
PHYSICAL REVIEW A 104, 042224 (2021)

Simplifying the design of multilevel thermal machines using virtual qubits
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Quantum thermodynamics often deals with the dynamics of small quantum machines interfacing with a large
and complex environment. Virtual qubits, collisional models, and reset master equations have become highly
useful tools for predicting the qualitative behavior of two-dimensional target systems coupled to few-qubit
machines and a thermal environment. While few successes in matching the simplified model parameters for
all possible physical systems are known, the qualitative predictions still allow for a general design of quantum
machines irrespective of the implementation. We generalise these tools by introducing multiple competing virtual
qubits for modeling multidimensional systems coupled to larger and more complex machines. By simulating the
full physical dynamics for targets with three dimensions, we uncover general properties of reset models that
can be used as “dials” to correctly predict the qualitative features of physical changes in a realistic setup and
thus design autonomous quantum machines beyond a few qubits. We then present a general analytic solution
of the reset model for arbitrary-dimensional systems coupled to multiqubit machines. Finally, we showcase an
improved three-level laser as an exemplary application of our results.
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I. INTRODUCTION

Machines operating at the quantum scale offer an explo-
ration of the ultimate limits of thermodynamic tasks [1–8],
such as cooling down individual quantum systems or creating
coherent sources of light. Design and control of such pro-
cesses is usually assumed and achieved at the level of few
quantum mechanical degrees of freedom, interacting with a
large environment that one lacks detailed control over [9–14].
As large quantum systems are notoriously hard to simulate
exactly, most of the focus is devoted to deriving master equa-
tions and dynamics for few-qubit machines or a single qutrit
interacting with multiple baths. A crucial discovery in that
context is the concept of a virtual qubit [15–17]. It allows
one to extract an effective two-level transition from multi-
ple levels by sacrificing detailed knowledge of the machine
behaviours and focusing only on the system of interest. There-
fore, one can dramatically reduce the complexity of predicting
the steady state and even transient dynamics [18–24]. Going
beyond simple qubit targets, however, is a challenge due to the
potential complexity of competing interactions with multiple
virtual qubits.

In this paper, we solve the problem, for arbitrary-
dimensional quantum systems (qudits), interacting with
multiple competing virtual qubits across all possible two-
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level transitions in the context of reset-type master equations.
We explore the solution for three-level quantum systems and
compare it to optical master equations, identifying a few
universal features that these approaches share and thus impor-
tant properties of complex machine designs that this simple
and computable model correctly predicts. Finally, we use our
model and analysis to study an enhancement of the paradig-
matic three-level maser or laser [25] through more complex
machines.

We note that our approach simplifies the complexity of
finding the steady state if the virtual qubits are character-
ized but is not applicable for the transient regime unless
the natural description of the system dynamics is done in
terms of virtual qubits in the first place. Nevertheless, the
performance of autonomous machines is mostly encoded in
the steady state. For instance, an autonomous refrigerator
has some transient behavior depending on the initial state
but then approaches a nonequilibrium steady state, with a
constant transport of heat away from a target toward the
environment [26]. It is exactly this steady state that encodes
the final temperature stabilized within a target system. More
importantly, the simplification provided by virtual qubits de-
pends on what parameters about complex systems are known
and what the most appropriate method for modeling them
is. By utilizing the results obtained in this work, we show
in the strong dissipation limit that (i) given a qudit system
coupled to some two-qubit machines, the steady state of the
qudit can be derived and that (ii) given a desired steady
state of the qudit, the parameters in the machines can be
tuned.
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FIG. 1. Sketch of a virtual qubit. Left: a target qubit coupled to
a two-qubit machine, where ω1 − ω0 = �1 − �2. Right: the target
qubit effectively coupled to a virtual qubit, where ωv − ω0 = �1 −
�2 and Tv is given by Eq. (1). The dotted lines represent the coherent
interactions given in Eq. (3). The wavy lines represent contact with
baths whose temperatures are Ten,1,2.

II. MOTIVATION: THE TWO-QUBIT MACHINE
AS A VIRTUAL QUBIT

First, we review the idea of virtual qubits, which has been
proposed in Ref. [15]. Consider two qubits with energy spac-
ings �1 and �2 (we assume �1 > �2) that coherently interact
with each other and are in contact with two thermal baths at
temperatures T1 and T2, respectively. This two-qubit machine
is composed of the energy eigenstates in the absence of co-
herent coupling, |0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, and |1〉1|1〉2. The
single-excitation manifold is then called a virtual qubit whose
ground and excited state are given by |0〉1|1〉2 and |1〉1|0〉2,
respectively, with the energy spacing �1 − �2. The temper-
ature of this virtual qubit, called the virtual temperature, is
determined by the ratio between the ground and excited state
populations, which, together with the Boltzmann law, leads to

Tv = �1 − �2

�1/T1 − �2/T2
. (1)

Note that since it is not a real temperature, Tv may be negative
in the case of population inversion. The levels of the virtual
qubit discussed here are |0〉1|1〉2 and |1〉1|0〉2. We note that
what matters is only the population bias; therefore, in princi-
ple, any level structure would work.

We now add another physical qubit, namely the target
qubit, with energy spacing ω1 − ω0 = �1 − �2 that is coher-
ently coupled to the two-qubit machine (see Fig. 1). Assuming
that this target qubit is further interacting with an environment
at temperature Ten, the dynamics of the composite system
are determined by the reset master equation (RME) (see
Refs. [16,17] or Appendix A for the derivation of this RME)

∂ρtot

∂t
= −i[H, ρtot] + Qen(τen ⊗ Trtar[ρtot] − ρtot )

+ Q1(τ1 ⊗ Tr1[ρtot] − ρtot )

+ Q2(τ2 ⊗ Tr2[ρtot] − ρtot ), (2)

where ρtot is the density matrix of the composite system.
Here, Qen,1,2 are thermalization rates corresponding to the
environment or the thermal baths in contact with the two-
qubit machine, respectively. The density matrices τen,1,2 are
thermal states corresponding to the real temperatures Ten,1,2,
respectively. The partial traces over the target qubit or the
machine’s constituents are denoted Trtar,1,2, respectively. The

Hamiltonian in Eq. (2) reads

H =
1∑

k=0

ωk|k〉〈k| +
∑

i∈{1,2}
�iσ

+
i σ−

i + g|0〉〈1|σ+
1 σ−

2 + H.c.

(3)
with σ+

i = |1〉i〈0|i and the coherent coupling strength g. We
assume that this coupling is sufficiently weak for the system
to be identified as an isolated entity so that any transition be-
tween two nondegenerate levels of the system is accompanied
by a corresponding exchange in the machine and the envi-
ronment. Without the environment, the dynamics drive the
target qubit into a steady state at the virtual temperature (1),
independent of the rates Q1 and Q2 [15].

In general, however, the two-qubit machine is disturbed by
the target qubit’s interaction with the environment and hence
the virtual temperature (1) is not the steady-state temperature
anymore [17]. However, if the qubits inside the two-qubit
machine thermalize very quickly with the two baths at tem-
peratures T1,2, i.e., if Q1,2 � Qen, g, the notion of the virtual
temperature (1) remains valid.

Here, assuming Q1,2 � Qen, g, we replace the two-qubit
machine with a bath at the virtual temperature (1) and consider
the effective reset master equation (effRME) for the target
system only,

∂ρ

∂t
= Qen(τen − ρ) + qvir (τvir − ρ), (4)

where qvir is the effective thermalization rate to the virtual
qubit and τvir is a thermal state at the virtual temperature (1).
Note that we focus on the steady-state regime, and therefore in
this model all off-diagonal terms in the density matrix vanish.
This present approach does not work if one is interested in, for
example, the transient time [26,27] or a different model having
coherent transitions, both of which coherence plays a role in.
Furthermore, note that the target Hamiltonian commutes with
the dissipator of the effRME, and this approximation is valid
only for this class of Hamiltonians.

