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Temporal Lobe Epilepsy (TLE) is a neurological condition characterized by focal brain
hyperexcitability, resulting in abnormal neuronal discharge and uncontrollable seizures.
The hippocampus, with its inherently highly synchronized firing patterns and relatively
high excitability, is prone to epileptic seizures, and it is usually the focus of TLE.
Researchers have identified hippocampal high-frequency oscillations (HFOs) as a salient
feature in people with TLE and animal models of this disease, arising before or at
the onset of the epileptic event. To a certain extent, these pathological HFOs have
served as a marker and a potential target for seizure attenuation using electrical or
optogenetic interventions. However, many questions remain about whether we can
reliably distinguish pathological from non-pathological HFOs and whether they can tell
us about the development of the disease. While this would be an arduous task to
perform in humans, animal models of TLE provide an excellent opportunity to study
the characteristics of HFOs in predicting how epilepsy evolves. This minireview will
(1) summarize what we know about the oscillatory disruption in TLE, (2) summarize
knowledge about oscillatory changes in the latent period and their role in predicting
seizures, and (3) propose future studies essential to uncovering potential treatments
based on early detection of pathological HFOs.

Keywords: seizures, hippocampus, biomarkers, temporal lobe epilepsy, latent period, pathological oscillations,
high-frequency oscillations

INTRODUCTION

Temporal Lobe Epilepsy (TLE) is the most commonly medically refractive focal epilepsy (Engel,
2014). It mainly begins in the limbic areas and could be secondarily generalized, resulting in tonic-
clonic seizures (Shibley and Smith, 2002; Bone et al., 2012). Studies using electrical recordings and
expression of immediate early genes to identify the cellular activations during seizures have found
that this secondary generalization plays a role in the increased frequency of seizure episodes in
the chronic stage (Kiernan, 2012; Sinel’Nikova et al., 2013) and is one of the risk factors for the
phenomenon called sudden unexpected death in epilepsy (SUDEP), one of the leading causes of
death for people with epilepsy (Bone et al., 2012). During epileptogenesis, there are numerous
changes within the brain: epileptic discharges emerge, altered neural firing patterns due in part to
altered neurotransmitter releases, the connection of and communication between cells (Janz et al.,
2017; Ren and Curia, 2021), neural death and the aberrant migration of granule cells (Henderson
et al., 2014; Cho et al., 2015; Kim and Cho, 2018). In animal models which use chemoconvulsants
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for induction, these disease features are elicited similarly to the
human condition (Curia et al., 2014; Paschen et al., 2020).

The hippocampus is one of the main foci of TLE and,
simultaneously, a key area involved in various types of memory,
including contextual memory and spatial navigation. Therefore,
its pathology can lead to many cognitive deficits, including
learning and memory (Andersen, 2007). The above features,
which facilitate TLE progression, also correlate to higher cases
of cognitive decline in both humans and animal models
(Cho et al., 2015).

The distinctive three phases of TLE are (1) Acute phase:
in which there is a prolonged seizure due to a brain insult,
(2) Latent phase: is a period between the initial precipitating
(IPI) and the chronic stage without any exhibition of behavioral
seizures, and (3) The chronic phase: is marked by spontaneous
recurrent seizures (SRS) (Panayiotopoulos, 2005; Curia et al.,
2008; Kandratavicius et al., 2014; Janz et al., 2017). These are
seemingly unprovoked seizures in the people with epilepsy,
which occur weeks, months, or even years after the first incident
(Maguire, 2016). In human cases, epilepsy is usually diagnosed
at the chronic state, although the consensus is that many
neurological changes occur long before the start of observable
recurrent seizures (Cho et al., 2015; Maguire, 2016). The IPI
itself is traced back using self and caretaker reports during
consultation. In modern studies, animal models of TLE can
distinctly depict these three stages, making them good models
for studying TLE.

Sir William Gowers first described these stages and have been
kept as a standard definition throughout the decades (Gowers,
1901). However, the latent period is the least understood. There
is a high variability of its duration (making it challenging to
define temporally), and there is no typical behavioral output
(making it difficult to detect). For example, if seizures begin after
3 days after an IPI, we may be better able to link the two events,
but there is a question about whether this can be regarded as
latency at all vs. a series of seizures occurring 6 years after an
IPI, in which a precise latency can be defined, but the details of
the IPI may be less accurate due to time lapse (Löscher et al.,
2015). The question about what latency constitutes and its role
in developing TLE has been open for a long time. It is pressing
even more now that we have better tools to assess the mechanisms
underlying progression (Cai et al., 2021). Insights about brain
activity during the so-called “latent period” may lead to better
targeting procedures for interventions in TLE, possibly through
earlier therapeutic windows.

