
Structural Relational Inference Actor-Critic for Multi-Agent Reinforcement Learning

Xianjie Zhanga, Yu Liua,⇤, Xiujuan Xua, Qiong Huangb, Hangyu Maoc, Anil Caried

aKey Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116620, China
bOkinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun Okinawa 904-0495, Japan

cHuawei Noah’s Ark Lab, No. 3 Xinxi Road, Haidian District, Beijing 100085, China.
dSchool of Computer Science, VIT-AP, Amaravathi 522237, India

Abstract

Multi-agent reinforcement learning (MARL) is essential for a wide range of high-dimensional scenarios and complicated tasks with
multiple agents. Many attempts have been made for agents with prior domain knowledge and predefined structure. However, the
interaction relationship between agents in a multi-agent system (MAS) in general is usually unknown, and previous methods could
not tackle dynamical activities in an ever-changing environment. Here we propose a multi-agent Actor-Critic algorithm called
Structural Relational Inference Actor-Critic (SRI-AC), which is based on the framework of centralized training and decentralized
execution. SRI-AC utilizes the latent codes in variational autoencoder (VAE) to represent interactions between paired agents,
and the reconstruction error is based on Graph Neural Network (GNN). With this framework, we test whether the reinforcement
learning learners could form an interpretable structure while achieving better performance in both cooperative and competitive
scenarios. The results indicate that SRI-AC could be applied to complex dynamic environments to find an interpretable structure
while obtaining better performance compared to baseline algorithms.

Keywords: Multi-agent systems, Deep Reinforcement Learning, Variational Autoencoder, Actor-Critic, Graph Neural Network

1. Introduction

Inference of relations, as one of the most ordinary things to
human beings, is a core competence of human cognition [1].
This cognitive ability enables human beings to establish a part-
nership with others or realize the potential relationship between
objects according to certain laws [2]. It can provide a strong
inductive bias to describe the world [3] in a structured way. In
multi-agent settings, agents can also take advantage of poten-
tial relations to form a cooperative structure and achieve better
performance.

Recently, reinforcement learning (RL) has shown exciting
success in solving cooperative multi-agent problems. The de-
velopment of deep learning has promoted the application of RL
in many fields, such as games [4, 5] and robotics [6]. Apply-
ing deep RL technologies into the multi-agent application has
become a popular trend. Multi-agent reinforcement learning
(MARL) has recently drawn attention to various complex tasks,
including tra�c light control [7], autonomous driving [8], and
network packet delivery [9, 10, 11].

The multi-agent systems can be similar to our human activ-
ities. When facing a task, human beings first establish a cog-
nitive model of the task, then, determine which partners are
needed to interact with the current situation. This kind of col-

⇤Corresponding author
Email addresses: zhangxianjie@mail.dlut.edu.cn (Xianjie Zhang),

yuliu@dlut.edu.cn (Yu Liu), xjxu@dlut.edu.cn (Xiujuan Xu),
qiong.huang@oist.jp (Qiong Huang), maohangyu1@huawei.com
(Hangyu Mao), carieanil@gmail.com (Anil Carie)

laborative relationship usually changes with time and task sta-
tus. Earlier work mainly establishes fixed coordination graphs
(CGs) and value decomposition approach to increase the payo↵
of the overall system [12, 13]. However, CG-based approaches
can only be applied to tasks for which there is an existing coop-
erative structure between agents. Recent work uses manually
defined topologies to establish relationships between multiple
agents [14, 15, 16]. In particular, NCC-MARL [17], which is
also based on the existing relationships between agents, uses
graph convolutional networks (GCN) and VAE models to make
the agent and neighbors have consistent cognition. These pre-
defined topologies cannot be applied to special scenarios that
need agent interaction. Therefore, the multi-agent system needs
a dynamic reasoning mechanism to infer the relationship be-
tween agents in an automatic way.

There have also been some attention-based methods to infer
the relationship between agents. The first one is MAAC [18],
which uses a multi-headed attention to learn a centralized critic.
AHAC [19] improves the MAAC, and allows the agent to have
di↵erent attention weights for teammates and enemies through
hierarchical attention. However, the invisible observations of
enemies are fed into critic network in AHAC, where it is im-
possible to see the enemy’s observations in the real competitive
environments. DAACMP [20] is using the attention to explic-
itly model the dynamic joint policy of teammates in an adaptive
manner, but agents designed in the algorithm do not execute in
a decentralized way. These attention-based methods learn the
importance distribution of other agents for each agent. How-
ever, these methods cannot learn the real relationship between

Preprint submitted to Neurocomputing April 21, 2021

EVAN-LLOYD
Typewriter
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

agents, and cannot ignore irrelevant agents to simplify policy
learning.

In this paper, we propose a MARL framework Structural Re-
lational Inference Actor-Critic (SRI-AC) framework, which can
automatically infer the pairwise interaction between agents and
learn a state representation. We compare the SRI-AC algorithm
with the existing multi-agent algorithms based on global infor-
mation. These algoritms include centralized training and de-
centralized execution [21, 22], and obtain other agent informa-
tion through communication [23, 24, 25, 26, 27]. Our model
can identify the agents that need to interact in advance, and
then feed the most relevant agent observation information to
the critic network. There are three crucial components in our
model.

(1) Centralized critic and decentralized actor frame-
work [21]. In SRI-AC, each agent has a critic which uses in-
formation that conditioned on the joint action and relevant ob-
servational information during training. To avoid the agent lazi-
ness problem, we share the parameters among all critics.

(2) Variational autoencoder (VAE) model. To process rela-
tional learning, we use a variational autoencoder (VAE) model
to infer the pairwise interaction, as well as to learn a state rep-
resentation from observed data. The latent code represents the
pairwise interaction, while the reconstruction is based on graph
neural networks (GNN).

(3) Graph attention network (GAT) model. More impor-
tantly, we utilize the learned relationship to form the adjacency
matrix between our agents, and our critic network uses a graph
attention network (GAT) [28] to integrate the information from
neighbor agents.

We evaluate our methods by four challenging tasks, three
of which are based on the multi-agent particle environment
(MPE) [29], and the other is a fully cooperative football
game [30]. Experiments show that our algorithm can form an
e↵ective interactive network, leading to a higher reward com-
pared to the baseline algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background about RL and structured mod-
els. In Section 3, we list related work including policy-based
and value-based MARL algorithms. Section 4 presents the pro-
posed method, where we outlined our approach in Section 4.1.
The details of the VAE model and the GAT model are presented
in Section 4.2 and Section 4.3, respectively. The examples and
results are presented in Section 5. The conclusion and future
work are given in Section 6.