The steady-state solution of this effRME reads

ρss = C(Qenτen + qvirτvir ) (5)

with the normalization C = (Qen + qvir )−1. Note that owing
to the two competitive dissipative couplings, this steady-state
solution explicitly depends on the rates Qen and qvir.

Comparing this steady state (5) of the effRME with that
from the RME (2), and using Q1,2 � Qen, g, we find

qvir = 2g2

Q1 + Q2

(
τ

g
1 τ e

2 + τ e
1 τ

g
2

)
. (6)

Here, τ
g,e
1,2 are the populations of the ground and excited states

of the thermal state at temperatures T1,2, respectively. We
denote the norm of the virtual qubit

nvir = τ
g
1 τ e

2 + τ e
1 τ

g
2 (7)

as it corresponds to the weight of the levels |0〉1|1〉2 and
|1〉1|0〉2 that form the virtual qubit within the two-qubit
machine space. This norm thus determines the temperature
dependence of the effective rate qvir.
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FIG. 2. Simplification of two-qubit machines by using virtual
qubits. Left: a qutrit coupled to three two-qubit machines. The
dotted lines represent coherent interactions. Right: the qutrit where
all the two-qubit machines are assumed to be baths at their virtual
temperatures.

III. THREE-LEVEL SYSTEM COUPLED TO THREE
TWO-LEVEL MACHINES

We now continue by applying the idea of virtual qubits to
higher dimensional target systems. In this section, we consider
a three-level system, i.e., a qutrit, with energy spacings ω0,1,2

that is coupled to several two-qubit machines (Fig. 2). Within
the effRME description, each of these two-qubit machines is
regarded as a virtual qubit.

With a single machine coupled to the target qutrit, the
situation is essentially the same as the qubit target shown
Fig. 1. With two machines coupled, two distinct thermal-
ization processes act on the target. Consequently, the steady
state of the latter is not a Gibbs-like state, unless both virtual
temperatures are the same. As an example, if a machine with
virtual temperature Tv1 is connected to the target levels |0〉 and
|1〉 and another one with virtual temperature Tv2 is connected
to the levels of |0〉 and |2〉, the qutrit is driven into the steady
state

ρss = C(|0〉〈0| + e−(ω1−ω0 )/Tv1 |1〉〈1| + e−(ω2−ω0 )/Tv2 |2〉〈2|)
(8)

with the normalization C = (1 + e−(ω1−ω0 )/Tv1 +
e−(ω2−ω0 )/Tv2 )−1. As the two thermalization processes do
not compete, each transition is “thermalized” to its respective
virtual temperature Tv1, Tv2. By contrast, if all transitions
within the target qutrit interact with independent two-level
machines (see Fig. 2), the three thermalization process
compete against each other unless all the virtual temperatures
are equal.

Below, we utilize the idea of the virtual qubits to con-
struct an effRME of the three-level target system as we did
for the qubit target system. To explore the parameter de-
pendency of the effective thermalization rates, we compare
the steady state among the effRME for the target system
and two nonexclusive physical models for the corresponding
machine setup: the full RME for target plus machine and an
optical master equation, i.e., a so-called Gorini-Kossakowski-
Lindblad-Sudarshan master equation (GKLSME). Finally, we
discuss these models’ relations to the effRME.

Although we stick to the qutrit target system throughout
this section, we have considered n-dimensional target systems
in Appendix C and solved the effRME for the steady state by
using the treatment introduced in this section. Additionally,
we present the steady-state solution for a four-dimensional
target system in Appendix D.

A. Effective reset master equation (effRME)

We consider a qutrit coherently coupled to three pairs of
two physical qubits, as depicted in Fig. 2. We label as “A”
the pair coupled to the levels of |0〉 and |1〉, as “B” the pair
coupled to the levels of |0〉 and |2〉, and as “C” the pair coupled
to the levels of |1〉 and |2〉. Each of the pairs has two qubits
with energy spacings �i1 and �i2, and the qubits are in contact
baths, the temperatures of which are Ti1 and Ti2, respectively,
for i ∈ {A, B, C}. Furthermore, due to energy conservation,
the energy spacings are restricted as ω1 − ω0 = �A1 − �A2,
ω2 − ω0 = �B1 − �B2, and ω2 − ω1 = �C1 − �C2.

We assume that the thermalization of the qubits inside the
two-qubit machines is fast enough that the concept of the
virtual temperature is valid. By considering that the two-qubit
machines maintain their virtual temperatures, the effRME of
the target system is provided by

∂ρ

∂t
=

∑
i∈{A,B,C}

qi(τi ⊗ Tri[ρ] − ρ), (9)

where qA,B,C are the effective thermalization rates and TrA,B,C

represent tracing out the space of the qubit pairs A, B, C,
respectively. The states τA,B,C are thermal states at the virtual
temperatures TvA,vB,vC, respectively, given by

Tvi = �i1 − �i2

�i1/Ti1 − �i2/Ti2
(10)

for i ∈ {A, B, C}. Explicitly, these states read τA =
τ

g
A|0〉〈0| + τ e

A|1〉〈1|, τB = τ
g
B|0〉〈0| + τ e

B|2〉〈2|, and τC =
τ

g
C|1〉〈1| + τ e

C|2〉〈2|, respectively, where τ
g,e
i are the respective

populations of the ground and excited states. Each term in the
summation of the effRME (9) describes thermalization, and
particularly τi ⊗ Tri[ρ] for i ∈ {A, B, C} means a state where
the population ratio of the levels labeled by i is exp[−ωi/Tvi]
with ωA = ω1 − ω0, ωB = ω2 − ω0, and ωC = ω2 − ω1. See
Appendix B for details of how to calculate the partial traces
TrA,B,C[ρ]. By solving the effRME (9) for ∂ρ/∂t = 0, the
steady state of the target system can be found as

ρss = C(qAqBτAB + qBqCτBC + qCqAτCA), (11)

where the normalization is C = (qAqBTr[τAB] +
qBqCTr[τBC] + qCqATr[τCA])−1. The steady state (11) is
thus a combination of the respective steady states if only two
of the three coherent couplings are present, i.e.,

τAB = τ
g
Aτ

g
B|0〉〈0| + τ e

Aτ
g
B|1〉〈1| + τ

g
Aτ e

B|2〉〈2|, (12a)

τBC = τ
g
Bτ e

C|0〉〈0| + τ e
Bτ

g
C|1〉〈1| + τ e

Bτ e
C|2〉〈2|, (12b)

τCA = τ
g
Cτ

g
A|0〉〈0| + τ

g
Cτ e

A|1〉〈1| + τ e
Cτ e

A|2〉〈2|. (12c)

Note that these states are not normalized on purpose, i.e.,
Tr[τAB] �= 1, Tr[τBC] �= 1, and Tr[τCA] �= 1.

Although we are interested in the target qutrit in this
section, we have generalized this virtual-qubit treatment to
n-dimensional target systems in Appendix C. A primary issue
is that n-dimensional target systems possess n(n − 1)/2 level
pairs that can be coupled to more two-qubit machines, which
increases the complexity of finding the steady state. How-
ever, by taking into account that the nondiagonal terms in the
steady-state density matrix vanish, as seen in the effRMEs (9)
or (C1), solving the effRME of an n-dimensional target system
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for ∂ρ/∂t = 0 boils down to a system of equations with n
unknowns, given by Eq. (C13). We have solved these coupled
equations in Appendix C and discuss the example of a four-
dimensional target system in Appendix D.

