Narrowband Violet Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals

4 Congyang Zhang,[†] Qun Wan,[‡] Luis K. Ono,[†] Yuqiang Liu,[†] Weilin Zheng,[‡] Qinggang Zhang,[‡]

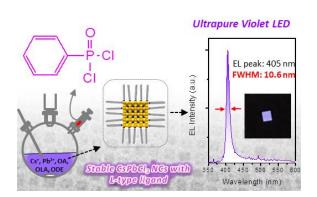
5 Mingming Liu,[‡] Long Kong,[‡] Liang Li,^{*,‡} and Yabing Qi,^{*,†}

[†]Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and
Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa
904-0495, Japan.

9 [‡]School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800
10 Dongchuan Road, Shanghai 200240, P.R. China.

11 *Corresponding Authors:

12 Yabing Qi, Email: <u>Yabing.Qi@OIST.jp</u>; Liang Li, Email: <u>liangli117@sjtu.edu.cn</u>.


- 14
- 15
- 16
- 17

1 ABSTRACT

2 CsPbCl₃ nanocrystals are potential ultrapure emitters. But it is challenging to synthesize CsPbCl₃ 3 nanocrystals with sufficient stability, which impedes their application in light-emitting devices. 4 In this work, we report a facile phosphoryl chemistry mediated synthesis approach to 5 synthesizing stable CsPbCl₃ nanocrystals, in which the phenylphosphonic dichloride (PhPOCl₂) 6 precursor is employed. In addition to the high reactivity of the P-Cl bond of PhPOCl₂ for 7 providing adequate Cl, the derived P=O with good proton affinity facilitates the formation of a 8 distinct nanocrystal surface with the non-protonated oleylamine (OLA) ligand. Accordingly, the 9 L-type ligand capped CsPbCl₃ nanocrystals exhibited not only bright luminance but also good 10 stability that endures repeated purification up to 10 cycles. Based on the stable CsPbCl₃ 11 nanocrystals, we achieved violet LEDs with extremely narrow electroluminescence spectra (full 12 width at half-maximum ~ 10.6 nm).

13

14 TOC GRAPHICS

15

1 Exploitation and development of wide-bandgap semiconductor materials for short 2 wavelength light-emitting diode (LED) have been a time-enduring research theme owing to their rich technological applications.¹ Despite many efforts, the studies on violet-emitting (< 435 nm) 3 4 materials and LEDs are still very scarce, which yet are of great significance for a wide range of 5 photonic and optoelectronic technologies, spanning from wide-gamut full-color displays, phototherapy, sensors, lasers, to optical detectors.²⁻⁵ In this regard, LEDs based on group III 6 7 nitrides (GaN, InGaN) and metal oxide (ZnO, SnO₂) still rendered the dominant violet emitting 8 technology. But fabrication of these devices requires complex high-temperature and highvacuum thin film deposition techniques.⁶⁻⁸ Alternatively, thin-film LEDs based on organic 9 10 semiconductors and quantum dots (QDs) provide unique opportunities for violet emission as well.⁹⁻¹⁰ However, as shown in Table 1, owing to the material-related challenges, most of the 11 12 demonstrated violet LEDs show broad electroluminescence (EL) linewidth, leading to significant 13 energy loss. For instance, to reduce the emission linewidth and improve the color purity of broad 14 emission in materials, color filters or optical microcavities are essential for the wide-gamut 15 display application. It results in waste of emission energy and has a significant adverse effect on 16 the device performance. Even for the colloidal QDs and nanoplatelets (NPLs) featuring narrow 17 band-edge emission, the colloidal synthesis becomes challenging when violet emission with a 18 large bandgap is required. The major technological hurdle is the difficulty to achieve highly confined, ultrasmall QDs/ultrathin NPLs without sophisticated shell coating processes.¹⁷⁻¹⁸ 19 20 Therefore, despite the challenges, it is still desirable to explore available simpler narrow violet-21 emitting materials, and it is of great significance to achieve such short wavelength LEDs with 22 inexpensive and easier processing protocols.

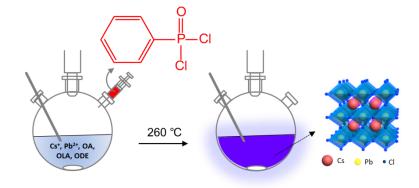
Emitting Materials & Examples		EL Region (nm)	Fabrication Technology	EL FWHM (nm)	Ref
Group III Nitrides	GaN, InGaN	380-450	Metal organic chemical vapor deposition (MOCVD) or metal organic vapor phase epitaxy (MOVPE)	20-30	11
Metal Oxides	ZnO, SnO ₂	390-410	MOCVD, MOVPE, Electrodeposition or Laser pulse deposition, etc.	20-80	7-8
Organic solid	Bi(9,9-diaryfluorene)s	380-450	Vacuum-based deposition (VBD)	>40	2, 9, 12-13
Chalcogenide QDs	Chalcogenide QDs (<i>e. g.</i> ZnCdS)	375-460	Solution-process	20-40	10, 14
C-Dots	C-Dots	425-475	Solution-process	>30	15
Perovskite film	CsPb(Br _x Cl _{1-x}) ₃ , Quasi-2D perovskite	465-490	Solution-process	15-50	16-17
Perovskite NCs	CsPb(Br _x Cl _{1-x}) ₃ NCs, Cs ₃ Sb ₂ Br ₉ , Perovskite NPLs	410-470	Solution-process	12-30	18-22
	CsPbCl ₃ NCs	405	Solution-process	10.6	This work

1 Table 1. Comparison of our LED device with the reported blue/violet/ultraviolet LEDs.

2

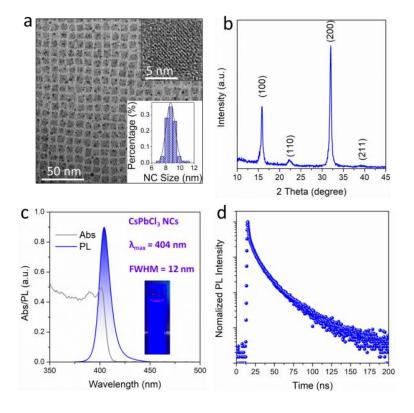
Recently, metal halide perovskite (APbX₃, A is a monovalent cation (e. g., Cs⁺, CH₃NH₃⁺ 3 (MA), or $CH(NH_2)_2^+(FA)$), X is a halide anion (Cl, Br, or I)) have been envisioned as promising 4 candidates for next generation light emitting applications.²³ Owing to the unique antibonding 5 orbitals of the $[PbX_6]^{4-}$ octahedral determined band-edge state, metal halide perovskites feature 6 7 tunable bandgap and emission wavelength (from near-infrared to violet) through composition engineering.²⁴ In addition, due to the crystal structure dependent electronic band and the unique 8 9 defect tolerance, both perovskite polycrystalline films and nanocrystals (NCs) exhibit relatively 10 high PLQY and narrow emission linewidth. As a result, significant breakthroughs of perovskite 11 LEDs (PeLEDs) have been achieved during the past decade. Up to now, the highly efficient

1 green/red/near-infrared PeLEDs were demonstrated with Br- or I-based perovskites through a quasi-2D structure,²⁵⁻²⁶ rational light extraction,²⁷⁻²⁸ molecular passivation²⁹⁻³² and triplet 2 management³³ strategies and so on. Recently, efficient blue perovskite emitters and LEDs have 3 4 been developed as well. For instance, based on a bipolar-shell resurfacing strategy, Dong et al. 5 reported highly confined CsPbBr₃ QDs with an PLQY of 90%, which led to the efficient blue PeLED with an record high EQE of 12.3%.³⁴ However, compared to the well-explored Br- and I-6 7 based perovskite, the development of the Cl-based violet emitting perovskite and LEDs still lags 8 far behind, which yet shows a great potential for the ultrapure violet emission. Considering the 9 thin-film fabrication difficulties of the Cl-based perovskites due to the low solubility of Cl-based precursors,³⁵ the colloidal route toward Cl-perovskite NCs has gained immense scientific interest. 10 11 Actually, PLQY as high as near-unity and the full width at half maximum (FWHM) as low as 12 nm have been reported for the violet emitted CsPbCl₃ NCs.³⁶ As a result, the Cl-based perovskite 12 13 NCs (such as CsPbCl₃) are the ideal emitter for fabricating efficient ultrapure violet LEDs.


