Kutta scheme except for the elastoviscoplastic stress term which is advanced with
the Crank-Nicolson method.

In all the simulations, periodic boundary conditions are used in the streamwise and
spanwise directions, while the no-slip and no-penetration boundary conditions are en-
forced on the solid walls. For all the turbulent cases considered hereafter with a bulk
Reynolds number equal to Re, = 2800, the equations of motion are discretised by using
1728 x 576 x 864 grid points on a computational domain of size 6h x 2k x 3h in the stream-
wise, wall-normal and spanwise directions, with the resolution satisfying the constraint
Azt = Ayt = Azt < 0.6, where the superscript T indicates the wall units. The spatial
resolution has been chosen equal to the one used in a previous work (Rosti et al. 2018a)
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Figure 2: Time evolution of 711 — 792 in an uniaxial elongation for Bi = 1 and § = 0:
(a) the effect of Wi for L? = oo (Oldroyd-B model) and (b) the effect of L? (FENE-P
model) for Wi = 0.75. The stress components are normalised with p€p.

in order to properly resolve the turbulent scales as well as the unyielded plug regions
which form intermittently in the domain, and verified a posteriori with a grid refinement
study. In the low-Reynolds fully-laminar cases, the spatial resolution was relaxed and the
domain size in the homogeneous directions reduced. Finally, all the turbulent cases are
initialized with a fully developed channel flow with zero elastoviscoplastic stress (7;; = 0);
after the flow and stresses have reached a statistically steady state, the calculations are
continued for an interval of about 500 bulk time units, during which the statistics are
computed.

2.1. Validations of the FENE-P based EVP model

The present implementation for single and multiphase flows of an elastoviscoplastic fluid
has been extensively validated in the past; here we report further test cases of the new
FENE-P based EVP model also to present its rheological behaviour.

First, we consider a three-dimensional uniaxial elongational flow, with a constant elon-
gational rate éq: the Weissenberg number Wi = \éy and extensibility parameter L? are
varied in the range of 0.25 < Wi < 0.75 and 10 < L? < oo, respectively, while the Bing-
ham number Bi = 79/ (up€p) = 1 and the viscosity ratio 8 = 0. The fluid flow is assumed
to have a constant velocity gradient Ou,;/0z; = diag{1,—1/2,1/2} and equation (2.2)
can be simplified as

d dlnF
Wi% + (fF — 2Wi)my1 — % (Wit +1 - 8) =2(1 - 3), (2.9a)
d dlnF
Wi%wL(fFJrWi)Tm*%(Wi7'22+1*5):5*1, (2.90)
d dlnF
Wi 4 (FF + Wirsg = ——— (Wimsg + 1= 6) = B — 1, (2.9¢)

with 7;;(0) = 0 for ¢ = 1,2 and 3. The time evolution of 797 — 722 (the normal stress
difference) is reported in figure 2; we observe that, initially the stress components grow
linearly, but when the stress level is above a threshold, i.e., the yield stress, the Saramito
model (L? = oo) predicts an unbounded growth for Wi > 0.5, while the FENE-P based
model exhibit a limited growth with the stress difference reaching a plateau. This example
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Figure 3: Steady shear viscosity for 8 = 0 and (a) L? = oo (Oldroyd-B model); (b)
L? =100 (FENE-P model).

easily explains the reason why the FENE-P based model is chosen for the current work,
where we aim to investigate the effect of finite elasticity.

Next,we consider a simple constant shear flow, with shear rate jg; the Weissenberg
number is varied Wi = A\ in the range 0.01 < W3 < 100, while the Bingham number
Bi = 70/(10y) assumes 4 distinct values and the viscosity ratio § = 0. We consider
two cases, with L? = 100 and L? = oo to study the properties of the two models. For

] and equation (2.2) can be

this two-dimensional problem, we have OJu;/0x; = [8 (1)

rewritten as

d dln F
WZ% — 2Wi7'12 + fFT11 — % (WiTll + 1- ﬂ) = 07 (2100’)
d dln F
WZ% + fF7o0 — % (Wito2 +1 = 8) =0, (2.100)
d dln F
Wl% — Wites + fFT12 — % (Wi7'12) =1~ 5) (2'100)

with 7;;(0) = 0,4 = 1,2. The dimensionless steady shear viscosity ps/po = 8 + T12/7
as a function of Wi are reported in figure 3. As expected, both models exhibit a shear
thinning behaviour: in particular, for L? = oo the model tends to a plateau at both low
(Wi < 0.1) and high (Wi > 10) Weissenberg numbers, while for L? = 100 the steady
shear viscosity reaches a plateau at low Wi but it decreases monotonically at high Wi.
Note that, the shear thinning effect is controlled by Bi which modifies the plateau value
at low Wai.

3. Results
3.1. Laminar flow

Our first analysis considers the laminar flow of an elastoviscoplastic fluid. All laminar
cases are fixed at 8 = 0.9, Re = 2800 and L? = 3600, while the Weissenberg and the
Bingham numbers are varied in the range of 0.01 < Wi < 16 and 0.1 < Bi < 100,
respectively. Note that the domain size in the homogeneous directions was kept very
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Figure 4: Fanning factor as a function of (a) the Weissenberg number for Bi
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0.1,2.8,11.2 and 100 and (b) the Bingham number for Wi = 0.01,0.1,2 and 16.
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Figure 5: Mean streamwise velocity profile u as a function of (a) the Bingham number
for Bi = 0.1,2.8,11.2 and 100 at Wi = 0.01 and (b) the Weissenberg number for Wi =
0.01,0.1,2 and 16 at Bi = 22.4.

small to avoid the development of a turbulent flow and that no perturbations were added
to the zero initial condition.

First, we consider the combined effects of the Bingham and the Weissenberg numbers
on the frictional resistance of the flow quantified by the Fanning friction factor f, defined
as 27y, /pU, 62 being 7, the total wall shear stress including both the viscous and elastovis-
coplastic contributions. Figure 4(a) shows the Fanning friction factor f as a function of
the Weissenberg number for various Bingham numbers. In particular, the cyan, brown,
purple and green lines are used for Bi = 0.1, 2.8, 11.2 and 100, respectively. The friction
factor f decreases nearly linearly with Wi (in logscale). However, at Bi = 0.1 the factor f
is constant, which is consistent with the viscoelastic flows in the laminar regime. Results
clearly show that the elastic effects become more prominent with Bi, leading to a steeper
decay with Wi.

