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Inverted harmonic oscillator dynamics of the nonequilibrium phase transition in the Dicke model
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We show how the dynamics of the Dicke model after a quench from the ground-state configuration of the
normal phase into the superradiant phase can be described for a limited time by a simple inverted harmonic
oscillator model and that this limited time approaches infinity in the thermodynamic limit. Although we
specifically discuss the Dicke model, the presented mechanism can also be used to describe dynamical quantum
phase transitions in other systems and presents an opportunity for simulations of physical phenomena associated
with an inverted harmonic oscillator.
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I. INTRODUCTION

Quantum phase transitions describe abrupt changes of a
system’s properties while varying physical parameters, such
as magnetization, at absolute zero temperature [1]. Depend-
ing on how fast the parameter is being changed, one can
distinguish equilibrium and nonequilibrium quantum phase
transitions and despite an almost dialectical relationship be-
tween these two types [2], the nonequilibrium one remains
less well understood compared to the equilibrium one [3–6].
The typical framework for studying nonequilibrium quantum
phase transitions is a sudden change of some physical pa-
rameter in the Hamiltonian [7–13]. After such a quench, a
system that was initially prepared in the ground state becomes
a superposition of eigenstates of the quenched Hamiltonian
which subsequently drives the evolution. In a complex system,
such as the Dicke model, which consists of a collective spin
coupled to a harmonic oscillator [14], one could expect a
quench to lead to a complicated dynamical behavior, in certain
cases, behavior with signatures of quantum chaos [15–18].

In this work we show that for a limited and quantifiable
time the dynamics after a quench can be mapped to the dy-
namics of a simple inverted harmonic oscillator [19,20]. Our
model is based on an effective Hamiltonian that cannot be
used to fully describe the equilibrium states [21,22]. How-
ever, we show that it correctly describes the dynamics for a
limited time and under certain conditions. In fact, we show
that in the thermodynamic limit the nonequilibrium Dicke
phase transition becomes equivalent to a harmonic oscillator
with a tunable frequency on both sides of the phase transition.
By manipulating the parameters of the system and the spin
polarization of the initial state, this tunable frequency can
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change from being purely real (normal phase), through being
zero (critical point), to being purely imaginary (superradiant
phase). Using state-of-the-art tools from quantum simulation
[23,24], we give a precise description of how to observe the
physics of the inverted oscillator even far away from the
thermodynamic limit. Moreover, our proposal provides an
opportunity for simulations of physical phenomena associated
with an inverted harmonic oscillator [20].

II. DICKE MODEL

The Dicke model is a paradigmatic model describing the
interaction of N spin- 1

2 systems (in general, two-level sys-
tems) with an energy splitting of � with a single-mode field
of frequency ω [14,25–28]. Its Hamiltonian can be written as
(we set h̄ = 1 throughout the paper)

Ĥ = ωâ†â + �Ŝz + g√
N

(â + â†)Ŝx, (1)

where we have used the collective spin operators Ŝi =∑N
n=1 σ̂

(n)
i /2, with σ̂

(n)
i the ith Pauli matrix of the nth spin,

and bosonic field creation and annihilation operators â† and
â, respectively, satisfying the bosonic commutation relations
[â, â†] = 1̂. The parameter g quantifies the collective inter-
action of N spins with the single-mode field. At a critical
coupling strength g = gc ≡ √

ω� in the limit of
√

�N/ω →
∞ the Dicke model exhibits a quantum phase transition into
a superradiant state. For N → ∞ this limit becomes thermo-
dynamic [14], which means that the quantum phase transition
occurs for an arbitrary but finite ratio of �/ω. To gain more
insight into the dynamics one can apply the unitary transfor-
mation Û = exp[i(g/

√
N�)(â + â†)Ŝy] to the Hamiltonian in

Eq. (1) and obtain an effective description [22,29]

