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This paper proposes model-free imitation learning named Entropy-Regularized Imitation Learning
(ERIL) that minimizes the reverse Kullback–Leibler (KL) divergence. ERIL combines forward and
inverse reinforcement learning (RL) under the framework of an entropy-regularized Markov decision
process. An inverse RL step computes the log-ratio between two distributions by evaluating two
binary discriminators. The first discriminator distinguishes the state generated by the forward RL
step from the expert’s state. The second discriminator, which is structured by the theory of entropy
regularization, distinguishes the state–action–next-state tuples generated by the learner from the
expert ones. One notable feature is that the second discriminator shares hyperparameters with the
forward RL, which can be used to control the discriminator’s ability. A forward RL step minimizes the
reverse KL estimated by the inverse RL step. We show that minimizing the reverse KL divergence is
equivalent to finding an optimal policy. Our experimental results on MuJoCo-simulated environments
and vision-based reaching tasks with a robotic arm show that ERIL is more sample-efficient than the
baseline methods. We apply the method to human behaviors that perform a pole-balancing task and
describe how the estimated reward functions show how every subject achieves her goal.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reinforcement Learning (RL) is a computational framework
or investigating the decision-making processes of both biolog-
cal and artificial systems that can learn an optimal policy by
nteracting with an environment (Doya, 2007; Kober, Bagnell, &
eters, 2013; Sutton & Barto, 1998). Modern RL algorithms have
chieved remarkable performance in playing Atari games (Mnih
t al., 2015), Go (Silver et al., 2017), Dota 2 (OpenAI, Berner et al.,
019), and Starcraft II (Vinyals et al., 2019). They have also been
uccessfully applied to dexterous manipulation tasks (OpenAI,
kkaya et al., 2019), folding a T-shirt (Tsurumine, Cui, Uchibe, &
atsubara, 2019), quadruped locomotion (Haarnoja, Zhou, Har-

ikainen et al., 2018), the optimal state feedback control of non-
ffine nonlinear systems (Wang & Qiao, 2019), and non-zero-
um game output regulation problems (Odekunle, Gao, & Jiang,
020). However, one critical open question in RL is designing
nd preparing an appropriate reward function for a given task.
lthough it is easy to design a sparse reward function that gives a
ositive reward when a task is accomplished and zero otherwise,
uch an approach complicates finding an optimal policy due to
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prohibitive learning times. On the other hand, we can accelerate
the learning speed with a complicated function that generally
gives a non-zero reward signal. However, optimized behaviors
often deviate from an experimenter’s intention if the reward
function is too complicated (Doya & Uchibe, 2005).

In some situations, it is easier to prepare examples of a desired
behavior provided by an expert than handcrafting an appro-
priate reward function. Behavior Cloning (BC) is a straightfor-
ward approach in imitation learning formulated as supervised
learning. BC minimizes the forward Kullback–Leibler (KL) di-
vergence, which is known as moment projection (M-projection).
Forward KL is the expectation of the log-likelihood ratio under
expert distribution. Although BC requires no interaction with
the environment, it suffers from a state covariate shift prob-
lem: small errors in actions introduce the learner to unseen
states that are not included in the training dataset (Ross, Gor-
don, & Bagnell, 2011). Also, BC shows poor performance if the
model is misspecified because minimizing the forward KL has a
mode-covering property. To overcome the covariate shift prob-
lem, several inverse RL (Ng & Russell, 2000) and apprenticeship
learning (Abbeel & Ng, 2004) methods have been proposed to
retrieve a reward function from expert behaviors and imple-
ment imitation learning. Currently available applications include

a probabilistic driver route prediction system (Liu et al., 2013;
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ogel, Ramachandran, Gupta, & Raux, 2012), modeling risk an-
icipation and defensive driving (Shimosaka, Kaneko, & Nishi,
014), investigating human behaviors in table tennis (Muelling,
oularias, Mohler, Schölkopf, & Peters, 2014), robot navigation
asks (Kretzschmar, Spies, Sprunk, & Burgard, 2016; Xia & El
amel, 2016), analyzing animal behaviors (Ashida, Kato, Hotta,
Oka, 2019; Hirakawa et al., 2018; Yamaguchi et al., 2018),

nd parser training (Neu & Szepesvári, 2009). A recent func-
ional magnetic resonance imaging (fMRI) study suggests that
he anterior part of the dorsomedial prefrontal cortex (dmPFC)
s likely to encode the inverse reinforcement learning algorithm
Collette, Pauli, Bossaerts, & O’Doherty, 2017). Combining inverse
L with a standard RL is a promising approach to find an optimal
olicy from expert demonstrations. Hereafter, we use the term
‘forward’’ reinforcement learning to clarify the difference.

Recently, some works (Fu, Luo, & Levine, 2018; Ho & Ermon,
016) have connected forward and inverse RL and Generative
dversarial Networks (GANs) (Goodfellow et al., 2014), which
xhibited remarkable success in image generation, video predic-
ion, and machine translation domains. In this view, inverse RL is
nterpreted as a GAN discriminator whose goal is to determine
hether experiences are drawn from an expert or generated
y a forward RL step. The GAN generator is implemented by a
orward RL step and creates experiences that are indistinguish-
ble by an inverse RL. Generative Adversarial Imitation Learning
GAIL) (Ho & Ermon, 2016) showed that the iterative process of
orward and inverse RL produces policies that outperformed BC.
owever, GAIL minimizes the Jensen–Shannon divergence, which
as a similar forward KL property. In addition, GAIL is sample-
nefficient because an on-policy RL algorithm used in the forward
L step simply trains a policy from a reward calculated by the
nverse RL step. To improve the sample efficiency in the forward
L step, Jena, Liu, and Sycara (2020) added BC loss to the loss
f the GAIL generator. Kinose and Taniguchi (2020) integrated
he GAIL discriminator with reinforcement learning, in which the
olicy is trained with both the original reward and additional re-
ards calculated by the discriminator. However, their approaches
emain sample-inefficient. Utilizing the result of the inverse RL
tep to the forward RL step and vice versa is difficult because
he discriminator’s structure is designed independently from the
enerator.
To further improve the sample efficiency, this paper pro-

oses a model-free imitation learning algorithm named Entropy-
egularized Imitation Learning (ERIL), which minimizes the in-
ormation projection or the I-projection, which is also known as
he reverse KL divergence between two probability distributions
nduced by a learner and an expert. A reverse KL, which is
he expectation of the log-likelihood ratio under the learner’s
istribution, has a mode-seeking property that focuses on the
istribution mode that the policy can represent. A reverse KL is
ore appropriate than a forward KL when the policy is misspec-

fied. Unfortunately, reverse KL divergence cannot be computed
ecause the expert distribution is unknown. Our idea applies
he density ratio trick (Sugiyama, Suzuki, & Kanamori, 2012) to
valuate the log-ratio between two distributions from samples
rawn from them. In addition, we exploit the framework of the
ntropy-regularized Markov Decision Process (MDP), where the
eward function is augmented by the differential entropy of a
earner’s policy and the KL divergence between the learner and
xpert policies. Consequently, the log-ratio can be computed by
raining two binary discriminators. One is a state-only discrimina-
or, which distinguishes the state generated by the learner from
he expert’s state. The second discriminator, which is a function of
tuple of a state, an action, and the next state, also distinguishes
etween the experiences of learners and experts. The second

iscriminator is represented by reward, a state value function,

139
and the log-ratio of the first discriminator. We show that Adver-
sarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) and
Logistic Regression-based Inverse RL (LogReg-IRL) (Uchibe, 2018;
Uchibe & Doya, 2014) discriminators are a special case of an
ERIL. The loss function is essentially identical as that of GAN for
training discriminators, which are efficiently trained by logistic
regression.

After evaluating the log-ratio, the forward RL in ERIL mini-
mizes the estimated I-projection. We show that its minimization
is equivalent to maximizing the entropy-regularized reward. Con-
sequently, the forward RL algorithm is implemented by off-policy
reinforcement learning that resembles Dynamic Policy Program-
ming (Azar, Gómez, & Kappen, 2012), Soft Actor–Critic (SAC)
(Haarnoja, Zhou, Abbeel, & Levine, 2018), and conservative value
iteration (Kozuno, Uchibe, & Doya, 2019). In the forward RL step,
the state value, the state–action value, and the stochastic policy
are trained by the actor–critic algorithm, and the reward function
estimated by the inverse RL step is fixed. This step allows the
learner to generalize the expert policy to unseen states that are
not included in the demonstrations.