2. Background

We consider a cooperative multi-agent setting that can be for-
mulated as the Decentralized Partially Observable Markov De-
cision Process (DEC-POMDP) [31]. It is defined by a tuple
hS ,O,U,R, P, �,Ni. We assume each agent holds a partially
observable state, oi 2 O, which contains partial information
from the global state, s 2 S . Action set for N agents is U =
A1⇥· · ·⇥AN , at which every time step agent i chooses an action,
ai 2 Ai. State transition function from state s to s0 is followed

by: P(s0|s, a1, . . . , aN): S ⇥ U ⇥ S ! [0, 1]. R = hr1, ..., rNi :
S ⇥A1⇥ ...⇥AN ! RN is the joint reward function. After taking
joint action a = hai, . . . , aNi, the agents receive a joint reward
R, and transform the state s to s0. The agents aim to learn a
policy ⇡i(ai|oi) that maximizes their expected discounted return
Ea1⇠⇡1,...,aN⇠⇡N ,s⇠P

hP1
t=0 �

tri,t
�
st, a1,t, . . . , aN,t

�i
, where agent i

can only observe its state oi, and � ! [0, 1] is the discount
factor.

2.1. Reinforcement Learning (RL)

Deep Q-network (DQN). A well-understood value-based RL
algorithm for single agent learning is Q-learning [32, 33]. In
practice, the Q-value (or, action-value) function is defined as
Q(s, a) = E[G|S = s, A = a], which can be recursively rewrit-
ten as Q(s, a) = Es0 [r(s, a) + �Ea0 [Q(s0, a0)]]. The Q-learning
updates the state-action value using value iteration. To apply
it to high-dimensional state, Deep Q-Network (DQN) [5] com-
bines reinforcement learning and deep neural networks. The
DQN can be written as Q(s, a; w), where w is network param-
eters. The parameters w are updated by minimizing the loss:
L(w) = Es,a,r,s0 [y0 � Q(s, a; w)], where y0 is computed by a tar-
get network y0 = r + �max

a0
Q(s0, a0; w̄). w̄ is a target network

parameter updated by copying w.

Policy Gradient (PG). Di↵erent from value-based algo-
rithms, policy gradient methods’ primary purpose is to
directly adjust the policy network ✓ to maximize the
agent’s expected return J(⇡✓). In the classical algo-
rithm REINFORCE [34], the gradient can be written as:
r✓J(⇡✓) =

P
t0 �

trt0 (st0 , at0)r✓ log(⇡✓(at |st). This algorithm has
a problem of high variance, which is caused by the cumulative
reward term

P
t0 �

trt0 (st0 , at0). Actor-Critc [35] replaces the re-
turn term with an approximate Qw(st, at) = E[

P
t0 �

trt0 (st0 , at0)],

r✓J(⇡✓) = r✓ log(⇡✓(at |st))Qw(st, at) (1)

This formula is updated in the same way as Q-learning, i.e., by
minimizing the temporal-di↵erence loss: L(w) = Es,a,r,s0 [y0 �
Qw(s, a; w)], where y0 = r + �Ea0⇠⇡(s0)[Q(s0, a0; w̄)]. Deter-
ministic Policy Gradient (DPG) [36] extends Actor-Critic to
deterministic policies a = µ✓(s). Here we optimize the ac-
tor network in the direction of the gradient of Q to maximize
the action-value function. For state s, the parameters ✓ are
updated along the gradient direction r✓Qµ(s, µ✓(s)). The ob-
jective takes the average over the state distribution r✓J (✓) =
Es,a,r,s0 [r✓µ✓(s)raQµ(s, a)|a=µ✓(s)]. To ensure the existence of
gradient of the action-value with respect to actions, the action
needs to be continuous. Based on DPG, Deep Deterministic
Policy Gradient (DDPG) is proposed by Lillicrap et al. [37],
using deep neural networks to approximate the actor µ✓(s) and
the critic Q(s, a; w). It updates the actor and the critic network
by:

2

𝑜𝑖 𝑜𝑁

𝑜𝑖𝑎𝑏𝑠 𝑜𝑁𝑎𝑏𝑠𝑧𝑖𝑗

𝑉

𝑥𝑖 𝑥𝑁

𝑄𝑖 𝑄𝑁

MLP

𝑜𝑖𝑎𝑏𝑠, 𝑎𝑖 𝑜𝑁𝑎𝑏𝑠, 𝑎𝑁

Q-value Model

GAT Model

VAE Model

Abs Model

𝑎𝑖 𝑎𝑁

𝜋𝑖 𝜋𝑁
…

MLP

Actor

…

…

…

Figure 1: The network structure of SRI-AC. Note that V is the adjacency matrix
composed of pairs of relations zi j.

Critic:
L(w) = Es,a,r,s0 [y0 � Q(s, a; w)]

y0 = r + �Ea0⇠µ(s0)[Q(s0, a0; w̄)|a0=µ✓̄(s0)]

Actor:
r✓J(✓) = Es,a,r,s0 [r✓µ✓(s)raQµ(s, a; w)|a=µ✓(s)]

(2)

2.2. Structured Models
The modeling structure of interacting multi-object or multi-

agent systems can achieve higher predictive accuracy by con-
sidering the structured nature of such systems [38, 2, 39]. [40]
proposed a model based on the encoder-decoder architecture.
Based on this architecture, this paper extracts the position and
speeds of each object from the image, using a di↵erentiable
physics engine to calculate the position change of the object.
This architecture also can be applied to the three-body prob-
lem and the spring problem. C-SWMs [39] uses a graph neu-
ral network to find pairwise interaction relations between ob-
ject states, and discover objects from raw pixels. There are
also many previous works about state representation learning
through Variational Autoencoder (VAE). For example, World
Model [3] uses a standard VAE to calculate the latent space
of the image and utilize this latent space to abstract our com-
pressed state.

3. Related Work

MARL has been extensively studied in a limited state and
action space [41, 42]. Independent Q-learning [43] uses an
independent controller for each agent, which ignores the non-
stationarity caused by the actions of other agents. Based on co-
ordinate graphs, Guestrin et al. [12] proposed a variable elimi-
nation (VE) algorithm utilizing conditional independence prop-
erties between agents, in order to achieve maximization joint

payo↵s. Max-plus [13] also uses coordination graphs to find an
approximately maximizing joint action by payo↵ propagation.
However, these methods must be based on the prior knowl-
edge of known graph structure. Compared with these traditional
methods, SRI-AC can learn a collaborative graph in a dynamic
environment.

Recent work on learning skills in high-dimensional complex
environments in the Actor-Critic framework is more relevant.
Lowe et al. [21] and Foerster et al. [22] proposed methods us-
ing centralized critic and decentralized actors for continuous ac-
tions and discrete actions, respectively. The core idea of MAD-
DPG is to learn a centralized critic with global information and
take the policy with only local observation. Foerster et al. [22]
proposed COMA for solving the credit assignment problem by
letting each agent know its relative contribution to the team
with counterfactual reward. MAAC [18] also applies central-
ized critics with attention mechanism to handle a non-stationary
environment. Another way to decentralized agents is to use fac-
tored value function. Examples are VDN [44], QMIX [45], and
QTRAN [46]. VDN uses a simple mix Q-network which is the
sum of independent utility functions. QMIX ensures that each
independent Q increases monotonically for the overall e↵ect
by feeding global state in mix-network. However, these meth-
ods do not consider the structural information between agents.
DCG [16] combines a static coordination graph and deep learn-
ing, factoring the joint value function into payo↵s between pairs
of agents. In DCG, the static coordination graph is manually
defined. None of these methods explicitly learn the coopera-
tive relationship between agents, so the coordination they can
achieve is limited.

