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We formulate and study a spin-orbital model for a family of cubic double perovskites with d1 ions
occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis
reveal a rich variety of phases emerging from the interplay of Hund’s rule and spin-orbit coupling. The
phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large
window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical
origin of the unusual amorphous valence bond state experimentally suggested for Ba2BMoO6 (B ¼ Y, Lu)
and predicts possible ordered patterns in Ba2BOsO6 (B ¼ Na, Li) compounds.
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Conventionally, frustration, low dimensionality, and low
spin are the key attributes of emerging novel quantum
ground states. In the quest to realize a quantum spin liquid,
a state of spins possessing massive quantum entanglement
and lacking magnetic order, researchers have extensively
studied Mott insulators with antiferromagnetic (AFM)
interactions on geometrically frustrated triangular, kagome,
hyperkagome, and pyrochlore lattices [1,2]. Another route
to frustration in Mott insulators with unquenched angular
momentum is provided by orbital degrees of freedom. The
directional character of degenerate d orbitals may frustrate
the magnetic interactions even on bipartite lattices and lead
to a plethora of emergent phases with unusual spin patterns
[3,4] or without long-range spin or orbital order [5–10].
In 4d and 5d transition metal compounds, the enhanced

spin-orbit coupling (SOC), compared to 3d systems, fully
or partly lifts the local degeneracy of a d shell. When
degeneracy is fully lifted, e.g., in the case of a single hole in
a t2g shell, the anisotropic orbital interactions as well as
related frustration are transferred to pseudospin one-half
Kramers doublets of d5 ions [4,11,12]. However, in the case
of only partially lifting the degeneracy, the directional
character of the electron density of the degenerate states is
preserved, resulting in an effective reduction of magnetic
sublattice dimensionality and strongly amplifying the
effects of geometrical frustration. The Mott insulating d1

double perovskites with undistorted cubic structure, such as
spin-1=2 Ba2BMoO6 (B ¼ Y, Lu) and Ba2BOsO6

(B ¼ Na, Li), in which the only magnetically active ions,
Mo5þ or Os7þ, reside on a weakly frustrated fcc sublattice,
well exemplify this physical scenario [13].
The osmium compounds Ba2NaOsO6 and Ba2LiOsO6

order magnetically [14–16]. Small effective local moments
∼0.7 μB, compared to the spin-only value 1.7 μB, have been
extracted from high temperature susceptibilities in both mate-
rials [14]. The strong reduction of local moments is a direct

manifestation of unquenched orbital momentum and strong
SOC in the 5d shell of the Os7þ ion [17–19]. In Ba2NaOsO6,
an anomalously small net ordered moment ∼0.2 μB has
additionally been detected [15,16]. Recent NMR measure-
ments indicate a canted AFM order in the Na compound [20].
The reported experimental data on Ba2YMoO6 are even

more puzzling: this compound does not show any structural
or magnetic transition down to 50 mK [21–23]. The total
high temperature entropy extracted from electronic heat
capacity was reported to be close to R ln 4 [22], indicating
the presence of an extra twofold orbital degeneracy in
addition to the spin, and allowing for the emergence of
multiorbital physics. Based on magnetic susceptibility and
muon spin rotation data, a valence bond glass state, an
amorphous arrangement of spin singlets, has been proposed
for Ba2YMoO6 [22], which remains quite stable against
isovalent substitutions of Ba2þwith Sr2þ [24]. Themagnetic
susceptibility of a very similar compound, Ba2LuMoO6,
also did not exhibit any magnetic transition down to 2 K
[25]. Theoretically, various exotic phases, including multi-
polar order [13] and chiral spin-orbital liquid [26], have been
put forward as possible candidates.
In this Letter, we introduce and study a spin-orbital

model and show that a dimer-singlet phase, composed of
random arrangement of spin-orbit dimers, without any type
of long-range order is a natural ground state of the model.
The physical properties of this disordered phase are
consistent with all available experimental findings on
molybdenum double perovskites. In addition, the minimal
model supports complex noncollinear, coplanar, ordered
patterns. We argue that such four-sublattice ordered states
are realized in osmium compounds.
Local electronic structure.—The single d electron of a

Mo5þ or Os7þ ion in a cubic environment occupies the t2g
manifold of degenerate xy, xz, yz orbitals. It carries an
effective angular momentum l ¼ 1 with jlz ¼ 0i≡ jxyi,
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jlz ¼ �1i≡ ð−1= ffiffiffi
2

p Þðijxzi � jyziÞ [27]. The sixfold
degeneracy of the local Hilbert space is lifted by the local
SOC Hso ¼ −λl⃗ · S⃗, stabilizing the j ¼ lþ S ¼ 3

2
quartet

and pushing the j ¼ 1
2
Kramers doublet to a higher energy.