Here, we clarify the benefit of the present approach which
also deals with n-dimensional target systems. Essentially, this
approach expands the idea of virtual qubits to compress the
Hilbert space up to the size of the target system. For exam-
ple, the Hilbert space of a M-level system coupled with N
two-qubit machines is M × 22N . By applying the original idea
of virtual qubit proposed by Ref. [15], i.e., considering each
two-qubit machine as one virtual qubit, the effective Hilbert
space becomes M × 2N . However, the size of the effective
space still grows exponentially at the number N of virtual
qubits. What we do further is to assume fast thermalization
rates such that all virtual qubits are thermalized at their virtual
temperatures even more quickly than any other processes.
This allows us to replace the virtual qubits with baths at their
virtual temperatures, leading to compression of the Hilbert
space to the size of the target system, i.e., M. The system size
growth problem is solved by this.

B. Reset master equation (RME)

Here, we present the RME for the composite system (target
and machine) and compare its steady state with the steady
state (11) of the effRME. The RME describing the composite
system reads

∂ρtot

∂t
= −i[H, ρtot] +

∑
i∈I

Qi(τi ⊗ Tri[ρtot] − ρtot ), (13)

with the respective thermalization rates Qi for I :=
{A1, A2, B1, B2, C1, C2}. The Hamiltonian is given by

H =
2∑

k=0

ωk|k〉〈k| +
∑
i∈I

�iσ
+
i σ−

i + [gA|0〉〈1|σ+
A1σ

−
A2

+ gB|0〉〈2|σ+
B1σ

−
B2 + gC|1〉〈2|σ+

C1σ
−
C2 + H.c.] (14)

with the coupling strengths gA,B,C to each of the subsystems
and the qubit frequencies �A2 := �A1 − (ω1 − ω0), �B2 :=
�B1 − (ω2 − ω0), and �C2 := �C1 − (ω2 − ω1). While the
solution of ∂ρtot/∂t = 0 provides the steady state of the com-
posite system, solving this equation analytically is difficult
due to the size of the system, which is 3 × 22 × 22 × 22 =
192. Even if numerical solutions of ∂ρtot/∂t = 0 are obtained,
it is hard to understand what the steady state shows physically
and what kind of parameters characterize the steady state in
contrast to the effRME.

In order to characterize the effective thermalization rates
qA,B,C in the effRME, we compute the steady-state solution of
the RME (13). Here, ω0 = 0 is taken, and the energy unit is
set as half of the energy gap between the ground and first ex-
cited states of the qutrit, (ω1 − ω0)/2 = ω1/2 = 1. Also, our
focus is on a regime where the thermalization rates {Qi} are
much larger than any other energy scales such that the virtual
temperatures are still valid. By finding the population at each
level in the RME solution corresponding to that in the effRME
solution (11), we have obtained the parameter dependency of
the effective thermalization rates qA,B,C. Assuming that all the

FIG. 3. Optimal coupling coefficient rates between the target
qutrit and the auxiliary qubits for which the state (11) is the steady-
state solution of the RME (13) as a function of coherent interaction
strength gB (upper panel) and bath temperature Ti1 = Th (lower
panel). In the upper panel, the ratio qA/qB is proportional to 1/g2

B,
and the ratio qB/qC is proportional to g2

B. In the lower panel, the ratios
qi/qj are proportional to the ratios ni/nj of the norms (15) of the
virtual qubits for i, j ∈ {A, B, C}. Both plots use the same parameter
set, except for Ti1 = Th = 3.1 in the upper panel and gB = 1.5 in
the lower panel. As mentioned in the text, we take ω0 = 0 and set
the energy unit as (ω1 − ω0)/2. Thus, accordingly, ω1 = 2. As for
other parameters, the following is used: ω2 = 3, �A1 = 2.5, �B1 =
4.5, �C1 = 1.3, gA = 1.2, gC = 1.8, Ti1 = Th = 3.1, Ti2 = Tc = 1.2,
Qi1 = 70, and Qi2 = 50 for i ∈ {A, B, C}.

two-qubit machines are subject to the same bath temperatures,
i.e., Ti1 = Th and Ti2 = Tc for i ∈ {A, B, C}, we plot the ratio
of the effective thermalization rates qA,B,C as a function of the
coherent coupling strength gB and the hot bath temperature Th

in Fig. 3. It is seen that the ratio qi/q j is proportional to g2
i /g2

j
and that the Th dependency of the ratio qi/q j corresponds to
the norm of virtual qubits, which, in analogy to Eq. (7), reads

ni = τ
g
i1τ

e
i2 + τ e

i1τ
g
i2 (15)

for i ∈ {A, B, C}. These parameter dependencies are consis-
tent with the effective thermalization rate (6) in the case of a
two-dimensional target system.

Additionally, when Qi1 = Qi2 = Qi, one can obtain the
analytical form of the effective rates qi in the limit Qi � gi,
particularly

qi = g2
i

(
τ

g
i1τ

e
i2 + τ e

i1τ
g
i2

)
Qi

. (16)

See Appendix E for the details.
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C. Gorini-Kossakowski-Lindblad-Sudarshan master equation
(GKLSME)

We now continue to focus on the case of the target system
being a qutrit. The idea of virtual qubits is then to replace the
“full” RME (13) that governs the dynamics of the joint system
composed of the target qutrit and the six physical qubits (with
the coupling rates Qi) by an effRME that contains fewer “vir-
tual” qubits (with the rates qi). Namely, Eq. (13) is replaced by
Eq. (9). The mapping of the rates, {Qi} �→ {qi}, is, in general,
intricate. Notwithstanding, for the case of a target qubit we
found that some features of the analytic relation (6), such as
the dependence on the coherent Hamiltonian coupling gi and
the dependence on the norms, are numerically reproduced for
a target qutrit in the foregoing section.

The description of the physical system that underlies the
effRME (9) is not unique and may depend on the concrete
physical setup. In a sense, the RME (13) constitutes, by itself,
also an ad hoc model, as it is not based on some continuous in-
teraction with the environment, but a stochastic full swapping
of constituent states with environment states. Nonetheless,
owing to its CPTP (completely positive and trace-preserving)
behavior, the RME may be cast into a GKLSME, known from
conventional thermalization models [28–30]. This mapping is,
in general, a complicated function of the physical parameters,
such as the bath temperatures, and has been explicitely derived
for special cases [31]. There, it is shown that in order to
fulfill the mapping, the spontaneous emission rates �i in the
GKLSME (see below) must be temperature dependent, which
is a feature that is usually not encountered in GKLSMEs [30].

On the other hand, we could have also chosen to formulate
the original system in terms of a GKLSME with independent
rates �i and then map it onto a “full” RME. Thereby, the rates
Qi of the latter become themselves functions of the system
parameters. As a consequence, the temperature dependence
of the effective rates qi in the effRME for the target only is
expected to depend on more than just the norms of the virtual
qubits. The question of which description is more favorable
depends on what parameters are easily tunable in a concrete
experimental scenario. We will come back to this distinction
in the next section and here assume the GKLSME to be the
original equation and strive to understand the behavior of qi

in dependence of the physical parameters.
The GKLSME for a target qutrit that interacts with six

physical qubits reads

∂ρtot

∂t
= −i[H, ρtot] +

∑
i∈I

Liρtot, (17)

with the Hamiltonian (14) and the qubits I =
{A1, A2, B1, B2, C1, C2}. The Liouvillian

Liρ = �i(n̄(�i, Ti ) + 1)D[σ−
i ] + �in̄(�i, Ti )D[σ+

i ] (18)

describes the dissipative interaction of the ith auxiliary qubit
with its bath (see also Fig. 1) at temperature Ti = Th for i ∈
{A1, B1, C1} and Ti = Tc for i ∈ {A2, B2, C2}, respectively;
�i is that qubit’s spontaneous emission rate. We have further
defined the thermal population n̄(ω, T ) := [exp(ω/T ) − 1]−1

of the bosonic bath and the dissipator D[A] := 2AρA† −
A†Aρ − ρA†A.