4. Methods

In this section, we implement Actor-Critic for multi-agent
games with centralized critic, which can infer the interaction re-
lationship between agents. To learn the relationship, we model
all agents into the graph structure G = (V,E), where the node
i 2 V represents one agent in G, and the edge zi j 2 z indicates
the relationship between agent i and j. To begin with, we as-
sume that the agents can get the cognition of the world model
through local observation. We build a variational autoencoder
(VAE) [47, 48] model to predict the interactions z with agents’
partial observation information. In the end, our centralized
critic takes advantage of Graph Attention Network (GAT) [28],
getting extra information based on a dynamic graph, composed
of interactions z.

4.1. Overall Design of SRI-AC
Our SRI-AC network structure consists of the following

parts, as shown in Figure 1.
(1) State Abstraction (Abs Model)
With the game running, we can get each agent’s replay bu↵er

which includes states oi, actions ai, reward ri, and follow-up
states o0i that constitute tuples D = {oi, ai, ri, o0i}Tt=0. Based on the
fully connected state abstract model, the raw high-dimensional
observation state oi is compressed into low-dimensional ab-
stract information oi,abs. We use a multilayer perceptron (MLP)

3

…

𝑞 𝑧 𝑜

(𝑜𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 , 𝑎)

…

L

𝑜𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 + ∆𝑜 𝑜′𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡∆𝑜

𝑜𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑒

∆

𝑜

𝑜′𝑜

Node Embedding

Edge Embedding
Sampling

L Contrastive Learning

Encoder

Decoder

Figure 2: There are two parts in VAE model: An encoder that predicts the interactions from agents’ observations; and a decoder that contrasts between contrasts
between the reconstructed and the real observations given the agents’ interactions.

network to eliminate redundant information and obtain embed-
ding abstraction oi,abs.

(2) Variational Autoencoder (VAE) Model
In this model, we implement our variational autoencoder

with an encoder-decoder framework which includes an abstract
state reconstruction error and a KL-divergence. The encoder
learns the pairwise interaction posterior q�(z|o) with all agents’
partial observation information. Under the condition of action
a, the decoder can predict the next moment abstract state o0i,abs
which can be written as oi,abs ⇥ ai ! o0i,abs. We formulate the
decoder as p(o0abs|(oabs, a), z). For all of them, we use the Graph
Neural Network (GNN) message passing operation to capture
all agents’ structural information.

(3) GAT Model
All the agents can be considered as nodes of graph G, based

on agent’s interactions zi j. We combine all pairwise relations zi j
to form adjacency matrix V . More importantly, we aggregate
information from other agents with graph attention under the
adjacency matrix V . In the process of updating, agent i can
see the observations of neighbor agents and obtain the attention
coe�cient ↵i j, which is the importance of the neighbor agents
j 2 Ni.

(4) Q-value Model
We calculate the action-value Qi(o, a) for every agent, while

updating together to minimize a joint loss function of a mix-
Q. The Q-value model captures aggregate information from
all agents’ action a = (a1, · · · , aN) and observation o =
(o1, · · · , oN). It can be written as: Qi(o, a) = Qi((oi, ai) , xi),
where xi is the result of agent i’s neighbor information obtained
by GAT model. The Q-value model adopts parameter sharing to
address the “lazy agent” problem and this design also reduces
the parameter size.

4.2. VAE Model

We model the structural inference as a VAE as shown in Fig-
ure 2. For dynamic multi-agent systems, there are latent inter-
action z between agents, changing over time, given from every
agent’s local observation oi. We construct our model which in-
cludes approximate posterior distribution q�(z|o) as inference
neural networks with trainable parameters �. Based on this
potential interaction, the local relationship zi j can realize the
collaboration of the entire multi-agent system. We consider
that each agent has a partially observable observation oi, and
the number of agents is N. At time t, we use a graph neu-
ral networks (GNN) network to capture our structure with the
set of observations of all N agents: o = {o1, ..., oN}. Finally,
through the GNN network, we generate the representation ei j
of our edges. We can obtain N⇥ (N�1)/2 edges, in which each
edge zi j connects agents vi and v j. An edge is a binary variable
sampled as zi j 2 {0, 1}. There is one path from vi to v j if and
only if zi j = 1. All edges can form a real graph structure G.

We need to calculate the agent interaction structure under the
condition of local observation o, which can be written as p(z|o):

p✓(z|o) =
p✓(o|z)p✓(z)

p✓(o)
=

p✓(o|z)p✓(z)R
z p✓(o|z)p✓(z) dz

(3)

For computing the denominator, we need to integrate all the
terms with respect to z. The above calculation is unrealistic,
hence we need to find approximate distribution q(z|o). The ap-
proximate probability must be as close to the real posterior dis-
tribution p(z|o) as possible.

4

log p✓(o) =
Z

q�(z|o) log p✓(o)dz

= Dkl
⇣
q�(z|o)||p✓(z|o)

⌘
+

Z
q�(z|o) log

p✓(z, o)
q�(z|o)

dz

(4)

Since the probability p✓(o) is fixed, we can maximize the
evidence lower bound (ELBO) [47, 48] to make the probability
q�(z|o) and p✓(z|o) as close as possible.

max
✓,�

Z
q�(z|o) log

p✓(z, o)
q�(z|o)

dz

=max
✓,�

n
�Dkl

⇣
q�(z|o)||p✓(z)

⌘
+ Eq�(z|o)

⇥
log p✓(o|z)

⇤o (5)

We formalize our VAE loss function as Lvae:

Lvae = Dkl
⇣
q�(z|o)||p✓(z)

⌘
� Eq�(z|o)

⇥
log p✓(o|z)

⇤
(6)

There are two parts in our VAE loss function: the first part
is an encoder that predicts the interactions from agents’ ob-
servations, and the other part is reconstruction error that con-
trasts between reconstruction and real observation error given
the agents’ interaction. The model is shown in Figure 2.

4.2.1. Encoder - Edges Inference
The first item is KL divergence in the loss function Lvae:

Dkl
⇣
q�(z|o)||p✓(z)

⌘
= �H

⇣
q�(z|o)

⌘
�
Z

z
q�(z|o) log p✓(z)

= �H
⇣
q�(z|o)

⌘
� const

(7)

We have a constant term “�const”, which is generated by the
probability of the uniform prior p✓(z). In order to infer the pair-
wise interaction relations zi j between agents from observation
set o = {o1, . . . , oN}, where we draw inspiration from NRI [2].
This model takes fully-connected graph as input of GNN to pre-
dict the latent graph structure q� (z|o), where � are the param-
eters of the fully-connected graph neural networks. Firstly, we
concatenate the features of the pairwise agents as their edges’
representation, ei j = fe([oi, o j]), where fe is a MLP network,
and ei j is the representation of the edge connecting agent i and
j. Then we can use softmax function to calculate the probabil-
ity of each edge. We formalize the posterior probability of the
edges as q�

⇣
zi j
���o
⌘
= SoftMax(ei j).