Here, S⃗ is an electron spin operator and λ denotes the SOC.
The states jz ¼ � 1

2
of the j ¼ 3

2
manifold have predomi-

nantly xy character, while jz ¼ � 3
2
components are given

by the superposition of xz and yz orbitals only [see
Fig. 1(a)]. When SOC is much smaller (larger) than the
exchange interactions between neighboring ions, it is more
convenient to use the t2g (j ¼ 3

2
) basis. The following

analysis covers both limits.
Spin-orbital Hamiltonian.—In the double perovskite

structure, each nearest-neighbor bond of the fcc sublattice
of magnetic ions belongs to one of the crystallographic
planes xy, xz, or yz, as shown in Fig. 1(b). We label these
bonds as well as the t2g orbitals with a cubic axis
γð¼a; b; cÞ normal to their planes; e.g., xy becomes c.
The hopping between neighboring t2g orbitals takes place
through the intermediate oxygens’ p orbitals, or direct
hybridization. Along a γ-type bond the dominant overlap,
with amplitude t, is between γ orbitals [13,28]. The low-
energy spin-orbital model is obtained via standard second
order perturbation theory in t=U (U being the local
Coulomb repulsion) [29], and reads as follows:

H ¼
X

hijiγ

�
−J1

�
S⃗i · S⃗j þ

3

4

�
þ J2

�
S⃗i · S⃗j −

1

4

��
PðγÞ
ij

þ J3
X

hijiγ

�
S⃗i · S⃗j −

1

4

�
P̄ðγÞ
ij − λ

X

i

l⃗ ·S⃗: ð1Þ

hijiγ denotes a γ-type bond, J1ð2Þ ¼ 1
4
Jr1ð2Þ, J3 ¼

1
3
Jð2r2 þ r3Þ, J ¼ 4t2=U, the set of rn describing the

multiplet structure of excited states are functions of η ¼
JH=U ≪ 1 [31], and JH is Hund’s coupling.
The isotropic spin exchange couplings depend on the

orbital occupancy of the corresponding bonds [3,32], and
are described by the first three terms of Eq. (1), with the

orbital projectors PðγÞ
ij ¼ nðγÞi ð1 − nðγÞj Þ þ ð1 − nðγÞi ÞnðγÞj and

P̄ðγÞ
ij ¼ nðγÞi nðγÞj , where nðγÞi is the occupation number of a γ

orbital. The spin isotropy is broken by the SOC in Eq. (1),
allowing symmetric anisotropic exchange between j ¼ 3

2

quartets. In cubic double perovskites, the antisymmetric
Dzyaloshinsky-Moriya exchange is forbidden by the bond
inversion symmetry.
Dimer-singlet phase.—We start our analysis by setting

the small parameter η ¼ 0, and we discuss later the model
Eq. (1) in its full parameter space. We consider two limiting
cases when λ ≪ J or λ ≫ J, and identify the ground state
phases of the model Eq. (1) through analytical consider-
ations. At η ¼ 0, the first three terms of the model Eq. (1)

can be grouped, up to a constant term, into one [32], and the
model simplifies to

H ¼ J
X

hijiγ

�
S⃗i · S⃗j þ

1

4

�
P̄ðγÞ
ij − λ

X

i

l⃗ ·S⃗: ð2Þ

The expectation value of the first term in Eq. (2) in any
classical, i.e., site-factorized, state is non-negative.At λ ¼ 0,
the zero minimum classical energy is achieved by forming
decoupled layers of AFM square lattices with uniform

planar orbital order. In this state, the orbital projectors P̄ðγÞ
ij ¼

1 (0) on intralayer (interlayer) bonds and hS⃗i · S⃗ji ¼ − 1
4
on

intralayer bonds.Hence, orbital “flavors” are decoupled, and
flipping locally an orbital flavor does not cost energy,
resulting in a massive ground state degeneracy [32]. A
product state constructed from entangled quantum spin-
orbit states on decoupled dimer bonds has, however, lower
negative energy,EDS ¼ − 1