Ĥeff � ωâ†â + �Ŝz + g2

2�N
(â + â†)2Ŝz, (2)

which is exact in the limit of
√

�N/ω → ∞. However, it
is generally believed that this effective Hamiltonian is only
applicable in the normal phase when g < gc [22]. As the
energy gap is given by ω

√
1 − g2/g2

c, the ground-state energy
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(a) (b) (c)

FIG. 1. Logarithm of the average number of photons as a function of g/gc and t for (a)
√

�N/ω = 100, (b)
√

�N/ω ≈ 31.6, and
(c)

√
�N/ω = 10. The black dashed line corresponds to the critical coupling in the thermodynamic limit. White regions correspond to

unreliable numerical simulations after the boundary of the Hilbert space (set to n = 3000) has been reached. For simplicity, in the numerical
simulations we set N = 1.

of the effective Hamiltonian is imaginary for g > gc and a
different effective description has to be employed in the super-
radiant phase. However, in this work we argue that, following
a quench from the ground state in the normal phase to the
superradiant phase in the thermodynamic limit, the effective
Hamiltonian from Eq. (2) can also be the correct description
in the superradiant phase as in the latter the ground-state
energy tends to −∞ (similarly to the Holstein-Primakoff rep-
resentation of the Dicke model [30]). Moreover, even away
from the thermodynamic limit (

√
�N/ω � 1), one can use

the Hamiltonian (2) to describe the dynamics following a
sudden quench to g > gc for times shorter than some critical
time related to the initial state and energy of the ground state
in the superradiant phase.

The initial state (ground state for g = 0) consists of the
vacuum state of the field |0〉 (â|0〉 = 0) and the collective
spin-down state, which is the eigenstate of the Ŝz operator
with minimal eigenvalue, i.e., Ŝz|ψ〉 = −N

2 |ψ〉. It can be eas-
ily checked that the transformation Û = exp[i(g/

√
N�)(â +

â†)Ŝy] leaves that state unchanged once (ω/�)(g2/g2
c) 
 1

(see Appendix A for a derivation). Therefore, since the effec-
tive Hamiltonian conserves the projection of the spin onto the
z axis, we can replace the operator with its lowest eigenvalue
leading to

Ĥ =
(

ω − g2

2�

)
â†â − g2

4�
(â2 + â†2). (3)

The above Hamiltonian describes a single-mode field with a
modified frequency ω − g2/2� which is being squeezed with
a strength equal to g2/2�. Both quantities are independent of
N and the two noncommuting mechanisms give rise to rich
physics. We now consider a sudden quench from g = 0 to
some nonzero g. For g below the critical value, the vacuum
state is being squeezed and the number of photons increases
[31]. However, the additional rotation mechanism causes the
state to unsqueeze after a π/2 rotation and returns it to the
vacuum with no photons (see Appendix C). When g ap-
proaches the critical value, the squeezing mechanism becomes
dominant exactly at the critical point g = gc [note that at
the critical point the first term in Hamiltonian (3) does not
vanish] and the initial vacuum state starts to get squeezed
more and more with further increasing g. This can be seen
in Fig. 1, where we plot the average number of photons as

a function of g/gc and t for various ratios of
√

�N/ω and
for an initial vacuum state evolved with the Hamiltonian from
Eq. (1). Looking at Fig. 1, we can identify parameter regions
of squeezing rotation (oscillations of the number of photons)
below the critical point and for the case of

√
�N/ω very large

[see Fig. 1(a)] continuous squeezing (increase of the number
of photons) above the critical point. Note that white regions in
this plot correspond to unreliable numerical simulations after
the boundary of the Hilbert space (set to n = 3000) has been
reached due to the large increase in photon production. How-
ever, going away from the limit

√
�N/ω → ∞ [see Figs. 1(b)

and 1(c)], the number of photons does not continuously in-
crease in the superradiant regime, which puts a limit on the
time for which the effective Hamiltonian from Eq. (2) can
be used to describe the dynamics governed by Eq. (1) for
g > gc. The limiting time is heralded when the growth of the
photon number slows down. However, for a limited time the
Hamiltonian from Eq. (2) gives rise to the correct qualitative
behavior even if g > gc. Before discussing the time limitation
for that description let us now have a look at the system from
another perspective.