FIG. 4. Optimal rates of the effRME (9) for which the state (11)
is the steady-state solution of the GKLSME (17) as a function of
the coherent coupling strength gB (upper panel) and the hot-bath
temperature Th (lower panel). The quadratic relation (19) can clearly
be seen in the upper panel. While Th = 3.1 is used in the upper
panel and gB = 1.5 is used in the lower panel, both of the panels use
the same values for the other parameters: ω0 = 0, ω1 = 2, ω2 = 3,
gA = 1.2, gC = 1.8, �A1 = 2.5, �B1 = 4.5, �C1 = 1.3, Tc = 1.2,
t = 10, �i1 = 70, and �i2 = 50 for i ∈ {A, B, C}. In the same way as
in Fig. 3, all the parameters are made dimensionless with the energy
unit (ω1 − ω0)/2.

We now replace this equation with the simple effRME (9)
for the qutrit only and pose the question: How are the parame-
ters {qA, qB, qC} of the effRME (9) related to the parameters of
the GKLSME (17)? To answer this question, we numerically
integrate the GKLSME (17) for given parameters with the
analytic steady-state solution (11), which is parameterized by
the triple (qA, qB, qC), as the initial state of the target qutrit
(the qubits were initialized to their respective thermal states).
We repeat this integration for different such triples to mini-
mize the Frobenius norm ‖ρ(t ) − ρ(0)‖ between the reduced
density operators of the qutrit at time t and time t = 0 for a
sufficiently large fixed time t > 0. In Fig. 4, we chose t = 10
to fulfill t � 1/�i1,2. The Frobenius norm thus quantifies the
deviation of the time-evolved state to the initial state (11).
Thereby, we find the optimal parameter triple (qopt

A , qopt
B , qopt

C )
for which Eq. (11) is the steady-state solution of Eq. (17). By
repeating this procedure for, e.g., different Th, we can then
numerically find the dependence of the rates qi on the physical
parameters of the GKLSME (see Fig. 4).

As seen from the upper panel in Fig. 4, the quadratic
relation

qopt
i

qopt
j

∝ g2
i

g2
j

for i, j ∈ {A, B, C} (19)
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of the effective rates in the effRME (9) to the Hamiltonian
couplings in the GKLSME (17), first obtained in Eq. (6) for
the qubit case, is reproduced, but with different proportional-
ity factors than in Fig. 3. While we only show the dependence
on gB in Fig. 4, we have performed additional simulations for
varying gA and gC, respectively, that are fully consistent with
the quadratic behavior in Eq. (19). Furthermore, as expected,
the temperature dependence does not agree with the norm
of the virtual qubits (see the lower panel in Fig. 4), which
will be discussed more in the next section.

In the limit �i1, �i2 � gi, the analytical form of the effec-
tive rate qi can be obtained by using the Nakajima-Zwanzig
projection operator technique [19,30],

qi = 2g2
i

(
τ

g
i1τ

e
i2 + τ e

i1τ
g
i2

)
�i1[n̄(�i1, Ti1) + 1]Zi1 + �i2[n̄(�i2, Ti2) + 1]Zi2

,

(20)

where Zi1,2 = 1 + e−βi1,2ωi are the partition functions. See
Appendix E for its derivation.

We have implemented these simulations with the Quantu-
mOptics.jl [32] Julia framework and used Optim.jl [33] for the
numerical optimisation. The latter employed the Nelder-Mead
method with threshold value 10−8. With the parameters of
Fig. 4, the minimum of the Frobenius norm, ‖ρ(t ) − ρ(0)‖qopt ,
was then evaluated to ≈10−8.

D. Discussion and identifying the “dials”

Our setup possesses a plethora of parameters, and the
question on how they influence the steady-state solution of
the target qutrit is not trivial. More importantly, to actually
benefit from a simplification from the effRME it is important
to understand how the physical parameters of different master
equations impact the effRME. What we have seen above is
that the behavior of the optimal qopt

i as a function of, e.g., the
hot-bath temperature Th differs, depending on the description:
Whereas in the case of the reset model, the ratios of the qopt

i
depend on the corresponding ratio of the norms (15) of the
virtual qubits, this is not the case in the GKLS treatment.

To understand this issue, it is important to note that in the
RME for the seven-body system (target qutrit and six qubits)
the parameters Qi were assumed to be independent of the
temperature. Therefore, the only temperature dependence in
the qopt

i stems from the norm. The GKLSME equivalent to the
RME possesses temperature-dependent spontaneous emission
rates. By contrast, in Sec. III C we have considered rates that
do not depend on the temperatures. Therefore, the temperature
dependence in Figs. 3 and 4 differ.

It is important to note that although the RME can be
written in GKLS form, the latter will not depict the behav-
ior that we are accustomed to from typical quantum-optical
situations: Usually, the decay rates �i do not depend on the
temperatures [30], but the rates in the GKLS form of the
reset equation do, similar to Ref. [31]. Therefore, features
such as the temperature difference of the steady-state solution
strongly depend on whether the Qi or the �i are assumed to
be “auxiliary” parameters with no further dependence on the
temperatures. If the Qi are deemed to be independent, then
the �i will depend on the temperatures. Conversely, if the

FIG. 5. Sketches of (a) a typical laser mechanism with Th the
hot-bath temperature and Tc the cold-bath temperature, and (b) our
proposed scheme improved by virtual temperatures, where TvB

[Eq. (21)] is negative and TvC [Eq. (22)] is smaller than Tc. The
oval on each qutrit level represents this level’s population. The lasing
transition is further coupled to an environment at temperature Ten.

�i are chosen to be independent, then the Qi will depict a
temperature dependence and would not correspond to the ratio
of the norms anymore, as shown in the lower panel in Fig. 4.
We note that although the �i in the GKLS description typi-
cally depend on the frequencies [30], we may still see them
as independent parameters since the frequency dependence
may be countered by, e.g., changing the dipole moment of the
qubit. It is therefore sensible to assume the rates to be “aux-
iliary” parameters in either description (although the concrete
parameter dependence of the ad hoc Qi may be unknown).
By contrast, the features that only depend on the Hamiltonian
part of the master equation coincide in both descriptions, cf.
the quadratic dependence on gB in Figs. 3 and 4, although the
proportionality factors differ.

It is therefore of paramount importance to distinguish be-
tween the two genuinely different models,

(1) RME with “free” Qi,
(2) GKLSME with “free” �i,

and the mapping of the RME to a GKLSME and vice versa,
where the “free” character of the rates no longer holds. The
“dials” therefore very much depend on the initial description
of the machine, i.e., whether the Qi or the �i are supposed
to be tunable by some auxiliary parameters. Both physical
models, RME and GKLSME, therefore have their respective
merit in different (experimental) setups.

IV. EXAMPLE: IMPROVING A LASER
WITH POPULATION INVERSION

As an exemplary application of our method, we propose
a scheme to enhance the output of a three-level laser by
coupling it to a complex machine. A typical mechanism of a
heat-pumped laser [25,34,35] is shown in Fig. 5(a). The laser
is composed of a three-level system in contact with a hot bath
at temperature Th, a cold bath at Tc, and a signal field that is
to be amplified. The lasing threshold is surpassed when the
interactions with the two thermal baths generate a population
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inversion in the lasing transition |1〉 → |0〉 (black arrow in
Fig. 5). The level structure considered in this section may
be conducted with thermal atoms such as 87Rb (for example,
see Ref. [36]), and the hot and cold baths can be realized
by thermal radiation filtered by narrow-band cavities [36].
Below, we address the question of whether this population
inversion can be increased by indirectly coupling this three-
level system to those temperatures via auxiliary two-qubit
machines [Fig. 5(b)]. Notice that our interest is whether our
approach improves an existing mechanism rather than how
much inversions are generated based on our approach.