THE LATENCY CONTROVERSY

There is currently an exciting debate in the epilepsy field: One
school of thought is that the IPI presents all the necessary features
to elicit SRS, and even without a latent period, the chronic
seizures will begin (Rattka et al., 2011; Löscher et al., 2015). This
view is based on observing varied results from some human and
animal studies in which some seizures began almost immediately
after the IPI (Löscher et al., 2015). Another thought is that latency
is a prerequisite process in epileptogenesis during which changes

occurring in the brain, including circuit rewiring, will culminate
in the seizures elicited in chronic periods (Panayiotopoulos, 2005;
Lee et al., 2017). This is based on a traditional view of the stages
of epilepsy, whose central gap is the lack of explicit knowledge
about brain activity in the absence of seizures. Maguire (2016)
suggests that many cellular and molecular changes occur in the
brain, making the emergence of SRSs more likely. It is now
appreciated that dubbing the latent period as the “silent period”
may be misleading: While behaviorally, there are no seizures, the
brain activity may show a different picture. At this juncture, the
presence of a latent period seems more likely as it is reported
in more cases than not (Lévesque and Avoli, 2013), but what is
still unclear is what happens during this time. To answer that,
we need to evaluate differences between a latent epileptic brain
and a healthy brain, and one of the ways to characterize neural
population activity is through brain oscillations.

NON-PATHOLOGICAL OSCILLATIONS

Brain oscillations are local field potentials generated by
microcircuits of specific cell types due to internal influences
or external or cognitive demands (Menendez de la Prida and
Huberfeld, 2019). Hippocampal theta oscillations (4–12 Hz) are
very prominent in rodents, typically observed when the animal
attends to a novel object or when it is paying attention or
performing a task (Başar and Güntekin, 2008; Belchior et al.,
2014), although their expression and characterization in human
studies are still controversial (please see Herweg et al., 2020).
These oscillations have been found persistently in the CA1, CA3,
and DG of rodents during voluntary, preparatory, or exploratory
movements, as well as during rapid eye movement (REM)
sleep (Buzsáki, 2002), associated with a replay of memories
and dreaming (Louie and Wilson, 2001). For example, during
a contextual fear conditioning task, the theta oscillations were
observed in both the hippocampus CA1 and the lateral amygdala,
and their synchronization increased during retrieval of fear
memories (Seidenbecher et al., 2003). Researchers further found
that synchronization of neuronal activity in addition to theta
bursts is correlated with both learning and retrieval of contextual
fear memory (Zhou et al., 2020). Potentiation is most efficient
during theta band oscillation: In 2009, a study showed that
low-frequency stimulation on the perforant pathway induced
theta rhythms in the dentate gyrus, which increased EPSPs
and Ca2+ influx (Tsanov and Manahan-Vaughan, 2009). Theta
oscillations are therefore conducive to synaptic plasticity. The
same has been found in other regions, such as the medial
prefrontal cortex (mPFC), where learning depends on theta
oscillations. The theta-dependant neuronal synchrony is said to
underlie memory transfer (Paz et al., 2008).

Gamma oscillations are high-frequency oscillations
(30–80 Hz) observed in many brain parts, including the
hippocampus (Buzsáki and Schomburg, 2015). Gamma
oscillations have brief durations and arise from the interplay
of excitation and inhibition in local cell assemblies, with the
drive from PV+ inhibitory neurons playing an essential role
(Buzsáki and Wang, 2012).
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Gamma oscillations are frequently observed alongside theta
waves. Theta-gamma coupling is highly regulated, and any
disturbances in this system may lead to abnormalities and
pathology in the brain (Zhang et al., 2016).

In the hippocampus, another type of physiological oscillation
is called sharp waves (SPW). They are high amplitude, low-
frequency patterns in the LFPs (Sullivan et al., 2011). They are
often accompanied by a higher frequency of activity (ripple),
and this phenomenon, where both waveforms co-occur (sharp-
wave ripples, SWRs), is observed in various animals, including
humans (Buzsáki, 2015). It tends to dominate the brain during
the awake phase but immobile moments or non-REM sleep and
has been linked to processes that support memory consolidation
(Sullivan et al., 2011; Buzsáki, 2015; Oliva et al., 2018). In a
study using a spatial discrimination task in rats, it was found
that trained rats had a more sustained sharp-wave ripple activity
following the task and during the non-REM stage of their
sleep. Compared to the non-trained rats, the experimental group
showed an increase in ripple density with increasing performance
accuracy (Ramadan et al., 2009). During these SWRs in non-
REM sleep, neurons active during a task are re-activated with
the identical spike sequences but in a shorter timescale replay
(Wilson and McNaughton, 1994; Skaggs and McNaughton, 1996;
Lee and Wilson, 2002). Moreover, selective interruption of SWRs
during awake causes a deficit in spatial learning (Jadhav et al.,
2012). Because of these properties, the SWR was then considered
the neural substrate of memory consolidation (Wilson and
McNaughton, 1994; Ramadan et al., 2009; Buzsáki, 2015).

Oscillations whose spectral power goes beyond the limits
of the gamma band are known as high-frequency oscillations
(HFOs) (125–250 Hz) and very high-frequency oscillations
(vHFOs) (250–500 Hz) (Kucewicz et al., 2014). In other studies,
the former are referred to as ripples and the latter as fast ripples
(Bragin et al., 1999). In a study on the visual cortex in humans,
a visual HFS paradigm enhanced plasticity in the visual cortex
by raising the phase synchrony of theta oscillations (Hamilton
et al., 2020). These results imply that HFOs too facilitate neural
plasticity and network rewiring in healthy animals for learning
and memory. However, aberrant oscillations may lead to aberrant
types of plasticity: for instance, the higher the HFO frequencies,
the higher the likelihood of a disease, specifically above 300 Hz,
the proposed physiological oscillatory frequency boundary (Pail
et al., 2020). Therefore, we need to examine changes leading to
pathological oscillations carefully.