III. INVERTED HARMONIC OSCILLATOR

Additional insight can be gained by rewriting the Hamil-
tonian (3) in terms of the pseudoposition and pseudomo-
mentum operators (quadratures) X̂ = (â + â†)/

√
2 and P̂ =

(â − â†)/
√

2i, respectively, as

Ĥ = ω

2
P̂2 + 1

2ω

(
ω2 − ωg2

�

)
X̂ 2. (4)

This shows that the system dynamics behaves as a particle
with mass 1/ω in a harmonic oscillator potential of frequency
ω

√
1 − g2/g2

c. If g < gc the frequency is real and the energy
gap above the ground state is proportional to ω

√
1 − g2/g2

c.
If g > gc the frequency becomes purely imaginary and the
energy gap cannot be defined as there is no ground state of
the Hamiltonian. In other words, for a quench from the g = 0
ground state, the Dicke model in the thermodynamic limit
becomes an inverted harmonic oscillator in the superradiant
phase. With this picture in mind, we can easily explain the
dynamics seen in the preceding section. As the coupling pa-
rameter is increased towards the critical value the frequency
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of the oscillations (squeezing rotation) decreases, which
corresponds to the harmonic potential being flattened. At the
critical point g = gc the frequency of the oscillations becomes
zero as the harmonic potential becomes completely flat (free
particle). As the coupling becomes greater than the critical
coupling the frequency becomes purely imaginary or, in other
words, the harmonic potential flips upside down, giving rise
to an unbounded fall (squeezing). However, away from the
thermodynamic limit, i.e., when

√
�N/ω � 1, this picture

only applies for finite periods, and we will attempt to clarify
the limitations in the following.

IV. CONNECTOR OPERATOR

As discussed in the Introduction, we will use the tools from
quantum simulation theory [23,24] to get a deeper understand-
ing of how applicable the inverted harmonic oscillator picture
is. The condition for a quantum simulator can be expressed as

〈ψ |eiĤQSt e−iĤTt |ψ〉 = 〈ψ |eiĥ(t )|ψ〉 = eiξ (t ), (5)

where ĤQS and ĤT are the simulator and target Hamiltonian,
respectively, ξ (t ) is a real-valued function of time, and ĥ(t )
is the connector operator which can be expressed using the
Baker-Campbell-Hausdorff formula as

ĥ(t ) = t (ĤQS − ĤT) + it2

2
[ĤQS,−ĤT] + · · · , (6)

where [·, ·] stands for the commutator and the ellipsis indi-
cates terms involving higher-order commutators of ĤQS and
ĤT. In general, for states |ψ〉 which are eigenstates of h(t )
but not eigenstates of ĤQS and ĤT, the two Hamiltonians
will realize the same dynamics. For the Dicke model (1) and
the effective description from Eq. (2), the connector operator
becomes exactly 0 in the thermodynamic limit. However, for
a limited time the connector operator also converges to 0,
indicating the transitional validity of the Hamiltonian (2).

The condition for the time during which the Hamiltonian
(2) is valid can be expressed as a relation between the instanta-
neous average number of photons and the number of photons
in the ground state of the Dicke model. The latter can be cal-
culated by rewriting the Hamiltonian using the pseudoposition
and pseudomomentum operators

Ĥ = ω

2
p̂2 + ω

2
x̂2 + �Ŝz +

√
2g√
N

x̂Ŝx. (7)

The part containing the spin operators can be easily diagonal-
ized and its ground-state energy can be found to be(

�Ŝz +
√

2g√
N

x̂Ŝx

)
|σ 〉 =

(
−1

2

√
N

√
2g2x̂2 + N�2

)
|σ 〉,

(8)

where |σ 〉 is the spin ground state. Projecting the Hamiltonian
onto the spin ground state yields