To address this question, we analyze the laser performance
by computing the population inversion that is built up in a
single lasing cycle, which allows computing the lasing thresh-
old [25]. We note that this approach has to be distinguished
from the full quantum-mechanical treatment of the joint sys-
tem composed of the three-level medium and the quantized
light field [37,38]. In this full treatment, the population in-
version is “cashed in” (utilized) to drive the light field into
a Poissonian (phase-averaged coherent) state, which results
in a significantly reduced remaining steady-state population
inversion as compared to the cycle-based analysis [35,39].
Nevertheless, the lasing threshold and the lasing performance
can already be deduced from our model. Thus, we consider
only the laser’s working medium below.

We replace the hot bath with a two-qubit machine whose
virtual temperature TvB is [cf. Eq. (1)]

TvB = �B1 − �B2

�B1/Th − �B2/Tc
, (21)

where �B2 = �B1 − (ω2 − ω0). Note that for a fair com-
parison, the hot- and cold-bath temperatures used for the
laser are also applied to this two-qubit machine. For Th >

(�B1/�B2)Tc, the virtual temperature TvB is negative and leads
to population inversion between the levels |0〉 than |2〉 [see
Fig. 5(b)]. Larger population in a higher energy state than a
lower energy state is never seen with real thermal baths. This
population inversion between the levels |0〉 and |2〉 therefore
increases the desired inversion on the lasing transition be-
tween |0〉 and |1〉 and hence increases the performance of the
laser.

The inversion on the lasing transition can be further im-
proved by replacing the cold bath with a virtual qubit at the
virtual temperature

TvC = �C1 − �C2

�C1/Tc − �C2/Th
. (22)

Since Th > Tc and �C2 = �C1 − (ω2 − ω1), TvC is always
lower than Tc.

Hence, by tuning the qubit energies such that Th >

(�B1/�B2)Tc, our proposed scheme works better than the typ-
ical laser in any parameter regime. For the ideal, i.e., lossless,
case where the lasing transition is not subject to any additional
environment, the optimal population inversion is realized if
TvB → −0 and TvC → +0. For fixed bath temperatures, this
could, e.g., be achieved by tuning the respective energy spac-
ings �B1 and �C1 within the two-qubit machines.

For a more realistic situation with photon losses through
an additional environment at temperature Ten that interacts
with the lasing transition, the additional coupling Qen com-

petes with the rates to the virtual qubits. Namely, the steady
state of the three-level system explicitly depends on those
rates, and therefore the optimal virtual temperatures are no
longer the same as the ideal lossless case. Accordingly, it is
unclear whether the population ratio p1/p0 in the proposed
scheme is still larger than in the typical scheme for fixed bath
temperatures. Thus, we will compare p1/p0 in both of the
schemes assuming photon losses. Note that these additional
losses on the lasing transition are not meant to describe the
lasing process (which is a coherent process) but the action
of any dissipative processes acting on the lasing transition.
Those counteract the buildup of the population inversion and
therefore reduce the lasing performance.

In analogy to Eq. (11), the steady state of the target qutrit
reads

ρss ∝ (Qen qB τenB + qB qC τBC + qC Qen τCen), (23)

where the states τenB,BC,Cen are determined in analogy to
Eqs. (12). As seen in Figs. 3 and 4, the rates qB,C depend on
the machine parameters. Therefore, these rates also change
while tuning the bath temperatures Th,c to control the virtual
temperatures TvB,vC. By contrast, for the typical heat-pumped
three-level laser, where the target is directly coupled to the
thermal baths, the target relaxes to

ρss ∝ (Qen Qh τenh + Qh Qc τhc + Qc Qen τcen ), (24)

where the states τenh,hc,cen are also obtained in analogy to
Eqs. (12).

To demonstrate that our proposed scheme can still outper-
form the typical three-level laser even in the nonideal lossy
case, we show the dependence of the population ratios p1/p0

obtained from Eqs. (23) and (24), respectively, as a function
of the hot-bath temperature in Fig. 6. To this end, we choose
fixed values for the couplings Qh, Qc, and Qen and set the
effective rates to be

qB = QhnB, (25a)

qC = QcnC, (25b)

with the norms (15) to allow for a fair comparison between
the two laser setups in Fig. 5. Namely, we assume the internal
details of the two-qubit machines [yellow boxes in Fig. 5(b)]
to be tuned in such a way that the effective rates are Eqs. (25).
This is just a choice that works as shown below. If one wants
to control the system to obtain a desirable state, what one
needs to know is the parameter dependence. Since one knows
the interaction and temperature dependences of the effective
rate, one finds a set of desirable interaction strengths and
temperatures.

It is seen in Fig. 6 that by using the more complex setup
with virtual qubits the population inversion of the lasing tran-
sition can be strongly increased. For the chosen parameters,
our scheme allowing for photon loss outperforms even the
typical laser outcome in the ideal case for Th � 32 (see the
inset in Fig. 6). Note that we only tune Th and leave the
other parameters such as the qubit frequencies invariant. If
one tunes the other parameters as well, the lasing transition
can be improved efficiently.
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FIG. 6. Population ratio p1/p0 of the levels |0〉 and |1〉 of the
qutrit in the typical laser and our scheme when changing the hot
temperature Th. The population ratio p1/p0 is displayed in cases of
the typical laser (directly coupled to the heat baths) and our proposed
scheme (indirectly coupled to the baths via two-qubit machines that
give rise to virtual temperatures) with and without photon loss. The
dotted black line represents the lasing threshold p1/p0 = 1. “Loss-
less” (“lossy”) means no (nonzero) photon loss. The inset enlarges
a regime that our proposed scheme with photon loss considered
outperforms the lossless typical laser. The bath temperature and
the thermalization rate associated with loss of the laser output are
assumed to be Ten = 7.2 and Qen = 0.1. For the actual thermalization
rates, Qh = 2 and Qc = 1.5 are taken. The other parameters are the
same as Figs. 3 and 4, and all the parameters are made dimensionless
with the energy unit (ω1 − ω0)/2: ω0 = 0, ω1 = 2, ω2 = 3, �B1 =
4.5, �C1 = 1.3, and Tc = 1.2.

V. CONCLUSIONS

Designing complex thermal machines at the quantum scale
is hard, as they quickly become intractable. We have instead
decided to model only the steady state of an arbitrary-
dimensional target system in contact with complex machinery
coupled to different heat baths. This can be done by means
of competing virtual qubits, coupled to the different transi-
tions of the quantum target. Using reset-type master equations
enables one to have an analytical solution for all dimen-
sions. We have studied and showcased the behavior in three
dimensions, comparing it to full solutions of an optical mas-
ter equation (GKLSME), and showed that they share central
features and behaviours, whereas the exact target state can
at times be different. Furthermore, we have displayed that
the parameters in the effRME can be actually determined
analytically when starting a GKLSME or a RME. The an-
alytical form of qi enables one to predict the parameter
dependence of the steady state. We believe that the models
prove usefulness for designing machines to optimize certain
key properties of the target system, such as inverting the

population of the lasing transition in a three-level laser or gen-
erally to optimally create purity in a subspace of the multilevel
system.

