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Closed loop quantum control uses measurement to control the dynamics of a quantum system to achieve
either a desired target state or target dynamics. In the case when the quantum Hamiltonian is quadratic in x
and p, there are known optimal control techniques to drive the dynamics toward particular states, e.g., the
ground state. However, for nonlinear Hamiltonian such control techniques often fail. We apply deep
reinforcement learning (DRL), where an artificial neural agent explores and learns to control the quantum
evolution of a highly nonlinear system (double well), driving the system toward the ground state with high
fidelity. We consider a DRL strategy which is particularly motivated by experiment where the quantum
system is continuously but weakly measured. This measurement is then fed back to the neural agent and
used for training. We show that the DRL can effectively learn counterintuitive strategies to cool the system
to a nearly pure “cat” state, which has a high overlap fidelity with the true ground state.
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As the research on quantum communication and com-
putation has progressed rapidly with the goal of achieving
the holy grail of quantum computing, quantum state
engineering has begun to take on a high profile [1–3].
Of particular importance are feedback control techniques,
in which a physical system subjected to noise is contin-
uously monitored in real time while using measurement
information to impart specific driving controls to modulate
the system dynamics [4]. Unlike classical systems, meas-
urement control of a quantum mechanical system is
challenging for a number of reasons. First, the act of
continuously observing a quantum system introduces non-
linearity within the conditioned dynamics. Second, con-
tinuous measurement on a quantum system generally alters
it, generating measurement-induced noisy dynamics, com-
monly known as quantum back action. Finally, applying
feedback which is dependent on the noisy measurement
current adds further noise into the dynamics. Consequently,
a variety of feedback control schemes that work well for
classical systems may not for the analogous quantum
counterparts [4–6].
In recent years, machine learning (ML) has rapidly

gained interest, leading to numerous technological
advancements in machine vision, voice recognition, natural
language processing, automatic handwriting recognition,
gaming, and engineering and robotics, to name a few [7].
Various ML models broadly fall into three categories:
supervised learning, unsupervised learning, and reinforce-
ment learning (RL) [7–9]. For supervised or unsupervised
methods, the ML model is provided with enough labeled or

unlabeled datasets to be trained on, which it uses for
discovering the predictive hidden features in the system of
interest. On the other hand, RL approaches the problem
differently and is not pretrained with any external data
explicitly, but learns in real time based on rewards. Indeed,
RL is regarded as the most effective way to benefit from the
creativity of machines, where it collects experiences by
performing random experiments on the system (known as
the environment in RL literature), learning by trial and
error. RL, specially in combination with deep neural
networks, abbreviated as DRL, is poised to revolutionize
the field of artificial intelligence, particularly with the
emergence of autonomous systems which process, in real
time, stimuli from real world environments [10].
There have already been several important applications

of ML in different areas of physics, such as in statistical
mechanics, many-body systems, fluid dynamics, and
quantum mechanics [11–15]. Most of these applications
are supervised in nature, e.g., in the quantum domain, these
have been applied to solving the many-body systems [16],
in the determination of high-fidelity gates and the opti-
mization of quantum memories by dynamic decoupling
[17], quantum error corrections [18–20], quantum state
tomography [21–25], classification and reconstruction of
optical quantum states [26]. Recently, a few applications of
DRL in quantum mechanics have also appeared that
include applications in quantum control [27–30], quantum
state preparation and engineering [31–35], state transfer
[36–38], and quantum error correction [39,40]. While
the number of works utilizing DRL is increasing, a very
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few consider using continuous measurement outcomes
explicitly toward training the DRL agent [27,32,39]. As
experiments often employ such continuous quantum meas-
urement techniques for feedback control, we will consider
this type of measurement as a key ingredient of our
analysis below.
While traditionally known optimal control techniques