14 The commonly used "two-precursor" hot-injection method was often employed for the synthesis of CsPbCl₃ NCs.³⁷ However, owing to the fixed low element ratios of halide to metal, 15 16 the as-synthesized CsPbCl₃ NCs suffer from inferior PL emission with abundant trap states (Cl vacancies).³⁸⁻³⁹ In view of this issue, Imran and co-workers developed a "three-precursor" 17 18 synthesis approach for CsPbCl₃ NCs by using excess benzoyl chloride (PhCOCl) as the 19 independent halide precursor. The as-synthesized CsPbCl₃ NCs exhibited enhanced PL (PLQY up to 65%).⁴⁰ Dutta et al. further employed the oleylammonium chloride (OLACl) as a dual 20 21 precursor providing halide ions and the capping agent, thus facilitating the synthesis of desired CsPbCl₃ NCs with a near unity PLQY.³⁶ Besides, strategies based on *in situ* doping and post-22

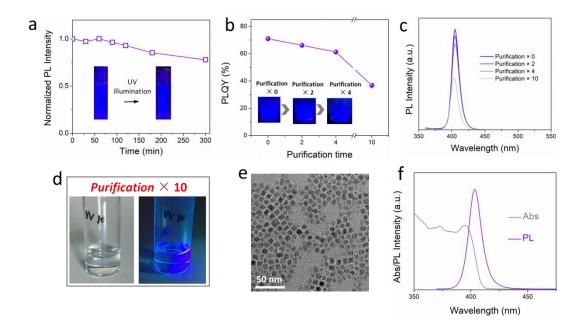
synthesis treatment of metal chloride salts are also proven to be highly effective in obtaining
 brightly luminescent CsPbCl₃ NCs.^{38-39, 41-43}

3 However, despite the success of achieving high PLQY of CsPbCl₃ NCs, the CsPbCl₃ NCs 4 based LEDs have not been demonstrated so far, which lag far behind the Br and I based ones. 5 The major obstacle is originated from the poor stability of CsPbCl₃ NCs that can be further 6 ascribed to the ligand related surface ion loss and abundant defect states. The excellent optical properties of CsPbCl₃ NCs are temporary and sensitive to purification and storage conditions.⁴³ 7 8 Herein, we report a phosphoryl chemistry mediated synthesis approach to achieving highly 9 luminescent and unprecedentedly stable CsPbCl3 NCs. This new approach relies on the use of 10 the phenylphosphonic dichloride ($PhPOCl_2$) as the alternative Cl source in the typical "three-11 precursor" hot-injection method. The direct injection of highly reactive PhPOCl₂ results in rapid 12 nucleation and growth of CsPbCl₃ NCs delivering both excellent PL and robust stability, which 13 is much better than the reported $C_{sPbCl_3} NC_{s}$. It is remarkable that the bright violet emission can 14 be maintained even after 10 cycles of purification. The detailed study of surface chemistry 15 enabled identification that the greatly improved quality of CsPbCl₃ NCs can be mainly attributed 16 to the distinctly reconstructed surface that is terminated with a PbCl_x-rich shell and capped with 17 the non-protonated L-type ligand (Oleylamine, OLA) with strong binding ability. This can be 18 further ascribed to the good protonation effect of derived P=O of the used PhPOCl₂ precursor. 19 Finally, for the first time, employing the high-quality CsPbCl₃ NCs as the emitting layer, the 20 solution-processed violet (405 nm) LED was demonstrated with extremely narrow EL spectra 21 (FWHM = 10.6 nm), which is superior to almost all the reported LEDs with similar wavelengths.


In our synthesis approach of $CsPbCl_3$ NCs, PhPOCl₂ is employed as the efficient Cl precursor. PhPOCl₂ is a commonly used organic cross-linking agent for the condensation

1 reaction toward phosphorus-containing polymer or oligomer, in which the reactive P-Cl bonds 2 can interact with nucleophilic compounds (such as amines, alcohols, carboxylic acids) and release HCl.⁴⁴⁻⁴⁵ Compared with PhCOCl, a previously reported analogous Cl precursor,⁴⁰ 3 4 PhPOCl₂ exhibits more negative reaction energy (-0.35 eV vs. -0.34 eV) and much lower kinetic barrier (1.43 eV vs. 3.95 eV) when reacted with a proton.⁴⁶ These calculation results clearly 5 6 showed that PhPOCl₂ should be more reactive and prone to release HCl. This point was further 7 verified by using PhCOCl and PhPOCl₂ as the anion exchange reagents for the pre-synthesized 8 CsPbBr₃ NCs. As shown in Figure S1, both PhCOCl and PhPOCl₂ can effectively trigger halide 9 exchange (from Br to Cl) of CsPbBr₃ NCs at room temperature, leading to the continuous blue-10 shift of the PL spectra. In contrast, $PhPOCl_2$ can drive the halide exchange with obviously faster 11 reaction kinetics. In light of the vulnerable CsPbCl₃ NCs with easily formed Cl vacancy defects, 12 a Cl-rich reaction environment is highly desirable. Therefore, PhPOCl₂ with stronger reactivity 13 would be a better independent Cl source to provide more available Cl for the synthesis of CsPbCl₃ NCs. Furthermore, PhPOCl₂ is commercially avalable and has a much higher boiling 14 15 point (up to 260 °C), thus allowing us to synthesize at sufficiently high temperatures to get high-16 quality NCs with good reproducibility.

- 1 Scheme 1. Schematic diagram to illustrate the colloidal synthesis process of CsPbCl₃ NCs using
- 2 $PhPOCl_2$ as the Cl precursor.


3

4 Figure 1. (a) TEM image (inset: corresponding high-resolution TEM image and size
5 distribution), (b) XRD pattern, (c) Optical absorption and PL spectra (excitation wavelength
6 350 nm) (inset: corresponding photograph under UV light), and (d) time-resolved
7 photoluminescence (TRPL) decay curve of the synthesized PhPOCl₂ based CsPbCl₃ NCs.

In a typical synthesis (**Scheme 1**, see **Experimental Section** for details), the Pb and Cs precursors were prepared in octadecene (ODE) with the assistance of oleic acid (OA) and OLA under dry argon gas. At 260 °C, excess PhPOCl₂ was injected swiftly, and the colorless metal precursor solution turned white and turbid immediately, indicating the formation of CsPbCl₃ NCs. After 20 s, the reaction was quenched in ice bath and cooled to room temperature. The NCs were purified by centrifugation, and then re-dispersed in toluene. As indicated from the TEM