Based on our results, there are two possible applications:
(i) given a qudit coupled to some two-qubit machines and a
master equation describing this system, one can derive the
steady state of the qudit; and (ii) given a desired steady state
of a qudit, one can design the parameters in the machines
to produce it. The first option (i) is possible by using the
analytical form of the steady state (C19) and the effective
rates (16) or (20) (or deriving a suitable effective rate with
the technique presented in Appendix E). The second option
(ii) is also achievable. For any n-level system, the number of
variables for the population is n − 1 due to the normalization.
By coupling at least n − 1 two-qubit machines to all the level
of the n-level system, one can control all the populations
and find a desirable effRME. Note that it is not necessary to
couple machines to all the n(n − 1)/2 transition of the n-level
system. For example, coupling n − 1 machines to neighbor-
ing transitions is sufficient to determine the population in
the n-level system, and each transition will thermalize at the
virtual temperature in the asymptotic limit. This is completely
independent of interaction strengths, and applying our results
is not necessary. However, our results become useful when
multiple transitions couple to the same level, creating compe-
titions between the different rates. This is a pertinent scenario
as shown in Sec. IV.

One of the potential applications is modeling highly com-
plex open systems that are not amenable to a full GKLSME
solution, either due to size or unknown Hamiltonian param-
eters. While in such a situation, it is always possible to fit
an effRME to experimental data, the real challenge is an
understanding of how physical control over temperatures and
couplings will impact the parameters of the effRME. While in
practice one can expect that this could be fitted through many
experimental runs in different parameter regimes, to endow
the effRME with predictive power it would be great to get
more qualitative insight into parameter correspondences. We
have seen that for qutrits the simplified model parameters can
easily be matched to physical parameters, either quantitatively
or qualitatively. This correspondence can be seen in higher
dimensional systems by using the same technique presented
in Appendix E.
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APPENDIX A: RESET MASTER EQUATION

To justify the form of the RME (2), here we loosely follow
Appendix A in Ref. [16] and the main text in Ref. [17].
The RME is a simple model that describes a probabilistic
swapping with a thermal state whose temperature corresponds
to that of the environment instead of illustrating some physical
interaction with the environment. Consider a system of three
qubits coupled to baths depicted in Fig. 1. The RME expresses
the thermalization processes for the qubits such that each qubit
is “reset” to a thermal state at the temperature of its bath with
probability density pi per time δt . Namely, to first order in δt ,
the density matrix at t + δt is provided by

ρtot (t + δt ) =
(

1 −
∑

i∈{en,1,2}
piδt

)
ρtot

+
∑

i∈{en,1,2}
piδt (τi ⊗ Tri[ρtot]) − iδt[H, ρtot]

= ρtot +
∑

i∈{en,1,2}
piδt (τi ⊗ Tri[ρtot] − ρtot )

− iδt[H, ρtot], (A1)

which leads to Eq. (2).

APPENDIX B: PARTIAL TRACES FOR A SINGLE SYSTEM
IN OUR NOTATION

While partial traces and tensor products are usually defined
for composite systems, we have used a slight modification of
this notation to simplify our treatment of higher dimensional
systems in our context. Here, we further explain the notation
TrA,B,C introduced in Eq. (9) of Sec. III A. Let us remind the
reader that we consider a three-level system where all of the
level pairs are in contact with different baths (see the right
hand side of Fig. 2). Here, A, B, and C stand for the level pair
of |0〉 and |1〉, the one of |0〉 and |2〉, and the one of |1〉 and
|2〉, respectively. First of all, a point is that off-diagonal terms
of the density matrix vanish. Therefore, the density matrix of
any state in the target qutrit is given by

ρ =
⎛
⎝p0 0 0

0 p1 0
0 0 p2

⎞
⎠. (B1)

Here, we define TrA[ρ] as

TrA[ρ] =
(

p0 + p1 0
0 p2

)
. (B2)

A tensor product of this partially traced-out state TrA[ρ] and
a thermal state τA = (τ g

A, τ e
A)T appears in the summation of

Eq. (9) and means a state where the population ratio between
the levels |0〉 and |1〉 is exp[−(ω1 − ω0)/TvA]. Accordingly,
we write this tensor product as

τA ⊗ TrA[ρ] =
⎛
⎝(p0 + p1)τ g

A 0 0
0 (p0 + p1)τ e

A 0
0 0 p2

⎞
⎠ (B3)

due to τ e
A/τ

g
A = exp[−(ω1 − ω0)/TvA]. If one applies the trace

out TrA to τA ⊗ TrA[ρ], it should be TrA[ρ], and one can

verify this as

TrA[τA ⊗ TrA[ρ]] =
(

(p0 + p1)τ g
A + (p0 + p1)τ e

A 0
0 p2

)

×
(

p0 + p1 0
0 p2

)
TrA[ρ] (B4)

due to τ
g
A + τ e

A = 1.

APPENDIX C: STEADY-STATE SOLUTION OF EFFRME
FOR n-LEVEL TARGET SYSTEM

We discuss the steady-state solution for an effRME in a
multilevel system with some two-qubit machines coupled. For
simplicity, let us adhere to cases where every pair of levels in
the target is coupled to one machine. In these cases, for n-level
systems the number of the couplings is

(n
2

) = n(n − 1)/2.
We generalize the effRME to n-level target systems. For

distinct representation, let us introduce a different notation
of coupling strength from that in Fig. 2. We write qk,l as the
thermalization rate of the kth and lth levels (k < l), where the
indices A, B, C in Fig. 2 are associated with q0,1, q0,2, and q1,2,
respectively. The effRME for n-level target system is written
as

∂ρ

∂t
=

n−1∑
l=1

l−1∑
k=0

qk,l (τk,l ⊗ Trk,l [ρ] − ρ), (C1)

where τk,l is a thermal state at the virtual temperature associ-
ated with the kth and lth levels, and Trk,l represents tracing
out the space of the kth and lth levels. We ignore off-diagonal
terms in the density matrix since in this model coherence
cannot be generated. Then, this equation can be simplified as

∂ρ

∂t
=

n−1∑
l=1

l−1∑
k=0

qk,l
( − τ e

k,lρ
(k) + τ

g
k,lρ

(l )
)
(|k〉〈k| − |l〉〈l|),

(C2)
with ρ (k) = 〈k|ρ|k〉. To obtain the steady state, we solve
∂ρ/∂t = 0, i.e.,

n−1∑
l=1

l−1∑
k=0

Ck,l (|k〉〈k| − |l〉〈l|) = 0, (C3)

where Ck,l = qk,l (−τ e
k,lρ

(k) + τ
g
k,lρ

(l ) ).
First, let us separate the equation into two terms as

n−1∑
l=1

l−1∑
k=0

Ck,l |k〉〈k| −
n−1∑
l=1

l−1∑
k=0

Ck,l |l〉〈l| = 0. (C4)

The first term can be written in a different way,
n−1∑
l=1

l−1∑
k=0

Ck,l |k〉〈k| =
n−1∑
l=1

C0,l |0〉〈0| +
n−1∑
l=2

C1,l |1〉〈1|

+ · · · +
n−1∑

l=n−1

Cn−2,l |n − 2〉〈n − 2|

=
n−2∑
s=0

n−1∑
l=s+1

Cs,l |s〉〈s|

=
n−1∑
l=1

C0,l |0〉〈0| +
n−2∑
s=1

n−1∑
l=s+1

Cs,l |s〉〈s|,

(C5)
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and the second term can be written as
n−1∑
l=1

l−1∑
k=0

Ck,l |l〉〈l| =
n−2∑
l=1

l−1∑
k=0

Ck,l |l〉〈l|

+
n−2∑
k=0

Ck,n−1|n − 1〉〈n − 1|. (C6)