work very well for linear, unitary, and deterministic
quantum systems, there is no known generalized method
for nonlinear and stochastic systems [6,27,41–47]. RL, on
the contrary, is agnostic to the underlying physical model,
but attempts to control the dynamics of the system by
finding patterns from the data produced by it. In this Letter,
we model the quantum evolution of a particle in a double
well (DW) subject to continuous measurement at a rate Γ of
the operator x2, whose even parity avoids measurement
localization of the particle’s wave function to either well
[48]. The DRL agent controls the quantum dynamics via a
modulation of the Hamiltonian H0ðtÞ ¼ H þ FðtÞ, with
FðtÞ ¼ AðtÞðxpþ pxÞ, where x and p are (dimensionless)
canonical operators—a squeezing operator, whose strength
AðtÞ is modulated by the DRL agent. The DRL agent is
trained via the continuous measurement current, while, in
real time, it acts back on the system via FðtÞ. We show that
the DRL agent can be trained to cool the particle close to
the ground state. Interestingly, the cooling efficiency
depends on the choice of Γ, for which there is an optimal
value of Γ to achieve the best cooling, which we identify
numerically.
RL translates a problem at hand into a gamelike situation

in which an artificial agent (also called the controller), finds
a solution to the problem based on a trial-and-error
approach [8,9], with no hints or suggestions on how to
solve the problem itself. For this purpose, the agent is given
a policy (in the case of DRL, it is the neural network itself),
which is optimized based on some scalar values (reward) it
receives from the environment (that includes the physics of
the problem and the reward estimation function based on
the observable) for each decision (action) made by it. By
harnessing the power of search, coupled with many trials,
the RL will gain experience from thousands of instances
executed sequentially or in parallel in a sufficiently power-
ful computing infrastructure. After sufficient training, the
agent can become skilled enough to have sophisticated
tactics and superhuman abilities, as was phenomenally
demonstrated by Google’s AlphaGO [49,50]. To give a
perspective on the applicability of RL in physics and the
kinds of tasks it can solve, we provide a short demon-
stration to a problem in elementary mechanics, which we
include as a media file in Supplemental Material [51] or the
GitHub link [56].
It is possible to implement the DRL agent according to

two distinct frameworks, a policy-based or value-based
framework [9]. In policy-based frameworks, the policy
parameters—the weights and biases of the neural
network—are optimized directly based on the rewards it

receives and informs its future actions on the environment
[see Fig. 1(a)]. Value-based methods on the other hand,
optimize the expected future return of a given value
function, and deduce the policy from it [8]. It is possible
to achieve the best of both these worlds by combining these
two approaches in a meaningful way, known as actor-critic
methods [9]. Here the actor is the policy which is being
optimized, and the critic is the value function which is
being learned. The actor network can be modeled using
various policy-based approaches such as vanilla policy
gradient [9], trust region policy optimization [57], or the
more recent proximal policy optimization (PPO) [58]. In
our work, we used PPO in combination with advantage
actor-critic (A2C) [59] as a DRL agent. In the PPO scheme,
it optimizes a clipped surrogate objective-loss function
given by

LðθÞ ¼ Êt(minfrtðθÞÂt; clip½rtðθÞ; 1 − ϵ; 1þ ϵ�g); ð1Þ

where rtðθÞ ¼ ½πθðatjstÞ=πθoldðatjstÞ� is the probability ratio
between current and old stochastic policies, so rðθoldÞ ¼ 1.
Furthermore, Êt is the empirical average over a finite batch
of samples and Ât is an estimator of the advantage function
at time step t, obtained from the critic, and calculated as the
difference between the Q value for action at at the state st
and its average value, V: ÂtðstjatÞ ¼ QðstjatÞ − VðstÞ.
Clipping the ratio within a bound specified by ϵ ¼ 0.2