PATHOLOGICAL OSCILLATIONS

Pathological oscillations are fast oscillations occurring at higher
frequencies than the average observed in healthy brains (Engel
et al., 2009; Ewell et al., 2019). Bragin et al. (1999) observed that
in normal and in kindled rat brains, field recordings did not
exceed 200 Hz, while in the kainate acid (KA)-treated animals,
recordings of > 200 Hz were observed near the injection site,
which was also the sclerotic tissue. Their study characterizing
ripples and fast ripples defined ripples as oscillations occurring
at 100–200 Hz and lasting 50–150 ms, while fast ripples were

the 200–500 Hz oscillations lasting 10–100 ms (Bragin et al.,
1999). Although sometimes frequency bands of pathological
oscillations may overlap with physiological oscillations (Ibarz
et al., 2010; Pail et al., 2020), one study suggests that the
peak amplitudes of pathological oscillations are highly variable
compared to the more consistent physiological recordings (Ewell
et al., 2019). Apart from features of the HFOs, the locations in
which they occur are also of importance. For instance, according
to Engel et al. (2009), oscillations occurring at 250–600 Hz in
the hippocampus would be considered pathological, while in
the neocortex, they may be facilitating physiological processes.
Additionally, pathologic oscillations seem to occur regardless
of the brain state, while physiological HFOs are linked closely
with specific tasks (Ewell et al., 2019). Buzsáki (2015) theorized
that the threshold of conversion from an HFO to a pathological
HFO is minimal, therefore in highly excitable circuits such
as the hippocampus, a perturbation of normal HFO is likely
to lead to seizure disorders. The appearance of these HFOs
during the latent and, more frequently during chronicity implies
that a progressive change in the network generates this activity
(Figure 1; Assenza et al., 2020).

In a Ca2+ imaging study, Lillis et al. (2015) found an
increase in local hippocampal synchronization stemming from
the recruitment of more cells from the early stages following
induction of epilepsy. In the chronic phase, there are more
HFOs than in the healthy or the early seizure stages, and more
than in the acutely epileptic brain, suggesting a progressive
series of changes such as network reorganization throughout
TLE development that could lead to long-term pathophysiology
(Lévesque et al., 2018). Another finding following seizure
induction was that the earlier the HFOs were exhibited during
latency, the shorter the latency (Jiruska et al., 2017). This
relationship could be one of the explanations for why some
latencies are shorter than others. It also leads us to the natural
assumption that perhaps the latent period represents the rewiring
of the brain and that there is a threshold for these aberrant
activities, which, when met, begins the chronic stage of TLE.
When the latent period transitions into the chronic phase,
there is also a change in the site of HFO generation, from the
hippocampus to the entorhinal cortex (Jiruska et al., 2017), and
an increased duration of the HFOs near the beginning of SRS
(Lévesque et al., 2018). The dynamics and presentation of HFOs,
once understood, can be used to detect TLE stages and serve as a
warning before the looming first SRS.

Song and colleagues observed stronger temporal lobe
coherence during resting states in people with chronic epilepsy
versus healthy controls (Song et al., 2013). The theta, gamma,
and beta power are heightened during the ictal part of the
seizure, while delta power is high in the interictal stages
(Sharma et al., 2018). A study in the early 90 s showed a
correlation between theta oscillations and the attenuation of
seizures. Stimulating the medial septum at 4–8 Hz after a
pentylenetetrazole-induced seizure stopped the ongoing seizures
within seconds, while the lesioning of the medial septum removed
the theta waves and heightened susceptibility to and frequency
of seizures (Miller et al., 1994), further emphasizing the theta-
SWR dichotomy even in pathology. Recent evidence supports
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FIGURE 1 | Pathological HFOs and their possible role during the latent phase of TLE. (Left) SWRs as an example of non-pathological HFOs. In the hippocampus,
HFOs (80–200 Hz) called ripples are associated with high amplitude activities (Sharp Wave Ripples, SWRs) and contribute to neuronal plasticity and memory
consolidation. (Right) Pathological HFOs during the latent phase of TLE. Higher frequencies of oscillations (200–500 Hz) are observed between the acute and
chronic stages without behavioral expression of seizures. Neuronal activities leading to the pathological HFOs are suggested to result in long-term molecular and
cellular changes. Circuit rewiring caused by these changes might make the more brain areas prone to SRSs, leading to further progression of TLE.

this claim through experiments using continuous deep brain
stimulation on the medial septum in animal models of TLE.
The results were significant reductions in seizure severity, the
incidence of generalized seizures and SE, and the total number
of generalized seizures. The 5 Hz stimulation yielded the most
significant effects on all measurements (Wang et al., 2021). A slice
preparation experiment showed that directly stimulating the
GABA-ergic neurons in the medial septum (MS) achieves the
same effect (Hristova et al., 2021). The results coincide with the
already established role of the MS that is the generation and
input of theta oscillations to the hippocampus (Buzsáki, 2002;
Watson et al., 2019).