Ĥ = ω

2
p̂2 + ω

2
x̂2 − 1

2

√
N

√
2g2x̂2 + N�2. (9)

The above Hamiltonian describes a particle with mass 1/ω

moving in a double-well potential given by V̂ (x) = ω
2 x̂2 −

1
2

√
N

√
2g2x̂2 + N�2. The minima of such an effective poten-

tial can be evaluated to be

x0 = ±
√

N�

2ω

√
g2

g2
c

− g2
c

g2
. (10)

From a simple phenomenological argument (see Fig. 2) the
critical position for the observation of the inverted harmonic
oscillator will be a quarter of the minima position, i.e.,
xc = x0/4.

According to this position, we can establish an energy
relation which has to be satisfied

ω

2
〈p̂2 + x̂2〉 <

ω

2
x̂2

c = ω

32
x̂2

0, (11)

which upon simplification yields

〈â†â〉 <
1

32

N�

ω

(
g2

g2
c

− g2
c

g2

)
. (12)

For a special case of g = √
2gc and initial state being the

vacuum state, we can simplify the condition to sinh2(ωt ) <
3

64 (N�/ω), which for ωt > 1 becomes

t < tc ≡ ln

[√
3

16

√
N�

ω

]
ω−1. (13)

The above time limitations can be intuitively understood
as a time until which the time-evolved state feels the bottom
of the effective double-well potential after a quench out of
the equilibrium position at x = 0 (see Fig. 2). In the ther-
modynamic limit, the overlap increases as the minima of the
double-well potential are located at +∞ and −∞, which

(a) (b)

FIG. 2. Phenomenological condition for simulating the inverted oscillator with the Dicke model. (a) Effective double-well potential (black
solid line) overlaid on an inverted oscillator potential (red dashed line). The black circles indicate the critical position until which both models
agree. (b) The critical position can be translated to a condition on the number of photons which can be related to a critical time for which the
Dicke model can be used as a simulator. This time is indicated by the black circle.
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(a)

(b) (c) (d) (e) (f)

(k)(j)(i)(h)(g)

Im
Im

Re Re Re Re Re

FIG. 3. (a) Comparison between an inverted harmonic oscillator (red dashed line) and the isolated (blue solid line) and open (green dotted
line) Dicke models. The Husimi function of the field for five different values of ωt = {5, 10, 15, 20, 25} is depicted for (b)–(f) isolated dynamics
and (g)–(k) open dynamics. The blue and green dots indicate the bottom of the effective potential for the isolated and open cases, respectively.
In the simulation we have set

√
�N/ω = 100, κ = 0.1ω, γ = 0.01�, g = 1.03gc, and N = 1.

means that the double-well potential becomes in fact identical
to the inverted harmonic oscillator (see Appendix B).

The comparison between the dynamics of the Dicke model
and the inverted oscillator is presented in Fig. 3, where we
show the number of photons as a function of time [Fig. 3(a)]
and squeezing of photons as a function of time for iso-
lated [Figs. 3(b)–3(f)] and open [Figs. 3(b)–3(k)] dynamics
through the Husimi function. For the case of isolated dynam-
ics Figs. 3(b) and 3(c) depict squeezing (exponential growth
of the photon number) due to the inverted harmonic oscillator
potential and its termination as the state starts to feel the
potential minima (blue dots). The slowdown of squeezing and
reaching of the potential minima can be seen in Figs. 3(d)
and 3(e). Finally, Fig. 3(f) depicts antisqueezing (decrease
of the number of photons). For the case of open dynamics
(see Appendix D), we initially observe similar behavior in
Figs. 3(g)–3(i), but with a slower growth of the photon num-
ber. Furthermore, as the system dissipates the energy, the state
cannot climb back to the local maximum located at x = 0 and
eventually becomes an incoherent mixture of two coherent
states with opposite amplitudes (symmetry breaking), which
can be seen in Figs. 3(j) and 3(k).