FIG. 1. (a) The working of a DRL actor-critic model. The agent
consists of two networks, actor and critic, where the actor decides
the action to be applied on the environment based on the
suggestion made by the critic network that computes the value
function based on the reward and state obtained from the DRL
environment, that includes the physics of the problem—the
quantum dynamics and state of particle moving in a DW and
modulation function to alter quantum dynamics and the reward
estimation function based on the observables (measurement
results). (b) the Wigner function distribution for the ground state
of the DW, and the corresponding probability distribution on
position (c) and Fock-number basis (d). The ground state of the
DW is an even parity state.
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ensures that the policy is not updated too much. The A2C
framework allows synchronous training of multiple parallel
worker environments simultaneously, which enables faster
training. A more detailed theory can be found in the
Supplemental Material [51]. A depiction of the DRL model
employed in this study is shown in Fig. 1(a).
In this Letter, we will work with dimensionless position

and momentum, denoted by ðx; pÞ. The relationship to the
physical position and momentum variables is x ¼ Q=Q0,
p ¼ P=P0 whereQ0, P0 are suitable scales for position and
momentum. As the canonical commutation relations are
½Q̂; P̂� ¼ iℏ, thus ½x̂; p̂� ¼ ik̄, where the dimensionless
Planck’s constant is defined by k̄ ¼ ℏ=ðQ0P0Þ. The DW
potential we consider is formed along the x axis by the
Hamiltonian of a particle

H ¼ p2

2
þ h
b4

½ðx − aÞ2 − b2�2; ð2Þ

where b gives the location of the well’s minima, h is the
height of the barrier between the wells, and a is the offset
along x. The ground state of this potential is a “cat” state
thanks to the even parity symmetry of H in both x and p.
The ground state can be depicted by the Wigner function
Wðx; pÞ, which is shown in Fig. 1(b). The probability
distribution along the x axis, i.e., ρðxÞ ¼ R

Wðx; pÞdp is
shown in Fig. 1(c). Furthermore, the ground state has even
parity symmetry while the first excited state has odd parity
[60]. Hereafter, we will set the parameters a ¼ 0, b ¼ 3.0,
and h ¼ 5, which sets the potential to be symmetric around
the origin at x ¼ 0. It is worthy to note that the DW
potential can now be engineered in laboratories such as in
superconducting circuits, Bose-Einstein condensates, and
magneto-optical setups [61].
To provide data to the agent, we consider that the

quantum system is subject to a continuous measurement
process and these measurement results are provided to the
agent in real time. This continuous measurement also
induces back action on the quantum system and noise
on both the conditioned quantum dynamics and also on the
observed measurement data. We can describe the dynami-
cal evolution of the conditioned density operator ρcðtÞ,
conditioned on a stochastic measurement record to time t
via a quantum stochastic master equation [4,62] given by

dρcðtÞ ¼ −i½H; ρc�dtþD½A�ρcdtþH½A�ρcdWðtÞ; ð3Þ

where A is a Hermitian observable operator under con-
tinuous measurement (known as the measurement oper-
ator), and H½A� and D½A� are superoperators given by

H½A�ρcðtÞ ¼ ½fA; ρcðtÞg − trðfA; ρcgÞ�ρðtÞ; ð4Þ

D½A�ρcðtÞ ¼
1

2
½2AρcðtÞAþ − fρcðtÞ; AþAg�; ð5Þ

where f·; ·g, denotes the anticommutator. Furthermore,
dWðtÞ in Eq. (3) represents a Wiener increment. It has
mean zero and variance equal to dt. The measurement
result current IðtÞ are described by a classical stochastic
process that satisfies an Ito stochastic differential equation
(see Supplemental Material [51])

IðtÞdt ¼ γg

�

hAðtÞicdtþ
1
ffiffiffiffiffiffi
4Γ

p dWðtÞ
�

; ð6Þ

where g is a gain with inverse units to that of the
measurement operator A, meaning IðtÞ has the units
of frequency. For the context of the present work, we
have A ¼ ffiffiffi