We experimented with the MuJoCo benchmark tasks (Todorov,
Erez, & Tassa, 2012) in the OpenAI gym (Brockman et al., 2016).
Our experimental results demonstrate that ERIL resembles some
modern imitation learning algorithms in terms of the number
of trajectories from expert data and outperformed sample ef-
ficiency in terms of the number of trajectories in the forward
RL step. Ablation studies show that entropy regularization plays
a critical role in improving sample efficiency. Next we con-
ducted a vision-based target-reaching task with a manipulator
in three-dimensional space and demonstrated that using two
discriminators is vital when the learner’s initial state distribution
differs from the expert one. Then we applied ERIL to human
behaviors for performing a pole-balancing task. Since the actions
of human subjects are not observable, the task is an example
of realistic situations. ERIL recovers the subjects’ policies better
than the baselines. We also showed that the estimated reward
functions show how every subject achieved her goal.

The following are the main contributions of our paper:
(1) We proposed a structured discriminator with hyperparam-
eters derived from entropy-regularized reinforcement learning.
(2) The hyperparameters, which are shared between forward and
inverse RL, can be used to control the discriminator’s ability.
(3) The state value function is trained by both forward and inverse
RL, which improves the sample efficiency in terms of the number
of environmental interactions.

2. Related work

2.1. Regularization in RL

The role of regularization is to prevent overfitting and to en-
courage generalization. Many regularization methods have been
proposed from various aspects, such as dropout (Liu, Li, Kang,
& Darrell, 2021), temporal difference error (Parisi, Tangkaratt,
Peters, & Khan, 2019), value function difference (Ohnishi et al.,
2019), and manifold regularization for feature representation
learning (Li, Liu, & Wang, 2018). Amit, Meir, and Ciosek (2020)
investigated the property of a discount factor as a regularizer.

The most widely used regularization method is entropy reg-
ularization (Belousov & Peters, 2019; Ziebart, Maas, Bagnell, &
Dey, 2008). It supports exploration by favoring more stochastic
policies (Haarnoja, Zhou, Abbeel et al., 2018) and smoothens the
optimization landscape (Ahmed, Le Roux, & Schuurmans, 2019).
The advantage of entropy regularization in inverse RL is its ro-
bustness against noisy and stochastic demonstrations because an
optimal policy becomes stochastic.
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.2. Behavior cloning

BC directly maximizes the log-likelihood of an expert ac-
ion. Pomerleau (1989) achieved an Autonomous Land Vehicle
n a Neural Network (ALVINN), which is a potential precursor
f autonomous driving cars. ALVINN’s policy is implemented by
3-layer neural network and learns mappings from video and

ange finder inputs to steering directions by supervised learning.
owever, ALVINN suffers from the covariate shift problem. To
educe covariate shift, Ross et al. (2011) proposed an iterative
ethod called Dataset Aggregation (DAGGER), where the learner

uns its policy while the expert provides the correct action for
he states visited by the learner. Laskey, Lee, Fox, Dragan, and
oldberg (2017) proposed Disturbances for Augmented Robot
rajectories (DART), which collects expert datasets with injected
oise.
It is often difficult to provide such expert data as state–action

airs in such realistic situations as analyzing animal behaviors
nd learning from videos. Torabi, Warnell, and Stone (2018) stud-
ed a situation in which expert action is unavailable and proposed
ehavioral Cloning from Observation (BCO) that estimates ac-
ions from an inverse dynamics model. Soft Q Imitation Learning
SQIL) (Reddy, Dragan, & Levine, 2020) is a BC with a regulariza-
ion term that penalizes large squared soft Bellman error. SQIL
s implemented by SAC, which assigns the reward of the expert
ata to 1 and the generated data to 0. SQIL can learn from both
he expert and learner’s samples because SAC is an off-policy
lgorithm.

.3. Generative adversarial imitation learning

GAIL (Ho & Ermon, 2016), which is a very popular imitation
earning algorithm, formulates the objectives of imitation learn-
ng as GAN training objectives. Its discriminator differentiates
etween generated state–action pairs and those of experts, and
he generator acts as a forward reinforcement learning algorithm
o maximize the sum of rewards computed by the discrimina-
or. There are several extensions of GAN. AIRL (Fu et al., 2018)
sed an optimal discriminator whose expert distribution was
pproximated by a disentangled reward function. A similar, inde-
endently proposed discriminator (Uchibe, 2018; Uchibe & Doya,
014) was derived from the framework of entropy-regularized
einforcement learning and density ratio estimation. AIRL exper-
mentally showed that the learned reward function can be trans-
erred to new, unseen environments. Situated GAIL (Kobayashi,
orii, Iwaki, Nagai, & Asada, 2019) extended GAIL to learn multi-
le reward functions and multiple policies by introducing a task
ariable to both the discriminator and the generator.
As discussed in the previous section, expert action is not

lways available. IRLGAN (Henderson, Chang et al., 2018) is a spe-
ial GAN case where the discriminator is given as a state function.
orabi, Warnell, and Stone (2019) proposed Generative Adversar-
al Imitation from Observation (GAIfO) whose functions are char-
cterized by state transitions. Sun and Ma (2014) proposed Action
uided Adversarial Imitation Learning (AGAIL) that can deal with
xpert demonstrations with incomplete action sequences. AGAIL
ses mutual information between expert and generated actions
s an additional regularizer for training objectives.
To reduce the number of interactions in the forward RL step,

londé and Kalousis (2019) proposed Sample-efficient Adversar-
al Mimic (SAM), which adopts an off-policy method called the
eep Deterministic Policy Gradients (DDPG) algorithm (Lillicrap
t al., 2016). SAM maintains three different neural networks,
hich approximate a reward function, a state–action value func-
ion, and a policy. The reward function is estimated in the same
ay as in GAN, and the state–action value function and the
140
policy are trained by DDPG. Kostrikov, Agrawal, Dwibedi, Levine,
and Tompson (2019) showed that GAIL’s reward function is bi-
ased and that the absorbing states are not treated appropriately.
They proposed a preprocessing technique for expert data before
learning and developed the Discriminator Actor–Critic (DAC) al-
gorithm. DAC utilizes the Twin Delayed Deep Deterministic policy
gradient (TD3) algorithm (Fujimoto, van Hoof, & Meger, 2018),
which is an extension of DDPG. Sasaki, Yohira, and Kawaguchi
(2019) exploited the Bellman equation to represent a reward
function, and a reward’s exponential transformation is trained
as a kind of discriminator. They improved the policy using an
off-policy actor–critic (Degris, White, & Sutton, 2012). Zuo, Chen,
Lu, and Huang (2020) proposed a Deterministic GAIL that adopts
the modified DDPG algorithm that incorporates the behavior
cloning loss in the forward RL step. Discriminator Soft Actor–
Critic (Nishio, Kuyoshi, Tsuneda, & Yamane, 2020) extended SQIL
by estimating the reward function by an AIRL-like discriminator.
Ghasemipour, Zemel, and Gu (2019) and Ke et al. (2020) described
the relationship between several imitation learning algorithms
from the viewpoint of objective functions. Since our study focuses
on sample efficiency with respect to the number of interactions
with the environment, the most related works are SAM, DAC,
and Sasaki’s method. We compared our method with these three
methods in the experiments.

3. Preliminaries

3.1. Markov decision process

Here we briefly introduce MDP for a discrete-time domain. Let
X and U be continuous or discrete state and action spaces. At
time step t , a learning agent observes environmental current state
xt ∈ X and executes action ut ∈ U sampled from stochastic policy
π (ut | xt ). Consequently, the learning agent receives from the
environment immediate reward r̃(xt , ut ), which is an arbitrary
bounded function that evaluates the goodness of action ut at state
t . The environment shifts to next state x′t = xt+1 ∈ X according
o state transition probability pT (x′t | xt , ut ).