4.2.2. Decoder - Contrastive Learning
In the second part, we use the contrastive learning loss

as the reconstruction error in our VAE model. By sampling
from continuous relaxation, we can get the dynamic interac-
tion graph structure zi j 2 {0, 1} between agents through the en-
coder. Based on the interaction relationship zi j, we construct
the graph structure G. The reconstruction error is to predict
the dynamics of observations of the agents at the next moment
o0abs = f✓((oabs, a), z). In our setting, the last item of VAE loss
function, Eq�(z|o)[log p✓(o|z)] , can be written as follow:

Eq�(z|o)
⇥
log p✓(o|z)

⇤ .
= � k f✓((oabs, a), z) � o0abs k (8)

Similar to NRI, we model the decoder with interaction neu-
ral networks f✓, where the ✓ denotes the parameters of our
networks. Firstly, we obtain the concatenation of abstracted
state oabs and action a as bo = (oabs, a) as the initial informa-
tion of each node in the graph G. For each type of edge, we
specify a MLP network. The same types share the same pa-
rameters. We can obtain the representation of edges be(i, j) =P

k zi j,kbf k
e ([boi,bo j]), where k is the k-th type of edges. In our

setting, we use categorical type edges, so this formula can se-
lect useful edges. In the end, all information is aggregated
to vertices of the edges �oi = bfv(

P
j,ibe(i, j)), where �oi is

update. For agent i, we can predict the next step state ab-
straction f✓ ((oabs, a), z) = oi,abs + �oi. The contrastive loss
can be obtained as follow: k f✓ ((oabs, a), z) � o0 k= Pi k
oi,abs + �oi � o0i,abs k, so we can rewrite the reconstruction error
as:

Eq�(z|o)
⇥
logp✓(o|z)

⇤ .
=
X

i

k oi,abs + �oi � o0i,abs k (9)

4.2.3. Di↵erentiable Sampling - Gumbel Softmax
In our model, the interaction between agents is categorical

type. However, after sampling directly from probability, the
model will lose the di↵erentiability. To obtain this categorical
interaction, we utilize gumbel-softmax to sample the edges z of
our interaction structure. The method can obtain a continuous
relaxation result, recently proposed by [49, 50] , which can be
e↵ectively applied to our setting.

G(log p)k =
exp((log pk + ⇠)/⌧)PK
j=0 exp((log p j + ⇠)/⌧)

(10)

where ⇠ can be sampled from distribution Gumble(0, 1), ⇠ =
� log(� log(u)), u ⇠ U[0, 1]. ⌧ is a temperature parameter that
controls softmax approaching argmax. When the parameter ⇠
approaches 0, our distribution will turn to one-hot coding. After
obtaining our discrete distribution, the whole model is able to
use the backpropagation algorithm.

4.3. GAT Model

We obtain interaction zi j with the VAE model, which can in-
tegrate as the adjacency matrix V of the interaction graph struc-
ture. Based on the generated graph structure, we can use a GAT
model to pay attention to neighborhoods’ information of an
agent, which will specify di↵erent weights to di↵erent agents
in one agent’s neighborhood. In traditional GNN, node embed-
ding update in a graph is as follow:

Hl+1 = �(VHlWl) (11)

where hidden layer embedding of each node Hl performs a lin-
ear transformation with a weight matrix Wl. Multiplication with
the adjacency matrix V means that this formula combines all
the neighbor node information. To that end, using an activation
function, we will get the next step hidden embedding Hl+1.

5

Prey
Predator
Landmark

(a) Predator-Prey 5v2.

Wolf

Sheep

Food

(b) Grassland 5v2.

Team 1

Team 2

Resource

(c) Adversarial 5v5.

Figure 3: All scenarios are based on the multi-agent particle environment (MPE). (a) is predator-prey scenario, where we can see 5 adversary agents chasing 2 good
agents and 2 large dark circles indicate landmarks impeding the way. (b) is the grassland scenario. This game has 5 sheep, 2 wolves and fixed amount of grass
pellets as green landmarks. (c) is adversarial scenario. In this game, we have two teams of agents and fixed number of resources as green landmarks.

In our model, we consider that agents have di↵erent attention
to nearby agents, therefore we use graph attention network to
capture observations of nearby agents, which is written as

H(l+1)
i = ||Kk=1�(

X

j2N(i)

↵(l)
i j,kH(l)

j W (l)
k) (12)

where ↵i j = �((HiW)C(HjW)) is an attention coe�cient which
indicates the importance between i-th and j-th node, and C is
a coupling matrix corresponding to the dictionaries of pairwise
interaction relations [51]. We use a multi-head attention, there-
fore || is used to connect the features from di↵erent channels.

We can take advantage of GAT model to calculate the contri-
bution of other agents’ states and actions feed into critic. Each
agent has a Q-value function Qi(o, a), which receives the ob-
servations o = (o1, . . . , oN), and actions, a = (a1, . . . , aN). In
our setting, we can use the following formula to calculate the
contribution of all agents feed into critic Qi(o, a):

Qi (o, a) = Qi((oi, ai) , xi) (13)

where (oi, ai) is concatenation of agent i’ state and action, and xi
indicates the information of other agents calculated from GAT
model. For calculating xi, we can rewrite Equation (12) as:

xi = ||Kk=1�(
X

j2N(i)

↵(l)
i j,kmjWk) (14)

where agent i0s neighbor node information, mj, j 2 N(i), can be
written as mj = (o j, a j). The attention coe�cient becomes as:

↵i j = �((miW)C(mjW)T) (15)

The activation functions �(⇠) are tanh for Equation (14) and
Leaky ReLU for Equation (15), respectively. In the end, we get
the concatenation vector of the contributions from all heads.

4.4. Training SRI Actor-Critic
Our algorithm has a centralized critic like the MADDPG [21]

and MAAC [18], and the actors are independent with each
other. Figure 1 shows the critic Qi, (i 2 N), where we need
two loss functions for calculating our ultimate Q-value. The
first loss is a VAE loss:

Lvae =E(o,o0)⇠D
h
Dkl
⇣
q�(z|o)||p✓(z)

⌘
� Eq�(z|o)

⇥
log p✓(o|z)

⇤i

=E(o,o0)⇠D[�H
⇣
q�(z|o

⌘
+
X

i

k oi,abs + �oi � o0i,abs k

� const]
(16)

The second loss is a temporal-di↵erence loss, the parameters of
which is shared in the agent’s critic networks [44]. This design
can avoid lazy agents in a cooperative setting. We update all
critic networks with a mix-Q model, which is the accumulation
of total agents’ Q-value. Mix-Q of SRI-AC is trained by:

LQ(w) =
NX

i=1

E(o,a,r,o0)⇠D
h
(Qw

i (o, a) � yi)2
i

where: yi = ri + �Ea0⇠⇡✓̄(o0)[Q
w̄
i (o0, a0)]

(17)

We then combine two Equations (16) and (17) as our total
loss:

Ltotal = ↵Lvae + LQ(w) (18)

Our algorithm uses an Actor-Critic framework, hence the
training process needs to take Q-value and its observation. We
extend Equation (1) into the multi-agent setting as follows:

r✓i J(⇡✓) = Eo⇠D,a⇠⇡[r✓i log(⇡✓i (ai|oi))Qw
i (o, a)] (19)

The pseudo-code for algorithm is presented in Algorithm 1 and
Algorithm 2.