4
J. This phase, termed here as the

dimer-singlet phase, corresponds to a hard-core dimer

covering of the fcc lattice, with P̄ðγÞ
ij ¼ 1 (0) on (inter)dimer

bonds. On a dimer bond, spins form a singlet and occupied
orbitals have lobes directed along the bond. Covering the
lattice with such dimers is in fact an exact eigenstate of
theHamiltonianEq. (2).When neighboring dimers are in the
same plane, an energetically unfavorable larger cluster of
AFM coupled spins are formed [33], and such configura-
tions are banned from the ground state manifold. Although
this seems to be a rather strong constraint, the orientational
degeneracy of dimer covering remains extensive [32].
For λ ≫ J, the t2g levels are split and the components of

the lower j ¼ 3=2 quartet form the relevant basis, which we
label by pseudospin s⃗ and pseudo-orbital τ⃗ states: jτz¼ 1

2
;

sz¼�1
2
i≡ jj¼ 3

2
;jz¼�1

2
i and jτz¼−1

2
;sz¼�1

2
i≡ jj¼ 3

2
;

jz¼�3
2
i [34]. Projecting Eq. (2) onto this new basis, we find

FIG. 1. (a) Density profile of j ¼ 3=2 quartet. The states jz ¼
� 1

2
(bottom) have dominant xy-orbital character, while jz ¼ � 3

2

components (top) are composed of xz and yz orbitals. Red and
blue coloring denotes the up and down spin distribution,
respectively. (b) Crystallographic unit cell containing four mo-
lybdenum ions (large circles). Oxygen positions are indicated by
small circles. The nearest-neighbor bonds belonging to different
cubic planes are distinguished by different colors. The t2g orbitals
active along the corresponding bonds are also indicated.
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H ¼ ~J
X

hijiγ

�
s⃗i · s⃗j þ

1

4

�
~PðγÞ
ij ; ð3Þ

where ~PðγÞ
ij ¼ ð1

2
þ τðγÞi Þð1

2
þ τðγÞj Þ, ~J ¼ 4

9
J, τðaÞ ¼

− 1
2
τz − ð ffiffiffi

3
p

=2Þτx, τðbÞ ¼− 1
2
τzþð ffiffiffi

3
p

=2Þτx, and τðcÞ ¼ τz.
Hamiltonian Eq. (3) has the same form as the Kugel-
Khomskii model of eg orbitals on a cubic lattice [3] and
explicitly reveals the emergent, at large λ, hidden SU(2)
symmetry pointed out in Ref. [13]. Similarly to λ ¼ 0, the
ground state manifold of Eq. (3) is spanned by dimer
singlets, but now these are composed of pseudospins instead
of real spins.
Insight for intermediate λ can be gained by exactly

solving the model Eq. (1) on an isolated bond, since the
interdimer couplings appear to be much smaller than
intradimer ones (see below). For each value of λ, we find
the singlet ground state

ð4Þ

where the wave functions of pseudospins ⇑ð⇓Þ depend on
the strength of λ [32]; e.g., in the xy plane, we have

j⇑ð⇓Þi ¼ cosϑj0;↑ð↓Þi þ sin ϑjð−Þ1;↓ð↑Þi: ð5Þ
In the two limiting cases, λ ¼ 0 and λ ≫ 1, the variational
parameter θ becomes 0 and arccos

ffiffiffiffiffiffiffiffi
2=3

p
, respectively. The

SOC inflates the planar orbital, so that at large λ it becomes
jj ¼ 3

2
; jz ¼ � 1

2
i. The latter has small out-of-plane com-

ponent, see Fig. 1(a), generating finite but small inter-
actions between, otherwise decoupled, dimers. However, as
it follows, interdimer couplings do not select any particular
superstructure of dimers.
Figure 2 shows all possible interdimer bonds allowed in

the ground state manifold. Such a bond may connect two
dimers both perpendicular to the connecting bond itself;
then, either the connected dimers belong to different planes
ðb1Þ or to the same plane ðb2Þ. The third possibility b3 is
that one of the dimers is in the same plane as the interdimer
bond, and the other is perpendicular to them [see Fig. 2].
Consequently, regardless of the dimer arrangements, each
dimer has exactly six neighboring b3 bonds. Out of 6N
bonds of the fcc lattice with N sites, there are in total 1