Thus, the left hand side (LHS) of Eq. (C4) is rewritten as

LHS of Eq. (C4) =
n−1∑
l=1

C0,l |0〉〈0| −
n−2∑
k=0

Ck,n−1|n − 1〉〈n − 1|

+
n−2∑
s=1

n−1∑
l=s+1

Cs,l |s〉〈s| −
n−2∑
l=1

l−1∑
k=0

Ck,l |l〉〈l|

=
n−1∑
l=1

C0,l |0〉〈0| −
n−2∑
k=0

Ck,n−1|n − 1〉〈n − 1|

+
n−2∑
s=1

(
n−1∑

l=s+1

Cs,l −
s−1∑
k=0

Ck,s

)
|s〉〈s|. (C7)

Since each of the terms in Eq. (C4) is zero, we can obtain n
equations such as

n−1∑
l=s+1

Cs,l −
s−1∑
k=0

Ck,s = 0, for {1 � k � n − 2 : ∀k ∈ Z},

(C8a)
n−1∑
l=1

C0,l = 0, (C8b)

n−2∑
k=0

Ck,n−1 = 0. (C8c)

The above n equations can be written in a matrix form as

Mn �ρss = �0, (C9)

where �ρss = (ρ (0)
ss , ρ (1)

ss , . . . , ρ (n−1)
ss )T and Mn is an n × n ma-

trix given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M0,0 q0,1τ
g
0,1 q0,2τ

g
0,2 · · · q0,n−2τ

g
0,n−2 q0,n−1τ

g
0,n−1

q0,1τ
e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C10)

The diagonal terms are given by

M0,0 = −
n−1∑
s=1

q0,sτ
e
0,s, (C11a)

Mk,k = −
(

k−1∑
s=0

qs,kτ
g
s,k +

n−1∑
s=k+1

qk,sτ
e
k,s

)
, (C11b)

Mn−1,n−1 = −
n−2∑
s=0

qs,n−1τ
g
s,n−1 (C11c)

for 1 � k � n − 2.
Here, we add the normalization constraint, Tr[ρss] = 1, into this simultaneous equation (C9), and hence the total number of

equations involved in the simultaneous equation is (n + 1). However, the number of the variables in �ρss is n. This indicates that
there is one excess equation in the simultaneous equation. In fact, any equation written inside Eq. (C9) is dependent on other
equations (i.e., can be constructed from the rest of the equations). For example, the equation described by the first row in the
matrix M is reproduced by taking a sum of the equations given by all other rows due to Eqs. (C11) and multiplying it by a minus
sign. Therefore, the removal of the first row from the matrix M poses no problem for solving the simultaneous equation. We
remove the first row and then add the normalization constraint Tr[ρss] = 1 as follows:

Mn �ρss =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M0,0 q0,1τ
g
0,1 q0,2τ

g
0,2 · · · q0,n−2τ

g
0,n−2 q0,n−1τ

g
0,n−1

q0,1τ
e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ (0)
ss

ρ (1)
ss
...
...
...
...

ρ (n−1)
ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
q0,1τ

e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ (0)
ss

ρ (1)
ss
...
...
...
...

ρ (n−1)
ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
q0,1τ

e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ (0)
ss

ρ (1)
ss
...
...
...
...

ρ (n−1)
ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C12)

The full simultaneous equation turns to become

M

⎛
⎜⎜⎜⎝

ρ (0)
ss

ρ (1)
ss
...

ρ (n−1)
ss

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎠, (C13)

where the matrix M is now redefined as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
q0,1τ

e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C14)

Here, let us distinguish the two cases where the matrix M is invertible and where it is not. In the latter case, the steady-state
solution cannot be determined with the conditions we have. However, this issue can be avoided. For example, physically, this
is the case where one machine is coupled to the levels |0〉 and |1〉 in a three-level system and the population ratios between the
levels |0〉 and |2〉 and between the levels |1〉 and |2〉 are not determined. In this case, the steady state is not unique, and this leads
to the nonexistence of inverse matrix of M. If one sees this three-level system as a two-level system composed of the levels |0〉
and |1〉, the matrix M can be rewritten as an invertible matrix.

Assuming that the matrix M is invertible, the solution �ρss is obtained as

�ρss = M−1

⎛
⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎠. (C15)

According to Cramer’s rule [40], the inverse matrix can be written as

M−1 = 1

det[M]
adj[M], (C16)

where adj[M] is the adjugate of M, given by adj[M] = [{�i, j}1�i, j�n]T , i.e.,

adj[M] =

⎛
⎜⎜⎝

�1,1 �2,1 · · · �n,1

�1,2 �2,2 · · · �n,2
...

...
. . .

...

�1,n �2,n · · · �n,n

⎞
⎟⎟⎠. (C17)
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Here, �i, j is a set of the cofactors of the matrix M and defined as

�i, j = (−1)i+ j

∣∣∣∣∣∣∣∣∣∣∣∣∣

M0,0 · · · M0, j−1 M0, j+1 · · · M0,n−1
...

...
...

...
...

...

Mi−1,0 · · · Mi−1, j−1 Mi−1, j+1 · · · Mi−1,n−1

Mi+1,0 · · · Mi+1, j−1 Mi+1, j+1 · · · Mi+1,n−1
...

...
...

...
...

...

Mn−1,0 · · · Mn−1, j−1 Mn−1, j+1 · · · Mn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (C18)

Also, due to the mathematical properties of the determinant,
we get det[M] = ∑n

s=1 �1,s. As a result, the solution �ρss is
then written as

�ρss = 1∑n
s=1 �1,s

⎛
⎜⎜⎝

�1,1

�1,2
...

�1,n

⎞
⎟⎟⎠, (C19)

which is normalized as
∑n

j=1 ρ
( j)
ss = 1 with ρ

( j)
ss being an

element of the density matrix. For n = 2, the solution (C19)
gives the thermal state of the virtual temperature, ρss =
(τ g

0,1, τ
e
0,1)T as expected. For n = 3, the solution (C19) cor-

responds to Eq. (11). For the solution (C19) for n = 4, see the
Appendix D.

APPENDIX D: STEADY-STATE SOLUTION OF EFFRME
FOR FOUR-LEVEL SYSTEM

One can obtain the steady state of the effRME for any-level
target system from Eq. (C19). In this Appendix, we focus on a
four-level target system and discuss components of its steady
state. Let us recall that the steady state (11) of the effRME for
qutrit target systems is a combination of other steady states
where two pairs of levels are characterized with different
temperatures, weighted with the effective thermalization rates
qi. Even for higher level systems, the same feature can be seen
as shown below.

Suppose that one has a four-level target system where each
pair of levels are occupied by one two-qubit machine (in total
six machines are involved). The steady-state solution of the
effRME is given by

ρss

C
= q3

0q3
1q3

2 τ 333
012 + q3

0q3
1q2

0 τ 332
010 + q3

0q3
1q2

1 τ 332
011

+ q3
0q3

2q1
0 τ 331

020 + q3
0q3

2q2
1 τ 332

021

+ q3
1q3

2q1
0 τ 331

120 + q3
1q3

2q2
0 τ 332

120

+ q3
0q1

0q2
0 τ 312

000 + q3
0q1

0q2
1 τ 312

001 + q3
0q2

0q2
1 τ 322

001

+ q3
1q1

0q2
0 τ 312

100 + q3
1q1

0q2
1 τ 312

101 + q3
1q2

0q2
1 τ 322

101

+ q3
2q1

0q2
0 τ 312

200 + q3
2q1

0q2
1 τ 312

201 + q3
2q2

0q2
1 τ 322

201 , (D1)

where the normalization constant C is given by the trace of the
right-hand side of Eq. (D1). Sixteen states such as τ 333

012 in the
solution are steady states with three of the coherent couplings
on. For example,

τ 333
012 = τ

g
0,3τ

e
1,3τ

e
2,3|0〉〈0| + τ e

0,3τ
g
1,3τ

e
2,3|1〉〈1|

+ τ e
0,3τ

e
1,3τ

g
2,3|2〉〈2| + τ e

0,3τ
e
1,3τ

e
2,3|3〉〈3|, (D2)

which is not normalized on purpose, such as Eq. (12). In this
state, three pairs of the levels are characterized with different
virtual temperatures.