5. Experiments

In order to validate the performance of our algorithm, we
test SRI-AC in four experimental environments. The first
three scenarios are multi-agent particle environment proposed
in [21, 29, 52]. In our setting, we change the first three into
a two-dimensional world with discrete-time, continuous space

6

Algorithm 1 Structural Relational Inference Actor-Critic (SRI-
AC)

1: Initialize parallel environments E for all agents
2: Initialize replay bu↵er, D
3: Tupdate 0
4: for each training episode epi do

5: Reset environment, and get intial obse
i for each agent i

6: for t = 1 . . . steps per epi do

7: choose actions ae
i ⇠ ⇡(·|obse

i) for each agent
8: Get reward ri and next obs0ei for all agents
9: Add episode to bu↵er, D

10: Tupdate = Tupdate + E
11: if Tupdate � BatchSize then

12: for j = 1 . . . num updates do

13: Sample minibatch, B
14: Get latent interactions, zi j ⇠ q(·|B)
15: Combine all zi j as adjacency matrix, V
16: UPDATECRITICAndSRI(B,V)
17: UPDATEPOLICIES(B, V)
18: end for

19: Update target parameters
20: Tupdate 0
21: end if

22: end for

23: end for

Algorithm 2 Update Procedure for Critic, VAE and Polices
1: function UPDATECRITICandSRI(B, V)
2: Unpack minibatch
3: (oB

1...N , a
B
1...N , r

B
1...N , o

0B
1...N) B

4: Calculate Qw
i (oB

1...N , a
B
1...N ,V) for every agent on the con-

dition of adjacency matrix V
5: Calculate a0Bi ⇠ ⇡✓i (o0Bi) using target policies
6: Calculate obs0, a0 using target polices
7: Calculate Qw̄

i (o0B1...N , a
0B
1...N ,V) for all agents using target

critic
8: Calculate ELBO Lvae
9: Calculate TD-error LQ

10: Update critic using r(LQ + Lvae)
11: end function

12:
13: function UPDATEPOLICIES(B, V)
14: Calculate aB

1...N ⇠ ⇡✓̄i (o0B1...N), i 2 1 . . .N
15: Calculate Qw

i (oB
1...N , a

B
1...N ,V) for all agent

16: Update policy using rJ(⇡✓)
17: end function

and discrete action spaces. Agents can execute five actions, in-
cluding up, down, left, right, or stay. In the first three scenarios,
we choose DDPG [37] with discrete actions to train the oppo-
nent’s policy. For comparing the performance between SRI-
AC and baseline algorithms, we fix the parameters of DDPG’s
module when opponents learn how to escape or attack. The
last environment is google research football environment [30],
which is an advanced, physics-based 3D simulator with an
open-source license. The football scenario supports multi-agent
settings, which is challenging for the study of reinforcement
learning. The details of the experimental environments are as
follows.

5.1. The Testing Environments

5.1.1. Predator-Prey
We choose the predator-prey scenario which is one of the

Multi-Agent Particle Environments (MPE) [21]. Figure 3(a) il-
lustrates one of our game fields, in which we extended it as
cooperative-competitive environments. This game contains two
types of agents: predator and prey. To increase the di�culty of
the game, we place random landmarks on the game field, and
the landmarks don’t take actions. As shown in Figure 3(a),
grey circles represent landmarks, green circles are the good
agents (prey) and red circles are the adversary agents (preda-
tor). Our algorithm needs to control adversary agents to capture
the good agents collaboratively, while the good agents learn a
pattern to escape from adversary agents. To verify the collabo-
rative interaction structure, the game needs more than one good
agent. Taking the scenario of Figure 3(a) as an example, we
have five homogeneous adversary agents and two good agents.
We use SRI-AC to learn adversary agents’ strategies. Agents
have more than one target, which promotes interaction between
agents. The adversary agents’ acceleration and speed are all
slower than the good agents, hence they need to learn a mech-
anism of coordination to capture the faster good agents. Each
time one adversary agent catches the good agents, this adver-
sary agent gets a positive reward, +10, while the good agent
obtains a negative reward, -10.

5.1.2. Grassland
This game consists of two kinds of animals, sheep and

wolves, where sheep move faster than wolves [52]. We also
set a fixed number of green landmarks as food for sheep, which
is shown in Figure 3(b). When a wolf collides (eats) with a
sheep, it will be rewarded. The (eaten) sheep will be rewarded
negatively and become inactive (dead). A grass pellet will be
collected and regenerated in another random position when a
sheep encounters it, and the sheep will get a positive reward. In
order to incentivize the sheep work as a team, we set a shared
reward value: when a sheep eats grass, others can get part of
the reward; when one sheep dies, the whole sheep herd will be
punished.

5.1.3. Adversarial Battle
As shown in Figure 3(c), we have two opposite teams in this

scenario. The two teams need to attack each other and compete

7

for resources to improve their teams’ reward score. As in the
grassland scenario, resources will appear in random positions
after being collected, and the total number of resources will not
change. The agent who collects resources will get a reward
value, and his team will also receive a shared reward value. We
also design another mechanism for two teams of agents to at-
tack each other. When more than two agents from team one
collide with one agent in the other team at the same time, the
alone agent will die and his whole team will get negative re-
wards, while the attacking agent and their whole team will get
positive rewards [52].

5.1.4. Google Football
This environment is an open-source virtual football game for

reinforcement learning research, which enables us to quickly
verify and test the designed algorithm in sports games. The
physical 3D simulation model of the game scenario is very
close to the real football game [30].

In the simulator, we can set two football teams, from which
we can choose one to select players that we can control. This
soccer environment supports three state representations: pix-
els, super-mini map, and floats. We choose the floats as fea-
tures, which can represent the current critical state of all games
with 115-dimensional floating-point vector. It contains posi-
tion, speed, and direction of all athletes, as well as the game’s
information of one-hot vector. In order to make the observation
of each agent di↵erent, we add the coordinates of each agent
relative to other entities to the original 115-dimensional vector.
Finally, we form 161-dimensional vector. These floating-points
numbers are critical features for algorithm training. This rep-
resentation greatly reduces the di�culty of feature extraction.
We can focus on the design of the reinforcement learning algo-
rithm. In the original game, there are 21 basic actions. In order
to improve the convergence speed of the algorithm, we simplify
the actions into several basic actions, including idle, top right,
right, bottom right, high pass, and shot. We choose scoring and
checkpoints as agents’ reward. When a controlled team scores
a goal, the reward is +1 for all members of the team. If an agent
brings the ball close to the goal, he can also get checkpoint re-
ward.