V. CONCLUSION AND OUTLOOK

We have shown that the dynamics following a quench
from the ground state in the normal phase (g = 0) into the

superradiant phase in the Dicke model can be described by a
model of an inverted harmonic oscillator and argued that in the
thermodynamic limit the Hamiltonian of the system becomes
equivalent to the inverted harmonic oscillator. The test of
results can be readily performed in quantum simulators which
can realize the Dicke model [13,32–38] and in quantum simu-
lators which realize the quantum Rabi model (N = 1) [39,40]
using various platforms including cold atoms [41], trapped
ions [42], superconducting circuits [43], and electrons trapped
in liquid helium [44]. The presented mechanism should also
apply to an arbitrary quantum system exhibiting a quantum
phase transition associated with an effective double-well or
sombrero potential.

The presented idea may be used as a tool to study
quantum phase transitions [1,45], the quantum Kibble-Zurek
mechanism [46–50] both theoretically and experimentally,
and the quantum Lieb-Robinson bound for how fast corre-
lations can spread in a quantum system [11]. The results
of this work can also be applied in quantum metrology
for precise measurements of ω and � [51–53] as well as
for the preparation of squeezed states, simulations of the
inflation of the early universe [54–57], the Unruh effect
[58,59], Hawking radiation [60], quantum chaos [61,62],
and potentially to study many other aspects of physics in
which the inverted harmonic oscillator has been harnessed
as an underlying mechanism (see Ref. [20] for a recent
review).
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Finally, we would like to point out that even though this
model bears a resemblance to the Landau theory of phase
transition [63], the presented description is fully quantum.

ACKNOWLEDGMENTS

Simulations were performed using the open-source Quan-
tumOptics.jl framework in JULIA [64]. K.G. acknowledges
discussions with Friederike Metz, Ayaka Usui, Lewis Ruks,
Farokh Mivehvar, and Michał Bączyk. This work was sup-
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APPENDIX A: INVARIANCE OF THE INITIAL STATE
UNDER TRANSFORMATION

In order to clearly see the effect of the inverted oscil-
lator, the initial state has to remain unaltered under the
transformation

Û = exp

(
i

g√
N�

(â + â†)Ŝy

)
. (A1)

The condition for this to happen can be found by considering
the overlap

〈↓0| exp

(
i

g√
N�

(â + â†)Ŝy

)
|0↓〉, (A2)

where |0↓〉 ≡ |0〉 ⊗ |↓〉 is the ground state of the system for
g = 0. Expanding the exponential function to fourth order (the
higher-order terms can be safely neglected because of 1/N
dependence), we get

〈↓0| exp

(
i

g√
N�

(â + â†)Ŝy

)
|0↓〉

= 〈↓0|0↓〉 + 〈↓0|i g√
N�

(â + â†)Ŝy|0↓〉

+ 〈↓0|i2 g2

N�2
(â + â†)2Ŝ2

y |0↓〉

+ 〈↓0|i3 g3

√
N3�3

(â + â†)3Ŝ3
y |0↓〉

+ 〈↓0|i4 g4

N2�4
(â + â†)4Ŝ4

y |0↓〉 + O

(
g5

√
N5�5

)
.

(A3)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Extension of Fig. 1. (a)–(c) The Dicke model can be used to simulate the physics of (d)–(f) the inverted harmonic oscillator. (g)–(i)
The logarithm of fidelity between the states generated by these two Hamiltonians sets a time limitation for the simulator to work properly.
White regions correspond to unreliable numerical simulations after the boundary of the Hilbert space (set to n = 3000) has been reached.
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(a)

(b) (c) (d) (e) (f)

(k)(j)(i)(h)(g)

Im
Im

Re Re Re Re Re

FIG. 5. Squeezing (photon number) oscillations after the quench to the normal phase (cf. Fig. 6). (a) Number of photons as a function of
time. (b)–(k) Husimi function of the field for ten different values of ωt = {0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2}, respectively, for isolated
dynamics, showing the squeezing oscillations. In the simulation we have set

√
�N/ω = 100, g = 0.9gc, and N = 1.