Next, we consider the reverse case, where we study effects of Bingham number at a
fixed Wi, as shown in figure 4(b). We find that f increases non-linearly with the Bingham
number B, and that the dependency on Bi decreases with the Weissenberg number Wi.
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Figure 6: Percentage of the unyielded volume Vol as a function of (a) the Weissenberg
number for Bi = 0.1,2.8,11.2 and 100 and (b) the Bingham number for Wi = 0.01,0.1, 2
and 16.

The increase of f can be explained by subtle changes in the mean streamwise velocity
profile. The non-dimensional streamwise velocity profile u/U, is shown in figure 5(a) at
Wi =0.01 and Bi = 0.1,2.8,11.2,100 as a function of the wall-normal distance y/h. It
can be seen that the solid plug in the middle of the channel increases with the Bingham
number. The plug moves with a uniform velocity, and its velocity decreases with Bi due
to mass conservation, leading to an increase in the wall shear stress.

The variations of the non-dimensional mean velocity profile v/U, at Bi = 22.4 with
the Weissenberg number, see Figure 5(b), demonstrate that the solid plug in the middle
of the channel decreases with Wi. Indeed, the total stress magnitude in a channel flow
increases with elasticity, leading to earlier yielding (Chaparian & Tammisola 2019). To
further quantify these observations, the volume of the solid region is shown in figure 6
for various combinations of Wi and Bi. The results are consistent with the observations
in figure 4, since the solid volume Vol is proportional to the friction factor f.

3.2. Turbulent flow

We examine turbulent channel flows of an elastoviscoplastic fluid, together with the
baseline Newtonian (Bi = 0 and Wi & 0), viscoelastic (Bi = 0) and almost viscoplastic
(Wi = 0) cases. All simulations have been performed until statistically steady state (at
least 500 nondimensional units). Hence in the turbulent flow cases, the turbulence is
always fully developed. However, for some parameter values the flow is not turbulent,
because it has laminarized by increasing elasticity or plasticity.

The flow rate is constant in all simulations, so that the flow Reynolds number based on
the bulk velocity is fixed, i.e., Re = pUyh/uo = 2800, where the bulk velocity Uy is the
average value of the mean velocity computed across the whole domain and pg is the total
zero-shear viscosity. In the turbulent regime, this bulk Reynolds number corresponds to
a nominal friction Reynolds number Re, = pu,;h/ug = 180 for a Newtonian fluid, u,
being the friction velocity. A wide range of elasticity and plasticity is investigated: the
Weissenberg number Wi = AU, /h is varied in the range 0 < Wi < 16 to study the role
of fluid elasticity, while the Bingham number Bi = 7oh/uoUs is varied between 0 and
22.4. The viscosity ratio and the extensibility parameter are fixed to 8 = ps/po = 0.9
and L? = 3600.

The viscous units used above are indicated by the superscript T, and are built using
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Figure 7: Combined effects of elasticity and plasticity. A flow regime map is shown by
symbols: O - turbulent, B - laminar. Colorscale shows drag reduction compared to the
Newtonian case. Top figure colorscale: DR = [1 — (ReT/ReT’WiIO)Q] x 100%. The col-
orscale spans +65 from red (drag reduction) to violet (drag increase). Bottom figure
colorscale: DRy = [1 — fgvp/fn] x 100% where fryp and fx denote skin friction for
EVP and Newtonian cases, respectively.

the friction velocity u, as the velocity scale and the viscous length 4, = v/u, as the
length scale. Here, we define the friction velocity as

" 1 dﬁ+_
= =+
Rey, dy 12

; (3.1)
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Figure 8: The shear effective viscosity . for (a) VE, (b) VP and (c) EVP cases. (a) VE
case: the green, magenta, black and blue colors are used for Wi = 2, 4, 8 and 16. (b)
VP case: the red, orange, cyan and violet colors are used for Bi = 0, 0.28, 0.7 and 1.4,
respectively (c) EVP case is at fixed Wi = 4 and the green, red and black colors are used
for Bi = 0, 2.8 and 5.6, respectively.

where we have taken into account also the elastoviscoplastic shear stress at the wall.
Note that the actual value of the friction velocity in our simulations is computed from
the friction coefficient, obtained with the driving streamwise pressure gradient, rather
than from its definition.

We first discuss the qualitative flow characteristics for various combinations of W4 and
Bi. A qualitative overview of the resulting flow regimes as functions of Wi and Bi is
presented in figure 7.

The empty and filled symbols in figure 7 represent turbulent and laminar regimes, re-
spectively. As expected, the flow becomes laminar and steady with an increasing Bingham
number. The critical Bi,. can be defined as the lowest value of Bi where laminarisation
occurs, at each Wi. At Wi = 0.01, the flow is near-viscoplastic and fully laminarises
at the relatively low critical Bi. = 2.8 (Rosti et al. 2018c)t. Laminarization of the vis-
coplastic flow with increasing Bingham number is closely related to the increase of the
core unyielded region which grows from the centerline towards to the walls, and damps

1 Note that results for viscoplastic cases used in this work are taken from our previous work
Rosti et al. (2018c¢)
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out turbulent fluctuations in the core. As described in Rosti et al. (2018c), the near-wall
streaks were intensified and became more coherent. The low-speed streaks, usually associ-
ated with positive wall-normal fluctuations, reach higher wall-normal distances than the
high-speed streaks, thus inducing the flow to yield at higher wall-normal distances if the
local stress reaches the yield stress threshold. Indeed, the unyielded regions preferentially
form above high-speed streaks. Overall, the flow becomes more and more correlated in
the streamwise direction when increasing the Bingham number, with high levels of flow
anisotropy close to the wall, similarly to what observed in other drag reducing flows.
Differently from the other flows, however, both the streamwise and spanwise correla-
tions grow with the Bingham number also away from the wall, due to the growth of the
unyielded region.