5.2. Comparison with the Baselines

5.2.1. Baselines
We compare with 6 algorithms in our examples, three

of which are recently proposed algorithms based on the
framework of centralized training and decentralized execu-
tion: MADDPG [21], ATT-MADDPG [11], NCC-MARL [17],
AHAC [19], MAAC [18], and COMA [22]. Apart from these
three algorithms, we also designed several structurally simpli-
fied algorithms: the Centralized-AC that feeds the concatenated
observation of all agents to the centralized critics, two single-
agent RL methods DDPG and IAC that make each agent learn
independently with its own actor and critic. All of our envi-
ronments use discrete action spaces, while the original DDPG,
MADDPG and ATT-MADDPG use continuous actions. In
the process of training, if we sample discrete actions directly,

the model will lose the di↵erentiability. In order to trans-
fer the gradient to the actor network, we use the Gumbel-
Softmax [50] to sample the actions, and transform the origi-
nal algorithm into DDPG (Discrete), MADDPG (Discrete) and
ATT-MADDPG(Discrete). All of our baseline algorithms have
the same network parameters in the actor network. All kinds
of critic networks have the same hyper-parameters. SRI-AC is
robust enough, so the hyper-parameters are consistent in all en-
vironments. A list of the final hyper-parameters for our tests is
shown in Table 1.

5.2.2. Comparison
Predator-Prey. We compare our method with a series of base-
lines in predator-prey scenario. In this experiment, we first train
10,000 steps with DDPG to help the good agents learn how to
escape. In order to control variables in all algorithms, we fix
the policy of good agents, and then train SRI-AC and baseline
algorithms for adversary agents. Figure 4(a) and Figure 4(b)
show the learning curves of 30,000 episodes in 4v2 and 5v2
scenarios, respectively. Because more agents in 6v2 scenario
lead to di�cult training, we set 50,000 episodes in this sce-
nario. The curve is the mean reward over a sliding window
of 500 steps. Shaded regions are one standard deviation over
5 runs. The predator-prey scenario require agents form connect
into pair-wise groups to capture multiple targets. As can be seen
from Figure 4, benefited from the relational inference scheme,
our algorithm always outperforms its baselines in predator-prey
scenarios, when it confronts with DDPG. We also compare with
the state-of-the-art algorithm AHAC. In AHAC, the observa-
tions of the enemy are fed into critic network, however, those
observations are often invisible in the real scene. Therefore,
we compared the performance of this case separately in the
most di�cult scenario (6v2). To evaluate the performance of
SRI-AC and AHAC, we set the algorithm SRI-AC (with adv-
obs). In SRI-AC (with adv-obs), not only can the structure be-
tween agents be established, but also the enemy’s observations
are also fed into the critic network with the attention mecha-
nism. As shown in Figure 5, SRI-AC (with adv-obs) still gets
more rewards than AHAC. In Section 5.3, we analyze the ef-
fectiveness of our algorithm as the number of agents changes in
predator-prey scenarios.

Grassland. In this game, we also use DDPG algorithm to train
the policies of the wolves. We calculate the average reward of
sheep in one episode of the game. Our environment is competi-
tive and part of the reward value is negative. In order to compare
the performance of the algorithms, we add 20 to all the original
reward. We set up two scenarios, 4v2 and 5v2, in this environ-
ment with di↵erent numbers of sheep. As shown in Figure 6,
we can see that our algorithm is better than other baseline algo-
rithms. The interesting phenomenon is that the IAC algorithm
is better than other baseline algorithms because a single agent
only needs to escape the wolf attack and eat the nearest grass,
which will lead to a higher reward value. The network does
not need information from special agents, and local observa-
tions provide enough information for agents. SRI-AC can also

8

Table 1: The hyperparameters used in games.

Hyperparameters Description Value

↵ Learning rate for the Lvae 0.01
� Discount factor 0.95
lr actor Learning rate for the actor 0.01
lr critic Learning rate for the critic 0.01
optimizer Optimizers for all the networks Adam [53]
batch size How many tuples to sample for each update 1024

(a) Predator-Prey 4v2. (b) Predator-Prey 5v2. (c) Predator-Prey 6v2.

Figure 4: Learning curves of our method and baselines on predator-prey scenarios. (a) shows the result of 4 adversary agents with 2 good agents training on 30000
episodes. (b) shows the result of 5 adversary agents with 2 good agents training on 30000 episodes. (c) shows the result of 6 adversary agents with 2 good agents
training on 50000 episodes. Error bars are one standard deviation over 5 runs.

Figure 5: Learning curves of SRI-AC (with adv-obs) and AHAC [19]. In SRI-
AC (with adv-obs), the observations of the enemy are fed into critic network,
which is the same as AHAC.

Figure 6: Grassland scenarios: the average reward of one episode.

automatically infer agents that need to cooperate, so it can ef-
fectively filter some unnecessary information. Figure 4 shows
that SRI-AC performs substantially better than all alternative
approaches in the 5v2 and 6v2 scenarios, and performance sim-
ilar to MAAC on 4v2 scenarios. When the number of agents in-
creases, SRI-AC can avoid collision and performs better. Note
that COMA fails to achieve good results in our experiments, be-
cause COMA uses a single critic network, which would achieve
good results for agents with a global reward value and a single
goal. However, in our experiment, there are multiple sheep to
chase, so it does not perform very well.

Figure 7: Adversarial scenarios: the average reward of one episode.

Adversarial Battle. In this game, we set up scenarios 5v2 and
5v5 with 2 opponents and 5 opponents, respectively. The oppo-

9

nents’ policy also trained 10000 steps with DDPG algorithm. It
can be seen from Figure 7 that the reward of SRI-AC is higher
than other baselines. Whereas, the MAAC algorithm does not
produce good results compared to other baseline algorithms. In
this adversarial game, It requires two agents to destroy an op-
ponent at the same time to destroy it. Nevertheless, MAAC
merges information from all agents, which cannot make good
use of local information.

Figure 8: Football 4v3.

Figure 9: The average result of football 4v3 scenario.

Google Football. Figure 8 is the scenario of the google foot-
ball. In this scenario, we limit the maximum number of steps
per episode to 150. We calculate the average reward value re-
turn at each step in the entire episode as shown in Figure 9. As
the curves show, we can see that our algorithm can also achieve
good results in complex environment compared with the base-
line algorithm MADDPG.