Forward reinforcement learning’s goal is to construct optimal
olicy π (u | x) that maximizes the given objective function.
mong several available objective functions, the most widely
sed is a discounted sum of rewards:

(x) ≜ E

[
∞∑
t=0

γ t r̃(xt , ut ) | x0 = x

]
,

here γ ∈ [0, 1) is called the discount factor. The optimal state
alue function for the discounted reward setting satisfies the
ollowing Bellman optimality equation:

(x) = max
u

[
r̃(x, u)+ γEx′∼pT (·|x,u)

[
V (x′)

]]
, (1)

where Ep[·] hereafter denotes the expectation with respect to p.
The state–action value function for the discounted reward setting
is also defined:

Q (x, u) = r̃(x, u)+ γEx′∼pT (·|x,u)
[
V (x′)

]
.

Eq. (1), which is nonlinear due to the max operator, usually
struggles to find an action that maximizes its right hand side.

3.2. Entropy-regularized Markov decision process

Next we consider entropy-regularized MDP (Azar et al., 2012;
Haarnoja, Zhou, Abbeel et al., 2018; Kozuno et al., 2019; Ziebart
et al., 2008), in which the reward function is regularized by the
following form:

r̃(x, u) = r(x, u)+
1
H(π (· | x))−

1
KL(π (· | x) ∥ b(· | x)), (2)
κ η
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here r(x, u) is a standard reward function that is unknown in
he inverse RL setting. κ and η are the positive hyperparameters
etermined by the experimenter, H(π (· | x)) is the (differential)
ntropy of policy π (u | x), and KL(π (· | x) ∥ b(· | x)) is the
elative entropy, which is also known as the Kullback–Leibler (KL)
ivergence between π (u | x) and baseline policy b(u | x). When
he reward function is regularized by the entropy functions (2),
e can analytically maximize the right hand side of Eq. (1) by
method using Lagrange multipliers. Consequently, the optimal
tate value function can be represented:

(x) =
1
β

ln
∫

exp (βQ (x, u)) du, (3)

where β is a positive hyperparameter defined by

β ≜
κη

κ + η
,

nd Q (x, u) is the optimal soft state–action value function:

Q (x, u) = r(x, u)+
1
η
ln b(u | x)+ γEx′∼pT (·|x,u)

[
V (x′)

]
. (4)

When the action is discrete, the right hand side of Eq. (3) is
a log-sum-exp function, also known as a softmax function. The
corresponding optimal policy is given:

π (u | x) =
exp(βQ (x, u))
exp(βV (x))

, (5)

where exp(βV (x)) represents a normalizing constant of π (u | x).
For later reference, the update rules are described here. The

oft state–action value function is trained to minimize the soft
ellman residual. The soft state value function is trained to min-
mize the squared residual error derived from Eq. (5). The policy
s improved by directly minimizing the expected KL divergence
n Eq. (5):

ER(wπ ) = Ex∼p(x)

[
KL
(

π (· | x) ∥
exp(βQ (x, ·))
exp(βV (x))

)]
.

he derivative of the KL divergence is given by

KL = Eu∼π (·|x)
[
∇wπ lnπ (· | x) [lnπ (· | x)− β(Q (x, ·)− V (x))+ B(x)]

]
,

(6)

here B(x) is a baseline function that does not change the gra-
ient (Peters & Schaal, 2008) and is often used to reduce the
ariance of the gradient estimation.

.3. Generative adversarial networks

GANs are a class of neural networks that can approximate
robability distribution based on a game theoretic scenario (Good-
ellow et al., 2014). Standard GANs consist of a generator and a
iscriminator. Suppose that pE(z) and pL(z) denote the proba-
ility distributions over data z of the expert and a generator. A
iscriminator, which is a function that distinguishes samples from
generator and an expert, is denoted by D(z) and minimizes the

ollowing negative log-likelihood (NLL):
(D)
GAN = −Ez∼pL [lnD(z)] − Ez∼pE [ln(1− D(z))]. (7)

The optimal discriminator has the following shape (Goodfellow
et al., 2014):

D∗(z) =
pL(z)

pL(z)+ pE(z)
. (8)

The generator minimizes −J (D)GAN:

J (G) = E [lnD(z)], (9)
GAN z∼pL a

141
where the second term on the right hand side of Eq. (7) is
removed because it is constant with respect to the generator.
Recently, Prescribed GAN (PresGAN) introduced an entropy reg-
ularization term to JGAN to mitigate mode collapse (Dieng, Ruiz,
Blei, & Titsias, 2019).

GAIL (Ho & Ermon, 2016) is an extension of GANs for imitation
learning, and its objective function is given by

JGAIL(wG, wD) = −E(x,u)∼πL [lnD(x, u)] − E(x,u)∼πE [ln(1− D(x, u))]
+ λGAILH(π L),

where λGAIL is a positive hyperparameter. Adding the entropy
erm is key for an association with the entropy-regularized MDP.
he objective function of the GAIL discriminator is essentially
dentical as that of the GAN discriminator, which updates its pol-
cy by Trust Region Policy Optimization (TRPO) (Schaul, Horgan,
regor, & Silver, 2015), where the reward function is defined by

GAIL = − lnD(x, u).

AIRL (Fu et al., 2018) adopts a special structure for the discrim-
inator:

D(x, u, x′) =
π L(u | x)

exp(f (x, u, x′))+ π L(u | x)
, (10)

here f (x, u, x′) is defined using two state-dependent functions,
g(x) and h(x):

(x, u, x′) ≜ g(x)+ γ h(x′)− h(x). (11)

ote that the AIRL discriminator (10) has no hyperparameters.
similar discriminator was proposed (Uchibe, 2018; Uchibe &
oya, 2014). AIRL’s reward function is calculated:

AIRL = − lnD(x, u)+ ln(1− D(x, u))

= f (x, u, x′)− lnπ (u | x). (12)

ote that − lnD and ln(1− D) are monotonically related.

.4. Behavior cloning

BC is the most widely used type of imitation learning. It
inimizes the ‘‘forward’’ KL divergence, which is also known as
-projection (Ghasemipour et al., 2019; Ke et al., 2020):

BC(wπ ) = KL(πE
∥ π L) = −EπE

[
lnπ L(u | x)

]
+ C, (13)

here wπ is the policy parameter vector of π L(u | x) and C is
constant with respect to the policy parameter. Since BC does
ot need to interact with the environment, finding a policy that
inimizes Eq. (13) is simply achieved by supervised learning.
nfortunately, it suffers from covariate shift between the learner
nd the expert (Ross et al., 2011).

. Entropy-Regularized Imitation Learning

.1. Objective function

To formally present our approach, we denote the expert’s
olicy as πE(u | x) and the learner’s policy as π L(u | x). Suppose
dataset of transitions generated by
E
= {(xi, ui, x′i)}

NE

i=1, ui ∼ πE(· | xi), x′i ∼ pT (· | xi, ui),

here NE is the number of transitions in the dataset. We con-
ider two joint probability density functions, πE(x, u, x′) and
L(x, u, x′), where under a Markovian assumption, πE(x, u, x′) is
ecomposed by
E(x, u, x′) = pT (x′ | x, u)πE(u | x)πE(x), (14)

L ′
nd π (x, u, x ) can be decomposed in the same way.
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Fig. 1. Overall architecture of Entropy-Regularized Imitation Learning (ERIL).
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ERIL minimizes the ‘‘reverse’’ KL divergence given by

ERIL(wπ ) = KL(π L
∥ πE), (15)

here the reverse KL divergence is often called information pro-
ection (I-projection), defined by

L(π L
∥ πE) = EπL

[
ln

π L(x, u, x′)
πE(x, u, x′)

]
.

he difficulty is how to evaluate the log-ratio, lnπ L(x, u, x′)/
E(x, u, x′), because πE(x, u, x′) is unknown. The basic idea for re-
olving the problem is to adopt the density ratio trick (Sugiyama
t al., 2012), which can be efficiently achieved by solving binary
lassification tasks. To derive the algorithm, we assume that the
xpert reward function is given by

˜(x, u) = rk(x)+
1
κ
H(πE(· | x))−

1
η
KL(πE(· | x) ∥ π L

k (· | x)), (16)

here k is the iteration index. rk(x) is a state-only reward func-
ion parameterized by wr . Although using a state–action reward
unction is possible, the learned reward function will be a shaped
dvantage function, and transferability to a new environment is
estricted (Fu et al., 2018). When the expert reward function is
iven by Eq. (16), the expert state–action value function satisfies
he following soft Bellman optimality equation:

k(x, u) = rk(x)+
1
η
lnπ L

k (u | x)+ γEx′∼pT (·|x,u)
[
Vk(x′)

]
, (17)

where Vk(x′) is the corresponding state value function at the kth
iteration. Fig. 1 shows ERIL’s overall architecture. The inverse RL
step estimates reward rk and state value function Vk from the
expert’s and learner’s datasets. The forward RL step improves
learner’s policy π L

k based on rk and Vk. The state value function
and the expert policy are expressed by Eq. (3) and Eq. (5).