As the flow becomes more elastic, the critical Bi. shows a non-monotonic behaviour,
first increases with Wi, then decreases. The reason for this non-monotonic behaviour is
attributed to the fact that the coherent structures are highly influenced by the relative
width of the plug compared to the yielded regions around it, as will be described later.

The colors in figure 7 represent a measure of drag reduction compared to a Newto-
nian fluid. The top figure shows DR = [1 - (ReT/ReT,WiZO)Q] x 100%. For flows in the
turbulent regime, DR increases with Bi for all W+ studied in this work. In the laminar
regime however, at low W+ = 0.01, the DR changes sign, showing drag increase, whereas
for higher Wi > 2 values, the DR only slightly decreases with Bi. This is consistent
with the results for the Fanning factor shown in figure 8. It is well known that a finite
viscoelasticity reduces drag compared to a Newtonian flow, and this has been exploited
in many previous studies and in the industry. The figure seems to show that a combi-
nation of finite Wi and B results in a much greater drag reduction than a finite Wi
alone. However, a closer inspection shows that the very high drag reduction DR > 70%
occurs when the flow laminarises, because we compare with the drag in the Newtonian
flow in the turbulent regime. We wanted to eliminate the effect of laminarization on drag
reduction, and also try to exclude the effects of shear-thinning. Therefore, in the bottom
figure, we show another measure of drag reduction which excludes the influence of shear
thinning (Housiadas & Beris 2003): DRy = [1 — frvp/fn] X 100%, where fryp and fn
denote skin friction for EVP and Newtonian cases, respectively. Following Dean (1978):

fn=

12/ Re,, laminar
0.073Re,, % turbulent,

where Re,, = pU2h/p, and p, = Tuw/%w, and subscript w denotes wall quantities.
Using DR5 as a measure, the highest drag reduction is achieved either at high Wi, or in
EVP flow when W+ and Bi are both moderate, in the same region where laminarization
is delayed to higher Bi. In general, the drag reduction values remain very similar for
these two measures in the turbulent regime, indicating that shear thinning has no major
influence on drag reduction at the studied parameter values. Despite this, the viscosity
profiles (figure 8) show shear-thinning for VE, EVP and VP cases. Apparently, plasticity
plays a strong role on shear-thinning, as both VP and EVP show stronger shear-thinning.
For the EVP case at Wi=4 and Bi=5.6, we are approaching results of VP at Bi=1.4,
thus elasticity seems to decrease shear-thinning.

The main responsible for the non-monotonic trends is the unyielded region of the
flow. The unyielded regions show a non-trivial and complex trend with Bi and Wi,
with significant differences also between the laminar and turbulent regimes. In order
to better understand the flow, we start by showing visualizations of the instantaneous
distributions of the yielded and unyielded regions in figure 9. In particular, the figure
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shows instantaneous cross-stream planes (z — y plane) where the unyielded regions are
colored in brown; in the yielded regions we report color contours of the spanwise vorticity,
w,. At Bi = 0 and Wi =~ 0 we recognize the classic vorticity field of turbulent channel
flows, with high vorticity levels at the walls, and the footprints of the classical turbulent
streaky structures. As Wi increases, the flow becomes smoother, the flow structures seem
to be more elongated and the streamwise coherency of the flow increases, as is typical of
drag-reducing flows.

Note that although the turbulence activity is reducing with W4, the purely viscoelastic
flow does not laminarise. On the other hand, for every Wi, the flow returns to laminar
for a sufficiently high Bingham number (Bi > Bi.). In particular, we observe that as
Bi increases, the amount of fluid which is unyielded grows, eventually forming a fully
connected plug spanning the whole streamwise and spanwise lengths, thus leading to the
decay of turbulence and the return to a fully laminar regime. However, at intermediate
Wi, we observe that a higher Bi. is required to laminarise the flow than at low or
high Wi. At intermediate Wi, the equilibrium solutions indicate that the unyielded
region is narrower than in the viscoplastic flow (Chaparian & Tammisola 2019), and
we propose that this allows instabilities to be sustained in the yielded regions. In the
present simulation at intermediate W+, a plug was formed initially and the flow seemed to
laminarise, but soon a large-scale roll-up motion developed at the edges of the unyielded
region, recreating the unsteadiness and turbulence. On the other hand, at higher values
(Wi > 4) this effect does not occur thus leading to lower Bi.. This phenomenon could be
attributed to the fact that the unyielded region becomes too thin to create any instability.
Moreover, the yielded region becomes smoother at high Wi enhancing laminarisation.

It is not obvious what drives the instability leading to the roll-up motion, because the
laminar flow profile is not inflectional. A sharp viscosity contrast can lead instabilities
in channel and shear flows. The unyielded region could play a similar role as a high-
viscosity fluid in the centre of the channel, a configuration which can be unstable at high
Reynolds numbers (Hooper & Boyd 1987; Govindarajan & Sahu 2013). On the other
hand, a channel flow of Bingham fluid is known to be linearly stable at all Reynolds
numbers. Although the linear stability of EVP flow has not been studied, the transi-
tion that we observe could be subcritical, like for Bingham fluids. However, the roll-up
structure we observe does not resemble the optimal non-modal instabilities in Bingham
fluid: streamwise-travelling waves (Nouar et al. 2007) or oblique waves (Nouar & Bottaro
2010).

For laminar flows (Bi > Bi,), a further increase of Bi leads to a growth of the unyielded
region, which induces an increase of the wall shear stress and a consequent drag increase,
as previously observed in figure 8. This is different from observations in the turbulent
regime, where the drag reduces with both Wi and Bi (Rosti et al. 2018c).

3.3. Flow statistics

Here, we discuss the turbulent statistics for elastoviscoplastic flows. To facilitate com-
parisons, we provide results for the two limiting cases: near-viscoplastic and viscoelastic
flows, and then compare these to the flows with finite elasticity and plasticity. The near-
viscoplastic flow was presented in our earlier work (Rosti et al. 2018¢), and was computed
using the Saramito model at Wi = 0.01, 5 = 0.95, and varying Bi. The viscoelastic flow
is computed at varied Weissenberg number 0 < Wi < 16 and fixed Bingham number
Bi =0, and the FENE-P model parameters are 8 = 0.9 and L? = 3600, unless indicated
otherwise.