2
N

dimer bonds, 3N b3-type, and remaining 5
2
N b1- or b2-

type of bonds. Each dimer (bn-type) bond hosts a finite
energy Ed (Ebn). As both b1 and b2 bonds connect dimers
out of their plane, Eb1 ¼ Eb2 and the energy of a product
dimer state,

EDS ¼ ðEd þ 5Eb1 þ 6Eb3ÞN =2; ð6Þ
is independent of the dimer covering. Hence, the interdimer
couplings do not order dimers and the massive orientational
degeneracy persists. In real materials, however, a mis-site
disorder and/or uncorrelated local distortions most likely

select a random dimer covering, rendering the system to
freeze in a glassy manner.
In an amorphous dimer-singlet phase, momenta of the

excitations are not well defined, but their energies are.
Moreover, the interdimer couplings are much smaller than
the intradimer exchange, allowing an isolated dimer
description of the bulk magnetic spectra. At η, λ ¼ 0, as
product dimer states are exact eigenstates, spins of different
dimers are completely decoupled. In the large λ limit, the
interdimer pseudospin exchange J0≃ 1

16
~J≪ ~J. This estimate

follows from Eq. (3) by noting that h ~PðγÞ
ij i ¼ 1

16
on the

interdimer bonds. Two types of local excitations allowed by
magnetic dipole transitions are illustrated in Fig. 3. The
upper one corresponds to flipping locally a (pseudo)spin at
the energy cost ΔS ¼ Jð ~JÞ in small (large) λ limit. The
lower is a (pseudo-)orbital excitation that costs half the
energy, ΔO ¼ 1

2
Jð1

2
~JÞ, of a spinlike excitation. These

estimates follow from the expectation values of the limiting
Hamiltonians, Eqs. (2) and (3), in the ground state of an
isolated bond, Fig. 3 (left), and its excited states, Fig. 3
(right). Using reported parameters for Ba2YMoO6 [29], we
estimate the energy of spinlike (orbital-like) excitations
ΔSðOÞ≃20–45ð10–23ÞmeV, for large-small SOC, and their
bandwidth (∼J0) of about few meV. In the magnetic dipolar
channel, spinlike excitations carry stronger intensity than
orbital-like ones. These findings agree well with neutron
scattering data on powder samples, discussed below.
There are additional thermally accessible nonlocal

excitations at lower energies. For example, AFM coupled
spin clusters, or orphan spins, may emerge as a result of
thermally induced orbital reorientation. An important

b1 b 2 b 3

FIG. 2. Types of different interdimer bonds depicted as dashed
lines. Dimers are represented with and are colored according
to three cubic planes they belong to. Bonds b1 and b2 couple
dimers perpendicular to these bonds. Bond b3 connects a dimer
from an orthogonal plane with another one that is in the same
plane as b3 itself.

FIG. 3. Excitations of a spin-orbit dimer in the large λ limit.
Flipping locally, for example, the jz ¼ −1=2 component to jz ¼
1=2 or to jz ¼ −3=2 corresponds to flipping the pseudospin (top)
or pseudo-orbital (bottom), respectively. Local excitations for
small SOC correspond to changing the real spins or orbitals.
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difference between the well-studied spin-only dimer sys-
tems and our model is the lack of a hard gap. Here, on
account of orbital degrees of freedom, the spectrum cannot
be characterized by a single energy scale.
Phase diagram.—To explore the entire phase diagram of

the full Hamiltonian Eq. (1), we used a site-factorized
variational approach and compared the energies of ordered
and dimer-singlet phases. The latter is numerically obtained
from Eq. (6) using a product state of the exact wave
functions of isolated dimers. Within our variational
approach, the magnetic and crystallographic unit cells
coincide; however, we still need 40 variational parameters
to construct a trial wave function [32]. When η ¼ 0, the
ground state is a random arrangement of spin-orbit dimers
(see inset in Fig. 4) for any value of λ. Only the nature of the
pseudospins forming the singlet dimers is affected by λ, in
accordance with the above analytical considerations. For
large enough Hund’s coupling, we find two noncollinear
but coplanar phases of ordered total angular momenta j⃗ (see
Fig. 4). One, termed here as coplanar FM, has a finite net
moment along the [110] (or equivalent) direction, i.e.,
along one of the bonds, as experimentally observed [14].
The other, coplanar AFM, has no net moment. In the
dimer-singlet phase, on a dimer bond in the γ plane, a
corresponding γ orbital is predominately occupied, with
occupancy decreasing from nðγÞ ¼ 1 to 2

3
with increasing λ.