4.2. Inverse reinforcement learning based on density ratio estimation

Arranging Eqs. (5) and (17) yields the Bellman optimality
equation in a different form:

1
β

ln
πE (u | x)
π L
k (u | x)

= rk(x)−
1
κ
lnπ L

k (u | x)+ γEx′∼pT (·|x,u)
[
Vk(x′)

]
− Vk(x).

(18)

With the density ratio trick (Sugiyama et al., 2012), Eq. (18) is
re-written:

1
ln

D(2)
k (x, u, x′)

(2) ′
=

1
ln

D(1)
k (x)

(1) − rk(x)

β 1− Dk (x, u, x ) β 1− Dk (x) s
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+
1
κ
lnπ L

k (u | x)− γVk(x′)+ Vk(x), (19)

here D(1)
k (x) and D(2)

k (x, u, x′) denote a discriminator that classi-
ies the expert data from those of the generator. See Appendix A.1
or the derivation. Suppose that lnD(1)

k (x)/(1−D(1)
k (x)) is approxi-

ated by gk(x) parameterized by wg . Then the first discriminator
s constructed:

(1)
k (x) =

1
1+ exp(−gk(x))

,

and wg is obtained by logistic regression. In the same way,
Eq. (19) is used to design the second discriminator:

D(2)
k (x, u, x′) =

exp(βκ−1 lnπ L
k (u | x))

exp(βfk(x, x′))+ exp(βκ−1 lnπ L
k (u | x))

, (20)

here

k(x, x′) ≜ rk(x)− β−1gk(x)+ γVk(x′)− Vk(x).

ote that V (x) = 0 is required for absorbing states x ∈ X
o that the process can continue indefinitely without incurring
xtra rewards. If x′ is an absorbing state, then fk(x, x′) = rk(x) +

gk(x)−Vk(x). When Vk(x) is parameterized by wV , the parameters
of D(2) are wr and wV because wg and the policy are fixed during
training. Fig. 2 shows the architecture of the ERIL discriminator.
The AIRL discriminator (10) is a special case of Eq. (20) that sets
gk(x) = 0 and βκ−1 = 1, where LogReg-IRL (Uchibe, 2018) is
obtained by κ → ∞. Note that the discriminator (20) remains
unchanged even if rk(x) and Vk(x) are modified by rk(x) + C and
Vk(x)+ C/(1− γ ), where C is a constant value. Therefore, we can
recover them up to the constant.

Our inverse RL step consists of two parts. First, gk(x) is evalu-
ated by maximizing the following log-likelihood:

J (1)D (wg ) = Ex∼DL
k

[
lnD(1)

k (x)
]
+ Ex∼DE

[
ln
(
1− D(1)

k (x)
)]

, (21)

here x ∼ D denotes that the transition data are drawn from
and DL

k is the dataset of the transitions provided by learner’s
policy π L

k (u | x) at the kth iteration. D(2)
k (x, u, x′) is trained in

he same way, in which gk(x) and π L
k (u | x) are fixed during

raining. The goal of D(2)
k (x, u, x′) is to maximize the following

og-likelihood:
(2)
D (wr , wV ) = E(x,u,x′)∼DL

k

[
lnD(2)

k (x, u, x′)
]

+ E(x,u,x′)∼DE

[
ln
(
1− D(2)

k (x, u, x′)
)]

. (22)

his simply minimizes the cross entropy function of binary clas-
ifier D(2)(x, u, x′) that separates the generated data from those
k
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Fig. 2. Architecture of two ERIL discriminators: D(1)
k (x) and D(2)

k (x, u, x′).

f the expert. The formulation of the inverse RL algorithm in ERIL
s identical to that of the GAN discriminator. Note that β is not
stimated as an independent parameter.
In practice, DL

k is replaced with DL
= ∪kDL

k, which means that
the discriminators are trained with all the generated transitions
by the learner. Theoretically, we have to use importance sampling
to correctly evaluate the expectation, but Kostrikov et al. (2019)
showed that it works well without it.

4.3. Forward reinforcement learning based on KL minimization

After estimating the log-ratio by the inverse RL described in
Section 4.2, we minimize the reverse KL divergence (15). Then we
rewrite Eq. (19) using Eq. (17) and obtain the following equation:

ln
D(2)
k (x, u, x′)

1− D(2)
k (x, u, x′)

= lnπ L
k (u | x)− β (Qk(x, u)− Vk(x))+ gk(x).

(23)

RIL’s objective function is expressed by

ERIL(wπ ) = EπL
[
lnπ L

k (u | x)− β (Qk(x, u)− Vk(x))+ gk(x)
]

(24)

and its derivative by

∇JERIL(wπ ) = EπL
[
∇wπ lnπ L

k (u | x)

×
[
lnπ L

k (u | x)− β(Qk(x, u)− Vk(x))+ gk(x)
]]

. (25)

hen gk(x) = B(x), Eq. (25) is essentially identical to Eq. (6).
Our forward RL step updates Vk and Qk like the standard SAC

algorithm (Haarnoja, Zhou, Abbeel et al., 2018). The loss function
of the state value function is given:

JVERIL(wV ) =
1
2
Ex∼D

×

[(
V (x)− Eu∼πL

k (·|x)

[
Qk(x, ·)−

1
β

lnπ L
k (· | x)

])2
]

. (26)

he state–action value function is trained to minimize the soft
ellman residual
Q
ERIL(wQ ) =

1
2
E(x,u,x′)∼DL

[(
Q (x, u)− Q̄k(x, u, x′)

)2]
, (27)

ith

¯k(x, u, x′) = rk(x)+
1
lnπ L

k (u | x)+ γ V̄k(x′),

η
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Algorithm 1 Entropy-Regularized Imitation Learning

Input: Expert dataset DE and hyperparameters κ and η

Output: Learner’s policy π L and estimated reward r(x).
1: Initialize all parameters of networks and replay buffer DL.
2: for k = 0, 1, 2, . . . do
3: Sample τi = {(xt , ut , xt+1)}Tt=0 with π L

k and store it in DL.
4: Update wg with the gradient of Eq. (21).
5: Update wr and wV with the gradient of Eq. (22).
6: Update wQ with the gradient of Eq. (27).
7: Update wV with the gradient of Eq. (26).
8: Update wπ with the gradient of Eq. (24).
9: Update w̄V by Eq. (28).

10: end for

where Ṽk(x) is the target state value function parameterized
by w̄V . Since our method is a model-free approach, we can-
not compute the expected value of Eq. (4). Instead, we use
Q̄ (x, u, x′), which is an approximation of Q (x, u), and Q (x, u) =
Ex′∼pT (·|x,u)[Q̄ (x, u, x′)]. Two alternatives can be chosen to update
w̄V . The first is a periodic update, i.e., where the target network
is synchronized with current wg at regular intervals (Mnih et al.,
2015). We use the second alternative, which is a Polyak averaging
update, where w̄g is updated by a weighted average over the past
parameters (Lillicrap et al., 2016):

w̄V ← τwV + (1− τ )w̄V , (28)

where τ ≪ 1.
Algorithm 1 shows an overview of Entropy-Regularized Im-

itation Learning. Lines 4–5 and 6–8 represent the inverse RL
and forward RL steps. Note that wV is updated twice in each
iteration. Since the second discriminator depends on the first
one, update wg first, followed by wr and wV . The order of Lines
6–8 is exchangeable in practice.

