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The CRISPR-Cas9 system acts as the prokaryotic immune system and has important applications in gene
editing. The protein Cas9 is one of its crucial components. The role of Cas9 is to search for specific target
sequences on the DNA and cleave them. In this Letter, we introduce a model of facilitated diffusion for
Cas9 and fit its parameters to single-molecule experiments. Our model confirms that Cas9 search for targets
by sliding, but shows that its sliding length is rather short. We then investigate how Cas9 explores a long
stretch of DNA containing randomly placed targets. We solve this problem by mapping it into the theory of
Anderson localization in condensed matter physics. Our theoretical approach rationalizes experimental
evidence on the distribution of Cas9 molecules along the DNA.
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The discovery of the CRISPR-Cas9 system has revealed
the functioning of the bacterial immune response and has
opened previously unimaginable possibilities for gene
editing [1]. The protein Cas9 is a central actor in this
system. Cas9 is an endonuclease that is able to load a guide
RNA strand. Its target is a sequence on the DNA comple-
mentary to the guide RNA, which Cas9 can identify and
cleave. This recognition process has attracted considerable
attention, including from the modeling side [2–4].
Recognition is triggered by a three-base sequence called
protospacer adjacent motif (PAM), which precedes the
target. The first two bases of a PAM are guanine, whereas
the third can be any base. Cas9 can transiently bind to a
PAM even in the absence of a neighboring target [5,6].
Other proteins such as the lac repressor in Escherichia

coli [7] find their targets along the DNA by a mechanism
termed facilitated diffusion—an alternance of 3D diffusion
in the cytosol and one-dimensional diffusive sliding along
the DNA chain [8]. This mechanism can significantly
improve search efficiency [8,9]. The theory of facilitated
diffusion has been extended to take into account the
energetics of target search along the DNA [10–12] and
other processes such as hopping, i.e., the possibility for
proteins to briefly detach from DNA and then reattach at
short distance [13]. This notion has stimulated experimen-
tal efforts to determine whether Cas9 finds its target by
facilitated diffusion as well [6,14,15].
However, experimental single-molecule studies using

DNA curtains [14] and fluorescence resonance energy
transfer (FRET) [15] did not find evidence of sliding.
They however found that the lifetime of Cas9 binding
events is well fitted by a double exponential even in the
absence of targets, suggesting a complex binding mecha-
nism. In contrast, a more recent FRET experimental study

provides evidence that Cas9 can slide [6]. This study found
that, in a DNA sequence containing multiple PAMs without
targets, the two exponential constants characterizing the
binding lifetime distribution depend on the number of
PAMs and the distance between them. In the absence of
PAMs, this distribution reduces to a single exponential. The
dependence of the exponential constants on the distance
between PAMs suggests that the characteristic sliding
length of Cas9 falls below the spatial resolution of previous
experiments [14], potentially explaining why sliding was
not previously observed.
An alternative way of probing the search dynamics of

Cas9 is to experimentally measure the distribution of
Cas9 molecules bound along the DNA. For example, an
experiment based on DNA curtains shows that Cas9 is
localized in regions that extend for hundreds of base pairs
length around targets [14]. This length scale is much larger
than the sliding length suggested by Ref. [6].
This contrasting experimental evidence calls for a

theoretical explanation. To this aim, it is useful to think
about a bacterial genome as a long stretch of DNA in which
a large number of PAMs are disorderly distributed. For
comparison, the E. coli genome is 4.6 × 106 base pairs long
and contains about 0.5 × 106 PAMs [5]. We want to
estimate the typical localization length of Cas9 on such
DNA sequences. This problem bears an analogy with the
theory of Anderson localization [16]. This theory predicts
that, under general conditions, eigenvectors of disordered
one-dimensional diffusive systems are localized, with
profound consequences for fields of physics ranging from
condensed matter to disordered and chaotic systems [17].
In this analogy, PAMs play the role of defects in one
dimensional lattices.
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In this Letter, we show that a facilitated diffusion model
quantitatively explains the dynamics of Cas9 observed in
single-molecule experiments. We then formalize the map-
ping between facilitated diffusion and Anderson localiza-
tion. This approach permits us to determine the localization
length of Cas9 on typical long DNA strands and explain the
discrepancy between the sliding length in [6] and the
localization length in [14] in terms of a hopping mecha-
nism. The mapping presented in this Letter can be used to
study the dynamics of other DNA binding proteins, such as
transcription factors.
We consider a Cas9 protein that binds on a DNA chain of