Γ
p

x2 and where Γ is the measurement rate
and quantifies the quality of the measurement (see
Supplemental Material [51]). As we have fixed units, so
that x, p are dimensionless, we can set γg ¼ 1.
To cool the system to the ground state (which is a cat

state) via continuous measurement, it is important to
choose the stochastic operator A in Eq. (3) as

ffiffiffi
Γ

p
x2 instead

of
ffiffiffi
Γ

p
x, as the latter would collapse the state to either of the

two minima of the DW [48]. At each interaction, the agent
adds a squeezing term FðtÞ≡AðtÞðxpþ pxÞ to the
Hamiltonian [Eq. (2)], attempting to adjust the values of
AðtÞ in the continuous range AðtÞ ∈ ½−5; 5�, to maximize
the reward. The choice of such feedback is motivated by the
physics of the problem, which we explain in detail in the
supporting information, backed by an analysis using
Bayesian control driven by the conditional mean of the
measurement record following the method of Stockton
et al. [47]. It is possible to implement xp-type Hamiltonian
terms via motion in a magnetic field [63]. In each episode
of the training process, the DRL interacts with the envi-
ronment 1000 times, in intervals of δt ¼ 0.01, and each
time applies an action to the environment. Further detail of
the implementation and other technicalities of the DRL can
be found in Supplemental Material [51]. The amplitude of
the measurement noise depends on two parameters—(a) the
measurement strength Γ and (b) the measurement time δt.
Since the Wiener noise in Eq. (6) is a Gaussian with
variance δt, the noise term in the measurement current IðtÞ
scales at least as 1=

ffiffiffiffiffiffiffiffiffi
4Γδt

p
. Because of this, one might

expect the DRL to learn more efficiently for larger values of
Γ, however, this is not the case. This makes it critical to
choose an optimal value for Γ along with the measurement
time δt. For a choice of δt ¼ 0.01, we observe that optimal
learning occurs near Γ ∼ 0.1, and worsens for other values
of Γ. Similar effects can be observed in Markovian
measurement-based direct feedback, which we discuss in
Supplemental Material [51]. Larger Γ values result in an
increase in noise, while smaller Γ values return a very low
signal-to-noise ratio in the continuous measurement proc-
ess. The agent tends to learn most efficiently when the
dynamics fluctuate in a limited domain around the DW
minima. The effectiveness of the agent learning is shown in
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Fig. 2(a), in terms of mean and maximum fidelities from ten
successive deterministic episodes of the agents trained on
the measurement current IðtÞ.
An important ingredient in the DRL is a suitable choice

for the reward function. Many research studies have
previously used fidelity or energy as the reward function.
However, such a function is not practically available in
experiments. Instead, we propose a measurement-based
reward function RðtÞ ¼ −jIðtÞ=ðγgÞ − 32j, where IðtÞ is the
measurement current [Eq. (6)]. This function obtains its
maximum reward of 0, when hx2ci ¼ 32, at the well minima
positions. The learning process of the agent is shown in
Fig. 2(b), along with the fidelity of the instantaneous state
of the system with respect to the DW ground state in
Fig. 2(c). Although such a fidelity is not possible to
evaluate experimentally in real time, we present this as a
check of the learning process. In a given episode the trained
agent is able to adapt the feedback in such a way that the
particle oscillates near the minima of the DW, as shown in
Fig. 2(d) (for γg ¼ 1). The corresponding variation of
fidelity for the episode is shown in Fig. 2(e). It is worthy to
note that with a different choice of the reward function it
might be possible to obtain better and more stable learning,
see Supplemental Material [51] for details.
At the beginning of each episode, the environment must

be reset to an initial state [initial density matrix ρð0Þ],
which is needed to start the stochastic master equation

solver. We have found that the choice of ρð0Þ plays a crucial
role in determining the total reward that can typically be
achieved by the agent. When ρð0Þ is a thermal or coherent
state, the DRL converges to an average fidelity of about
60%. However, if we use a small cat state or the ground
state of the DW itself, the agent is able to achieve a mean
trained fidelity of over 80% with noisy measurement data.
The parity of the initial state is crucial, as the stochastic
process of continuous measurement and feedback we have
chosen is parity conserving. The target ground state of the
DW, however, has even parity, and so choosing an initial
state with a component of odd parity will lower the ultimate
fidelity achievable. We achieve similar high performance if
we start with a thermal state projected on to even parity, as
done for Fig. 2. The explicit comparison of the performance
of the trained agent with an untrained one is demonstrated
in the Supplemental Material media [51] or the GitHub
link [64].
We benchmark our results against the state-based