4.4. Interpretation of second discriminator

We show the connection between D(2) and the optimal dis-
riminator of GAN shown in Eq. (8). Arranging Eq. (23) and
ssuming |DE

| = |DL
| yield the second discriminator:

D(2)(x, u) =
π L(x)π L(u | x)

πE(x)π̃E(u | x)+ π L(x)π L(u | x)
, (29)

here π̃E(u | x) ≜ exp(β(Q (x, u) − V (x))). We omit x′ from the
nput to D(2) here because it does not depend on the next state.
ee A.2 for the derivation. By comparing Eqs. (8) and (29), D(2)

epresents the form of the optimal discriminator, and the expert
olicy is approximated by the value functions.

.5. Extension

Here we describe two extensions to deal with more realistic
ituations. One learns multiple policies frommultiple experts. The
ataset of experts is augmented by adding conditioning variable
that represents the index of experts:
E
= {(xi, ui, x′i, c)}

NE

i=1, ui ∼ πE(· | xi, c), x′i ∼ pT (· | xi, ui),

where c is often encoded as a one-hot vector. Then we introduce
universal value function approximators (Schaul et al., 2015) to
extend the value functions to be conditioned on the subject index.
For example, the second discriminator is extended:

D(2)
k (x, u, x′, c) =

exp(βfk(x, x′, c))
exp(βfk(x, x′, c))+ exp(βκ−1 lnπ L

k (u | x, c))
,

where f (x, x′, c) ≜ r (x, c)+ β−1g (x, c)+ γV (x′, c)− V (x, c).
k k k k k
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The other extension deals with the case where actions are not
observed. ERIL needs to observe the expert action because D(2)

explicitly depends on the action. One simple solution is to set
κ−1 = 0. This is the special case of ERIL in which the inverse
RL step is LogReg-IRL (Uchibe, 2018; Uchibe & Doya, 2014). An
alternative is to exploit an inverse dynamics model (Torabi et al.,
2018), which is formulated as a maximum-likelihood estimation
problem by maximizing the following function:

JIDM(wa) =
∑

(xt ,ut ,xt+1)∈DL

ln p(ut | xt , xt+1),

where wa is a parameter of the conditional probability density
over actions given a specific state transition. Then the expert
dataset is augmented:

D̃E
= {(xi, ũi, x′i, c)}

NE

i=1, ũi ∼ p(· | xi, x′i).

Using these inferred actions, we apply ERIL as usual.

5. MuJoCo benchmark control tasks

5.1. Task description

We evaluated ERIL with six MuJoCo-simulated (Todorov et al.,
2012) environments, provided by the OpenAI gym (Brockman
et al., 2016): Hopper, Walker, Reacher, Half-Cheetah, Ant, and
Humanoid. The goal for all the tasks was to move forward as
quickly as possible. First, optimal policy πE(u | x) for every task
was trained by TRPO with a reward function provided by the
OpenAI gym, and expert dataset DE was created by executing
πE . Then we evaluated the imitation performance with respect
to the sample complexity of the expert data by changing the
number of samples in DE and the number of interactions with
the environment. Based on Ho and Ermon (2016), the trajecto-
ries constituting each dataset consisted of about 50 transitions
(x, u, x′). The same demonstration data were used to train all
the algorithms for a fair comparison. We compared ERIL with
BC, GAIL, Sasaki, DAC, and SAM. The network architectures that
approximate the functions are shown in Table 1. We used a
Rectified Linear Unit (ReLU) activation function in the hidden
layers. The output nodes used a linear activation function, except
µ(x) and σ (x). Functions µ(x) and σ (x) represent the learner’s
olicy by a Gaussian distribution:
L(u | x) = N (u | µ(x), σ (x)),

here µ(x) and σ (x) denote the mean and the diagonal covari-
nce matrix. The output nodes of µ(x) and σ (x) use tanh and
igmoid functions.
The number of trajectories generated by π L

k (u | x) was set to
00. In all of our experiments, the hyperparameters for regular-
zing the rewards were κ = 1 and η = 10, and the discount
actor was γ = 0.99. We trained all the networks with the
dam optimizer (Kingma & Ba, 2015) and a decay learning rate.
ollowing Fujimoto et al. (2018), we performed evaluations using
en different random seeds.

.2. Comparative evaluations

Fig. 3 shows the normalized return of the evaluation roll-
uts during training for ERIL, BC, GAIL, Sasaki, DAC, and SAM. A
ormalized return is defined by

¯ =
R− R0

RE − R0
,

here R, R0, and RE respectively denote the total returns of
he learner, a randomly initialized Gaussian policy, and an ex-
ert trained by TRPO. The horizontal axis depicts the number
144
Table 1
Neural network architectures used in MuJoCo benchmark control tasks: V (x) is
approximated by a two-layer fully-connected neural network consisting of (256,
256) hidden units in HalfCheetah and Humanoid tasks.
Function Number of nodes Task

µ(x) (dimX , 256, 256, dimU) HalfCheetah and Humanoid

(dimX , 100, 100, dimU) Other tasks

σ (x) (dimX , 100, dimU) All tasks

r(x) (dimX , 100, 100, 1) All tasks

V (x) (dimX , 256, 256, 1) HalfCheetah and Humanoid

(dimX , 100, 100, 1) Other tasks

Q (x, u) (dimX + dimU , 256, 256, 1) HalfCheetah and Humanoid

(dimX + dimU , 100, 100, 1) Other tasks

g(x) (dimX , 100, 100, 1) All tasks

D(x, u) (dimX + dimU , 256, 256, 1) HalfCheetah and Humanoid

(dimX + dimU , 100, 100, 1) Other tasks

of interactions with the environment in the logarithmic scale.
ERIL, Sasaki, DAC, and SAM have considerably better sample
efficiency than BC and GAIL in all the MuJoCo control tasks. In
particular, ERIL performed consistently across all the tasks and
outperformed the baseline methods in each one. DAC outper-
formed Sasaki and SAM in Walker2d, HalfCheetah, and Ant, and
its performance was competitive with that of Hopper, Reacher,
and Humanoid. Sasaki achieved better performance than SAM in
Walker2D, and there was no significant difference between Sasaki
and SAM in our implementation. GAIL was not very competitive
because the on-policy TRPO algorithm used in its forward RL step
could not use the technique of experience replay.

Fig. 4 shows the normalized return of the evaluation rollout of
the six algorithms with respect to the number of demonstrations.
ERIL, Sasaki, DAC, and SAM were more sample-efficient than BC
and GAIL. ERIL was consistently one of the most sample-efficient
algorithms when the number of demonstrations was small. DAC’s
performance was comparable to that of ERIL. SAM showed com-
parable performance to ERIL in Hopper, but its normalized re-
turn was worse than ERIL when the number of demonstrations
was limited. Although the BC implemented in this paper did
not consider the covariate shift problem, the normalized return
approached 1.0 with 25 demonstrations. Note that BC is an M-
projection that avoids π L

= 0 whenever πE > 0. Therefore,
the policy trained by BC is averaged over several modes, even if
it is approximated by a Gaussian distribution. On the contrary,
ERIL is an I-projection that forces π L to be zero even if πE >

. Although the policy trained by ERIL concentrates on a single
ode, BC obtained a comparable policy to ERIL because the expert
olicy obtained by TRPO was also approximated by the Gaussian
istribution.

.3. Ablation study

Next we investigate which ERIL component contributed most
o its performance by an ablation study on the Ant environment.
e tested five different components:

1. ERIL without the first discriminator, i.e., we set gk(x) = 0
for all x.

2. ERIL without sharing the state value function between the
forward and inverse RLs. The forward RL step updates the
policy with reward rk(x).

3. ERIL without sharing the state value function between the
forward and inverse RL. The forward RL step updates the
policy with shaping reward rk(x)+γVk(x′)−Vk(x) for state
transition (x, x′).
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Fig. 3. Performance with respect to number of interactions in MuJoCo tasks: Solid lines represent average values, and shaded areas correspond to ±1 standard
deviation region.
Fig. 4. Performance with respect to number of trajectories provided by expert in MuJoCo tasks: Solid lines represent average values, and shaded areas correspond
o ±1 standard deviation region.
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4. ERIL without sharing the hyperparameters. We set β = 0
and κ = 0 in Eq. (20), and the β and η of the forward RL
step are used as they are.