length N and slides along it before detaching, see
Fig. 1. Our aim is to quantify the distribution of duration
of binding events depending on the arrangement of
specific PAM sites along the DNA chain. We introduce
the probability pnðtÞ that Cas9 is bound at site n at
time t, given that it had attached on the DNA at time
t ¼ 0. Each site represents a nucleotide position
n ¼ 1;…; N. We assume attachment to be nonspecific,
so that pnðt ¼ 0Þ ¼ 1=N.
We distinguish between two types of DNA sites. PAM

sites are those at the beginning of a PAM sequence, where
Cas9 can bind specifically. We consider every other site as
nonspecific, including the two other base pairs constituting
a PAM, see Fig. 1. We call En the binding energy of Cas9 at
position n. We assume that all nonspecific sites have the
same binding energy En ¼ 0. If n is a PAM site, then
En ¼ −β, with β > 0. All energies are expressed in units of
kBT, where kB is the Boltzmann constant and T the
temperature. Our aim is to analyze single binding events
and therefore we do not consider rebinding after
detachment.
The probabilities pnðtÞ evolve according to the master

equation

d
dt

pnðtÞ ¼ Dn;nþ1pnþ1 þDn;n−1pn−1

− ðDnþ1;n þDn−1;n þ knÞpn; ð1Þ

in which Dn;m ¼ DeEm and kn ¼ keEn , where the diffusion
rate D and the unbinding rate k are given parameters. We

impose vanishing fluxes at the boundaries, D0;1 ¼ D1;0 ¼
DN;Nþ1 ¼ DNþ1;N ¼ 0. This choice of rates satisfies the
detailed balance condition Dn;me−Em ¼ Dm;ne−En .
We express the model in vector notation by defining

pðtÞ¼½p1ðtÞ;p2ðtÞ;…;pNðtÞ�. Wewrite Eq. (1) as dp=dt ¼
Âp, where the elements Am;n of the matrix Â are given by

Am;n ¼
�
DeEn if jn −mj ¼ 1

−ðkþ 2DÞeEm if n ¼ m:
ð2Þ

The formal solution to the master equation is pðtÞ ¼
eÂtpð0Þ, where pð0Þ is the uniform initial condition. The
eigenvalue equation associated with the master equation is

Âψ ¼ −λψ: ð3Þ

Equation (3) is solved by a set of eigenvalues λ ¼
λ1; λ2;…; λN and associated right eigenvectors ψ ¼
ψð1Þ;ψð2Þ;…;ψðNÞ, assumed to be normalized. The solu-
tion of the master equation can be decomposed into
eigenvalues

pðtÞ ¼
XN
i¼1

e−λitciψðiÞ; ð4Þ

where the coefficients ci are determined by the initial
condition. Because of detachment, one has limt→∞ piðtÞ ¼
0 for all i. This fact and the detailed balance condition
imply that all eigenvalues must be real and positive. We sort
the eigenvalues so that λ1 is the smallest one.
The total probability that Cas9 is still bound at a time t is

given by PðtÞ ¼ P
n pnðtÞ. Since we are considering a

single binding event, PðtÞ is a decreasing function of t.
We define the instantaneous detachment rate gðtÞ ¼
−d=dtPðtÞ. Single-molecule experiments [6,14,15] ob-
served that the temporal decay of gðtÞ, and therefore of
PðtÞ, is characterized by two distinct exponential slopes at
short and long times.
To understand these two regimes, we focus on PðtÞ

and define its instantaneous exponential slope KðtÞ ¼
−d=dt lnPðtÞ. We also define the total probability
PPAMðtÞ ¼ ½Pn∈PAM pnðtÞ�=PðtÞ of Cas9 being bound to
a PAM site at time t, given that it had not detached yet. By
summing Eq. (1) over n, we find that

