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Abstract: Hyperactivation of immune responses resulting in excessive release of pro-inflammatory
mediators in alveoli/lung structures is the principal pathological feature of coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The cytokine
hyperactivation in COVID-19 appears to be similar to those seen in rheumatoid arthritis (RA), an
autoimmune disease. Emerging evidence conferred the severity and risk of COVID-19 to RA patients.
Amid the evidence of musculoskeletal manifestations involving immune-inflammation-dependent
mechanisms and cases of arthralgia and/or myalgia in COVID-19, crosstalk between COVID-19 and
RA is often debated. The present article sheds light on the pathological crosstalk between COVID-19
and RA, the risk of RA patients in acquiring SARS-CoV-2 infection, and the aspects of SARS-CoV-2
infection in RA development. We also conferred whether RA can exacerbate COVID-19 outcomes
based on available clinical readouts. The mechanistic overlapping in immune-inflammatory features
in both COVID-19 and RA was discussed. We showed the emerging links of angiotensin-converting
enzyme (ACE)-dependent and macrophage-mediated pathways in both diseases. Moreover, a
detailed review of immediate challenges and key recommendations for anti-rheumatic drugs in the
COVID-19 setting was presented for better clinical monitoring and management of RA patients.
Taken together, the present article summarizes available knowledge on the emerging COVID-19 and
RA crosstalk and their mechanistic overlaps, challenges, and therapeutic options.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that caused
coronavirus disease 2019 (COVID-19) usually produces a mild to moderate respiratory
disease [1]. However, it occasionally leads to severe alveolar disease resulting in shortening
of breath, reduced oxygen saturation in blood, and pulmonary infiltration in the lung that
can substantially contribute to pulmonary failure [2]. Age, the severity of infection, and the
existence of comorbidities are potential risk factors in COVID-19 patients [1,3]. Emerging
evidence revealed that SARS-CoV-2 develops a specific type of alveolar disease that is
clinically different from other acute respiratory syndromes [2]. Immune hyperactivation
and cytokine involvement in alveolar structures have been identified as the key contributors
to produce severe lung disease in COVID-19 patients. Rheumatoid arthritis (RA) is a chronic
autoimmune disease characterized by synovial inflammation and hyperactivation of T
cells. Several pro-inflammatory cytokines act as contributing factors in developing synovial
inflammation in RA. The patterns of cytokine and immune activation in COVID-19 patients
seem to resemble the RA case. Interestingly, some common therapeutic strategies including
cytokine inhibition have been found to be fruitful against both COVID-19 and RA [2]. Thus,
a possibility of pathological crosstalk is inevitable between COVID-19 and RA.

In general, there is a close association between viral infection and arthritis with a wide
spectrum of symptoms ranging from arthralgia to arthritis. Earlier reports revealed that
individuals infected with hepatitis C and several alphaviruses frequently develop prolonged
arthritis; however, Parvovirus B19, Hepatitis B, and Rubella viruses frequently cause self-
limited arthritis. In contrast, respiratory viruses, such as corona and influenza viruses more
frequently can cause arthralgia and/or myalgia. Approximately 15 and 44% of COVID-19
patients present arthralgia and/or myalgia, respectively, during the infective stage [4]. Emerg-
ing evidence hypothesized that SARS-CoV-2 infection can attack musculoskeletal systems
through immune-inflammation-dependent mechanisms, which may develop inflammatory
arthritis during the infective or post-infective stage [3–5]. However, little is known about the
manifestations or worsening of RA by this infection. Since musculoskeletal manifestations
phenotypically resemble RA, it has been attempted to find out the association between
COVID-19 and RA. In this article, we reviewed the pathological crosstalk between COVID-19
and RA. In addition, our understanding of the risk of RA patients in acquiring SARS-CoV-2
infection and worsening COVID-19 outcomes was critically discussed on the basis of avail-
able clinical readouts. The therapeutic strategies and guidelines were conferred referring to
recently published literature. Moreover, critical arguments on therapeutic challenges raised
in different case studies were discussed in this review.