1 analysis (Figure 1a and Figure S2), the as-synthesized product consisted of highly 2 monodisperse cubic-shaped NCs with an average size of 8.8 nm (with the standard deviation of 3 0.4 nm). The lattice fringes can be clearly identified from the representative high-resolution 4 TEM image (inset in Figure 1a). The crystal structure of the CsPbCl₃ NCs was confirmed by X-5 ray diffraction (XRD), which matches well with the cubic crystalline perovskite structure 6 (Figure 1b). To study the optical property, the representative absorption and PL spectra were 7 recorded. As shown in Figure 1c, the as-synthesized CsPbCl₃ NCs exhibit a sharp excitonic 8 absorption peak at 402 nm and a narrow PL emission band centered at 404 nm (FWHM = 12 nm). 9 The relatively small Stokes shift of ~ 15 meV suggested that the emission photons exclusively 10 stem from the direct exciton recombination. The absolute PLQY of the as-synthesized CsPbCl₃ 11 NCs in the diluted solution was measured using a fluorescence spectrometer coupled with an 12 integrated sphere excited at a wavelength of 365 nm. A high value of 71% was obtained, which 13 is much higher than most reported CsPbCl₃ NCs without post-modification. To gain more insight 14 into exciton recombination dynamics, time-resolved PL was measured (Figure 1d). The PL 15 decay of CsPbCl₃ NCs gives rise to a shorter lifetime component of 1.12 ns with a contribution of 91% and a longer lifetime component of 10.85 ns with a contribution of 9%, suggesting the 16 17 predominant single recombination pathway. Therefore, this result further highlights the excellent 18 optical property of as-synthesized CsPbCl₃ NCs. The high-quality CsPbCl₃ NCs obtained from 19 PhPOCl₂ based approach can be further verified through direct comparison with the NCs synthesized from other reported Cl precursors.³⁶ (see detail in Figure S3 and Figure S4) 20

Figure 2. (a) Normalized PL intensity of the PhPOCl₂ based CsPbCl₃ NCs under continuous high-power UV light illumination (inset: corresponding photograph under UV light before and after UV light illumination). (b) PLQY (inset: corresponding photograph under UV light before and after purification cycles) and (c) PL spectra of the PhPOCl₂ based CsPbCl₃ NCs before and after different cycles of purifications with anti-solvent. (d) The photographs under daylight and UV light, (e) TEM image, and (f) optical absorption and PL spectra (excitation wavelength 350 nm) of the PhPOCl₂ based CsPbCl₃ NCs after 10 cycles of purifications.

1

9 Furthermore, our PhPOCl₂ based CsPbCl₃ NCs show robust stability against light 10 irradiation and repeated purification. Figure 2a shows the measured photo-stability results of 11 PhPOCl₂ based CsPbCl₃ NCs (purified sample) under continuous illumination with a high power UV light (365 nm, 8 W/cm²). Its PL intensity remained almost 80% of the iniatate value after 5 h, 12 13 which was significantly better than the CsPbCl₃ NCs synthesized from other reported Cl 14 precursors (Figure S5). For optoelectronic device applications, the appropriate purification steps 15 are necessary to remove the excess insulating organic ligands of NCs with the assistance of anti-16 solvents, which yet often deteriorates the optical property and device performance of

semiconductor NCs (especially the vulnerable CsPbCl₃ NCs).⁴⁷ With this in mind, we purify 1 2 PhPOCl₂ based CsPbCl₃ NCs repeatedly with acetonitrile, a relatively high polar solvent, as the 3 anti-solvent. As shown in **Figure 2b**, the PhPOCl₂ based $CsPbCl_3$ NCs were still highly 4 luminescent after four cycles of purification. In comparison, the absolute PLQY value decreased 5 to 66.2%, which was 86% of the value before purification (71%). No PL spectra shift and shape 6 change were observed (Figure 2c). Additionally, the XRD pattern and TEM image of $CsPbCl_3$ 7 NCs after purification were obtained (Figure S6). After 4 cycles of purifications, the PhPOCl₂ 8 based CsPbCl₃ NCs maintained the original crystal structure and NC morphology. The above 9 results clearly reveal that our PhPOCl₂ based CsPbCl₃ NCs exhibite an excellent stability against 10 repeated purification process. The distinctive superiority of the PhPOCl₂ based CsPbCl₃ NCs is 11 further demonstrated through the direct compasion with the CsPbCl₃ NCs synthesized from other 12 reported Cl precursors (see detail in Figure S7). In addition, the Fourier-transform infrared 13 (FTIR) spectra of our PhPOCl₂ based CsPbCl₃ NCs before and after purification (Figure S8) 14 clearly show that the absorption intensity of organic ligands gradually reduced after purification 15 cycles, thus suggesting the successful and effective purification process.

16 Considering the excellent stability of our PhPOCl₂ based CsPbCl₃ NCs, we further purified 17 them for 10 cycles using the same procedure. Remarkably the NCs sample still showed bright 18 luminescence with good colloidal stability (**Figure 2d**). The TEM and XRD results also 19 confirmed that the NC size, shape, and crystal structure were almost unchanged, and no other 20 impurity phases were observed (**Figure 2e and Figure S9**). As shown in **Figure 2f**, the CsPbCl₃ 21 NCs with 10 cycles of purification still exhibit distinct exciton absorption and bright PL peak 22 (403 nm), even though the absolute PLQY value decreased to 36.8% (**Figure 2b and Figure** S10). These results further highlight the potential of our PhPOCl₂ synthesis route toward clean
 CsPbCl₃ NCs with high quality optoelectronic properties.

3 We performed further investigations to gain more insights into the mechanisms responsible 4 for the observed excellent optical properties and unprecedented stability of PhPOCl₂ based 5 CsPbCl₃ NCs. As we know, despite the acknowledged defect tolerance merit of lead halide 6 perovskite materials, the surface capping ligands of perovskite NCs play a crucial role in optoelectronic properties and stability.⁴⁸⁻⁴⁹ Considering the uniform NC size, morphology, and 7 8 crystal structure of the PhPOCl₂ based CsPbCl₃ NCs compared to the reported samples, we 9 hypothesize that the high-quality PhPOCl₂ based CsPbCl₃ NCs could be attributed to their 10 distinct surface chemistry because of the P=O containing Cl precursor that was used. According 11 to many previous reports, P=O can regulate the perovskite NC surface through either (1) direct 12 passivation with lead (P=O:Pb), or (2) alter the binding motif of original ligands (OA and/or OLA) on the NC surface.^{46, 50-51} To clarify whether P=O binds directly on the NC surface, we 13 14 employed the FTIR and nuclear magnetic resonance (NMR) spectroscopic techniques for 15 characterization. The FTIR spectra of PhPOCl₂ and the as-synthesized CsPbCl₃ NCs are shown in **Figure S11**. For PhPOCl₂, the strong absorption band at 1439 and 1270 cm⁻¹ can be assigned 16 to the P-Ph and P=O stretching vibration modes, respectively. The peaks at 680-750 cm⁻¹ are the 17 characteristic signal of the benzene ring.⁵² But we did not observe any of these typical peaks of 18 19 PhPOCl₂ on the CsPbCl₃ NC sample. These results suggest that the PhPOCl₂ precursor was 20 absent on the NC and thus exclude the possible passivation effect of P=O on the CsPbCl₃ NC surface. Furthermore, the ³¹P NMR spectrum of CsPbCl₃ NC sample was shown in Figure S12, 21 22 which also confirms the absence of any P signal on the CsPbCl₃ NCs. Therefore, in our reaction

1 system, instead of acting as a passivating ligand, PhPOCl₂ (featuring P=O) is a surface regulator

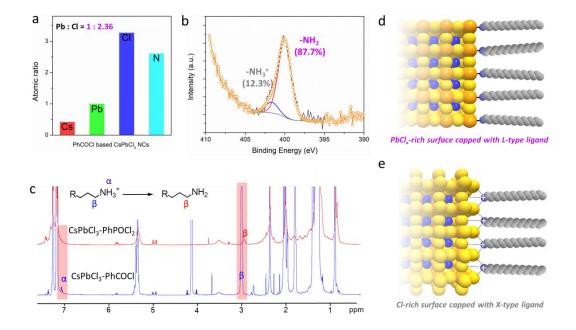
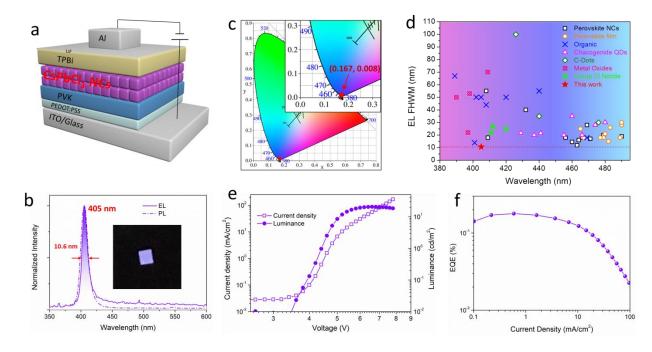


Figure 3. (a) Calculated atomic ratio and (b) high-resolution XPS spectra of N 1s of the
PhPOCl₂ based CsPbCl₃ NCs. (c) ¹H NMR spectra of the PhCOCl and PhPOCl₂ based CsPbCl₃
NCs. Schematic of CsPbCl₃ NC with (d) PbCl_x-rich surface capped with L-type OLA ligand and
(e) Cl-rich surface capped with X-type OLAH⁺ ligand.