We first discuss the mean streamwise velocity profiles in relation to drag reduction
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Figure 9: Contours of the instantaneous spanwise vorticity —w, in a x — y plane As a
function of the Bingham and Weissenberg numbers. Color scales ranges from —3U;/h
(blue) to 3Uy/h (red). The brown areas represent the instantaneous regions where the
flow is not yielded.
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Figure 10: Mean streamwise velocity profile @ as a function of the wall-normal distance y
in wall units. (a) Near-viscoplastic flow (Wi = 0.01) (b) Viscoelastic flow (Bi = 0). The
dashed line and symbols in the figure correspond to the Virk curve at MDR (Virk 1975)
and the results of Kim et al. (1987), respectively.

shown in figure 7. In figure 10, the velocity profiles are shown in wall units. The profiles
for viscoplastic flow in figure 10(a) are similar to the Newtonian case for Bi < 1.4. For
Bi = 1.4, the difference becomes more significant with zero shear region at the centerline.
At Bi = 2.8, the flow becomes laminar with a large zero-shear region, leading to drag
increase as observed in figure 7. We can observe that the flow remains unyielded mostly
in the logarithmic and outer layer, while it is always yielded in the viscous sublayer.
For viscoelastic flows, DR% increases monotonically with Wi in the range of Wi =
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Figure 11: Elastoviscoplastic flow: (a) drag reduction as a function of Bi and (b) mean
streamwise velocity profile z as a function of the wall-normal distance y in wall units.
The Weissenberg number Wi and the extensibility parameter L? are fixed and equal to
4 and 3600, respectively (FENE-P model).

O(1) and start to saturate at Wi > 10. The maximum drag reduction is close to 40%
at Wi = 16. Figure 10(b) shows the mean streamwise velocity profiles in wall units.
It can be seen that increasing Wi the velocity profiles collapse in the viscous sublayer,
however, shift upward in the buffer region (thickening of the buffer layer) and are parallel
to the Newtonian profile. Note that we do not reach the Virk’s maximum drag reduction
(MDR) asymptote (Virk 1975), which is out of scope of the present study. The shift in
the velocity profile is consistent with results in literature (Xi & Graham 2010; Shahmardi
et al. 2019).

We next consider the elastoviscoplastic flow. The drag reduction values and the cor-
responding mean streamwise velocity profiles for Wi = 4,8 = 0.9,L? = 3600 and
Bi=0,2.8,5.6,11.2 and 22.4 are shown in figure 11. Similarly to the viscoplastic flow, the
DR% increases with Bi in the turbulent regime. Unlike pure viscoelastic case, plasticity
enhances the DR going from LDR (DR < 40) at 0 < Bi < 5.6 to HDR (40 < DR < 60)
at Bi = 5.6. Moreover, the laminar regime delays to larger Bi > 5.6, which may be at-
tributed to the dramatic effects due to the polymer dynamics. Unlike the viscoplastic case,
DR% only slightly decreases in the laminar case as shown also earlier in figure 7. The
change of mean streamwise velocity profile with Bi is more significant than in figure 10(a)
and more similar to figure 10(b) for Bi < 5.6, i.e., the velocity profile collapse in the vis-
cous sublayer, and shift upward in the buffer and log-law layer approaching the Virk’s
asymptote. In contrast, for Bi > 5.6 the flow fully laminarises and becomes similar to
the case in figure 10(a), with zero-shear region at the centerline.

Next, we analyze the wall-normal distribution of the Reynolds stress components u/u/
and v'v’, shown in figure 12 together with the Newtonian case by Kim et al. (1987) (blue
symbol). The profiles are normalized with u2. The results for the viscoelastic case (top
row) show that the u/u’ increases while v/v” decreases with Wi. In general, the shape of
the profiles is similar to the corresponding Newtonian one, but the magnitude changes
with W+i. Moreover, all the peaks move towards the channel center in agreement with the
thickening of the buffer layer observed in the mean velocity profile. A similar behaviour
has been noticed in the literature for drag reducing turbulent viscoelastic flows (White
& Mungal 2008; Dallas et al. 2010). The VP case (Wi = 0.01) is depicted in the middle
row to examine the effects of the Bingham number in the range 0 < Bi < 2.8. We
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Figure 12: Wall-normal profiles of components of the Reynolds stress tensor, normalized
with uZ. The first column shows u'u’, the second column v"v’. Top row: VE flow at various
Wi and fixed Bi = 0. Middle row: VP flow at various Bi and fixed Wi = 0.01. Bottom
row: EVP flow at various Bi and fixed Wi = 4. The extensibility parameter L? is fixed
and equals to 3600. The e symbols indicate the DNS data of Kim et al. (1987).

clearly observe that the peak of the streamwise component u/u’ increases with Bi, while
it decreases for v/v’. A similar trend is observed for the EVP case (Wi = 4) as depicted
in the bottom row.

Although the overall trends are similar, the combined effects of elasticity and plasticity
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Figure 13: Wall-normal profiles of components of the Reynolds stress tensor, normalized
with u2. The first column shows w'w’, the second column u'v’. Top row: VE flow at
various Wi and fixed Bi = 0. Middle row: VP flow at various Bi and fixed Wi = 0.01.
Bottom row: EVP flow at various Bi and fixed Wi = 4. The extensibility parameter L2
is fixed and equals to 3600. The e symbols indicate the DNS data of Kim et al. (1987).

in the EVP flows result in larger deviations from the Newtonian flow than for the two
limiting cases, particularly for the peak in the u/u’ profile. It is also interesting to note
that in the EVP flow the peak moves non-monotonically, unlike in the VE and VP cases:
it first moves away from the wall as Bi increases (Bi < 5.6), and then moves slightly
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Figure 14: Probability of the fluid to be unyielded Ps in: (a) VP flow at Wi = 0.01 and
EVP cases at (b) Wi =4 and (c) Wi = 8. The percentage of the unyielded volume Vol
are presented in the legends. For (a) VP case, the red, orange, cyan, violet and green
colors are used for Bi = 0, 0.28, 0.7, 1.4 and 2.8, respectively. For (b & ¢) EVP cases,
green, red, black and orange colors are used for Bi = 0, 2.8,5.6 and 11.2, respectively.
The extensibility parameter for the EVP cases is L? = 3600.

back towards the wall. The stress components u/v’ and w’w’ show similar trends as v'v/,
and are shown in figure 13 for completeness.