Hund’s coupling induced transitions to ordered states are
accompanied by complex rearrangements of an electron
density within the SOC split t2g multiplet, with orbital
occupancies dictated by the actual values of the parameters;
e.g., in coplanar-AFM order in a cubic γ plane the α and β
orbitals are predominantly occupied compared to the in-
plane γ orbital. All phase boundaries appear to be first
order within our approach: the net moment and the order
parameters drop to zero across the transitions from the
coplanar-FM to the coplanar-AFM state and from the
ordered to disordered dimer-singlet phase, respectively.
However, one cannot rule out a second order symmetry
allowed transition between ordered states, or an exotic
continuous transition from a spontaneously dimerized
phase to ordered states [35].
Experimental implications.—The dimer-singlet phase

captures experimental observations on the molybdenum
compounds. In agreement with experiments, it does not
exhibit any long-range ordering nor break any global
symmetry. Its extensive degeneracy explains the observed
glassy behavior and suggests the presence of a residual
entropy, that cannot be excluded based on heat capacity
data [22]. Magnetic susceptibility and electronic heat
capacity [22,23] suggest the presence of pseudogapped,
rather than hard-gapped, low-energy excitations, consistent
with the dimer-singlet phase. Neutron scattering experi-
ments on powder samples [36] revealed excitations that are
in line with the spectrum of weakly coupled spin-orbit
dimers. An intense “mode” observed at ΔS ≃ 28 meV with

bandwidth of about 4 meV is interpreted here as a (pseudo)
spin singlet-to-triplet excitation. A less intense, lower-
energy (ΔO ≃ 9–17 meV) response centered around half
the energy of ΔS is naturally attributed to (pseudo-)orbital
excitation. These lower-lying excitations have also been
observed in NMR response [21]. The energetics of the
observed excitations agrees well with the above estimates,
ΔSðOÞ ≃ 20–45ð10–23Þ meV. In addition, the infrared
transmission spectra indicate the emergence of uncorrelated
local distortions of MoO6 octahedra below 130 K [37], at
around the same temperature the magnetic susceptibility
starts to decrease, most likely due to formation of spin-orbit
dimers. In the dimer-singlet phase, such uncorrelated
distortions emerge due to the directional character of the
occupied orbitals.
The four-sublattice ordered states in the phase diagram

(Fig. 4) may provide a description for the isostructural
osmium compounds Ba2LiOsO6 and Ba2NaOsO6. The
latter is characterized by very small net magnetic moment
∼0.2 μB along the [110] easy axis [14]. We find the net
moment M⃗ ¼ 2S⃗ − l⃗ along the same [110] (or equivalent)
direction, being ∼1 μB for small and ∼0.1 μB for large λ.
To summarize, within a minimal microscopic model, we

have proposed a unified theoretical description of possible
ground states in d1 cubic double perovskites. The obtained
spin-orbital model shows a rich phase behavior including a
massively degenerate dimer-singlet manifold, without any
long-range order, and unusual noncollinear ordered pat-
terns. Our theoretical study elucidates physics behind and
provides explanations of experimental data on molybde-
num- and osmium-based compounds. The physics dis-
cussed here may also be relevant to other heavy transition

FM

AFM

FIG. 4. Phase diagram of the model Eq. (1) as the function of
Hund’s coupling η and the SOC λ (in units of J). For small values
of η the dimer-singlet phase (see inset) is stable over the entire
range of λ. With increasing Hund’s coupling, noncollinear
coplanar phases with ordered moments in one of the cubic
planes are stabilized. The ferro-type coplanar state, coplanar FM,
has a finite net moment pointing along the [110] (or equivalent)
direction. The illustrations show a tetrahedron of four molybde-
num sites projected onto the plane of ordered j⃗ moments,
depicted as arrows.
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metal compounds, such as molybdenum pyrochlores, in
which a random distribution of “dimerized” bonds, induced
by orbital degrees, have been recently revealed by pair-
distribution function measurements [38].
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