8 In general, using common synthesis approaches with the assistance of OA and OLA ligands, 9 it is well accepted that the formed perovskite NCs are terminated with a halide-rich surface and 10 an X-type binding motif in which the protonated OLA cations (OLAH⁺) bind with the surface halide anions.⁵³⁻⁵⁴ According to the mutual equilibrium $(OA^- (CI^-) + OLAH^+ \rightleftharpoons OLA + OA)$ 11 12 (HCl)), these ionic ligands are prone to rapid desorption from the NC surface, giving rise to the generation of trap states (e.g., Cl-vacancy defects) or even phase change.⁵⁵ To investigate the NC 13 14 surface chemistry and ligand binding, we performed X-ray photoelectron spectroscopy (XPS), 15 NMR and FTIR measurements. As shown in Figure S13, the core-level signal of Cs 3d, Pb 4f,

1	and Cl 2p can be observed in the full XPS spectra of the PhPOCl ₂ based CsPbCl ₃ NC sample.
2	The atomic ratio of Cs:Pb:Cl was calculated to be 0.5:1:2.36 (Figure 3a), of which the Cl/Pb
3	molar ratio is much lower than stoichiometry (3:1) and the reported PhCOCl based CsPbCl ₃ NC
4	sample (3.27:1) (Figure S14). This result revealed that $PhPOCl_2$ based $CsPbCl_3$ NCs have a
5	PbCl _x -rich surface, instead of the prevalent halide-rich surface of the perovskite NCs obtained
6	from the halide-rich synthesis approaches. Figure 3b shows the high-resolution XPS spectra of
7	the N 1s core level of $PhPOCl_2$ based $CsPbCl_3$ NC sample, which can be divided into two
8	components at 400 and 402 eV, corresponding to the terminal amine groups (-NH ₂) and
9	protonated amine groups (- NH_3^+), respectively. ⁵⁶ Importantly, the non-protonated - NH_2 accounts
10	for 87.7% of the surface amine ligands on PhPOCl ₂ based CsPbCl ₃ NCs. In contrast, the ratio of
11	-NH ₂ in the PhCOCl based CsPbCl ₃ NC sample is only 31.2% (Figure S15). Based on the
12	observed $PbCl_x$ -rich and the predominant -NH ₂ terminal groups on the NC surface, we can
13	conclude that in our case, the CsPbCl ₃ NCs are mainly capped with the L-type OLA ligand,
14	rather than the protonated OLAH ⁺ ionic ligands. ⁵⁷ This point can be further identified by the
15	NMR characterization result. As shown in Figure 3c, the peaks α at 7.1 ppm of the PhCOCl
16	based $CsPbCl_3$ NC sample can be explicitly ascribed to the bound $OLAH^+$ on NC surface, in
17	which the feature of multiple peaks with sharp splitting could be explained by the restricted
18	mutual proton exchanges of ammonium protons. ⁵⁸ Contrastingly, no signal of this kind of
19	ammonium protons was found for our $PhPOCl_2$ based $CsPbCl_3 NC$ sample. In addition, the ¹ H
20	resonances β of the PhCOCl based CsPbCl ₃ NC sample located at 3.0 ppm is the typical signal of
21	α -CH ₂ of oleylammonium, ^{55, 57} which was clearly observed to upshift to 2.94 ppm for the
22	PhPOCl ₂ based CsPbCl ₃ NC sample. These results which match well with previous report


1

2

demonstrated the change of binding ligand from protonated $OLAH^+$ to non-protonated OLAwhen the PhPOCl₂ was used as Cl precursor, schematically illustrated in **Figure 3d-e.**

3 As we mentioned above, the PhPOCl₂ precursor we used in the synthesis process of 4 CsPbCl₃ NCs is an surface regulator agent for the CsPbCl₃ NCs. But how does the PhPOCl₂ precursor link the distinct NC surface and ligand passivation motif? Recently, Almeida et al.⁵⁰ 5 and Ashton et al.⁵¹ demonstrated a phosphine oxide route for the synthesis of CsPbBr₃ and 6 7 FAPbBr₃ NCs, respectively, by utilization of trioctylphosphine oxide (TOPO) that featuring P=O 8 as well. In these works, the significant role of TOPO in the perovskite NC synthesis process was 9 based on the acid-base interaction of OA and TOPO, namely the proton affinity of P=O in TOPO. 10 With this in mind, we hypothesize that the PhPOCl₂ precursor featuring P=O in our reaction is 11 able to interact with the acidic protons as well that greatly suppress the protonation of OLA, thus 12 promoting the L-type OLA ligand capped on the $CsPbCl_3$ NCs. To verify this point, the 13 interaction between PhPOCl₂ derived P=O in our reaction system and OA was investigated through the ³¹P NMR spectra. We should note that the diphenylphosphine oxide (DPPO) was 14 15 employed here to replace the PhPOCl₂ and avoid the interference of the highly reactive P-Cl. As shown in Figure S16, compared to the pure DPPO, the presence of OA promoted the ³¹P signal 16 17 shift downfield, suggesting the deshielding effect of the probe nuclei that could be attributed to 18 the protonation of P=O with acid protons. To gain more insights, we tracked the temperaturedependent ³¹P NMR spectra based on the pure DPPO and DPPO/OA (1:1 molar ratio) samples. 19 When the temperature increased from 15 °C to 75 °C, the ³¹P signal of DPPO shift upfield 20 21 gradually. In DPPO/OA mixture sample, it shifted upfield as well and but to a greater extend. These results are in line with the previous observation in the TOPO/OA system, ⁵⁰⁻⁵¹ which 22 23 clearly demonstrates the exothermic feature of acid-base interaction between DPPO and OA,

1 thus further confirm the protonation of P=O in our CsPbCl₃ NCs synthesis reaction and 2 rationalize the derived distinct NC surface termination and L-type ligand binding feature. 3 Accordingly, compared with the weak binding of X-type ligands OLAH⁺ with Cl anions on 4 CsPbCl₃ NC surface (hydrogen bonding), the non-protonated L-type ligands OLA in our case are 5 able to strongly bind with lead atoms of NC surface via covalent bond, also should provide fully 6 delocalized valence band maximum (VBM) and conduction band minimum (CBM) states.⁵⁷ 7 Therefore, we can conclude here that in our PhPOCl₂ based synthesis approach, as depicted in 8 Figure S17, except as the Cl precursor for CsPbCl₃ NC nucleation and growth, the excess of 9 P=O of PhPOCl₂ in our reaction can suppress the protonation of OLA, promoting the non-10 protonated L-type OLA strongly bind on the NC surface through covalent bond, thus leading to 11 the significantly improved optical quality and unprecedented stability.