2. COVID-19 and RA Association

Emerging evidence revealed that respiratory viral infections can increase the risk of
autoimmune inflammatory arthritis, such as RA [6]. In addition, infections can flare the
disease in patients with inflammatory arthritis [7]. Thus, SARS-CoV-2 infection may poten-
tially contribute to RA development or disease flares. So far, little information is available,
and it is too early to predict the direct association between SARS-CoV-2 infection and RA
development [8]. However, considering the existing evidence, it can be hypothesized that
COVID-19 may play a causative effect in RA development or can worsen RA complications.
The respiratory tract has been proposed to be the primary site of SARS-CoV-2 infection;
however, skeletal muscle, synovium, and cortical bone are the other possible sites of direct
SARS-CoV-2 infection [9]. Various anatomical levels of musculoskeletal abnormalities in
muscles, bones, and joints were detected in image analysis of COVID-19 patients [10].
Myalgia has been identified as a major clinical presentation of skeletal muscle manifes-
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tations in SARS-CoV-2 infection [11]. It can also stand as an important predictive factor
for the severity of SARS-CoV-2 infection [12]. Due to the evolving nature of COVID-19,
the mechanistic insight of skeletal muscle manifestations is yet to be clearly interpreted.
However, muscle fibre atrophy, sporadic and focal muscle fibre necrosis, and immune cell
infiltration have been postulated to be the etiological factors involved in the skeletal muscle
injury during coronavirus infection [9]. Systemic activation of pro-inflammatory molecules
can potentially contribute to muscle fibre proteolysis and decrease protein synthesis [9].
Muscle injury has been regarded as an important contributor to RA-induced morbidity and
mortality [13]. Bone and joint manifestations have a broad spectrum in COVID-19 with
common viral arthralgia [14]. It has been reported that about 27% of patients demonstrate
joint pain even after recovery from COVID-19 disease [15]. Arthralgia in COVID-19 pa-
tients more frequently appears along with myalgia. Arthralgia and reduced bone marrow
density (BMD) is also frequent in SARS infection, particularly in the patients undergoing
glucocorticoid treatment [9]. Glucocorticoids can also increase the risk of osteonecrosis,
osteoporosis, and BMD in COVID-19 patients [14]. SARS-CoV-2 infection generally triggers
inflammatory mediators including C-X-C motif chemokine ligand 10 (CXCL10), interleukin
(IL)-17, and tumor necrosis factor-alpha (TNF-α), which play causative roles in the initi-
ation of osteoclastogenesis and reduction in osteoblast differentiation and proliferation,
resulting in a net fall in BMD [9]. In addition, IL-1β, IL-6, and TNF-α activation during
SARS-CoV-2 infection may impart arthralgias or osteoarthritis progression by inducing
chondrolysis in an inflammation-dependent mechanism [9]. Activation of IL-1, IL-6, and
TNF-α is also implicated in joint degeneration and synovial cell activation in RA pathology.

2.1. Can SARS-CoV-2 Infection Trigger RA Development?

In general, viruses can produce arthritis either through direct colonization at the joints
or through aberrant immune-inflammation reactions produced during the host response
to the infection. Earlier reports mentioned that respiratory viruses can be associated with
RA development [7]. Moreover, the evidence of SARS-CoV-2 infection in rheumatic and
autoimmune manifestations is not uncommon [16]. The onset of arthritis after SARS-CoV-2
infection has been postulated earlier [17]. Derksen and coworkers reported that 3 out of 61
COVID-19 positive patients developed polyarthritis that resembles regular RA after infec-
tion; however, they did not find any increase in anti-citrullinated peptide antibody (ACPA)
seroprevalence [18]. Thus, COVID-19-provoked hyperactivation immune-inflammatory
response may serve as a potential causative factor in developing RA through a citrullination-
independent pathway. In a recent report, Perrot and colleagues first mentioned a case
of ACPA-positive RA development immediately after SARS-CoV-2 infection that further
worsens RA symptoms [19]. In another report, Roongta and peers reported a case of
seropositive RA after SARS-CoV-2 infection, which has been mentioned as the sixth case of
COVID-19-induced seropositive RA manifestation. All six patients represented negative
serology before infection [20]. Despite a few cases of RA development after COVID-19 had
been reported in available clinical readouts, more information is required to know that
whether RA manifestation following SARS-CoV-2 infection is connected or is a coincidence.

2.2. Can RA Increase the Risk of Acquiring COVID-19 Infection?

Emerging evidence revealed that patients with immune-mediated inflammatory diseases
are more vulnerable to represent severe SARS-CoV-2 infections than that of the general
population, which may arise due to their immune dysfunction and as a consequence of
immunosuppressant therapy [21]. Accumulated data of seven case-control studies showed
that the prevalence of symptomatic COVID-19 is almost two times greater in patients with
immune-mediated inflammatory diseases compared to the general population [22]. In a
large worldwide case series of rheumatoid patients, COVID-19 severity and death were
significantly higher in RA patients as compared to the general population [23]. According
to the COVID-19 global rheumatology alliance (GRA) registry, out of 7263 COVID-19 cases,
2956 patients were documented to have RA, which is accounting for 40.7% [24]. Other studies
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are in agreement with these observations and revealed that RA patients are more susceptible
to acquiring SARS-CoV-2 infection [25]. Immunosuppressant therapy has been regarded to
be considerably associated with the risk of SARS-CoV-2 infection [22]. In contrast, a Euro-
COVIMID cross-sectional study interpreted that neither immune-mediated inflammatory
diseases nor immunosuppressant therapy could produce any significant change in COVID-19
severity and mortality as compared to the general population [22]. Simmon and colleagues
claimed that treatment with anti-cytokine drugs represents a low prevalence of COVID-19
seroconversion in patients with immune-mediated inflammatory diseases [26]. However, this
protective mechanism is yet to be clearly deciphered. Considering the majority of clinical
readouts, it is reasonable to mention that RA patients are at an increased risk of getting
SARS-CoV-2 infection and developing serious illness from COVID-19.