5. ERIL without the soft Bellman equation. Discriminator
D(3)
k (x, u, x′) is defined by

D(3)
k (x, u, x′) =

1
,

1+ exp(−hk(x, u, x′))
145
where hk(x, u, x′) is directly implemented by a neural net-
work. Then the reward function is computed by r =
− lnD(3)

k (x, u, x′)+ ln(1− D(3)
k (x, u, x′)) like AIRL.

Fig. 5 compares the learning curves. In the benchmark tasks,
e found no significant difference between the original ERIL and
he ERIL without the first discriminator. One possible reason is
hat gk(x) did not change the policy gradient, as we explained in
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Fig. 5. Comparison of learning curves in ablation study.

Section 4.3. The other reason might be that gk(x) was close to
ero because the state distributions of the experts and learners
id not differ significantly due to the small variation of the initial
tates. Regarding the property of sharing the state value function,
he results depended on how the reward was calculated from
he results of the inverse RL step. When the policy was trained
ith rk(x), it took longer steps to reach the performance of the
riginal ERIL. On the other hand, if the reward is calculated by
he form of the shaping reward, there was no significant differ-
nce compared with the original ERIL. When we removed the
yperparameters from the second discriminator, slower learning
esulted. The ERIL without the soft Bellman equation was the
ost inefficient sample in the early stage of learning for several

easons. One is that the discriminator is larger than the original
RIL because it was defined in the joint space of the state, the
ction, and the next state. As a result, it required more samples for
raining the discriminator. The second reason is that there were
o hyperparameters.

. Real robot experiment

We further investigated the role of the first discriminator
y conducting a robot experiment in which the learner’s initial
istribution differs from the expert’s initial distribution.

.1. Task description

We performed a reaching task defined as controlling the
nd-effector to a target position. We used an upper-body robot
alled Nextage developed and manufactured by Kawada Indus-
ries, Inc.(Fig. 6(a)). Nextage has a head with two cameras, a torso,
wo 6-axis manipulators, and two cameras attached to its end-
ffectors. We used the left arm, a camera mounted on it, and
he left camera on the head in this task. The head pose was
ixed during the experiments. There were two colored blocks as
bstacles and one metal can that indicated the goal position in the
orkspace. We prepared several environmental configurations by
hanging the arm’s initial pose, the can’s location, and the height
f the blocks. To evaluate the effect of the first discriminator, we
onsidered the six initial poses shown in Fig. 6(b). The expert
gent controlled the arm with three different initial poses, and
he learning agent controlled it with five different initial poses,
ncluding the expert’s initial poses. One pose was used to evaluate
he learned policies. We prepared blocks of two different heights.
 p

146
Three goal positions were set: two for training and one for testing.
The environmental configurations were constructed as follows:

• Expert configuration: An initial pose and a target pose were
selected from three possible poses (black-filled circle) and
two possible poses (black-filled squares), shown in Fig. 6(b).
We randomly chose the short blocks and the tall ones.
Consequently, there were 3× 2× 2 = 12 configurations.
• Learner’s configuration: An initial pose and a target pose

were selected from five possible poses (black-filled circle
and black-empty circle) and two possible poses (black-filled
square). We randomly chose short blocks and tall ones.
Consequently, there were 5×2×2 = 20 configurations. Note
that eight configurations were not included in the expert
configuration.
• Test configuration: An initial pose was the red-filled circle

shown in Fig. 6(b). The red-filled square represents the
target position. There were 1× 2× 2 = 4 configurations.

We used MoveIt! (Chitta, Sucan, & Cousins, 2012), which is the
ost widely used software for motion planning, to create expert
emonstrations using the geometric information of the metal can
nd the colored blocks. Such information was not available for
earning the algorithms. MoveIt! generated 20 trajectories for ev-
ry expert configuration. We recorded the RGB images and joint
ngles. The sequence of the joint angles was almost deterministic,
ut that of the RGB images was stochastic and noisy due to the
ighting conditions.

The state of this task consists of six joint angles, {θi}6i=1, of the
eft arm and two 84 × 84 RGB images, Ihead and Ihand, captured
y Nextage’s cameras. The action is given by the changes in
he joint angle from previous position {∆θi}

6
i=1, where ∆θi is

he change in the joint angle from the previous position of the
th joint. We provided a deep convolutional encoder to find an
ppropriate representation from the pixels based on a previous
tudy (Yarats et al., 2020). Fig. 7(a) shows the relationship among
he networks used in the experiment. The policy, the reward,
he state value, the state–action value, and the first discriminator
hared the encoder network. The encoder maps captured images
head and Ihand to latent variable z: enc(Ihead, Ihand) = z . Then
t was concatenated with the joint angles for the input of the
irst discriminator, the reward, and the state value function. The
ction vector is also added to the policy and the state–action
alue function. The decoder is introduced to train the encoder.
ig. 7(b) shows the network architecture of the encoder network.
Based on a suggestion inferred from research by Yarats et al.

2020), we used a deterministic Regularized Autoencoder (RAE)
Ghosh, Sajjadi, Vergari, Black, & Scholkopf, 2020), which imposed
n L2 penalty on learned representation z and a weight-decay
n the decoder parameters. We prevented the gradients of the
olicy and the state–action value function from updating the
onvolutional encoder, another idea borrowed from Yarats et al.
2020). See Appendix B for details.

.2. Experimental results

We compared the normal ERIL with (1) the ERIL without the
irst discriminator, (2) DAC, (3) AIRL, and (4) BC. To measure the
erformances, we considered a synthetic reward function given
y

= exp

(
−
∥pt − pg∥

2
2

σ 2

)
,

here pt and pg denote the end-effector’s current and the target
osition. Parameter σ was set to 5. Note that TRPO could not find
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a

Fig. 6. Real robot setting: (a) environment of reaching task, which moves end-effector of left arm to target position; (b) possible environmental configuration.
Fig. 7. Neural networks used in robot experiment: (a) architecture for policy, reward, state value, state–action value, and first discriminator, sharing the encoder;
(b) architecture for encoder: Conv. denotes a convolutional neural network. ‘‘nc’’ denotes ‘‘n channels’’.
Fig. 8. Performance with respect to number of interactions in real robot
experiment.

an optimal policy from the synthetic reward due to the sparseness
of the reward.

The averaged learning results based on the three experiments
re shown in Fig. 8. The most sample-efficient method was ERIL,
147
which achieved the best asymptotic performance. ERIL without
the first discriminator and DAC learned efficiently at the early
stage of learning, but their asymptotic performances were worse
than that of ERIL. AIRL also achieved the same performance
as ERIL without the first discriminator and DAC at the end of
learning, and BC achieved the worse performance.

To evaluate the learned policies, we computed NLL for the
trajectories generated by MoveIt!. Fig. 9 compares the NLL for the
learning configuration (starting from two positions not included
in the expert configuration) and those for the test configuration.
Note that g(x) ̸= 0 for these initial positions in the learning
configuration. ERIL obtained a smaller NLL than other methods
for both the configurations, suggesting that the policy obtained by
ERIL was closer to that of MoveIt!. We found that ERIL assigned a
small reward value close to zero around these positions because
the first discriminator was more dominant than the second one.
These results suggest that the first discriminator plays a role
when the learner’s initial distribution differs from the expert one.

7. Human behavior analysis

7.1. Task description

Next we evaluated ERIL in a realistic situation by conducting
a dynamic motor control experiment in which a human subject
solved a planar pole-balancing problem. Fig. 10(a) shows the
experimental setup. The subject can move the base in the left,
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Fig. 9. Comparison of NLL in real robot experiment: ‘‘ERIL w/o D(1)’’ denotes
RIL without first discriminator. Note that smaller NLL values indicate a better
it.

ight, top, and bottom directions to swing the pole several times
nd decelerate it to balance it in the upright position. As shown in
ig. 10(b), the dynamics are described by a six-dimensional state
ector, x = [θ, θ̇ , x, ẋ, z, ż]⊤, where θ and θ̇ are the angle and the

angular velocity of the pole, x and z are the horizontal and vertical
ositions of the base, and ẋ and ż are their time derivatives. The
tate variables are defined in the following ranges: θ ∈ [−π, π]

in [rad]), θ̇ ∈ [−4π, 4π ] (in [rad/s]), x ∈ [0, 639] (in [pixel]),
˙ ∈ [−5, 5] (in [pixel/s]), z ∈ [0, 319] (in [pixel]), and ż ∈ [−5, 5]
(in [pixel/s]). Note that no applied forces Fx and Fz were observed
on the pendulum in Fig. 10 in this experiment.