High-frequency oscillations may also be a crucial seizure-
prediction tool that shows the locations of seizure generation
and the time window to the subsequent seizure, and possibly,
they could define the stage of the epileptogenesis (Ibarz et al.,
2010). In a human study using intracranial EEG and HFO
detection systems, machine learning algorithms could reliably
recognize patterns of brain activity that preceded the seizures
up to 30 min and discern them from non-seizure-related activity
(Scott et al., 2021). Due to higher HFO instances in the ipsilateral
hippocampus rather than the contralateral side can be used as a
biomarker for the seizure focus (Řehulka et al., 2019) path. Non-
invasive tools have already been developed for better detection
with minimal discomfort for people with TLE (Cai et al.,
2021). As such, not only can HFOs be used to predict the first
spontaneous seizure (after latency), but they could also be used
to predict the ongoing seizures throughout chronicity and their
site of generation (Table 1 summarizes the important studies
which observed pathological HFOs either in the human and
rodents). Therefore, we can appreciate the potential utilization
of HFOs in the clinical setting for people with either acute and
chronic epilepsy.

CELLULAR UNDERPINNINGS OF
HIGH-FREQUENCY OSCILLATIONS

The cellular mechanisms underlying the generation of
pathological HFOs are still unclear, and more work is needed to

understand them. There are, however, some theories that have
been suggested to understand how HFOs arise. For example,
some research states that the generation of pathological HFOs
during seizures is due to the synchronous firing of pyramidal
cells and the relative reduction of activity from the interneurons
(Pail et al., 2020).

Jiruska et al. (2017) also posit that the pHFOs represent this
fast (order of milliseconds) synchronous firing within aberrantly
connected principal cell population (Zijlmans et al., 2012) which
is different from normal ripples whose origin is believed to be
the activity of interneurons and the summation of their IPSPs in
an area (Engel et al., 2009; Pail et al., 2020). Physiological HFOs
are said to emanate from the activity of cells in the pyramidal
layer of the CA1 and interneurons such as the basket cells,
especially PV+ cells responding to the bursting of CA3 neurons
with a surge of IPSPs (Chrobak and Buzsáki, 1996; Bragin et al.,
1999). During an SWR, a physiological oscillation, Ramadan
et al. (2009) suggest that the activity of both excitatory and
inhibitory neurons in the CA3 is at its peak, but that the firing
rate of pyramidal neurons is higher than that of interneurons,
causing the synchronous depolarization of cells of the CA1
downstream. From a study utilizing computer simulations, Ibarz
and colleagues suggested that both in-phase firing and out-of-
phase firing of principal cells in the hippocampus could lead
to fast ripples observed in the epileptic brain. Additionally,
the degree of synchrony in cellular discharge was found to be
much more pronounced in the dentate gyrus than in other
parts of the hippocampus, emphasizing that the elicitation of
pathologic HFOs is complex and may look different on the single-
cell level compared to the population behavior (Ibarz et al.,
2010). The pathologic HFOs may also arise due to increased
overall excitability caused by interneuron cell death following
repeated seizures (Walker, 2015). The demographics of the
remaining neurons may impact the molecular characteristics
of the region, too, that is, causing a differential release of
neurotransmitters or expression of receptors leading to an
imbalance in neurotransmission (Menendez de la Prida et al.,
2015). Another factor for elicitation of HFOs could be the
breaking of the dentate gate. The dentate gate theory states that
due to the nature of the granule cells and the local inhibitory
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TABLE 1 | Studies evaluating pathological HFOs (pHFOs) in the epileptogenic regions.

Study Subjects Recording location Detection parameters Findings/Conclusion

Bragin et al., 1999 Rats (KA), Humans Hippocampus (CA1, DG),
Entorhinal cortex

Depth electrodes,
microelectrodes

Fast ripples (250–500 Hz) were only found in the
hippocampus of KA-treated rats and epileptic
humans; fast ripples are defined as pathologic.

Staba et al., 2002 Humans Hippocampus, Entorhinal
cortex

Depth electrodes More HFOs were detected in the hippocampal sites
ipsilateral to onset location compared to contralateral
sites.

Worrell et al., 2004 Humans Temporal, frontal lobe Video-EEG during sleep
and wakefulness

pHFOs found in seizure onset zones and could
predict onset within a specific timeframe in
neocortical epilepsy.

Burnos et al., 2014 Humans Various: Amygdala; Entorhinal
cortex; Frontal anterior; Frontal
lobe; Frontal posterior;
Hippocampus; Mesial temporal
lobe; Perirhinal cortex;
Temporal basal anterior;
Temporal basal posterior;
Temporal depth frontal;
Temporal depth lateral

iEEG Location of pHFOs overlapped with the location of
onset.

Řehulka et al., 2019 Humans Hippocampus, amygdala Depth electrodes Ripples were more prominent in epileptic rather than
non-epileptic brains. Higher frequencies were
observed near sclerotic tissue.