Since terms with odd powers yield zero after the evaluation,
we can simplify the above overlap to

〈↓0| exp

(
i

g√
N�

(â + â†

)
Ŝy)|0↓〉

≈ 1 − g2

4�2
+ g4

g4
c

ω2

�2

(
9

16
− 24

N

)
. (A4)

Therefore, if we want the state |0↓〉 to remain invariant, the
following condition has to be fulfilled:

1

4

g2

g2
c

ω

�

 1. (A5)

If, however, the initial state is not invariant under the transfor-
mation, the system will still simulate the inverted harmonic
oscillator but for a transformed state, which though seems
impractical. This can be seen explicitly if we transform the
Schrödinger equation

i∂tÛ |ψ〉 = ĤeffÛ |ψ〉 → i∂t |ψ̃〉 = Ĥeff |ψ̃〉, (A6)

where |ψ̃〉 is the transformed state Û |ψ〉.

(a) (b) (c)

FIG. 6. Logarithm of the average number of photons as a function of g/gc and t for (a) κ = 0.01ω and γ = 0.1�, (b) κ = 0.1ω and
γ = 0.1�, and (c) κ = 0.5ω and γ = 0.1�. The black dashed line corresponds to the critical coupling in the thermodynamic limit. White
regions correspond to unreliable numerical simulations after the boundary of the Hilbert space (set to n = 200) has been reached. In the
numerical simulations we set

√
�N/ω ≈ 31.6 and N = 1.
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APPENDIX B: CONNECTOR OPERATOR

The condition for simulating the inverted oscillator with
the Dicke model can be expressed with the use of the fidelity

〈ψ |eiĤDMt e−iĤIOt |ψ〉 = eiξ (t ), (B1)

where the subscripts DM and IO correspond to the Dicke
model and the inverted oscillator, respectively. As discussed
in the main text, if the imaginary part of ξ (t ) is negligible,
one system can simulate the physics of the other one even if
the Hamiltonians are different. In Fig. 4 we plot the logarithm
of |eiξ (t )|. When this logarithm is equal to 0, it means the initial
state is an eigenstate of the connector operator

ĥ(t ) = t (ĤDM − ĤIO) + it2

2
[ĤDM,−ĤIO] + · · · , (B2)

with eigenvalue equal to multiples of π including 0. As can
be seen in Fig. 4, by increasing

√
N�/ω, we are increasing

the critical time for which the Dicke model can simulate the
inverted harmonic oscillator. In the limit of

√
N�/ω → ∞,

the Dicke model can realize exactly the same dynamics as
the inverted harmonic oscillator. In other words, by increas-
ing

√
N�/ω the initial state can remain an eigenstate of the

connector operator for longer times as the connector operator
becomes an identity in the thermodynamic limit.

APPENDIX C: SQUEEZING OSCILLATIONS
IN THE NORMAL PHASE

In the main text we stated that the Dicke model after the
quench to the normal phase exhibits squeezing oscillations
or oscillations of the number of photons if the initial state is
the field vacuum state. In order to understand it, one has to
realize that squeezing a vacuum leads to a state with a nonzero
number of photons. Therefore, squeezing and antisqueezing
(squeezing oscillations) will lead to oscillations of the number
of photons. This can be seen in Fig. 5, where we show the
number of photons as a function of time [Fig. 5(a)] and the
Husimi function for ten different times depicting a period of
squeezing oscillations [Figs. 5(b)–5(k)].