The task was performed under two pole conditions: long
(73 cm) and short (29 cm). Each subject had 15 trials to balance
the pole in each condition after some practice. Each trial ended
when the subject could keep the pole upright for three seconds
or after 40 s had elapsed. We collected data from seven subjects
(five right-handed and two left-handed). We used a trajectory-
based sampling method to construct the following three expert
datasets: DE

i,j,tr for training, DE
i,j,va for validation, and DE

i,j,te for
testing the ith subject. Subscript j indicates 1 for the long-pole
onditions and 2 for the short-pole conditions.
Since we had multiple experts whose actions were unavail-

ble, we used the extended ERIL described in Section 4.5. We
ugmented the ERIL functions by a seven-dimensional conditional
ne-hot vector c and evaluated two ERIL variations. One is where
he second discriminator was replaced by the LogReg-IRL by
etting κ−1 = 0. This method is called ERIL(κ−1 = 0). The other
is the ERIL with IDM, in which the expert action is estimated by
the inverse dynamics model. The two ERILs were compared with
148
Table 2
Neural network architectures used in pole-balancing task: For ex-
ample, V (x) is approximated by a two-layer fully-connected neural
network consisting of (256, 256) hidden units in HalfCheetah and
Humanoid tasks.
Function Number of nodes

µ(x, c) (dimX + dim c , 100, dimU)
σ (x, c) (dimX + dim c , 50, dimU)
m(x, c) (dimX + dim c , 50, dimX )
V (x, c) (dimX + dim c , 100, 1)
Q (x, u, c) (dimX + dimU + dim c , 256, 1)
g(x, c) (dimX + dim c , 50, 1)
D(x, c) (dimX + dim c , 100, 1)
D(x, x′, c) (2× dimX + dim c , 256, 1)

GAIfO, IRLGAN, and BCO. Since the two ERILs, GAIfO, and IRLGAN
improved the policy by forward RL, they require a simulator of the
environment. We modeled the dynamics shown in Fig. 10(b) as an
X–Z inverted pendulum (Wang, 2012). The physical parameters
and the motion of the equations are provided in Appendix C.1.

We parameterized the log of the reward function as a quadratic
function of the nonlinear features of the state:

ln rk(x, c) = −
1
2
(x−m(x, c))⊤P(x, c)(x−m(x, c)),

here c is a vector encoding the subject index and condition. c
s a concatenation of c s and cc that denotes the one-hot vector to
ncode the subject and the condition. Since we had seven subjects
nd two experimental conditions, c was a seven-dimensional
ector. P(x, c) is a positive definite square matrix, parameterized
y P(x, c) = L(x, c)L(x, c)⊤, where L(x, c) is a lower triangular
atrix. The L(x, c) element is a linear output layer of the neural
etwork with exponentially transformed diagonal terms. Table 2
hows the network architecture. As discriminators, note that
RLGAN uses D(x, c), and GAIfO uses D(x, x′, c).

.2. Experimental results

Fig. 11 shows the learning curves of the seven subjects, in-
icating quite different learning processes. Subject 7 achieved
he best performance for both conditions, and subjects 1 and 3
ailed to accomplish the task. Subjects 1 and 5 performed well
n the long-pole condition, but they failed to balance the pole
n the upright position. Although the trajectories generated by
ubjects 1 and 3 were unsuccessful, we used their data as the
xpert trajectories.
To evaluate the algorithms, we computed the NLL for test

atasets DE
i,te:

LL(i, j) = −
1

NE

NE
i,j,te∑

lnπ L(x′ℓ | xℓ, c i,j),

i,te ℓ=1
Fig. 10. Inverted pendulum task solved by a human subject: (a) start and goal positions; (b) state representation. Notations are explained in Appendix C.1.
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Fig. 11. Learning curves of seven subjects: blue: long pole; red: short pole. Trial is considered a failure if subject cannot balance pole in upright position within 40
[s]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
t

Fig. 12. Comparison of NLL among imitation learning algorithms: Note that
smaller NLL values indicate a better fit.

where NE
i,te is the number of samples in DE

i,te. c i,j = [c
s
i , c

c
j ] is the

onditioning vector, where c i represents that the ith element is 1
nd otherwise 0. See Appendix C.2 for an evaluation of the state
ransition probability. Fig. 12 shows that ERIL(κ−1 = 0) obtained
smaller NLL than the other baselines for both conditions. Note

hat the data in the expert dataset were not even sub-optimal
ecause Subjects 3 and 5 did not fully accomplish the balancing
ask (Fig. 11). The ERIL with IDM achieved comparable perfor-
ance to ERIL (κ−1 = 0) in the long-pole condition, but a lower
erformance in the short-pole condition. This result suggests
hat data augmentation by IDM did not help the discriminator’s
raining. BCO also augmented the data by IDM, but its NLL was
igher than ERIL with IDM. Compared to the IRLGAN and GAIfO
esults, our methods efficiently represented the policy of the
xperts, indicating that the structure of the ERIL’s discriminator
as critical even if expert actions were unavailable.
Fig. 13 shows the reward function of Subjects 2, 4, and 7,

stimated by ERIL(κ−1 = 0), which was projected to subspace
θ, θ̇ ); x, z, ẋ and ż were set to zero for visualization. Although
hey balanced the pole in the long-pole condition, their estimated
ewards differed. In the case of Subject 7, the reward function
149
of the long-pole condition was about the same as the short-
pole condition, although there was a significant difference in the
results of Subject 4, who did not perform well in the short-pole
condition (Fig. 11).

Finally, we computed NLL where the policy of the ith subject
was evaluated by the test dataset of the jth subject. Fig. 14 shows
he ERIL (κ−1 = 0), GAIfO, and BCO results. In the upper row, we
used the test dataset of Subject 4 in the long-pole condition. For
instance, the upper left figure shows the set of NLL computed by

NLL(i, j) = −
1

NE
4,1,te

NE
4,1,te∑
ℓ=1

lnπ L(x′ℓ | xℓ, c i,j).

Note that the test dataset and the training data were inconsistent
when i ̸= 4 and j ̸= 1. The minimum NLL was achieved when the
conditioning vector was set properly (i.e., i = 4 and j = 1). On
the other hand, the policy of Subject 4 in the short-pole condition
(i = 4 and j = 2) did not fit the test data well in the long-
pole condition, suggesting that Subject 4 used different reward
functions for different poles.

The bottom row in the figures shows the results when we
used the test dataset of Subject 7 in the long-pole condition.
The minimum NLL was achieved by a proper conditioning vector.
Unlike the case of Subject 4, ERIL (κ−1 = 0) found that the policy
for the short-pole condition (i = 7 and j = 2) also achieved better
performance with no significant differences. These results suggest
that Subject 7, who was the best performer, used similar reward
functions for both poles. No such property was found in GAIfO
and BCO.