Figure 14 shows P;, the probability of the fluid to be unyielded in a given vertical
position, and Volg, the percentage of the volume that was unyielded on average, for VP
(Wi =10.01) and EVP (Wi = 4 & 8) cases. The probability P is displayed against the
wall-normal distance y, whereas the volume percentage is depicted in the legend. The
probability Ps ranges from 0 (always fluid) to 1 (always elastic solid).

For the laminar case, as expected, P sharply changes along the interface between the
unyielded and yielded region. For turbulent cases, the probability P increases smoothly
across the channel with a maximum in the vicinity of the centerline and a minimum near
the wall. This happens due to the time-dependent nature of the turbulent flow.

For the VP case, Ps and Vol increase with Bi, reaching the maximum (Vols = 54%)
at Bi = 2.8, when the flow is fully laminar. The volume of the unyielded region further
increases when Bi increases in the laminar regime, as illustrated in figure 5 (a). Let us
now consider the EVP cases. A careful inspection of figure 14 reveals that the unyielded
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Figure 15: Mean polymer extension in: (a) VE (Bi = 0), (b) VP (Wi = 0.01), EVP for (c)
Wi =4 and (d) Wi = 8. The undeformed polymer stretching (/Tr(I)/L and /Tr(I))
is represented by the black dashed line. The extensibility parameter is L? = 3600.

volume Vol is smaller in EVP flows than in VP flows, in both laminar and turbulent
states. Also, Vol, further decreases as W+t increases, from 30% at Wi = 4 to 26% at
Wi = 8, as seen in figure 14(b) and (c). The reason is that the elastic stress in channel
flows increases with Wi, resulting in a smaller unyielded volume. Moreover, the Vol
increases monotonically with Bi also for the EVP case, as long as Bi < Bi.. However,
when the flow laminarises (Bi > Bi..), Vols decreases owing to a narrow plug region. An
explanation to the decrease can be found by comparing the laminar and turbulent mean
flow profiles. In laminar VE channel flows, the elastic stress is known to be proportional
to both the local shear and Wi, and therefore, the elastic stress forms the largest part of
the total stress at moderate W4. In laminar flows, the shear is finite almost everywhere
across the channel. In turbulent flows, however, the mean flow shear is small in the central
region, and hence the elastic stresses are smaller on average, with the Reynolds stresses
becoming more important in yielding the material.

We now present the statistics of the polymer conformation tensor for VE, VP and EVP

cases. The mean profiles of the polymer stretching \/T7(C)/L are shown in Figure 15(a)
for the VE case at Wi = 2,4,8 and 16, where the dashed line in the figure indicates the

case of coiled polymers (conformation tensor equal to identity). As expected, the polymer
stretching increases monotonically with the Weissenberg number Wi. The mean polymer
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stretching first increases with maximum in the vicinity of the wall, then decreases with
minimum at the center. The observed near-wall peak is mostly due to the interaction
between polymers and near-wall vortices (Xi & Graham 2010; Dubief et al. 2013). Vis-
coelastic effects become more prominent throughout the domain when increasing Wi and
the peak values move away from the wall.

The mean polymer extension for the VP cases at 0 < Bi < 2.8 is shown in figure 15(b).
For Bi < 2, corresponding to the turbulent regime, the stress profile is nearly constant
except in the near wall region where it is maximum. Note that for the laminar case,
the stress monotonically decreases along the wall normal direction. Finally, the results
pertaining the EVP flows at 0 < Bi < 11.2 and Wi =4 & 8 are presented in figure 15(c)
and (d). For the turbulent EVP cases (Bi < 11.2), the stress profiles are qualitatively
similar to the VE ones. The maximum values are in the vicinity of the wall and the
minimum at the centerline (y = h). Moreover, the minimum values increase with Bi
while peaks are not sensitive to Bi at Bi < Bi.. For the laminar flows, the profile is
qualitatively similar to the viscoplastic one, with maximum and minimum values at the
wall and centerline, respectively.

3.4. Energy and stress balance

To further characterise the flow, we study the energy and shear stress budget for the
viscoelastic and EVP cases. We first consider how the energy stress budgets evolve with
Weissenberg number, at zero Bingham number.

An overall view of the velocity fluctuations is obtained from the turbulent kinetic
energy K = (u? +v? +w'?) /2, normalized with u? (figure 16(a)). Following Dallas
et al. (2010), the budget of turbulent kinetic energy integrated over the whole domain

can be written as follows:
/PdV: /5dV+/HdV, (3.2)
y y

1%

where V is the volume of the domain, P = —pu/v'du/dy is the turbulent production,
€ = pdu;/0x;0u;/0z; is the turbulent dissipation and Il = du;/dz;7;; is the dissipation
due to the polymers.

The turbulent kinetic energy increases with Wi, and its profile is similar to the stream-
wise velocity fluctuation in figure 12(a), as the streamwise velocity is of larger magnitude
than the other velocity components. On the other hand, the turbulent production by the
Reynolds shear stress P = —u/v’du/dy is continuously reduced when increasing Wi. The
peak values occur in the buffer layer, moving towards the channel center with increased
DR consisted with thickening of the buffer layer. We also computed the turbulent dissi-
pation € = podul/0x;0u}/0x; of the fluctuating velocity field u;. The dissipation ¢ also
attenuates with W4, while the profile maintains its shape with maximum value at the
wall and minimum at the centerline. Volume averaged quantities of [ Pdy, [ edy and
dissipation due to polymers [ IIdy are shown in figure 16(d). It can be seen that the
average turbulent production and viscous dissipation decrease with Wi, while the poly-
meric dissipation increases with W+i. The decrease in P and ¢ with W7 is consistent with
the observed drag reduction. Note that IT first increases with Wi, but slightly decreases
at Wi = 16, which could be due to the fact that we are approaching the HDR regime.
Dallas et al. (2010) observed a similar non-monotonic trend with W+ for II i.e., the poly-
meric dissipation increases in LDR while it decreases in HDR and MDR. Overall, our
viscoelastic results are in agreement with the literature for turbulent flow with polymer
additives (Warholic et al. 1999; Xi & Graham 2010; Dallas et al. 2010).