5.3. Increasing The Number of Agents

In predator-prey scenarios, we test agents’ performance
when the number of adversary agents changes from 4 to 6.
In Figure 4(a), for the small number of agents, our algorithm
does not show obvious advantages. Because this topology is
rather simple, and all methods can find a not-so-bad control
policy, regardless of whether the methods adopt advanced re-
lational mechanisms. In Figure 4(b-c), with the increase of
agents, MAAC has a good reward value because of the self-
attention mechanism. However, SRI-AC shows a better per-
formance than all baseline algorithms. Compared with other
algorithms, we find that the performances of Centralized-AC

and MADDPG do not perform well as the number of agents in-
creases. The reason is that the critic concatenates feature of all
agents, and the dimension of it becomes relatively large.

5.4. Ablation Models

Figure 10: Comparison between topologies: SRI-AC, linear connection and
full connection.

In order to verify that our model can generate e↵ective con-
nections, we design fully connected and linearly connected
structures. The adjacency matrix of the fully connected graph
is a matrix with 0 in every diagonal entry, and 1 in every o↵-
diagonal entry. The linearly connected graph is the sequential
connection from the first node to the last node. They are all
undirected graphs, so we set them as undirected and symmet-
ric. The adjacency matrices (5 agents) are as follows:

Mf =

2
666666666666666664

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3
777777777777777775

(20)

Ml =

2
666666666666666664

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

3
777777777777777775

(21)

where Mf and Ml represent fully connected and linearly con-
nected adjacency matrices, respectively. Di↵erent from the
fixed topology connection, SRI-AC can automatically learn a
dynamic relationship. The dynamic relationship forms the ad-
jacency matrix between our agents, which can a↵ect the GAT
model by filtering out useless information. The average re-
wards across 5 runs for di↵erent topologies are shown in Figure
10. We can see that our algorithm has obvious advantages over
manually defined structure. This result shows that SRI-AC can
learn dynamically changing connections compared to manually
defined structure-base algorithms, helping critics get informa-
tion from neighbor agents, thereby increasing rewards.

5.5. Visualization
We visualized the adversarial scenario. As shown in Fig-

ure 11, our algorithm learned a clever strategy. When the sce-
nario is initialized, our agents (brown) are distributed in the

10

Time Step

Figure 11: A convergent joint policy learned by SRI-AC under an instance of the adversarial scenario. Note that dark particles are dead agents.

Time Step

A3

A2A1

A5 A5 A5 A5

A5

A4

A2
A2

A2

A2

A1
A1

A1

A1

A3

A4 A4

A3
A4

A3
A4 A3

Prey 1

Prey 2

Figure 12: A convergent joint policy learned by SRI-AC under an instance of the predator-prey scenarios.

field. Then, these agents quickly concentrate in the middle of
the field. They can unite well to avoid being eaten by another
team, while a collaborative relationship can be formed in pairs
to attack the opponents.

It can be seen from Figure 12 that, in the predator-prey sce-
narios, adversary agents can coordinate to prey good agents.
At first, there are four agents in order to hunt one good agent.
When adversary agent senses that, good agent is only hunted
by one hunter at that time, A1 and A2 adjust the pursuit tar-
get (good agent) to form a hunting relationship of 2 agents and
3 agents, which can reduce the collision between hunters and
increase the reward value of the team.

6. Conclusion and Future Work

In this paper, we propose the Structural Relational Inference
Actor-Critic (SRI-AC), a novel multi-agent deep reinforcement
algorithm for collaborative tasks. SRI-AC uses a variational
inference model that allows agents to find the necessary coop-
erative partners automatically in training phase. The algorithm
has the characteristics of centralized learning and decentralized
execution, allowing agents to take actions in a completely de-
centralized way in execution phase. SRI-AC is evaluated by
four tasks. Experimental results demonstrate that this method
can achieve better results than a range of baseline MARL al-
gorithms. The ablation study shows that our model can learn
e↵ective interactive topology and promote training.

The advantage of using our algorithm is that when our critic
uses the inference relationship, the critic can collect the most
relevant neighbor agents’ information to estimate a value func-
tion, and then optimize the policy network. However, we found
that when the number of agents increases, the impact on VAE

model limits the speed of convergence. Therefore, future re-
search can improve the exploration e�ciency of generating in-
teractive relationships. In addition, Communication between
agents can also be considered, which allows agents to share
high-dimensional information when executing actions. In the
end, it can also be integrated with the recursive neural networks
(RNN) to improve the utilization of local observations.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

CRediT authorship contribution statement

Xianjie Zhang: Conceptualization, Methodology, Software,
Validation, Writing - original draft. Yu Liu: Supervision, Re-
sources, Funding acquisition, Writing - review and editing. Xi-

ujuan Xu: Supervision, Writing - review and editing. Qiong

Huang: Methodology, Writing - review and editing. Hangyu

Mao: Methodology. Anil Carie: Writing - review and editing.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (Grant: 61672128) and the Fundamental
Research Fund for Central University (Grant: DUT20TD107).
The contact author is Yu Liu.

11

References

[1] E. S. Spelke, K. D. Kinzler, Core knowledge, Developmental science
10 (1) (2007) 89–96.

[2] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, R. Zemel, Neural relational
inference for interacting systems, in: International Conference on Ma-
chine Learning (ICML), PMLR, 2018, pp. 2688–2697.

[3] D. Ha, J. Schmidhuber, Recurrent world models facilitate policy evolu-
tion, in: Advances in Neural Information Processing Systems (NIPS),
2018, pp. 2450–2462.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., Mastering the game of go with deep neu-
ral networks and tree search, nature 529 (7587) (2016) 484–489.
doi:10.1038/nature16961.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, nature
518 (7540) (2015) 529–533. doi:10.1038/nature14236.

[6] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep
visuomotor policies, The Journal of Machine Learning Research 17 (1)
(2016) 1334–1373.

[7] J. Jin, X. Ma, Hierarchical multi-agent control of tra�c lights based on
collective learning, Engineering applications of artificial intelligence 68
(2018) 236–248.

[8] Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the
study of distributed multi-agent coordination, IEEE Transactions on In-
dustrial informatics 9 (1) (2012) 427–438.

[9] D. Ye, M. Zhang, Y. Yang, A multi-agent framework for packet rout-
ing in wireless sensor networks, Sensors 15 (5) (2015) 10026–10047.
doi:10.3390/s150510026.

[10] H. Mao, Z. Gong, Z. Zhang, Z. Xiao, Y. Ni, Learning multi-agent commu-
nication under limited-bandwidth restriction for internet packet routing,
arXiv preprint arXiv:1903.05561 (2019).

[11] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, Modelling the dynamic joint pol-
icy of teammates with attention multi-agent ddpg, in: Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 2019, pp. 1108–1116.

[12] C. Guestrin, M. Lagoudakis, R. Parr, Coordinated reinforcement learn-
ing, in: International Conference on Machine Learning (ICML), Vol. 2,
Citeseer, 2002, pp. 227–234.

[13] J. R. Kok, N. Vlassis, Sparse cooperative q-learning, in: Proceedings of
the Twenty-First International Conference on Machine Learning, Asso-
ciation for Computing Machinery, New York, NY, USA, 2004, p. 61.
doi:10.1145/1015330.1015410.