Scott et al., 2021 Humans Temporal, frontal lobe iEEG Pre-ictal and inter-ictal HFOs can in some cases be
differentiated, and changes in the frequency of the
HFOs can be used as predictors of seizures.

Jiruska et al., 2010 Rats (low-calcium
ACSF perfusion of
slices)

Hippocampus (CA1) Glass pipettes,
extracellular field
potentials

HFOs build up before the seizure onset.

Ibarz et al., 2010 Rats (KA),
Computer
simulations

Hippocampus (DG, CA1, CA3),
computational models

Silicon probes,
computational models

Populations spikes and emergent spikes cause fast
ripples, region-specific differences in synchronicity
during HFOs.

Salami et al., 2014 Rats (Pilocarpine) Hippocampus (CA1), Entorhinal
cortex

Depth electrodes pHFO dynamics and distribution changes during
latency and chronic stage, inter-ictal spikes change
before and after the first spontaneous seizure.

Jones et al., 2015 Mice (KA) Hippocampus (CA1, DG) Glass pipettes and
silicon probes

pHFOs begin in the early latent period in CA1, and
the majority are observed in DG. Peak amplitudes
increase with epileptogenesis.

Ewell et al., 2019 Rats (KA) Hippocampus (CA1) LFP and single-unit
recordings with tetrodes

pHFOs found only in epileptic brains independent of
brain state and are associated with inter-ictal spikes.

circuitry, the dentate gyrus essentially acts as a gate that keeps
the probability of seizures low. However, in epilepsy, there seems
to be a malfunction in the regulation of this gate, and therefore
the granule cells may become overexcitable (Krook-Magnuson
et al., 2015). This makes sense when we consider some literature
that has found that pathological HFOs are never observed in the
dentate gyrus of healthy brains but are a hallmark of those that
develop epilepsy (Engel et al., 2009). Importantly, these HFOs
are observed in the seizure-generating areas ipsilateral to the
site of drug injection and the site of tissue sclerosis within the
hippocampus (Krook-Magnuson et al., 2015).

Hippocampal sclerosis may be one of the causes of local
network reorganization (Walker, 2015) during the latent period.
Since there is substantial neural damage induced from the
hypertoxicity during the seizure development, the affected tissues
endure atrophy and gliosis (Curia et al., 2008; Walker, 2015)
throughout latency (Kim and Cho, 2018). A second cause may be
the presence of HFOs within the latent period, which intensifies
as the chronic stage nears. HFOs have been shown to facilitate

synaptic changes in healthy neurons; however, if the HFOs occur
more frequently and in different regions (Lévesque et al., 2018)
than in healthy brains, this could lead to abnormal synaptic
rewiring within the latent period (Janz et al., 2017) which may
result in the increased propensity toward seizures. Thus, the
relationship between HFOs and the extent of sclerosis in TLE may
be another chicken and egg problem.

FUTURE DIRECTIONS

Growing evidence suggests that pathological HFOs within the
latent period are associated with network rewiring, leading to
changes in their expression as epileptogenesis continues. If this
is the case, could stopping network rewiring also stop the HFOs?
Could stopping the HFOs prevent the TLE development? In
2013, Krook-Magnuson and colleagues developed a method
that could detect a seizure onset and optogenetically silence
the activity of the hippocampal pyramidal cells in chronic
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mice. This intervention resulted in a significant reduction in
the seizure duration (Krook-Magnuson et al., 2013). One can
imagine adapting this approach to detect the HFOs preceding the
actual seizure, eliciting inhibition on the seizure focus, effectively
preventing the seizure from happening at all.

Since closed-loop devices like the one described above may
be invasive, though, inhibition through drugs could offer a
less invasive solution (Smith et al., 2016; Vlasov et al., 2018).
More specifically, since HFOs typically arise from around the
seizure focus, we could investigate the applications of a DREADD
mediated inhibition of the cells in the identified area following
early detection of HFOs to prevent a seizure.

Löscher et al. (2015) states that many preventative
interventions in the form of antiepileptic drugs (AEDs) have
not been successful in attenuating chronic seizures. These
results could be due to the wrong line of treatment for the
type of epilepsy or the non-ideal timing of the therapy. An
alternative approach to circumvent that would be to design
an experiment for transiently reducing overall neural activity
after a seizure rather than targeting a specific circuit to stop
the overall network rewiring and aberrant synaptic plasticity
changes. Some animals in the wild can achieve this brain
state through the process of hibernation, in which neural
activity reduces upon temperature reduction (Walker et al.,
1977). This long-lasting hypothermic and hypometabolic state

was artificially induced in non-hibernating animals using a
DREADD mediated activation of hypothalamic Q-neurons
(Takahashi et al., 2020). During this Q-neuron-induced
hypothermia and hypometabolism (QIH), neural activity was
substantially reduced in the whole brain without any observed
tissue damage following hibernation. This tool would be a
fascinating approach to help us gain insights into mechanisms
of latent period, plasticity changes, and their role in TLE
development. More research is needed to delineate the stages
of TLE so that we may be better able to evaluate and
perhaps halt the progression of TLE from the perspective of
pathological oscillations.
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Başar, E., and Güntekin, B. (2008). A review of brain oscillations in cognitive
disorders and the role of neurotransmitters. Brain Res. 1235, 172–193. doi:
10.1016/j.brainres.2008.06.103