Next, we show the mean viscous (Ty ) and viscoelastic stress (Tg) profiles as a function
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Figure 16: VE case: Wall-normal profiles of (a) the turbulent kinetic energy K =
(u? 4 v + w'?) /2 and of (b) the turbulent production P = —pu/v'du/dy, (c) the tur-
bulent dissipation ¢ = pdu/0x;0u;/0x; and (d) average contributions to the energy
balance from P,e and dissipation due to the polymers II = Qu}/0x;7;;, all normalized

with the friction velocity u3. The symbols in the figure correspond to results of Kim et al.
(1987) for the Newtonian case.

of the Weissenberg number, see figure 17. The viscous stress profiles coincide close to the
wall and in the vicinity of the channel core but increase slightly in the buffer layer. The
viscoelastic stress profile has a peak in the vicinity of the wall and minimum in the
center. The Tg changes non-monotonically, it first increases reaching maximum in the
buffer layer and then decreases reaching a minimum at the centerline. With increase in
Wi the peak moves towards the core region.

To gain further understanding, the shear stress budget is shown in figure 18 for the
VE cases with Wi = 2 and Wi = 16, normalized with the corresponding wall stress.
The total shear stress 7p can be written as 7r = Ty +Tg + 7r = (1 — y/h)7, where
the viscous stress Ty = udu/dy, the Reynolds stress Tp = —pu/v’ and viscoelastic stress
Tg tensor. Note that unlike the Newtonian case, the total wall shear stress is sum of
the viscous and viscoelastic contributions. For Wi = 2, the behavior is similar to the
Newtonian case with the viscous stress dominating close to the wall and the Reynolds
stress in the core. The viscoelastic effects become more pronounced at Wi = 16, in that
the viscous and viscoelastic stresses increase, while the Reynolds stresses diminish.
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Figure 17: VE case: Shear component of the mean (a) viscous stress 7y and (b) vis-
coelastic stress tensor Tg as a function of the wall-normal distance y. The extensibility
parameter L? is fixed and equals to 3600.
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Figure 18: VE case: Normalised shear stress balance across the channel, for (a) Wi = 2
and (b) Wi = 16. The total shear stress varies linearly across the channel height.

Finally, we perform the same energy and momentum budget analysis to consider the
combined effects of elasticity and plasticity. The energy budget is shown in figure 19 at
fixed Weissenberg number W+i = 4, while varying the Bingham number in the range
0 < Bi < 11.2. Qualitatively, the effect of Bingham number on the energy budget is
similar to the viscoplastic case in Rosti et al. (2018a), the peak of K increases with Bi,
while the peak values for P and e decrease. The volume-averaged viscous dissipation
decreases, while EVP dissipation increases with Bi. Surprisingly however, the turbulent
production slightly increases with Bi at this finite Weissenberg number, in contrast with
the viscoplastic flow. The shear components of the mean viscous and EVP stress tensors
are shown in figure 20. In viscoplastic flows, we observed that the shear component of
the EVP stress tensor increased everywhere across the channel. In the combined case
however (figure 20(b)), its value at the wall remains constant in the turbulent regime.
In the laminar regime, as expected, the shear component changes linearly in the liquid
region and is zero in the solid region. The EVP stress continuously increases with Bi
towards the center of channel. Finally, we report in figure 21 the shear stress budget for
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Figure 19: EVP case: Wall-normal profiles of (a) the turbulent kinetic energy K =
(u? 4+ v + w'?) /2 and of (b) the turbulent production P = —pu/v'du/dy, (c) the tur-
bulent dissipation € = pdu}/dz;0u,/0z; and (d) average contributions to the energy bal-
ance due to P, and dissipation due to fluctuation of the EVP stresses Il = du;/dz;T/;,
all normalized with the friction velocity u,. The Weissenberg number Wi and the exten-
sibility parameter L? are fixed and equal to 4 and 3600, respectively (FENE-P model).
The symbols in the figure correspond to results of Kim et al. (1987) for the Newtonian
case.

the cases with Bi = 0 and Bi = 5.6, normalized with the corresponding wall stress.
With increasing Bi, the EVP and viscous stresses grow more across the channel, further
reducing the Reynolds stresses, and hence the combined case deviates even more from
the Newtonian flow than the viscoelastic case does.

3.5. Intermittent dynamics

Finally, we compare the intermittent dynamics for purely viscoelastic, viscoplastic and
elastoviscoplastic cases. Previously Xi & Graham (2010, 2012b) observed two distinct
time intervals, denoted as hibernating and active, for viscoelastic turbulent flow in min-
imal channel geometry. During the hibernating intervals, drag reduction is high and
turbulence is partly attenuated, whereas the active intervals represent active turbulence
similar to the Newtonian turbulent flow.

Figure 22(a) shows the time evolution of the friction Reynolds number Re, for the
viscoelastic flow. We choose five time instants (i-v) defined in figure 22(a): (iii) is in the
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Figure 20: EVP case: Shear component of the mean (a) viscous stress 7y and (b) elasto-
viscoplastic stress tensor Tg as a function of the wall-normal distance y. The Weissenberg
number Wi and the extensibility parameter L? are fixed and equals to 4 and 3600, re-
spectively (FENE-P model).
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Figure 21: EVP case: Normalised shear stress balance across the channel, for (a) Bi =0
and (b) Bi = 5.6. The total shear stress varies linearly across the channel height. The
Weissenberg number Wi and the extensibility parameter L? are fixed and equals to 4
and 3600, respectively (FENE-P model).

active regime, whereas (i and v) are in the hibernation regime. The instantaneous velocity
profiles at these times are shown in figure 22(b). Note that velocity profiles are shown
in inner units based on the instantaneous friction velocity. For convenience, data for the
Newtonian case (Kim et al. 1987), represented by blue symbols, is also shown. As expected
from previous work mentioned above, the profile changes between the Newtonian and the
Virk profile, approaching the latter one at the lowest Re, (instant v).