The steady-state solution (D1) consists of 16 steady states
where three of the coherent couplings are present in the
system (e.g., τ 333

012 ). However, notice that the solution (D1)
does not cover all the possible steady states with three of the
couplings on. For example, a case is excluded where three
two-qubit machines are coupled to the transitions between
|0〉 and |1〉, between |0〉 and |3〉, and between |1〉 and |3〉.
There are some differences between the excluded cases and
the included cases. In the excluded cases, one level is unoccu-
pied. For the above example, the level |2〉 is free. Moreover,
the excluded cases are essentially the same as the situation
depicted in Fig. 2, i.e., the three thermalization processes
compete. As discussed in Sec. III A, this kind of steady state
cannot be simply described with just the virtual temperature,
but effective rates are required, in contrast to Eq. (D2). In
brief, the steady state (D1) is composed of other steady states
that coherently interact with three machines and where the
thermalization processes caused by their machines do not
compete against each other.

APPENDIX E: ANALYTICAL FORM OF THE EFFECTIVE
THERMALISATION RATES

We derive the analytical form of the effective thermaliza-
tion rate qi when we describe the qutrit system depicted in
Fig. 2 with the GKLSME (17). Our interest is to obtain the
density matrix ρ of the target qutrit from the GKLSME (17).
Considering �i1, �i2 � gi for i ∈ {A, B, C}, we use the
Nakajima-Zwanzig projection operator technique to reduce
the total density matrix to the target qutrit, ρ = TrI[ρtot]
with I := {A1, A2, B1, B2, C1, C2}. Below, we loosely fol-
low Appendix D in Ref. [19].

We define a projector P as

Pρtot (t ) = ρ(t ) ⊗ τA1 ⊗ τA2 ⊗ τB1 ⊗ τB2 ⊗ τC1 ⊗ τC2.

(E1)

Rewriting Eq. (17) as ∂ρtot/dt = Lρtot , we decompose the
Liouvillian as L = L0 + Hint, where the Hamiltonian super-
operator Hint is defined as

Hintρtot = i(ρtotH
†
int − Hintρtot ), (E2)

where Hint=gA|0〉〈1|σ+
A1σ

−
A2 + gB|0〉〈2|σ+

B1σ
−
B2 + gC|1〉〈2|σ+

C1
σ−

C2 + H.c. as seen in Eq. (14). We adapt a dissipative interac-
tion picture and transform the total density matrix as ρ̃tot (t ) =
e−L0tρtot (t ) and the superoperator as H̃int (t ) = e−L0tHinteL0t .
After going through the standard perturbative argument [30],
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we have

dP ρ̃tot

dt
=

∫ t

0
dt ′ PH̃int (t )H̃int (t

′)P ρ̃tot (t
′), (E3)

which is valid to the second order of gi/�i1 and gi/�i2.
Here, we take several steps. Due to �i1, �i2 � gi, we use
the Born-Markov approximation to the integral, expand the
lower integration limit to −∞, and replace ρ̃tot (t ′) → ρ̃tot (t ).
To simplify Eq. (E3), we expand the commutators, trace out
the machines, and transform back to the Schrödinger picture.
In the end, the master equation describes the time evolution
of the diagonal terms (population) and the off-diagonal terms
(coherence) independently. Here, we focus on the population,
and its equation is given by

dρ

dt
=

∑
i=A,B,C

p↓
i D[Oi]ρ + p↑

i D[O†
i ]ρ, (E4)

where OA = |0〉〈1|, OB = |0〉〈2|, OC = |1〉〈2|, and p↓
i and p↑

i
are the backward and forward rates, respectively. Defining a
vector of the diagonal terms in the qutrit density matrix as
�ρdiag = (ρ (0), ρ (1), . . . , ρ (n−1))T , the above equation becomes

d �ρdiag

dt
= M1 �ρdiag, (E5)

where

M1 =

⎛
⎜⎝

−p↑
A − p↑

B p↓
A p↓

B

p↑
A −p↑

C − p↓
A p↓

C

p↑
B p↑

C −p↓
B − p↓

C

⎞
⎟⎠. (E6)

The backward and forward rates p↓
i , p↑

i are given by

p↓
i = 2g2

i

∫ ∞

0
dt eiωit 〈σi1(t )σ †

i2(t )σ †
i1(0)σi2(0)〉i

= 4g2
i τ

g
i1τ

e
i2

�i1(n̄(�i1, Ti1) + 1)Zi1 + �i2(n̄(�i2, Ti2) + 1)Zi2
(E7)

and

p↑
i = 2g2

i

∫ ∞

0
dt e−iωit 〈σ †

i1(t )σi2(t )σi1(0)σ †
i2(0)〉i

= 4g2
i τ

e
i1τ

g
i2

�i1(n̄(�i1, Ti1) + 1)Zi1 + �i2(n̄(�i2, Ti2) + 1)Zi2
,

(E8)

where ωA = ω1 − ω0, ωB = ω2 − ω0, ωC = ω2 − ω1, σi(t ) =
eL

†
0tσi, 〈· · · 〉i = Tr[τi1 ⊗ τi2 · · · ], and Zi1,2 = 1 + e−βi1,2ωi are

the partition functions. The adjoint Liouvillian L†
0 is defined

as Tr[QL0(P)] = Tr[L†
0(Q)P] for any operators P and Q.

Notice that p↑
i /p↓

i = e−ωi/Tvi . This model can be regarded as a
biased random walk [19].

It is important to note that if we consider the steady-
state regime and so d �ρdiag/dt = 0, Eq. (E5) corresponds to
Eq. (C9), and the matrix (E6) can agree with the matrix (C10)
after multiplying with a constant: αM1 = M. This means that
Eq. (E5) can be written in the same form of the effRME (C2)
when looking at the population, and in this case we have

qi = α(p↓
i + p↑

i )

= 4αg2
i

(
τ

g
i1τ

e
i2 + τ e

i1τ
g
i2

)
�i1[n̄(�i1, Ti1) + 1]Zi1 + �i2[n̄(�i2, Ti2) + 1]Zi2

(E9)

for i = A, B, C. In the main text, we refer to this form in
Eq. (20) and take α = 1/2 as explained at the end of this
Appendix. As expected, qi has g2

i dependence, and its tem-
perature dependence corresponds to the norm of the virtual
qubit multiplied with an additional term. The constant α does
not really matter since the ratios qi/q j of the effective rates
appear in the steady state rather than qi itself. This derivation
can be easily extended to n-level target systems considered in
Appendix C.

As shown in Ref. [41], the RME (13) we consider in
Sec. III B can be mapped to a GKLSME for Qi1 = Qi2 = Qi,
such as

∂ρtot

∂t
= −i[H, ρtot]

+
∑
j∈J

(
Q+

j D[σ+
j ] + Q−

j D[σ−
j ] + QzD

[
σ z

j

])
ρtot,

(E10)

where Q+
j = Qje−β j� j /Z j , Q−

j = Qj/Z j , Qz
j = Qj/4, and

J := {A1, A2, B1, B2, C1, C2}. This GKLSME has an addi-
tional local dephasing term compared to the GKLSME (17).
This local dephasing term does not affect the population dis-
tribution, and thus one can obtain the effective rates with the
same technique shown above. As a result, the effective rates
in the RME (13) are given by

qi = 2αg2
i

(
τ

g
i1τ

e
i2 + τ e

i1τ
g
i2

)
Qi

. (E11)

We take α = 1/2 to make Eq. (E11) consistent with the effec-
tive rate (6) of the qubit target system.
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