12

Figure 4. (a) Schematic drawing showing the device structure, (b) normalized PL and EL spectra
(Insert shows a photograph of a working device), and (c) corresponding CIE coordinates of the
PhPOCl₂ based CsPbCl₃ NCs LED. (d) Summary of the EL peak wavelength and FWHM of

visible LEDs spanning from ultraviolet to blue range, based on emitting materials of perovskite
NCs,^{18-19, 21-22, 34, 49, 59-63} perovskite film,^{17, 20, 46, 64-69} organic solids,^{2, 9, 12-13, 70-73} chalcogenide
QDs,^{10, 14, 74-79} carbon-dots,^{15, 80-81} metal oxides,^{7-8, 82} group III nitrides.^{11, 83} (e) Current density
and luminance versus driving voltage curves. (f) EQE versus current density curve of the asfabricated LED.

6 Finally, as a demonstration of our high quality CsPbCl₃ NCs as active materials for violet 7 LEDs, we fabricated the planar device with the architecture depicted in Figure 4a. More 8 specifically, PhPOCl₂ based CsPbCl₃ NCs after 10 cycles of purification were employed as the 9 emitting materials. The corresponding flat-band energy diagram was shown in **Figure S18**, in 10 which the VBM and CBM of CsPbCl₃ NCs emitting layer were estimated from the ultraviolet 11 photoemission spectroscopy (UPS) (Figure S19). The poly(3,4-ethylenedioxythiophene) 12 polystyrene sulfonate (PEDOT:PSS), polyvinylcarbazole (PVK) and (1-phenyl-1 H-13 benzimidazol-2-yl)benzene (TPBi) was used as the hole injection layer, hole transport layer and 14 electron transport layer respectively. Initially, the morphology of the fabricated PVK and 15 CsPbCl₃ NC films were checked through atomic force microscopy (AFM) technique. As shown 16 in Figure S20, both of them show the uniform and flat film morphology with a much low root 17 mean square roughness of 0.54 nm and 1.82 nm, respectively. Figure 4b shows the EL spectra of 18 CsPbCl₃ NC based LED, featuring an extremely sharp peak at 405 nm with FWHM of 10.6 nm. 19 For comoparsion, the PL spectra of the CsPbCl₃ NC film are also presented, which confirm that 20 the emission of LED was originated from the CsPbCl₃ NCs, rather than other species. As shown 21 in **Figure S21**, the EL spectra under different voltages exhibited unchanged shape and peak 22 position, which clearly confirmed that the EL was originated from the CsPbCl₃ NCs layer. The 23 corresponding Commission Internationale de l'Eclairage (CIE) coordinates were calculated to be

1 (0.167, 0.008) (Figure 4c). We should note that the y-color coordinate that below 0.01 is the 2 smallest value of almost all reported visible LEDs. To give a straightforward view, we directly 3 compared the EL emission wavelength and FWHM of the state-of-the-art reported LEDs 4 spanning from ultraviolet to blue range. It is obvious that our CsPbCl₃ NCs based LED exhibits 5 the smallest EL FWHM among them, which greatly highlights their ultrapure EL emission 6 (Figure 4d). The luminance and current density curves as a function of applied voltage were 7 presented in Figure 4e, which shows a turn-on voltage of ~ 3.6 V of CsPbCl₃ NCs based LED. The maximum luminance reached 21 cd/m^2 . The maximum EQE was calculated to be 0.18% at 8 the current density of $\sim 0.6 \text{ mA/cm}^2$ (Figure 4f), which is comparable with the best-performing 9 10 violet LEDs based on metal halide perovskites, but with the shortest EL emission wavelength and smallest EL FWHM.^{19-20, 22} The great difficulties to the access of high PLQY (up to near-11 12 unity) of CsPbCl₃ stem from the defect states originated from both the Cl vacancies and the undesired tilting of the octahedral units.^{38, 41} From this point, we envisage that except for the 13 14 surface engineering, the optical quality, stability, and device performance of CsPbCl₃ NCs can be 15 further improved through composition engineering such as B-site doping. On the other hand, 16 considering the relatively large bandgap of CsPbCl₃ NCs, the mismatched energy alignment 17 causing insufficient charge carrier injection is likely another obstacle toward the high device 18 performance. Therefore, in future works, it is desirable to optimize the device structure with 19 more efficient charge injection.

In summary, we have developed an efficient approach to synthesize high quality violet emitting CsPbCl₃ NCs with unprecedented stability by using PhPOCl₂ as a novel Cl precursor. The detailed surface chemistry investigations reveal that the benefit of the new synthesis approach lies in the promoted generation of the non-protonated L-type capping ligand (OLA) with strong covalent binding. Using the highly stable CsPbCl₃ NCs as emitting material, we realized the efficient violet LED with extremely narrow EL spectrum of which the FWHM is smaller than all the previously reported visible and even ultraviolet LEDs. Our synthesis approach opens a new avenue for producing full-Cl based perovskite nanomaterials and holds great promise for the realization of ultrapure LEDs via solution processing.

6

7 ASSOCIATED CONTENT

8 **Supporting Information**. Additional TEM images, UV-vis absorption spectra, PL spectra, XPS

9 spectra, XRD patterns, FTIR spectra, NMR spectra, and UPS spectra of the CsPbCl₃ NCs; AFM

10 images of PVK and CsPbCl₃ NC film; EL spectra of the CsPbCl₃ NC-LED.

11 AUTHOR INFORMATION

12 Corresponding Authors

- 13 *<u>Yabing.Qi@OIST.jp</u>
- 14 *<u>liangli117@sjtu.edu.cn</u>
- 15 Notes
- 16 The authors declare no competing financial interest.

17 ACKNOWLEDGMENT

This work was supported by the Guangdong Province's 2018-2019 Key R&D Program
(2019B010924001), the National Key Research and Development Program (No.
2017YFE0127100), National Natural Science Foundation of China (NSFC21773155), Shanghai

21 Sailing Program (19YF1422200). This work was also supported by the funding from the Energy

Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology
 Graduate University, the OIST R&D Cluster Research Program, the OIST Proof of Concept
 (POC) Program, and JST A-STEP Grant Number JPMJTM20HS, Japan.

4

5 REFERENCES

- 6 (1) Khan, A.; Balakrishnan, K.; Katona, T., Ultraviolet light-emitting diodes based on group
 7 three nitrides. *Nat. Photonics* 2008, 2 (2), 77-84.
- 8 (2) Chao, T. C.; Lin, Y. T.; Yang, C. Y.; Hung, T. S.; Chou, H. C.; Wu, C. C.; Wong, K. T.,
- 9 Highly efficient UV organic light-emitting devices based on Bi(9, 9-diarylfluorene)s. *Adv. Mater.*10 2005, 17 (8), 992-996.
- (3) Lembo, A. J.; Ganz, R. A.; Sheth, S.; Cave, D.; Kelly, C.; Levin, P.; Kazlas, P. T.;
 Baldwin III, P. C.; Lindmark, W. R.; McGrath, J. R.; et al., Treatment of Helicobacter pylori
 infection with intra-gastric violet light phototherapy: A pilot clinical trial. *Lasers Surg. Med.*2009, 41 (5), 337-344.
- 15 (4) Nakamura, S., InGaN-based violet laser diodes. *Semicond. Sci. Technol.* 1999, 14 (6),
 16 R27-R40.
- 17 (5) Du, X.; Mei, Z.; Liu, Z.; Guo, Y.; Zhang, T.; Hou, Y.; Zhang, Z.; Xue, Q.; Kuznetsov, A.
- Y., Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solarblind ultra-violet detectors. *Adv. Mater.* 2009, 21 (45), 4625-4630.
- 20 (6) Hwang, D.-K.; Kang, S.-H.; Lim, J.-H.; Yang, E.-J.; Oh, J.-Y.; Yang, J.-H.; Park, S.-J., p-
- 21 ZnO/n-GaN heterostructure ZnO light-emitting diodes. *Appl. Phys. Lett.* **2005**, 86 (22), 222101.
- (7) Lupan, O.; Pauport é, T.; Viana, B., Low-voltage UV-electroluminescence from ZnONanowire array/p-GaN light-emitting diodes. *Adv. Mater.* 2010, 22 (30), 3298-3302.
- (8) Brovelli, S.; Chiodini, N.; Lorenzi, R.; Lauria, A.; Romagnoli, M.; Paleari, A., Fully
 inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. *Nat. Commun.* 2012, *3*(1), 1-9.
- 27 (9) Chen, W.-C.; Yuan, Y.; Ni, S.-F.; Tong, Q.-X.; Wong, F.-L.; Lee, C.-S., Achieving
 28 efficient violet-blue electroluminescence with CIEy < 0.06 and EQE > 6% from naphthyl-linked
- 29 phenanthroimidazole-carbazole hybrid fluorophores. *Chem. Sci.* **2017**, *8* (5), 3599-3608.