8. Discussion

8.1. Hyperparameter settings

ERIL has two hyperparameters, κ and η. As with a standard
RL, efficiency and performance depend on how the hyperparam-
eters are tuned during learning (Henderson, Islam et al., 2018;
Zhang et al., 2021). Kozuno et al. (2019) showed that one hy-
perparameter derived from κ and η controlled the tradeoff be-
tween the noise tolerance and the convergence rate, and beta
controls the quality of the asymptotic performance from the
viewpoint of the forward RL setting. We adopted a simple grid
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Fig. 13. Estimated reward function of Subjects 2, 4, and 7 projected to subspace (θ, ω), ω = dθ/dt .
Fig. 14. Comparison of NLL when condition of test dataset was different from training one in human inverted pendulum task. Figs. in upper row (a, b, and c) show
esults when test dataset is DE

4,1,te . Figs. in lower row (d, e, and f) show results when test dataset is DE
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earch method to tune the hyperparameters for every task, al-
hough naive grid search methods are sample inefficient and
omputationally expensive.
One possible way to tune the hyperparameters is to evalu-

te multiple hyperparameters and update them using a genetic
lgorithm-like method (Elfwing, Uchibe, & Doya, 2018; Jaderberg
t al., 2017). A later version of SAC (Haarnoja, Zhou, Hartikainen
t al., 2018) updates the hyperparameter that corresponds to
he κ of ERIL by a simple gradient descent algorithm. Lee,
ee, Vrancx, Kim, and Kim (2020) optimized the state-dependent
yperparameter that corresponds to η by the hypergradient on
150
he validation data. Their methods will be helpful for the forward
L step.
However, the ERIL hyperparameters play a different role. The
of ERIL, which is the coefficient of the entropy term of the

xpert policy, should be determined by the properties of the
xpert policy. On the other hand, the κ of entropy-regularized
L, which is the coefficient of the learner’s policy, determines the
oftness of the max operator of the Bellman optimality equation.
he η of ERIL is the coefficient of the KL divergence between the
xpert and the learner policies, and the entropy-regularized RL is
he coefficient of the KL divergence between the learner’s current
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olicy and the previous one. Tuning hyperparameters is future
esearch.

.2. Kinesthetic teaching

ERIL assumes that experts and learners have identical state
ransition probabilities. Therefore, the log-ratios of joint distri-
utions can be decomposed into the sum of the policies and
he state distributions. However, this assumption limits ERIL’s
pplicability. For example, for a humanoid robot to imitate human
xpert behavior, the expert must demonstrate by kinesthetic
eaching. To do so, the robot’s gravity compensation mode is
ctivated, and the expert must guide the robot’s body to execute
he task. Since this might not be a natural behavior for the expert,
inesthetic teaching is neither a practical nor a viable option to
rovide demonstrations.
To overcome this problem, we should consider the log-ratio

etween the state transitions of experts and learners. The log-
atio can be estimated by the density ratio estimation methods,
s we did for the first discriminator. We plan to modify ERIL to
ncorporate the third discriminator.

. Conclusion

This paper presented ERIL, which is entropy-regularized imita-
ion learning based on forward and inverse reinforcement learn-
ng. Unlike previous methods, the update rules of the forward
nd inverse RL steps are derived from the same soft Bellman
quation, and the state value function and hyperparameters are
hared between the inverse and forward RL steps. The inverse RL
tep is done by training two binary classifiers, one of which is
onstructed by the reward function, the state value function, and
he learner’s policy. Therefore, the state value function estimated
y the inverse RL step is used to initialize the state value function
f the forward RL step. The state value function updated by the
orward RL step also provides an initial state value function of the
nverse RL step.

Experimental results of the MuJoCo control benchmarks show
hat ERIL was more sample-efficient than the modern off-policy
mitation learning algorithms in terms of environmental inter-
ctions in the forward RL step. We also showed that ERIL got
etter asymptotic performance in a vision-based, target-reaching
ask whose experimental results demonstrated the importance of
he first discriminator, which does not appear in other imitation
earning methods. ERIL also showed comparable performance in
erms of the number of demonstrations provided by the expert. In
ole-balancing experiments, we showed how ERIL can be applied
o the analysis of human behaviors.
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Appendix A. Derivation

A.1. Derivation of Eq. (19)

Since we assume that agent-environment interaction is mod-
eled as a Markov decision process, joint distribution is decom-
posed by Eq. (14). The log of the density ratio is given by

ln
π L
k (x, u, x′)

πE(x, u, x′)
= ln

π L
k (u | x)

πE(u | x)
+ ln

π L
k (x)

πE(x)
. (A.1)

ssign selector variable L = 1 to the samples from the learner at
he kth iteration and L = −1 to the samples from the expert:

π L
k (x) ≜ Pr(x | L = 1),
E(x) ≜ Pr(x | L = −1) = 1− π L

k (x).

hen the first discriminator is represented by

(1)
k (x) ≜

Pr(L = 1 | x) Pr(L = 1)
Pr(x)

.

We obtain the following log of the density ratio:

ln
π L
k (x)

πE(x)
= ln

D(1)
k (x)

1− D(1)
k (x)

− ln
Pr(L = 1)
Pr(L = −1)

. (A.2)

The log of density ratio lnπ L
k (x, u, x′)/π L(x, u, x′) is represented

y second discriminator D(2)
k (x, u, x′) in the same way. Substitut-

ng the above results and Eq. (18) into Eq. (A.1) yields Eq. (19).

.2. Derivation of Eq. (29)

The probability ratio of the learner and expert samples is sim-
ly estimated by the ratio of the number of samples (Sugiyama
t al., 2012):

n
Pr(L = 1)
Pr(L = −1)

≈ ln
|DL
|

|DE |
.

hen |DL
| = |DE

|, exp(gk(x)) represents the following density
atio:

xp(gk(x)) = π L
k (x)/π

E(x).

rranging Eq. (23) yields

(2)(x, u) =
π L
k (u | x)

exp(−gk(x))π̃E(u | x)+ π L
k (u | x)

,

nd we immediately obtain Eq. (29). When term exp(−gk(x)) is ig-
nored, D(2)(x, u) represents the optimal discriminator conditioned
on the state.

Appendix B. Deterministic regularized autoencoders

This appendix briefly explains the deterministic RAE (Ghosh
et al., 2020). For notational brevity, captured images and latent
variables are denoted by x and z . Suppose that the encoder
network is given by mean µe and covariance parameters σe:

E(x) = µe(x)+ σe(x)⊙ ϵ, ϵ ∼ N (0, I),

where ⊙ denotes the Hadamard product. I is the identity matrix.
The decoder network is also given by µd and σd in the same way.
The loss function of RAE is given by

JRAE(we, wd) = Ex∼D
[
∥x− µd(E(x))∥

2
2 + λ2∥z∥22 + λd∥wd∥

2
2

]
,

here λe and λd are hyperparameters. We set λe = 10−6 and
d = 10−7 according to a previous work (Yarats et al., 2020). Vari-
bles we and wd represent the network weights of the encoder
nd the decoder.
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ppendix C. Notes on the pole-balancing problem

.1. Equations of motion

Fig. 10(b) shows the X–Z inverted pendulum on a pivot driven
y horizontal and vertical forces. We used the equations of mo-
ion given in a previous work (Wang, 2012):

M(M +m)ẍ = Mmlθ̇2 sin θ + (M +m cos2 θ )Fx −mFz sin θ cos θ,

M(M +m)z̈ = Mmlθ̇2 cos θ − (M +m sin2 θ )Fz − g, (C.1)
Mlθ̈ = −Fx cos θ + Fz sin θ,

where (x, z) is the position of the pivot in the xoz coordinate
and (ẋ, ż) and (ẍ, z̈) are the speed and acceleration. M and m are
the mass of the pivot and the pendulum. l is the distance from
the pivot to the center of the pendulum’s mass. g denotes the
gravitational acceleration. Fx and Fz are the horizontal and vertical
forces.

The state vector is given by a three-dimensional vector, x =
[x, ẋ, z, ż, θ, θ̇ ]⊤, and the action is represented by a two-
dimensional vector, u = [Fx, Fz]⊤. To implement the simulation,
he time axis is discretized by h = 0.01 [s]. The parameters of
he X–Z inverted pendulum are described below: M = 0.85 [kg],
m = 0.30 [kg] (long pole) or 0.12 [kg] (short pole), and l = 0.73
[m] (long pole) or 0.29 [m] (short pole). g = 9.81 [m/s2]. The
inertia of the pendulum is negligible.

C.2. Evaluation of state transition probability

Since no action is available in the pole-balancing task, the
learner’s policy cannot be used for evaluation. We exploit the
property where a linear transformation of a multivariate Gaussian
random vector has a multivariate Gaussian distribution because
the policy in this study is also represented by a Gaussian distri-
bution. Using a first-order Taylor expansion, the time-discretized
version of Eq. (C.1) can be expressed by xt+1 = Atxt + Btut .
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