The time evolution of the friction Reynolds number for the viscoplastic flow is shown
in figure 22(c). Viscoplastic flow does not hibernate, so we choose four time instants in
the turbulent regime. A more limited range of friction Reynolds numbers is observed, i.e.
165 < Re, < 185. Indeed, the instantaneous velocity profile figure 22(d) at the chosen
times only slightly deviates from the Newtonian flow, represented by blue symbols in the
figure.
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Figure 22: Time series for hibernation phenomenon. Re, evolution and mean streamwise
velocity profile @ at time instants i—v defined in (a), (¢) and (e) for VE, VP and EVP,
respectively. The parameters are: Wi = 16 and Bi = 0 for VE flow, Wi = 8 and Bi = 2.8
for EVP flow, and Wi = 0.01 and Bi = 1.4 for VP flow.

Let us now consider the EVP flow where both elastic and plastic effects are significant.
It is remarkable to see that the EVP flow (figure 22(e)) behaves like the VE flow, with
significant drag reduction in the hibernation regime. Interestingly, the elastic character-
istics of the intermittent turbulent dynamics are even stronger for the EVP flow than for
the VE flow as also observed in the velocity profiles. The profiles near the active regime



Effect of finite Weissenberg number on turbulent elastoviscoplastic channel flows 27
(a) T T T (b) T T T

0.6 i
~ ~
Py P
[ (@)
= T ;
So03 1 . ~

ii

50 100 150 50 100 150

VE EVP

Figure 23: Hibernation phenomenon of VE and EVP fluids, at the same time instants as
in figure 22. Mean polymer extension, wall normal Css and shear C5 components of the
mean conformation tensor for VE (Wi = 16 and Bi = 0, left column) and EVP (Wi =8
and Bi = 2.8, right column) cases.

(instants i and v) are similar to LDR profiles, whereas the ones under hibernation are
more like a HDR, with instant (iv) being very close to the Virk profile. Correspondingly,
since the EVP flow hibernates longer periods, we observe a more significant drag reduc-
tion (27% < DR < 58%) than for the purely viscoelastic flow. It is worth noting that we
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Figure 24: Probability of the fluid to be unyielded in EVP flow (Wi = 8 and Bi = 2.8),
at the same time instants as in figures 22 and 23.

observed and compared several hibernation cycles in VE and EVP flows, in addition to
the ones shown in the figure.

We also examine the instantaneous profiles of the mean polymer extension, wall normal
and shear components of the conformation tensor for VE and EVP flow in figure 23.
The polymer extension is maximal in the active regime (black and red lines), while it
is minimal in the hibernation phase (orange and green lines). The same was observed
in viscoelastic turbulent flow in minimal channel (Xi & Graham 2010, 2012b). While
the qualitative picture is the same for VE and EVP, they do present some differences.
It appears that at hibernation, the EVP flow has larger polymer extension and higher
values of the wall-normal component than the VE flow, while the shear component of
the EVP flow is lower, which explains drag reduction. On the other hand, the VE flow
presents higher values of both components in the active turbulence regimef. EVP stresses
are lowest in the hibernation state, and consequently, the probability P, of the fluid to
be unyielded is highest in the hibernation state, as shown in figure 24. The P;-curves
neatly divide into two distinct groups in active vs hibernating state, as characterised by
Re,, and also by the wall-normal component of the confirmation tensor Css.

4. Flow structures

The elastoviscoplastic character of the flow affects the near-wall turbulent structures,
and this is visually confirmed in figure 25. In the figure we identify the low- (blue) and
high-speed (red) near-wall streaks with isosurfaces of the streamwise velocity fluctuations
u’ corresponding to the levels w'* = £0.25U, for the values of Bi and Wi pertaining
all the turbulent cases we have studied. In the Newtonian case (Bi = 0 and Wi = 0),
we recognize in the shape of the streamwise velocity fluctuations the typical footprints
of the near-wall streaks and quasi-streamwise vortices that characterize the near-wall
turbulence and that are responsible for the wall-cycle that can sustain turbulence in
classical wall-bounded flows (Jiménez & Pinelli 1999). In VE flows (the leftmost column
in figure 25), as the elasticity increases, the low- and high speed streaks become less
fragmented, are correlated over longer distances in the streamwise direction and grow

1 We recognise that these profiles are only snapshots and may not represent accurately the
whole dynamics
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Figure 25: Isosurfaces of instantaneous streamwise velocity fluctuation u’ for different
Bingham and Weissenberg numbers. The flow goes from left to right and the color scale
ranges from —0.25U; (blue) to 0.25U, (red). The green planes in all the figures represent
the rigid wall.

in size. This behaviour has been recognised in the past by several authors (Warholic
et al. 1999; Escudier et al. 2009; Shahmardi et al. 2019; Le Clainche et al. 2020) who
consistently reported that the inclusion of the polymers in the flow strongly modifies
the near-wall structures, by overall enhancing the streamwise coherence of the flow and
by increasing the size of the low- and high-speed streaks, thus also moving the quasi-
streamwise vortices away from the wall.

A similar modification of the near-wall structures was found by Rosti et al. (2018c¢) for
the near-viscoplastic case with Wi ~ 0 when increasing the Bingham number. Indeed,
the figure clearly shows that the structures in the buffer layer are less fragmented and
more elongated in the streamwise direction, as the Bingham number increases. Increase
in Wi and Bi both result in the growth in size of the larger scale structures, which is
consistent with an attenuation of the small-scale features of the flow and the consequent
reduction of the turbulent dissipation previously observed. This results in a reduction
of the friction Reynolds number Re;, i.e., drag reduction, similarly to what observed in
other drag reducing flows, such as riblets and anisotropic porous walls (Choi et al. 1993;
Rosti et al. 2018b). Although the modifications of the flow structures with Wi and Bi
are similar, some differences are present. Indeed, plasticity alone in VP flows reduces the
wall-normal fluctuations less than elasticity because the hibernating turbulent phases are
reduced; this results in stronger ejection events and in turbulent structures that penetrate
deeper in the bulk of the channel for high values of Bi. This difference is related to the
presence of the unyielded region in the plastic cases, which is inherently intermittent and
induces larger values of EVP dissipation rates II than in the viscoelastic cases (figures
16(d) and 19(d)). Because of this, the drag reduction due to the plasticity is able to
laminarise the flow while the one of elasticity is not. The two effects mix in a non-trivial
way when both finite elasticity and plasticity are considered. In the EVP cases, the flow
structures continue to become less fragmented and more streamwise coherent, with their
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wall-normal size depending on the relative magnitude of Wi and Bi. Indeed, as also
shown in figure 9, the unyielded region shows a complex trend with Wi and Bi, and
this might influence the size of the flow structures. The flow always laminarizes at high
enough Bingham numbers. However,the VP flow is laminar at Bi > 2.8, showing purely
plastic turbulence, while the EVP flow at Wi = 2 becomes laminar only at Bi > 5.6,
and hence the turbulence shows combined elastic and plastic characteristics. At high
Wi (Wi = 16), the trend is reversed and the flow laminarizes again at Bi = 2.8, and
the effect of plasticity on the turbulent viscoelastic flow is not large due to an early
relaminarisation. This non-monotonic trend can be observed in figure 7.