- (10) Kwak, J.; Lim, J.; Park, M.; Lee, S.; Char, K.; Lee, C., High-power genuine ultraviolet
 light-emitting diodes based on colloidal nanocrystal quantum dots. *Nano Lett.* 2015, *15* (6),
 3793-3799.
- 4 (11) Nakamura, S.; Senoh, M.; Mukai, T., High-power InGaN/GaN double-heterostructure
 5 violet light emitting diodes. *Appl. Phys. Lett.* 1993, 62 (19), 2390-2392.
- 6 (12) Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C., Design of
- 7 efficient thermally activated delayed fluorescence materials for pure blue organic light emitting
- 8 diodes. J. Am. Chem. Soc. 2012, 134 (36), 14706-14709.
- 9 (13) Luo, Y.; Li, S.; Zhao, Y.; Li, C.; Pang, Z.; Huang, Y.; Yang, M.; Zhou, L.; Zheng, X.; Pu,
- 10 X.; et al., An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External
- 11 Quantum Efficiency over 9%. *Adv. Mater.* **2020**, *32* (32), 2001248.
- 12 (14) Shen, H.; Cao, W.; Shewmon, N. T.; Yang, C.; Li, L. S.; Xue, J., High-efficiency, low
- turn-on voltage blue-violet quantum-dot-based light-emitting diodes. *Nano Lett.* 2015, *15* (2),
 1211-1216.
- 15 (15) Yuan, F.; Wang, Y.-K.; Sharma, G.; Dong, Y.; Zheng, X.; Li, P.; Johnston, A.; Bappi, G.;
- 16 Fan, J. Z.; Kung, H.; et al., Bright high-colour-purity deep-blue carbon dot light-emitting diodes
- 17 via efficient edge amination. *Nat. Photonics* **2020**, *14* (3), 171-176.
- 18 (16) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye,
- 19 R. L.; Gödel, K. C.; Bein, T.; Docampo, P.; et al., Blue-green color tunable solution processable
- 20 organolead chloride-bromide mixed halide perovskites for optoelectronic applications. *Nano Lett.*
- 21 **2015**, *15* (9), 6095-6101.
- (17) Li, Z. C.; Chen, Z. M.; Yang, Y. C.; Xue, Q. F.; Yip, H. L.; Cao, Y., Modulation of
 recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes
 with efficiency exceeding 5%. *Nat. Commun.* 2019, *10*, 1027.
- 25 (18) Hou, S. C.; Gangishetty, M. K.; Quan, Q. M.; Congreve, D. N., Efficient Blue and White
- 26 Perovskite Light-Emitting Diodes via Manganese Doping. *Joule* **2018**, *2* (11), 2421-2433.
- 27 (19) Ma, Z.; Shi, Z.; Yang, D.; Zhang, F.; Li, S.; Wang, L.; Wu, D.; Zhang, Y.; Na, G.; Zhang,
- 28 L.; et al., Electrically-driven violet light-emitting devices based on highly stable lead-free
- 29 perovskite Cs₃Sb₂Br₉ quantum dots. *ACS Energy Lett.* **2019**, *5* (2), 385-394.

- (20) Liang, D.; Peng, Y.; Fu, Y.; Shearer, M. J.; Zhang, J.; Zhai, J.; Zhang, Y.; Hamers, R. J.;
 Andrew, T. L.; Jin, S., Color-pure violet-light-emitting diodes based on layered lead halide
- 3 perovskite nanoplates. ACS Nano **2016**, 10 (7), 6897-6904.
- 4 (21) Zhang, C. Y.; Wan, Q.; Wang, B.; Zheng, W. L.; Liu, M. M.; Zhang, Q. G.; Kong, L.; Li,
- 5 L., Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide
- Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes. J. Phys. Chem. C 2019, 123
 (43), 26161-26169.
- 8 (22) Deng, W.; Jin, X.; Lv, Y.; Zhang, X.; Zhang, X.; Jie, J., 2D Ruddlesden-Popper
 9 Perovskite Nanoplate Based Deep-Blue Light-Emitting Diodes for Light Communication. *Adv.*
- 10 Funct. Mater. 2019, 29 (40), 1903861.
- 11 (23) Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price,
- 12 M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al., Bright light-emitting diodes based on
- 13 organometal halide perovskite. *Nat. Nanotechnol.* **2014**, *9* (9), 687-692.
- 14 (24) Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato,
- 15 M.; Manna, L., Tuning the optical properties of cesium lead halide perovskite nanocrystals by
- 16 anion exchange reactions. J. Am. Chem. Soc. 2015, 137 (32), 10276-10281.
- 17 (25) Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.;
 18 Yang, R.; et al., Perovskite light-emitting diodes based on solution-processed self-organized
- 19 multiple quantum wells. *Nat. Photonics* **2016**, *10* (11), 699.
- 20 (26) Shang, Y.; Liao, Y.; Wei, Q.; Wang, Z.; Xiang, B.; Ke, Y.; Liu, W.; Ning, Z., Highly
 21 stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. *Science*22 Advances 2019, 5 (8), eaaw8072.
- 23 (27) Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He,
- Y.; et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale
 structures. *Nature* 2018, *562* (7726), 249.
- 26 (28) Shen, Y.; Li, M.-N.; Li, Y.; Xie, F.-M.; Wu, H.-Y.; Zhang, G.-H.; Chen, L.; Lee, S.-T.;
- 27 Tang, J.-X., Rational interface engineering for efficient flexible perovskite light-emitting diodes.
- 28 ACS Nano 2020, 14 (5), 6107-6116.
- 29 (29) Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A.
- 30 J.; Tyukalova, E.; Hu, Z. J.; et al., Rational molecular passivation for high-performance
- 31 perovskite light-emitting diodes. *Nat. Photonics* **2019**, *13* (6), 418-424.