[14] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, J. Wang, Mean field multi-
agent reinforcement learning, in: International Conference on Machine
Learning (ICML), 2018, pp. 5571–5580.

[15] J. Jiang, Z. Lu, Learning attentional communication for multi-agent coop-
eration, in: Advances in Neural Information Processing Systems (NIPS),
Curran Associates, Inc., 2018, pp. 7254–7264.

[16] W. Boehmer, V. Kurin, S. Whiteson, Deep coordination graphs, in:
Proceedings of the 37th International Conference on Machine Learning
(ICML), PMLR, 2020, pp. 980–991.

[17] H. Mao, W. Liu, J. Hao, J. Luo, D. Li, Z. Zhang, J. Wang, Z. Xiao,
Neighborhood cognition consistent multi-agent reinforcement learning,
in: The Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020,
pp. 7219–7226.

[18] S. Iqbal, F. Sha, Actor-attention-critic for multi-agent reinforcement
learning, in: International Conference on Machine Learning (ICML),
Vol. 97, PMLR, 2019, pp. 2961–2970.

[19] Y. Wang, D. Shi, C. Xue, H. Jiang, G. Wang, P. Gong, AHAC: ac-
tor hierarchical attention critic for multi-agent reinforcement learning,
in: IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, 2020, pp. 3013–3020.

[20] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, Y. Ni, Learning multi-agent com-
munication with double attentional deep reinforcement learning, Au-
tonomous Agents and Multi-Agent Systems 34 (1) (2020) 32.

[21] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, I. Mordatch, Multi-
agent actor-critic for mixed cooperative-competitive environments, in:
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
6379–6390.

[22] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Coun-
terfactual multi-agent policy gradients, in: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, AAAI Press, 2018,
pp. 2974–2982.

[23] J. N. Foerster, Y. M. Assael, N. de Freitas, S. Whiteson, Learning to com-
municate with deep multi-agent reinforcement learning, in: Advances in
Neural Information Processing Systems (NIPS), 2016, pp. 2137–2145.

[24] A. Singh, T. Jain, S. Sukhbaatar, Learning when to communicate at scale
in multiagent cooperative and competitive tasks, in: International Confer-
ence on Learning Representations (ICLR), 2019.

[25] S. Sukhbaatar, A. Szlam, R. Fergus, Learning multiagent communication
with backpropagation, in: Advances in Neural Information Processing
Systems (NIPS), 2016, pp. 2244–2252.

[26] Q. Huang, E. Uchibe, K. Doya, Emergence of communication among re-
inforcement learning agents under coordination environment, in: 2016
Joint IEEE International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), IEEE, 2016, pp. 57–58.
doi:10.1109/DEVLRN.2016.7846790.

[27] Q. Huang, D. Kenji, An experimental study of emergence of communi-
cation of reinforcement learning agents, in: International Conference on
Artificial General Intelligence, Springer, 2019, pp. 91–100.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio,
Graph attention networks, in: International Conference on Learning Rep-
resentations (ICLR), 2018.

[29] I. Mordatch, P. Abbeel, Emergence of grounded compositional language
in multi-agent populations (2018) 1495–1502.

[30] K. Kurach, A. Raichuk, P. Stanczyk, M. Zajac, O. Bachem, L. Espeholt,
C. Riquelme, D. Vincent, M. Michalski, O. Bousquet, S. Gelly, Google
research football: A novel reinforcement learning environment (2020)
4501–4510.

[31] D. S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The
complexity of decentralized control of markov decision pro-
cesses, Mathematics of operations research 27 (4) (2002) 819–840.
doi:10.1287/moor.27.4.819.297.

[32] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992)
279–292. doi:10.1023/A:1022676722315.

[33] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT
press, 2018.

[34] R. J. Williams, Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning, Machine learning 8 (3-4) (1992) 229–
256.

[35] V. R. Konda, J. N. Tsitsiklis, Actor-critic algorithms, in: Advances in
neural information processing systems (NIPS), 2000, pp. 1008–1014.

[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. A. Riedmiller,
Deterministic policy gradient algorithms, in: Proceedings of the 31th In-
ternational Conference on Machine Learning (ICML), Vol. 32, JMLR.org,
2014, pp. 387–395.

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra, Continuous control with deep reinforcement learning (2016).

[38] S. Sukhbaatar, R. Fergus, et al., Learning multiagent communication with
backpropagation, in: Advances in neural information processing systems
(NIPS), 2016, pp. 2244–2252.

[39] T. N. Kipf, E. van der Pol, M. Welling, Contrastive learning of structured
world models, in: 8th International Conference on Learning Representa-
tions (ICLR), 2020.

[40] M. Jaques, M. Burke, T. M. Hospedales, Physics-as-inverse-graphics:
Unsupervised physical parameter estimation from video, in: 8th Inter-
national Conference on Learning Representations (ICLR), 2020.

[41] L. Busoniu, R. Babuska, B. De Schutter, A comprehensive survey of mul-
tiagent reinforcement learning, IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38 (2) (2008) 156–172.
doi:10.1109/TSMCC.2007.913919.

[42] E. Yang, D. Gu, Multiagent reinforcement learning for multi-robot sys-
tems: A survey, Tech. rep., tech. rep (2004).

[43] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative
agents, in: Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337. doi:10.1016/b978-1-55860-307-3.50049-6.

[44] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, T. Grae-
pel, Value-decomposition networks for cooperative multi-agent learning
based on team reward, in: Proceedings of the 17th International Confer-

12

ence on Autonomous Agents and MultiAgent Systems (AAMAS), 2018,
pp. 2085–2087.

[45] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
S. Whiteson, Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning, in: Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML), Vol. 80, 2018, pp.
4292–4301.

[46] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, Y. Yi, Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement
learning, in: Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), Vol. 97, 2019, pp. 5887–5896.

[47] D. P. Kingma, M. Welling, Auto-encoding variational bayes, in: Interna-
tional Conference on Learning Representations (ICLR), 2014.

[48] D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and
approximate inference in deep generative models, in: International Con-
ference on Machine Learning (ICML), Vol. 32, 2014, pp. 1278–1286.

[49] C. J. Maddison, A. Mnih, Y. W. Teh, The concrete distribution: A contin-
uous relaxation of discrete random variables, in: International Conference
on Learning Representations (ICLR), 2017.

[50] E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-
softmax, in: 5th International Conference on Learning Representations
(ICLR), 2017.

[51] S. Ryu, J. Lim, S. H. Hong, W. Y. Kim, Deeply learning molecu-
lar structure-property relationships using attention-and gate-augmented
graph convolutional network, arXiv preprint arXiv:1805.10988 (2018).

[52] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, X. Wang, Evolutionary
population curriculum for scaling multi-agent reinforcement learning, in:
International Conference on Learning Representations (ICLR), 2020.

[53] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations (ICLR), 2015.

13