KðtÞ ¼ k½1 − PPAMðtÞ� þ ke−βPPAMðtÞ: ð5Þ

Considering that 0 ≤ PPAMðtÞ ≤ 1, the slopeKðtÞ is limited
by the two unbinding rates:

ke−β ≤ KðtÞ ≤ k: ð6Þ

The value ofKðtÞ in this range is determined by PPAMðtÞ.
Since the initial distribution is uniform, at short times PPAM

FIG. 1. Scheme of the model. PAM sites and nonspecific sites
are shown in yellow and blue, respectively. The second and third
bases of PAM sequences are considered as nonspecific sites (light
blue). Green arrows represent sliding rates and black arrows
represent unbinding rates, see Eq. (2). Thicker arrows correspond
to larger rates.
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is equal to the fraction of PAM sites. Given that this fraction
is usually small, Eq. (5) implies KðtÞ ≈ k at short times.
In the long time limit, Eq. (4) leads to conclude that
KðtÞ ¼ λ1.
Experiments in [6] measured the distribution of Cas9

binding events on DNA sequences containing from 0 to 5
PAM sites. We jointly fitted the parameters k, β, and D to
these six experiments, see Fig. 2(a). Solutions of the master
equation (1) with the best-fit parameters reproduce the
double exponential behavior and fit well the experimental
data, see Fig. 2(b). The fitted values of the parameters are
k ¼ 1.94� 0.10 s−1, β ¼ 3.34� 0.07, and D ¼ 52�
9 bp2 s−1. Experiments on a different variant of Cas9 find
differences in binding energy between PAM and near-
cognate sites that are comparable with our estimate of β [2].
A more detailed model where each non-PAM sequence is
characterized by a different binding energy, leads to similar
fitted values of the corresponding rates, see [18]. This
evidence supports robustness of our results.
At an increasing number of PAM sites, the second slope

in Fig. 2(a) becomes significantly less steep than the first.
According to Eq. (5), this means that, at long times, Cas9 is
much more localized on PAM sites compared with short
times. Inspecting the eigenvectors ψð1Þ associated with the
smallest eigenvalue λ1 confirms this idea, see Fig. 2(c).
To gain further insight into the dynamics observed in

Fig. 2(b), we analytically compute λ1 and its eigenvector for
an infinitely long chain with a single PAM site at n ¼ 0. For
jnj > 1, the eigenvector satisfies

−λ1ψ
ð1Þ
n ¼ Dðψ ð1Þ

nþ1 þ ψ ð1Þ
n−1 − 2ψ ð1Þ

n Þ − kψ ð1Þ
n : ð7Þ

We assume a solution of the form ψn ∝ e−jnj=l where
jnj > 0 and we define l as the sliding length. Substituting
into Eq. (7) we obtain

k − λ1 ¼ 2D½coshð1=lÞ − 1�: ð8Þ

By expanding the cosh at first order we find l≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðk − λ1Þ

p
. Note that λ1 ≤ k due to Eq. (6). The three

unknown λ1, l, and ψ0 can be determined from Eq. (8) and
the equivalents of Eq. (7) for n ¼ 0 and jnj ¼ 1.
Substituting the fitted parameters of Fig. 2, we find
l ≈ 6.2 bp.
Both our model and experiments [6] show that the

lifetime of long binding events increases at an increasing
number of PAMs, see Fig. 2(b). In the model, this means
that λ1 is a decreasing function of the number of PAMs.
This effect can be explained by interference among PAM
sites, i.e., the fact that the eigenvector ψð1Þ for j PAM sites
is not simply a superimposition of j single-PAM eigen-
vectors, unless the interval between the PAM sites is much
larger than l. Only in this limit binding events around each
PAM site behave independently, and the long-time expo-
nential slope becomes independent of the number of PAM
sites, see Fig. 3. At shorter intervals, interference leads to an
increase in target occupancy. This implies that, at large t,
PPAMðtÞ, and therefore the typical lifetime of binding
events 1=λ1, are decreasing functions of the interval
between the PAM sites, see Eq. (5) and Fig. 3.
In summary, we found that the distribution of a Cas9

molecule in a region of DNA containing several PAM sites
tends to be localized. We now study the behavior of
Cas9 on a very long stretch of DNA including a dis-
ordered assortment of PAM sites. The theory of Anderson