- (30) Xiao, Z.; Kerner, R.; Zhao, L.; Tran, N.; Lee, K., Efficient perovskite light-emitting
 diodes featuring nanometre-sized crystallites. *Nat. Photonics* 2017, *11* (2), 108-115.
- 3 (31) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.;
 4 Sadhanala, A.; Myoung, N.; Yoo, S.; et al., Overcoming the electroluminescence efficiency
 5 limitations of perovskite light-emitting diodes. *Science* 2015, *350* (6265), 1222-1225.
- 6 (32) Chih, Y. K.; Wang, J. C.; Yang, R. T.; Liu, C. C.; Chang, Y. C.; Fu, Y. S.; Lai, W. C.;
- 7 Chen, P.; Wen, T. C.; Huang, Y. C.; et al., NiO_x electrode interlayer and CH₃NH₂/CH₃NH₃PbBr₃
- 8 Interface treatment to markedly advance hybrid perovskite-based light-emitting diodes. *Adv.*9 *Mater.* 2016, 28 (39), 8687-8694.
- (33) Qin, C.; Matsushima, T.; Potscavage, W. J.; Sandanayaka, A. S.; Leyden, M. R.;
 Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G.; et al., Triplet management
 for efficient perovskite light-emitting diodes. *Nat. Photonics* 2020, *14* (2), 70-75.
- 13 (34) Dong, Y.; Wang, Y.-K.; Yuan, F.; Johnston, A.; Liu, Y.; Ma, D.; Choi, M.-J.; Chen, B.;
- 14 Chekini, M.; Baek, S.-W.; et al., Bipolar-shell resurfacing for blue LEDs based on strongly 15 confined perovskite quantum dots. *Nat. Nanotechnol.* **2020**, *15* (8), 668-674.
- 16 (35) Pina, J. M.; Parmar, D. H.; Bappi, G.; Zhou, C.; Choubisa, H.; Vafaie, M.; Najarian, A.
 17 M.; Bertens, K.; Sagar, L. K.; Dong, Y.; et al., Deep-Blue Perovskite Single-Mode Lasing
 18 through Efficient Vapor-Assisted Chlorination. *Adv. Mater.* 2020, *33*, 2006697.
- 19 (36) Dutta, A.; Behera, R. K.; Pal, P.; Baitalik, S.; Pradhan, N., Near-Unity 20 Photoluminescence Quantum Efficiency for All CsPbX₃ (X = Cl, Br, and I) Perovskite 21 Nanocrystals: A Generic Synthesis Approach. *Angew. Chem. Int. Ed.* **2019**, *58* (17), 5552-5556.
- 22 (37) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.;
- 23 Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites
- 24 (CsPbX₃, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide
- 25 color gamut. Nano Lett. 2015, 15 (6), 3692-3696.
- 26 (38) Yong, Z.-J.; Guo, S.-Q.; Ma, J.-P.; Zhang, J.-Y.; Li, Z.-Y.; Chen, Y.-M.; Zhang, B.-B.;
- 27 Zhou, Y.; Shu, J.; Gu, J.-L.; et al., Doping-enhanced short-range order of perovskite nanocrystals
- for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140 (31), 9942-9951.
- 29 (39) Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.;
- 30 Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F., Giant photoluminescence

- 1 enhancement in CsPbCl₃ perovskite nanocrystals by simultaneous dual-surface passivation. *ACS*
- 2 Energy Lett. 2018, 3 (10), 2301-2307.
- 3 (40) Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.;
- 4 Manna, L., Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based
- 5 Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2018, 140 (7), 2656-2664.
- 6 (41) Mondal, N.; De, A.; Samanta, A., Achieving Near-Unity Photoluminescence Efficiency
- 7 for Blue-Violet-Emitting Perovskite Nanocrystals. *ACS Energy Lett.* **2019**, *4* (1), 32-39.
- 8 (42) De, A.; Das, S.; Mondal, N.; Samanta, A., Highly luminescent violet-and blue-emitting
 9 stable perovskite nanocrystals. *ACS Mater. Lett.* 2019, *1* (1), 116-122.
- 10 (43) Behera, R. K.; Das Adhikari, S.; Dutta, S. K.; Dutta, A.; Pradhan, N., Blue-emitting
- 12 optical emission. J. Phys. Chem. Lett. 2018, 9 (23), 6884-6891.
- 13 (44) Imai, Y.; Kamata, H.; Kakimoto, M. A., Preparation and properties of high transition
 14 temperature aromatic polyphosphonates by phase-transfer-catalyzed polycondensation of
 15 phenylphosphonic dichloride with bisphenols. *J. Polym. Sci., Part A: Polym. Chem.* 1984, 22 (6),
 16 1259-1265.
- 17 (45) Busch, H.; Majumder, S.; Reiter, G. n.; Mecking, S., Semicrystalline Long-Chain
 18 Polyphosphoesters from Polyesterification. *Macromolecules* 2017, *50* (7), 2706-2713.
- 19 (46) Ma, D.; Todorovic, P.; Meshkat, S.; Saidaminov, M.; Wang, Y.-K.; Chen, B.; Li, P.;
- 20 Scheffel, B.; Quintero-Bermudez, R.; Fan, J. Z.; et al., Chloride Insertion-Immobilization
- Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. J. Am. Chem. Soc.
 2020, 142 (11), 5126-5134.
- 23 (47) Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.;
- 24 Koc, M. A.; Wang, L.-W.; Alivisatos, A. P., Design Principles for Trap-Free CsPbX3
- 25 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases.
- 26 J. Am. Chem. Soc. 2018, 140 (50), 17760-17772.
- 27 (48) Park, J.; Jang, H. M.; Kim, S.; Jo, S. H.; Lee, T.-W., Electroluminescence of Perovskite
- 28 Nanocrystals with Ligand Engineering. *Trends Chem.* **2020**, *2* (9), 837-849.
- 29 (49) Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.;
- 30 Alyami, N. M.; Liu, J.; et al., Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes
- 31 by Surface Engineering. *Adv. Mater.* **2016**, *28* (39), 8718-8725.

- (50) Almeida, G.; Ashton, O. J.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Mishra, N.;
 Akkerman, Q. A.; Infante, I.; Snaith, H. J.; Manna, L., The Phosphine Oxide Route toward Lead
 Halide Perovskite Nanocrystals. *J. Am. Chem. Soc.* 2018, *140* (44), 14878-14886.
- 4 (51) Ashton, O. J.; Marshall, A. R.; Warby, J. H.; Wenger, B.; Snaith, H. J., A phosphine
 5 oxide route to formamidinium lead tribromide nanoparticles. *Chem. Mater.* 2020, *32* (17), 71726 7180.
- 7 (52) Zhu, C.; He, M.; Cui, J.; Tai, Q.; Song, L.; Hu, Y., Synthesis of a novel hyperbranched
 8 and phosphorus-containing charring-foaming agent and its application in polypropylene. *Polym.*9 *Adv. Technol.* 2018, 29 (9), 2449-2456.
- 10 (53) De Roo, J.; Ib áñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.;
- Van Driessche, I.; Kovalenko, M. V.; Hens, Z., Highly dynamic ligand binding and light
 absorption coefficient of cesium lead bromide perovskite nanocrystals. *ACS Nano* 2016, *10* (2),
 2071-2081.
- 14 (54) Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag,
 15 A., Origin of the substitution mechanism for the binding of organic ligands on the surface of
 16 CsPbBr₃ perovskite nanocubes. *J. Phys. Chem. Lett.* 2017, 8 (20), 4988-4994.
- 17 (55) Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z.; Khan, A. H.; Marras, S.; Moreels, I.;
 18 Manna, L., Role of acid-base equilibria in the size, shape, and phase control of cesium lead
 19 bromide nanocrystals. *ACS Nano* 2018, *12* (2), 1704-1711.
- (56) Zhang, C. Y.; Wang, B.; Wan, Q.; Kong, L.; Zheng, W. L.; Li, Z. C.; Li, L., Critical role
 of metal ions in surface engineering toward brightly luminescent and stable cesium lead bromide
 perovskite quantum dots. *Nanoscale* 2019, *11* (6), 2602-2607.
- 23 (57) Zhong, Q.; Cao, M.; Xu, Y.; Li, P.; Zhang, Y.; Hu, H.; Yang, D.; Xu, Y.; Wang, L.; Li,
- 24 Y.; et al., L-type ligand-assisted acid-free synthesis of CsPbBr₃ nanocrystals with near-unity
- 25 photoluminescence quantum yield and high stability. *Nano Lett.* **2019**, *19* (6), 4151-4157.
- (58) Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N., Phase-Stable CsPbI₃ Nanocrystals:
 The Reaction Temperature Matters. *Angew. Chem. Int. Ed.* 2018, *57* (29), 9083-9087.
- 28 (59) Zheng, X.; Yuan, S.; Liu, J.; Yin, J.; Yuan, F.; Shen, W.-S.; Yao, K.; Wei, M.; Zhou, C.;
- 29 Song, K.; et al., Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by
- 30 Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy
- 31 *Lett.* **2020,** *5* (3), 793-798.