Belchior, H., Lopes-Dos-Santos, V., Tort, A. B., and Ribeiro, S. (2014). Increase
in hippocampal theta oscillations during spatial decision making. Hippocampus
24, 693–702. doi: 10.1002/hipo.22260

Bone, B., Fogarasi, A., Schulz, R., Gyimesi, C., Kalmar, Z., Kovacs, N., et al.
(2012). Secondarily generalized seizures in temporal lobe epilepsy. Epilepsia 53,
817–824. doi: 10.1111/j.1528-1167.2012.03435.x

Bragin, A., Engel, J. Jr., Wilson, C. L., Fried, I., and Mathern, G. W. (1999).
Hippocampal and entorhinal cortex high-frequency oscillations (100-500 Hz)
in human epileptic brain and in kainic acid-treated rats with chronic seizures.
Epilepsia 40, 127–137. doi: 10.1111/j.1528-1157.1999.tb02065.x

Burnos, S., Hilfiker, P., Sürücü, O., Scholkmann, F., Krayenbühl, N., Grunwald, T.,
et al. (2014). Human Intracranial High Frequency Oscillations (HFOs) detected
by automatic time-frequency analysis. PLoS One 9:e94381. doi: 10.1371/journal.
pone.0094381

Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron 33, 325–340.
doi: 10.1016/s0896-6273(02)00586-x

Buzsáki, G. (2015). Hippocampal sharp wave−ripple: a cognitive biomarker for
episodic memory and planning. Hippocampus 25, 1073–188. doi: 10.1002/hipo.
22488

Buzsáki, G., and Schomburg, E. W. (2015). What does gamma coherence tell us
about interregional neural communication? Nat. Neurosci. 18, 484–489. doi:
10.1038/nn.3952

Buzsáki, G., and Wang, X. (2012). Mechanisms of gamma oscillations. Ann. Rev.
Neurosci. 35, 203–225. doi: 10.1146/annurev-neuro-062111-150444

Cai, Z., Sohrabpour, A., Jiang, H., Ye, S., Joseph, B., Brinkmann, B. H., et al. (2021).
Noninvasive high-frequency oscillations riding spikes delineates epileptogenic

sources. Proc. Natl. Acad. Sci. U. S. A. 118:e2011130118. doi: 10.1073/pnas.
2011130118

Cho, K., Lybrand, Z. R., Ito, N., Brulet, R., Tafacory, F., Zhang, L., et al.
(2015). Aberrant hippocampal neurogenesis contributes to epilepsy and
associated cognitive decline. Nat. Commun. 6:6606. doi: 10.1038/ncomms
7606

Chrobak, J. J., and Buzsáki, G. (1996). High-frequency oscillations in the output
networks of the hippocampal–entorhinal axis of the freely behaving rat.
J. Neurosci. 16, 3056–3066. doi: 10.1523/jneurosci.16-09-03056.1996

Curia, G., Longo, D., Biagini, G., Jones, R. S., and Avoli, M. (2008). The pilocarpine
model of temporal lobe epilepsy. J. Neurosci. Methods 172, 143–157. doi: 10.
1016/j.jneumeth.2008.04.019

Curia, G., Lucchi, C., Vinet, J., Gualtieri, F., Marinelli, C., Torsello, A., et al.
(2014). Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention
of damage antiepileptogenic? Curr. Med. Chem. 21, 663–688. doi: 10.2174/
092986732066613111915220

Engel, J. Jr. (2014). Approaches to refractory epilepsy. Ann. Indian Acad. Neurol.
17, S12–7. doi: 10.4103/0972-2327.128644

Engel, J. Jr., Bragin, A., Staba, R., and Mody, I. (2009). High-frequency oscillations:
what is normal and what is not? Epilepsia 50, 598–604. doi: 10.1111/j.1528-1167.
2008.01917.x

Ewell, L. A., Fischer, K. B., Leibold, C., Leutgeb, S., and Leutgeb, J. K. (2019). The
impact of pathological high-frequency oscillations on hippocampal network
activity in rats with chronic epilepsy. ELife 8:e42148. doi: 10.7554/elife.42148

Gowers, W. R. (1901). Epilepsy and Other Chronic Convulsive Diseases: Their
Causes, Symptoms and Treatment. Philadelphia: P. Blakistons Son & Co.