(a)

(b) (c)

FIG. 2. (a) Arrangements of PAM sites used in the experiments
in [6]. Line colors correspond to the different curves in panel (b).
The figure shows only the portion of the DNA sequence of length
N ¼ 98 where the PAM sites are located. (b) Comparison of the
prediction of our model (lines) with experiments [6] (points).
Model parameters are determined by jointly fitting the exper-
imental data for j ¼ 0;…; 5 PAM sites using maximum like-
lihood, see [18]. (c) Eigenvectors ψð1Þ for j ¼ 1;…; 5.

FIG. 3. Interference between j ¼ 1;…; 5 equally spaced PAM
sites on an infinite DNA chain. Lowest eigenvalue λ1 as a function
of the interval between the PAM sites. Points are obtained by
numerically diagonalizing the matrix Â corresponding to each
case, withN ¼ 220. The horizontal line marks the value of λ1 for a
single PAM sequence, from the solution of Eq. (7).
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localization predicts that, in such disordered one-
dimensional systems, eigenvectors are exponentially
localized:

ψn ∼ e−jn−n�j=γðλÞ; ð9Þ
where n� is the location of the eigenvector peak and γðλÞ is
the localization length associated with the eigenvalue λ.
The localization length γ can be thought as the generali-
zation of the sliding length l: the former is defined for an
arbitrary disordered DNA chain, whereas the latter is
defined for a single target. Our hypothesis is that the
localization length associated with the smallest eigenvalues
of Cas9 dynamics can explain the results of DNA curtains
experiments [14].
We sharpen the analogy between our problem and the

Anderson localization by rescaling the components of our
eigenvectors by the Boltzmann weight, fn ¼ ψn expðEnÞ.
With this transformation, Eq. (3) assumes the same form for
PAM and non-PAM sites:

fnþ1 þ fn−1 −
�
2þ k − λe−En

D

�
fn ¼ 0: ð10Þ

This equation is formally similar to the discrete
Schrödinger equation in Anderson’s original work [16].
It can be solved by the transfer matrix method. We
introduce the vector fn ¼ ðfn; fn−1Þ and the transfer matrix

T̂n ¼
�
2þ k−λe−En

D −1
1 0

�
: ð11Þ

With these definitions, we rewrite Eq. (10) as

fnþ1 ¼ T̂nfn ð12Þ

and therefore

fN ¼
YN−1

n¼1

T̂nf1: ð13Þ

We assume that, in a typical long DNA sequence, each site
n has a probability 1=16 to be a PAM site, thereby affecting
the value of En in the corresponding matrix Tn. In this view,
Eq. (13) expresses the solution of the eigenvalue equation
as a product of random matrices [17].
The localization length γ can be calculated from this

product with an approach proposed by Herbert, Jones, and
Thouless [21,22]. This approach rests on the idea that
fNðλÞ, with appropriate boundary conditions, vanishes if λ
is an eigenvalue and changes sign as a function of λ at every
eigenvalue. This argument leads to the expression

1

N
ln fNðλÞ ¼

1

N

XN−1

n¼1

ln jλn − λj þ iπ
N

XN−1

n¼1

θðλ − λnÞ þ
1

N
lnA;

ð14Þ

where θ is the Heaviside step function and A is a finite
constant. Taking the limit N → ∞, we define