- 1 (60) Zhang, B.-B.; Yuan, S.; Ma, J.-P.; Zhou, Y.; Hou, J.; Chen, X.; Zheng, W.; Shen, H.;
- 2 Wang, X.-C.; Sun, B.; et al., General mild reaction creates highly luminescent organic-ligand-
- 3 lacking halide perovskite nanocrystals for efficient light-emitting diodes. J. Am. Chem. Soc. 2019,

4 *141* (38), 15423-15432.

- 5 (61) Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y.-C.; Wang, M.; Nedelcu, G.; Kim,
- Y.; Lin, S.; Santos, E. J.; et al., Efficient blue electroluminescence using quantum-confined twodimensional perovskites. *ACS Nano* 2016, *10* (10), 9720-9729.
- 8 (62) Wu, Y.; Wei, C.; Li, X.; Li, Y.; Qiu, S.; Shen, W.; Cai, B.; Sun, Z.; Yang, D.; Deng, Z.;
- 9 et al., In situ passivation of $PbBr_6^{4-}$ octahedra toward blue luminescent CsPbBr₃ nanoplatelets
- 10 with near 100% absolute quantum yield. ACS Energy Lett. **2018**, *3* (9), 2030-2037.
- 11 (63) Hoye, R. L.; Lai, M.-L.; Anaya, M.; Tong, Y.; Gałkowski, K.; Doherty, T.; Li, W.; Huq,
- 12 T. N.; Mackowski, S.; Polavarapu, L.; et al., Identifying and reducing interfacial losses to
- 13 enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting
- 14 diodes. ACS Energy Lett. 2019, 4 (5), 1181-1188.
- 15 (64) Yuan, S.; Wang, Z. K.; Xiao, L. X.; Zhang, C. F.; Yang, S. Y.; Chen, B. B.; Ge, H. T.;
- 16 Tian, Q. S.; Jin, Y.; Liao, L. S., Optimization of Low-Dimensional Components of Quasi-2D
- 17 Perovskite Films for Deep-Blue Light-Emitting Diodes. *Adv. Mater.* **2019**, *31* (44), 1904319.
- 18 (65) Xing, J.; Zhao, Y.; Askerka, M.; Quan, L. N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.;
- 19 Long, G.; Gao, L.; et al., Color-stable highly luminescent sky-blue perovskite light-emitting
- 20 diodes. Nat. Commun. 2018, 9 (1), 1-8.
- 21 (66) Liu, Y.; Cui, J. Y.; Du, K.; Tian, H.; He, Z. F.; Zhou, Q. H.; Yang, Z. L.; Deng, Y. Z.;
- Chen, D.; Zuo, X. B.; et al., Efficient blue light-emitting diodes based on quantum-confined
 bromide perovskite nanostructures. *Nat. Photonics* 2019, *13* (11), 760-764.
- 24 (67) Karlsson, M.; Yi, Z.; Reichert, S.; Luo, X.; Lin, W.; Zhang, Z.; Bao, C.; Zhang, R.; Bai,
- 25 S.; Zheng, G.; et al., Mixed halide perovskites for spectrally stable and high-efficiency blue
- 26 light-emitting diodes. *Nat. Commun.* **2021**, *12* (1), 361-361.
- 27 (68) Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.;
- et al., Spectra stable blue perovskite light-emitting diodes. *Nat. Commun.* **2019**, *10* (1), 1-9.
- 29 (69) Cheng, L.; Yi, C.; Tong, Y.; Zhu, L.; Kusch, G.; Wang, X.; Wang, X.; Jiang, T.; Zhang,
- 30 H.; Zhang, J.; et al., Halide Homogenization for High-Performance Blue Perovskite
- 31 Electrohiminescence. *Research* **2020**, *2020*, 9017871.

- 1 (70) Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.;
- 2 Hatakeyama, T., Narrowband deep-blue organic light-emitting diode featuring an organoboron-
- 3 based emitter. *Nat. Photonics* **2019**, *13* (10), 678-682.
- 4 (71) Lee, H. L.; Chung, W. J.; Lee, J. Y., Narrowband and Pure Violet Organic Emitter with a
 5 Full Width at Half Maximum of 14 nm and y Color Coordinate of Below 0.02. *Small* 2020, *16*6 (14), 1907569.
- 7 (72) Xue, S.; Qiu, X.; Ying, S.; Lu, Y.; Pan, Y.; Sun, Q.; Gu, C.; Yang, W., Highly Efficient
- 8 Nondoped Near-Ultraviolet Electroluminescence with an External Quantum Efficiency Greater
- 9 Than 6.5% Based on a Carbazole-Triazole Hybrid Molecule with High and Balanced Charge
- 10 Mobility. Adv. Opt. Mater. 2017, 5 (21), 1700747.
- 11 (73) Okumoto, K.; Shirota, Y., New class of hole-blocking amorphous molecular materials
 12 and their application in blue-violet-emitting fluorescent and green-emitting phosphorescent
- 13 organic electroluminescent devices. *Chem. Mater.* **2003**, *15* (3), 699-707.
- 14 (74) Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.;
- 15 Char, K.; et al., Bright and efficient full-color colloidal quantum dot light-emitting diodes using
- 16 an inverted device structure. *Nano Lett.* **2012**, *12* (5), 2362-2366.
- 17 (75) Yang, Y.; Zheng, Y.; Cao, W.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J.; Holloway,
- P. H.; Qian, L., High-efficiency light-emitting devices based on quantum dots with tailored
 nanostructures. *Nat. Photonics* 2015, 9 (4), 259-266.
- 20 (76) Wang, L.; Lin, J.; Hu, Y.; Guo, X.; Lv, Y.; Tang, Z.; Zhao, J.; Fan, Y.; Zhang, N.; Wang,
- 21 Y.; et al., Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS
- 22 Appl. Mater. Interfaces 2017, 9 (44), 38755-38760.
- (77) Zhang, H.; Chen, S.; Sun, X. W., Efficient red/green/blue tandem quantum-dot lightemitting diodes with external quantum efficiency exceeding 21%. *ACS Nano* 2018, *12* (1), 697704.
- (78) Wang, A.; Shen, H.; Zang, S.; Lin, Q.; Wang, H.; Qian, L.; Niu, J.; Li, L. S., Bright,
 efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. *Nanoscale* 2015,
 7 (7), 2951-2959.
- 29 (79) Kim, T.; Kim, K.-H.; Kim, S.; Choi, S.-M.; Jang, H.; Seo, H.-K.; Lee, H.; Chung, D.-Y.;
- 30 Jang, E., Efficient and stable blue quantum dot light-emitting diode. *Nature* **2020**, *586* (7829),
- 31 385-389.

- (80) Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z. a.; Chen, A.;
 et al., Engineering triangular carbon quantum dots with unprecedented narrow bandwidth
 emission for multicolored LEDs. *Nat. Commun.* 2018, 9 (1), 1-11.
- 4 (81) Zhang, X.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y.; Wang, P.;
- 5 Zhang, T.; Zhao, Y.; Zhang, H.; et al., Color-switchable electroluminescence of carbon dot light-
- 6 emitting diodes. *ACS Nano* **2013**, 7 (12), 11234-11241.
- 7 (82) Li, Y.; Yin, W.; Deng, R.; Chen, R.; Chen, J.; Yan, Q.; Yao, B.; Sun, H.; Wei, S.-H.; Wu,
- 8 T., Realizing a SnO₂-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule.
- 9 *NPG Asia Mater.* **2012,** *4* (11), e30.
- 10 (83) Qian, F.; Gradecak, S.; Li, Y.; Wen, C.-Y.; Lieber, C. M., Core/multishell nanowire
- 11 heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5 (11),
- 12 2287-2291.
- 13