Hamilton, H. K., Roach, B. J., Cavus, I., Teyler, T. J., Clapp, W. C., Ford,
J. M., et al. (2020). Impaired potentiation of theta oscillations during a visual
cortical plasticity paradigm in individuals with schizophrenia. Front. Psychiatry
11:590567. doi: 10.3389/fpsyt.2020.590567

Henderson, K. W., Gupta, J., Tagliatela, S., Litvina, E., Zheng, X., Zandt, M. A.,
et al. (2014). Long-term seizure suppression and optogenetic analyses of
synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic
interneurons. J. Neurosci. 34, 13492–13504. doi: 10.1523/jneurosci.0005-14.
2014

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 785328

https://doi.org/10.1016/j.clinph.2019.10.017
https://doi.org/10.1016/j.brainres.2008.06.103
https://doi.org/10.1016/j.brainres.2008.06.103
https://doi.org/10.1002/hipo.22260
https://doi.org/10.1111/j.1528-1167.2012.03435.x
https://doi.org/10.1111/j.1528-1157.1999.tb02065.x
https://doi.org/10.1371/journal.pone.0094381
https://doi.org/10.1371/journal.pone.0094381
https://doi.org/10.1016/s0896-6273(02)00586-x
https://doi.org/10.1002/hipo.22488
https://doi.org/10.1002/hipo.22488
https://doi.org/10.1038/nn.3952
https://doi.org/10.1038/nn.3952
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1073/pnas.2011130118
https://doi.org/10.1073/pnas.2011130118
https://doi.org/10.1038/ncomms7606
https://doi.org/10.1038/ncomms7606
https://doi.org/10.1523/jneurosci.16-09-03056.1996
https://doi.org/10.1016/j.jneumeth.2008.04.019
https://doi.org/10.1016/j.jneumeth.2008.04.019
https://doi.org/10.2174/092986732066613111915220
https://doi.org/10.2174/092986732066613111915220
https://doi.org/10.4103/0972-2327.128644
https://doi.org/10.1111/j.1528-1167.2008.01917.x
https://doi.org/10.1111/j.1528-1167.2008.01917.x
https://doi.org/10.7554/elife.42148
https://doi.org/10.3389/fpsyt.2020.590567
https://doi.org/10.1523/jneurosci.0005-14.2014
https://doi.org/10.1523/jneurosci.0005-14.2014
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-785328 November 20, 2021 Time: 19:31 # 7

Mokhothu and Tanaka Hippocampal Oscillatory Signatures in TLE

Herweg, N. A., Solomon, E. A., and Kahana, M. J. (2020). Theta oscillations in
human memory. Trends Cogn. Sci. 24, 208–227. doi: 10.1016/j.tics.2019.12.006

Hristova, K., Martinez-Gonzalez, C., Watson, T. C., Codadu, N. K., Hashemi, K.,
Kind, P. C., et al. (2021). Medial septal GABAergic neurons reduce seizure
duration upon optogenetic closed-loop stimulation. Brain 144, 1576–1589. doi:
10.1093/brain/awab042

Ibarz, J. M., Foffani, G., Cid, E., Inostroza, M., and Menendez de la Prida, L. (2010).
Emergent dynamics of fast ripples in the epileptic hippocampus. J. Neurosci. 30,
16249–16261. doi: 10.1523/jneurosci.3357-10.2010

Jadhav, S. P., Kemere, C., German, P. W., and Frank, L. M. (2012). Awake
hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–
1458. doi: 10.1126/science.1217230

Janz, P., Savanthrapadian, S., Häussler, U., Kilias, A., Nestel, S., Kretz, O., et al.
(2017). Synaptic remodeling of entorhinal input contributes to an aberrant
hippocampal network in temporal lobe epilepsy. Cereb. Cortex 27, 2348–2364.
doi: 10.1093/cercor/bhw093

Jiruska, P., Alvarado-Rojas, C., Schevon, C. A., Staba, R., Stacey, W., Wendling, F.,
et al. (2017). Update on the mechanisms and roles of high-frequency oscillations
in seizures and epileptic disorders. Epilepsia 58, 1330–1339. doi: 10.1111/epi.
13830

Jiruska, P., Csicsvari, J., Powell, A. D., Fox, J. E., Chang, W. C., Vreugdenhil,
M., et al. (2010). High-frequency network activity, global increase in neuronal
activity, and synchrony expansion precede epileptic seizures in vitro. J. Neurosci.
30, 5690–5701. doi: 10.1523/jneurosci.0535-10.2010

Jones, R. T., Barth, A. M., Ormiston, L. D., and Mody, I. (2015). Evolution
of temporal and spectral dynamics of pathologic high-frequency oscillations
(pHFOs) during epileptogenesis. Epilepsia 56, 1879–1889. doi: 10.1111/epi.
13218

Kandratavicius, L., Balista, P., Lopes-Aguiar, C., Ruggiero, R., Umeoka, E., Garcia-
Cairasco, N., et al. (2014). Animal models of epilepsy: use and limitations.
Neuropsychiatric Dis. Treat. 10, 1693–1705. doi: 10.2147/ndt.s50371

Kiernan, J. A. (2012). Anatomy of the Temporal Lobe. Epilepsy Res. Treat. 2012,
1–12. doi: 10.1155/2012/176157

Kim, J., and Cho, K. (2018). The pilocarpine model of temporal lobe epilepsy and
EEG monitoring using radiotelemetry system in mice. J. Vis. Exp. 132:56831.
doi: 10.3791/56831

Krook-Magnuson, E., Armstrong, C., Bui, A., Lew, S., Oijala, M., and Soltesz, I.
(2015). In vivo evaluation of the dentate gate theory in epilepsy. J. Physiol. 593,
2379–2388. doi: 10.1113/jp270056

Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltez, I. (2013). On-demand
optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat.
Commun. 4:1376. doi: 10.1038/ncomms2376

Kucewicz, M. T., Cimbalnik, J., Matsumoto, J. Y., Brinkmann, B. H., Bower,
M. R., Vasoli, V., et al. (2014). High frequency oscillations are associated with
cognitive processing in human recognition memory. Brain 137, 2231–2244.
doi: 10.1093/brain/awu149

Lee, A. K., and Wilson, M. A. (2002). Memory of sequential experience in the
hippocampus during slow wave sleep. Neuron 36, 1183–1194. doi: 10.1016/
s0896-6273(02)01096-6

Lee, H., Jung, S., Lee, P., and Jeong, Y. (2017). Altered intrinsic functional
connectivity in the latent period of epileptogenesis in a temporal lobe
epilepsy model. Exp. Neurol. 296, 89–98. doi: 10.1016/j.expneurol.2017.
07.007

Lévesque, M., and Avoli, M. (2013). The kainic acid model of temporal lobe
epilepsy. Neurosci. Biobehav. Rev. 37, 2887–2899. doi: 10.1016/j.neubiorev.2013.
10.011

Lévesque, M., Shiri, Z., Chen, L., and Avoli, M. (2018). High-frequency oscillations
and mesial temporal lobe epilepsy. Neurosci. Lett. 667, 66–74. doi: 10.1016/j.
neulet.2017.01.047

Lillis, K. P., Wang, Z., Mail, M., Zhao, G. Q., Berdichevsky, Y., Bacskai, B.,
et al. (2015). Evolution of network synchronization during early epileptogenesis
parallels synaptic circuit alterations. J. Neurosci. 35, 9920–9934. doi: 10.1523/
jneurosci.4007-14.2015

Löscher, W., Hirsch, L. J., and Schmidt, D. (2015). The enigma of the latent
period in the development of symptomatic acquired epilepsy — Traditional
view versus new concepts. Epilepsy Behav. 52, 78–92. doi: 10.1016/j.yebeh.2015.
08.037

Louie, K., and Wilson, M. A. (2001). Temporally structured replay of awake
hippocampal ensemble activity during rapid eye movement sleep. Neuron 29,
145–156. doi: 10.1016/s0896-6273(01)00186-6

Maguire, J. (2016). Epileptogenesis: more than just the latent period. Epilepsy Curr.
16, 31–33. doi: 10.5698/1535-7597-16.1.31

Menendez de la Prida, L., and Huberfeld, G. (2019). Inhibition and oscillations in
the human brain tissue in vitro. Neurobiol. Dis. 125, 198–210. doi: 10.1016/j.
nbd.2019.02.006

Menendez de la Prida, L., Staba, R. J., and Dian, J. A. (2015). Conundrums of high-
frequency oscillations (80–800 Hz) in the epileptic brain. J. Clin. Neurophysiol.
32, 207–219. doi: 10.1097/wnp.0000000000000150

Miller, J. W., Turner, G. M., and Gray, B. C. (1994). Anticonvulsant effects of the
experimental induction of hippocampal theta activity. Epilepsy Res. 18, 195–204.
doi: 10.1016/0920-1211(94)90040-x

Oliva, A., Fernández-Ruiz, A., Oliveira, E. F., and Buzsáki, G. (2018). Origin of
gamma frequency power during hippocampal sharp-wave ripples. Cell Rep. 25,
1693–1700.e4. doi: 10.1016/j.celrep.2018.10.066

Pail, M., Cimbálník, J., Roman, R., Daniel, P., Shaw, D. J., Chrastina, J., et al. (2020).
High frequency oscillations in epileptic and non-epileptic human hippocampus
during a cognitive task. Sci. Rep. 10:18147. doi: 10.1038/s41598-020-74306-3

Panayiotopoulos, C. P. (2005). The Epilepsies: Seizures, Syndromes and
Management: Based on the ILAE Classifications and Practice Parameter
Guidelines. Chipping Norton: Bladon Medical Pub.

Paschen, E., Elgueta, C., Heining, K., Vieira, D. M., Kleis, P., Orcinha, C., et al.
(2020). Hippocampal low-frequency stimulation prevents seizure generation in
a mouse model of mesial temporal lobe epilepsy. Elife 9:e54518. doi: 10.7554/
elife.54518

Paz, R., Bauer, E. P., and Pare, D. (2008). Theta synchronizes the activity of medial
prefrontal neurons during learning. Learn. Memory 15, 524–531. doi: 10.1101/
lm.932408

Ramadan, W., Eschenko, O., and Sara, S. J. (2009). Hippocampal sharp
wave/ripples during sleep for consolidation of associative memory. PLoS One
4:e6697. doi: 10.1371/journal.pone.0006697

Rattka, M., Brandt, C., Bankstahl, M., Bröer, S., and Löscher, W. (2011).
Enhanced susceptibility to the GABA antagonist pentylenetetrazole during
the latent period following a pilocarpine-induced status epilepticus in rats.
Neuropharmacology 60, 505–512. doi: 10.1016/j.neuropharm.2010.11.005
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