ΛðλÞ ¼ lim
N→∞

1

N
ln fNðλÞ ¼ lim

N→∞

1

N
ln

�
Tr

YN
n¼1

T̂n

�
; ð15Þ

The Furstenberg theorem guarantees that ΛðλÞ is indepen-
dent of the realization of the disorder and of the choice of
f1 [23,24].
The inverse of the real part of ΛðλÞ can be identified with

the localization length γðλÞ thanks to a result known as the
Borland conjecture [25]. The validity of this conjecture for
our class of systems is supported by numerical and
theoretical studies [23,26]. Further, Eq. (14) links the
imaginary part of Λ with the cumulative density of states.
Computing ΛðλÞ from the product of transfer matrices, we
find that the localization length for the whole spectrum is
always shorter than 11 base pairs, see Fig. 4(b).
We remark that the disordered arrangement of PAM sites

is crucial for this result. In a long DNA chain containing a
periodic arrangement of PAM sites, the eigenvectors are
extended rather than localized, see [18].
The localization lengths in Fig. 4 are much shorter than

those observed in DNA curtains experiments [14]. We
assume that this discrepancy can be explained by the
following idea. Measuring the distribution of Cas9 in an
experiment amounts to performing an “ensemble average”
which is potentially affected by search mechanisms
other than sliding (such as hopping). In contrast, FRET

(a) (b)

(c) (d)

FIG. 4. (a) Cumulative density of states (DOS) and (b) locali-
zation length as function of λ for the nearest neighbor model,
Eq. (1), computed using Eq. (14). Results obtained by the transfer
matrix method agree with those obtained by direct diagonaliza-
tion. The DNA chain length is N ¼ 106 for the transfer matrix
method and N ¼ 5000 for the direct diagonalization. (c) Cumu-
lative DOS and (d) localization length for the hopping model
expressed by Eq. (16), computed using Eq. (17). In this case, the
DNA chain length is N ¼ 2000.
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experiments focus on individual sliding events, which are
unaffected by such mechanisms.
To test this idea, we generalize our model to include

hopping. In a hopping event, Cas9 detaches and then
reattaches to the DNA at a short distance. This amounts
to include in our master equation diffusion among non-
nearest neighboring sites:

Dm;n ¼ DeEnhðjn −mjÞ; ð16Þ

where hðnÞ is a positive decreasing function characterizing
the probability of hopping events at a given distance n
relative to sliding events. We impose hð1Þ ¼ 1, so that
nearest-neighbor sliding is consistent with Eq. (2). We
determine the function hðnÞ from the solution of a diffusion
equation in cylindrical coordinates, see [13] and [18].
Unbinding rates in the hopping model are the same as in
Eq. (2). For models with next to nearest neighbor inter-
actions, such as our hopping model, the localization length
can not be computed using Eqs. (14) and (15), see [27]. We
therefore estimate the localization length by a more direct
strategy, although computationally heavier. Assuming that
a given eigenvector ψðiÞ associated with an eigenvalue λi is
localized, we obtain from Eq. (9) that

γðλiÞ ∼ −
ðN − 1Þ

ln ½ψ ðiÞ
1 ψ ðiÞ

N �
: ð17Þ

In this case, the localization length associated with the
lowest eigenvalues is on the same order of the experimen-
tally measured one [hundreds of base pairs, see Fig. 4(d)].
In conclusion, in this Letter we studied the search

dynamics of Cas9 along the DNA. We have shown that
the predictions of a facilitated diffusion model with a short
sliding length are consistent with the result of single-
molecule FRET experiments. By applying the theory of
Anderson localization, we have argued that a hopping
mechanism can explain how Cas9 is generically distributed
along the DNA.
The mapping to Anderson localization introduced in this

Letter is a powerful tool that can be applied to any protein
performing facilitated diffusion, such as transcription
factors. Modern immunoprecipitation techniques permit
us to measure binding profiles of transcription factors along
the DNA at the base pair resolution [28]. However, the
interpretation of these binding profiles is still under debate
[29]. Our approach can be combined with sequence-
dependent models of facilitated diffusion by transcription
factors [10–12] to shed light on this crucial problem in
biophysics.
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