APPENDIX D: EFFECT OF DECOHERENCE

The discussion from the main text revolves around isolated
systems. However, from an experimental perspective, one has
to include decoherence which is a consequence of an inability
to perfectly isolate a quantum system from its environment. In
order to account for these typically unwanted effects, we use
the Lindblad master equation approach

d ρ̂

dt
= −i[Ĥ, ρ̂] + 2κ (âρ̂â† − {â†â, ρ̂})

+ 2γ (Ŝ−ρ̂Ŝ+ − {Ŝ+Ŝ−, ρ̂}), (D1)

where κ and γ account for the damping of mode â and
damping of the spin, respectively, with Ŝ− = Ŝ†

+ = Ŝx − iŜy

the spin lowering operator. The effect of spin damping should
be negligible as the initial state is the lowest-energy spin
eigenstate and for a limited time the system conserves the
projection of the spin onto the z axis. If this were not the
case, the damping mechanism would transform the state
of the spin into its lowest-energy eigenstate and increase
the squeezing rate (change the frequency of the inverted
oscillator). In both phases the photon damping will cause the
system to eventually reach a steady state which is not a vac-
uum state as the system is driven by a nonzero g. The results
of the numerical simulations for both phases are presented
in Fig. 6, where we plot the average number of photons as
a function of g/gc and t for a fixed ratio

√
�N/ω for an initial

vacuum state evolved with master equation from Eq. (D1)
using the Dicke Hamiltonian (1) with three different values
of κ . As expected, by introducing and increasing the photon
loss rate κ , the number of produced photons is reduced and
eventually reaches a steady state [see Fig. 6(c)]. Squeezing of
photons as a function of time including the inverted harmonic
oscillator phase and reaching the potential minima phase (as-
sociated with a steady state) is depicted in Figs. 3(g)–3(k).
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tive Friction Forces due to Spatial Self-Organization of Atoms:
From Rayleigh to Bragg Scattering, Phys. Rev. Lett. 91, 203001
(2003).

[34] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[35] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner,
and T. Esslinger, Roton-type mode softening in a quantum
gas with cavity-mediated long-range interactions, Science 336,
1570 (2012).

[36] Z. Zhang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,
A. L. Grimsmo, A. S. Parkins, and M. D. Barrett, Dicke-model
simulation via cavity-assisted Raman transitions, Phys. Rev. A
97, 043858 (2018).

[37] I. Aedo and L. Lamata, Analog quantum simulation of gener-
alized Dicke models in trapped ions, Phys. Rev. A 97, 042317
(2018).

[38] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, and
P. Engels, Dicke-type phase transition in a spin-orbit-coupled
Bose-Einstein condensate, Nat. Commun. 5, 4023 (2014).

[39] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction,
Rev. Mod. Phys. 91, 025005 (2019).

[40] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta,
and F. Nori, Ultrastrong coupling between light and matter,
Nat. Rev. Phys. 1, 19 (2019).

[41] A. Dareau, Y. Meng, P. Schneeweiss, and A. Rauschenbeutel,
Observation of Ultrastrong Spin-Motion Coupling for Cold
Atoms in Optical Microtraps, Phys. Rev. Lett. 121, 253603
(2018).

[42] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L. Lamata,
E. Solano, and K. Kim, Quantum Simulation of the Quantum
Rabi Model in a Trapped Ion, Phys. Rev. X 8, 021027 (2018).

[43] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Analog quantum sim-
ulation of the Rabi model in the ultra-strong coupling regime,
Nat. Commun. 8, 779 (2017).

[44] K. M. Yunusova, D. Konstantinov, H. Bouchiat, and A. D.
Chepelianskii, Coupling between Rydberg States and Landau
Levels of Electrons Trapped on Liquid Helium, Phys. Rev. Lett.
122, 176802 (2019).

[45] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum
Phase Transition, Phys. Rev. Lett. 95, 105701 (2005).

[46] T. W. B. Kibble, Topology of cosmic domains and strings,
J. Phys. A: Math. Gen. 9, 1387 (1976).

[47] T. W. B. Kibble, Some implications of a cosmological phase
transition, Phys. Rep. 67, 183 (1980).

[48] W. H. Zurek, Cosmological experiments in superfluid helium?
Nature (London) 317, 505 (1985).

[49] W. H. Zurek, Cosmological experiments in condensed matter
systems, Phys. Rep. 276, 177 (1996).