Figure 26: © — z planes at y = 0.15h showing contours of the polymer extension

Tr(C)/L (the colorscale goes from black to white). The blue and red isolines shows
the streamwise velocity fluctuations £0.25U;. The top row shows cases with increasing
Wi =2,4,8 and 16 from left to right at fixed Bi = 0, while the bottom row cases with
increasing Bi = 0,2.8 and 5.6 at fixed Wi = 2. In the figures, the flow is from bottom to
top.

The different effect of elasticity and plasticity on the turbulent flow can be better ap-
preciated in figure 26 where we show wall-parallel contours of the instantaneous polymer

extension /Tr(C)/L at y ~ 0.15h, together with the footprints of the low- and high
speed streamwise velocity streaks on the plane. In the top row of the figure we consider

the viscoelastic cases with Bi = 0 and growing Weissenberg number Wi from 2 to 16. The
figure confirms that as W+ grows, the polymer extension is enhanced, resulting in more
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elongated and streamwise coherent structures. Also, it is evident from the figure that the
flow structures grow in size, especially the low-speed ones. The second row depicts the
results for a fixed Weissenberg number (Wi = 2) and growing Bingham number from
0 to 5.6. Again, we note that as Bi increases in the EVP flow, the flow becomes more
ordered and streamwise coherent, however from the figure we can also appreciate the dif-
ferent effect of elasticity and plasticity on the EVP flow: plasticity reduces the turbulent
dissipation and the fragmentation of the turbulent structures, acting on both the low-
and high-speed streaks equally. Indeed, both appear more elongated in the streamwise
direction as Bi increases, with only a small growth in their spanwise dimension. On the
other hand, elasticity affects mostly the low-speed streaks, while the high-speed ones
remain fragmented despite growing in size. A common feature between the two flows is
the tendency of the low-speed streaks to appear in regions where the polymers are highly
elongated, while the high-speed streaks mostly appear in regions were polymers are not
stretched.

5. Conclusions

The combined effect of finite Weissenberg and Bingham numbers in elastoviscoplastic
flows has been investigated by direct numerical simulations in this work, and compared
to the two limiting cases of VE and VP flows, where VP refers to the near-viscoplastic
limit (W4 = 0.01) analysed in our previous work Rosti et al. (2018a). We study both
laminar and turbulent flows, where the turbulent case has Re, = 180 in the Newtonian
limit. A wide range of Weissenberg and Bingham numbers is investigated in this work:
Wi=0-16 and Bi =0 — 24.

Previously, we observed that the VP flow has a moderate drag reduction compared to
Newtonian flow at intermediate Bingham numbers, while at higher Bingham numbers
the flow relaminarises and drag increases. However, the EVP flow at finite Weissenberg
numbers achieves higher drag reduction values, up to 70%, than both viscoplastic and vis-
coelastic flows at the same Re and Wi. Moreover, the drag of EVP flow keeps decreasing
after relaminarisation at high Bingham numbers.

The VP flow became laminar at B: > 2.8. The EVP flow is still turbulent at Bi = 5.6 at
moderate Wi, but becomes laminar at Bi = 5.6 for higher Wi (W4 > 8). The moderate
value of W1 triggers instabilities that reinstate turbulence, since the thickness of the
unyielded central plug region is considerably reduced compared to the viscoplastic case.
At higher Wi, the central plug region becomes too thin to create instabilities leading to
laminarisation.

When analysing the flow statistics, the streamwise component of Reynolds stress tensor
increases while the other components decrease compared to the Newtonian flow. This
effect is seen for EVP, VE and VP flows. However, it is strongest for the EVP flow. At
Wi =4, Bi = 5.6 the components of the EVP flow deviate more from the Newtonian
case than VE flow at Wi = 16, or any of the turbulent VP cases.

To characterise the intermittent dynamics relating to their drag reducing property
of polymeric flows (Xi & Graham 2010, 2012b), we divided each flow into hibernating
time intervals and periods of active turbulence. The VE flow at Wi = 16.0 and Bi = 0,
EVP flow at Wi = 8.0 and Bi = 2.8 and VP flow at Wi = 0.01 and Bi = 1.4 were
considered. The VP flow showed hibernation phenomenon with small drag reduction
variation. However, the EVP flow hibernates more than any of the others, with the
velocity profile reaching close to the Virk profile. All EVP stress components were highest
in active turbulence and lowest in hibernation stages. The probability of the fluid to be
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unyielded was clearly divided into two stages: low probability in active stages and high
probability in hibernation.

Finally, we analysed the spatial flow structures and related them to the local elon-
gation of the polymers. As previously noted, both elasticity and plasticity increase the
streamwise coherence in the flow. In the EVP flows, we observed that polymer elonga-
tion increases with increasing Bingham number, again showing that elastic effects are
stronger at finite Bingham numbers than in a purely elastic flow. In both VE and EVP
flows, low-speed streaks appear in regions where polymers are more stretched, and high-
speed streaks in regions where polymers are less stretched. However, plasticity in EVP
flows reduces the turbulent dissipation and hence the fragmentation of both the low- and
high-speed streaks equally, while in VE flows high-speed streaks remain fragmented.
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