Bayesian feedback protocol (where the feedback is based
on an estimate of the state) as proposed by Doherty et al.
[45,47]. In the context of the present work, the protocol can
be simplified to provide feedback of the form F ðtÞ ¼
−ðhx2ciðtÞ − 32Þ × ðxpþ pxÞ, where hx2ciðtÞ denotes the
conditional mean of the observable x2. We find that this
Bayesian control achieves a mean fidelity of ∼85%.
However, hx2ciðtÞ is not a quantity directly accessible in
real experiments. When the Bayesian feedback is instead
driven by the noisy measurement current IðtÞ (which is
available in experiments), we find that Bayesian feedback
demonstrates almost no control over the dynamics.
Numerical simulations with 1000 copies of the system
(ensemble), evolving under a given feedback based on the
mean of the measurement currents during each time step,
yields an average fidelity of ∼42%. This is considerably
worse than the performance of the DRL agent. A more
detailed discussion can be found in the Supplemental
Material [51].
We have found that the DRL shows a robust control

when the measurement efficiency η > 50%, as shown in
Fig. S5(a) of the Supplemental Material [51], implying that
the DRL agent is able to find patterns in the underlying
dynamics even when the stochasticity is significantly
increased. Similarly, the DRL shows no significant drop
of fidelity under additional dephasing of the form ∼ ffiffiffi

γ
p

a†a,
but this fidelity does drop for damping ∼ ffiffiffi

γ
p

a, where γ is
the decoherence rate (see Supplemental Material [51]).
On the computational side, the challenge for DRL

control is the significant computational expense, e.g., 3–
4 days of simulation time, even with fast computational
CPUs, the bottleneck being the slow stochastic solver
routines. We expect improved performance if the agent
is made to learn in a dynamic combination of supervised
(under a supervised setting an ML agent can learn more
effectively from fewer data points, but is not reward based),

FIG. 2. (a) Effectiveness of the agent’s learning process as a
function of measurement strength Γ, indicating the existence of a
“sweet spot” around Γ ∼ 0.1. We plot the maximum (shown in
blue lines) and mean (shown in brown lines) episodic F̃ of ten
successive deterministic episodes where F̃ represents the mean
fidelity over an episode using trained agents, (b) the episodic time
evolution of the mean reward R̃ðtÞ during the training of the agent
when Γ ¼ 0.1 [light (dark) blue includes (average) noise],
(c) episodic mean fidelity F̃ of the instantaneous ρðtÞ with the
ground state of the DW, (d) measurement current IðtÞ illustrating
that a trained agent is able to keep the wave function near the well
minima (the conditional average hx2ci is shown in brown), and
(e) the corresponding variation of fidelity for a trained episode,
for a deterministic episode of the trained agent. Similar perfor-
mance can be obtained using fidelity as the reward function (see
Supplemental Material [51]).

PHYSICAL REVIEW LETTERS 127, 190403 (2021)

190403-4



and reinforcement learning (which is reward based and
hence useful for feedback control), as done for image
recognition in earlier studies [65–67]. It is possible to
reshape the data to images of actions and measurement
records which would enable the usage of convolution
neural networks (CNN) in GPUs=TPUs with multicore
support and utilize different image compression techniques,
e.g., deep compressed sensing technique, proposed recently
by researchers from DeepMind [68]. From the physics side,
use of proper filters (as normally done in experiments) to
filter the noisy signals prior to inputting into the DRL is
expected to be crucial. In addition, the use of better reward
estimation, such as combining constraints on current,
fidelity (using tomography), and energy, is expected to
be useful for further improvement. An even further inno-
vation would be to use RL in combination with various
optimal and Bayesian control protocols, as recently
explored in applications outside quantum mechanics
[20,69,70].
In conclusion, we have demonstrated the usefulness of

deep reinforcement learning to tailor the nontrivial feed-
back parameters in a nonlinear system to engineer evolu-
tion toward the ground state. We found that the artificial
agent can discover novel strategies solely based on meas-
urement records to engineer high-fidelity “cat states” for
the quantum double well.

The supporting media files for this Letter are openly
available from the GitHub repository [56,64].
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