[50] A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi, Kibble-
Zurek problem: Universality and the scaling limit, Phys. Rev. B
86, 064304 (2012).

034132-8

https://doi.org/10.1038/nature10748
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1098/rsta.2010.0333
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevE.83.046208
https://doi.org/10.1103/PhysRevE.94.022209
https://doi.org/10.1038/s41467-019-09436-y
https://doi.org/10.1007/BF02721575
https://doi.org/10.1016/j.aop.2021.168470
https://doi.org/10.1016/j.aop.2021.168470
https://doi.org/10.1103/PhysRevA.85.043821
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.109.100403
https://doi.org/10.1103/PhysRevLett.126.160402
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevResearch.3.L022020
https://doi.org/10.1103/PhysRevLett.126.153603
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1016/0375-9601(92)91046-T
https://doi.org/10.1103/PhysRevLett.89.253003
https://doi.org/10.1103/PhysRevLett.91.203001
https://doi.org/10.1038/nature09009
https://doi.org/10.1126/science.1220314
https://doi.org/10.1103/PhysRevA.97.043858
https://doi.org/10.1103/PhysRevA.97.042317
https://doi.org/10.1038/ncomms5023
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRevLett.121.253603
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1103/PhysRevLett.122.176802
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1038/317505a0
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1103/PhysRevB.86.064304


INVERTED HARMONIC OSCILLATOR DYNAMICS OF THE … PHYSICAL REVIEW E 104, 034132 (2021)

[51] L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S.
Felicetti, Critical Quantum Metrology with a Finite-Component
Quantum Phase Transition, Phys. Rev. Lett. 124, 120504
(2020).

[52] Y. Chu, S. Zhang, B. Yu, and J. Cai, Dynamic Framework for
Criticality-Enhanced Quantum Sensing, Phys. Rev. Lett. 126,
010502 (2021).

[53] Authors K. Gietka, L. Ruks, and Th. Busch (unpublished).
[54] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Infla-

tion and squeezed quantum states, Phys. Rev. D 50, 4807
(1994).

[55] L. P. Grishchuk and Y. V. Sidorov, Squeezed quantum states of
relic gravitons and primordial density fluctuations, Phys. Rev.
D 42, 3413 (1990).

[56] A. H. Guth and S.-Y. Pi, Quantum mechanics of the scalar field
in the new inflationary universe, Phys. Rev. D 32, 1899 (1985).

[57] S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K.
Campbell, A Rapidly Expanding Bose-Einstein Condensate: An
Expanding Universe in the Lab, Phys. Rev. X 8, 021021 (2018).

[58] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D
14, 870 (1976).

[59] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, The Unruh
effect and its applications, Rev. Mod. Phys. 80, 787 (2008).

[60] S. W. Hawking, Black hole explosions? Nature (London) 248,
30 (1974).

[61] K. Hashimoto, K.-B. Huh, K.-Y. Kim, and R. Watanabe, Ex-
ponential growth of out-of-time-order correlator without chaos:
Inverted harmonic oscillator, J. High Energy Phys 11 (2020)
068.

[62] A. Bhattacharyya, W. Chemissany, S. S. Haque, J. Murugan,
and B. Yan, The multi-faceted inverted harmonic oscillator:
Chaos and complexity, SciPost Phys. Core 4, 2 (2021).

[63] L. D. Landau, On the theory of phase transitions, Zh. Eksp.
Teor. Fiz. 11, 19 (1937).

[64] S. Krämer, D. Plankensteiner, L. Ostermann, and H.
Ritsch, QuantumOptics.jl: A Julia framework for simulating
open quantum systems, Comput. Phys. Commun. 227, 109
(2018).

034132-9

https://doi.org/10.1103/PhysRevLett.124.120504
https://doi.org/10.1103/PhysRevLett.126.010502
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1103/PhysRevX.8.021021
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/JHEP11(2020)068
https://doi.org/10.21468/SciPostPhysCore.4.1.002
https://doi.org/10.1016/j.cpc.2018.02.004