2.3. Can RA Worsen COVID-19 Outcomes?

OpenSAFELY, a health analytics platform holding healthcare records of 40% of patients in
England revealed that the presence of rheumatic diseases slightly increases the risk of COVID-
19 mortality as compared to the patients without these diseases [27]. In a recent UK Biobank
cohort analysis, Topless and colleagues revealed that RA is a potential risk factor in COVID-19-
related death [28]. RA patients are more likely to present comorbidities like asthma, chronic
obstructive pulmonary disease, hypertension, cardiovascular diseases, and diabetes [29].
Thus, RA patients are always at a high risk of COVID-19 severity and death as compared to
the patients without RA. RA medication may also contribute to COVID-19 outcomes. In a
prospective study involving 103 patients with inflammatory arthritis (RA and spondyloarthri-
tis), Haberman and co-workers conferred that immunosuppressant therapy could worsen
COVID-19 outcomes as compared to the patients receiving cytokine inhibitors [30]. Similar
observations have been reported by others [7,26]. Moreover, it has also been demonstrated
that RA can be worsened by infection through the iatrogenic effect of immunosuppressants [7].
Thus, it could be said that RA represents a potential threat in worsening COVID-19 outcomes
and increases the risk of COVID-19-related death and hospitalization.

3. Immune-Inflammatory Activities in SARS-COV-2 Infection and RA

Upon SARS-CoV-2 infection, infected host cells rapidly execute both innate and adap-
tive immune responses, which serve as the initial line of defense against COVID-19 [31]
(Figure 1A). CD8+ cytotoxic T lymphocytes can recognize SARS-CoV-2 structural pro-
teins presented by infected epithelial cells and induce apoptosis to virus-targeted cells
by releasing proapoptotic factors, such as perforin and granzymes [32]. CD4+ helper
T cells contribute to the overall adaptive response by assisting cytotoxic T cells. Upon
infection, CD4+ helper T cells recruit T helper (Th)1 cells and endorse differentiation of B
lymphocytes into plasma cells, which, in turn, produce specific anti-SARS-CoV-2 antibod-
ies [32]. In addition, CD4+ and CD8+ T cells produce type-I interferon (IFN), which acts
together with antiviral antibodies to neutralize SARS-CoV-2 [31] (Figure 1A). However, T
cell-mediated immune responses depend on the antigen-presenting cell (APC)-mediated
cytokine microenvironment. Dysfunctional immune response in association with lym-
phopenia causes severe pulmonary and other systemic injuries and potentially yields death
by endorsing a hyperinflammatory state mediated through the massive release of cytokines
and chemokines [31]. This phenomenon is referred to as a “cytokine storm.” SARS-CoV-2
can trigger caspase 1 activation via upregulating the NLR family pyrin domain containing
3 (NLRP3) inflammasome, which subsequently induces pyroptosis to the lymphocytes
through the recruitment of IL-1β and IL-18 [33] (Figure 1B). A significant decrease in the
number of memory T helper cells and regulatory T lymphocytes has been reported in
COVID-19 patients [31]. The immunological basis of severe COVID-19 pathogenesis could
be associated with the development of pathogenic T cell phenotypes and the massive
production of proinflammatory mediators. SARS-CoV-2 infection can divert the commit-
ment of CD4+ T lymphocytes towards a pathogenic Th1 cell immunophenotype resulting
in the release of pro-inflammatory cytokines, such as IL-6 and granulocyte-macrophage
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colony-stimulating factor (GM-CSF) [34]. This hyperinflammatory milieu can subsequently
endorse the differentiation of monocytes into macrophages or APCs by endorsing IL-6
secretion [34]. An excess of systemic IL-6 endorses C-reactive protein production, impairs
immunophysiological function of Th1 cells against SARS-CoV-2, and inhibits physiologic
actions of CD8+ T and natural killer (NK) cells [31] (Figure 1B). After penetration into
lung tissue, SARS-CoV-2 reaches APCs and endorses differentiation of Th0 cells into Th17
lymphocytes, which subsequently triggers IL-17 production. IL-17 consequently endorses
macrophage activation and neutrophil recruitment, which then promotes neutrophilic
inflammation and suppresses adaptive immune responses against the virus [31]. Several
comorbidities favour this immunopathological swing of Th17/IL-17 hyperactivation in
COVID-19 patients [35] (Figure 1B). Emerging evidence revealed that elevated levels of
plasma cytokines, such as IL-1β, IL-2, IL-4, IL-6, IL-7, IL-10, IL-17, IL-18, TNF-α, vascular
endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-
CSF), IFN-γ, etc. and chemokines (CXCL-8, CXCL-10, CCL-1, CCL-2, CCL-3, CCL-4, etc.)
are directly associated with COVID-19 severity [36,37].
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Figure 1. Immune-inflammatory activities in SARS-CoV-2 infection. Immune response against SARS-CoV-2 under normal
defense (A) and dysfunctional pathogenic (B) mechanisms. In normal defense mechanisms against SARS-CoV-2, CD4+
helper T cells contribute to the overall adaptive response by recruiting Th1 cells and endorsing B lymphocyte differentiation
to produce specific anti-SARS-CoV-2 antibodies. CD4+ and CD8+ T cells also produce IFN to neutralize SARS-CoV-2.
APC endorses T cell-mediated immune responses in the cytokine microenvironment. Dysfunctional immune response
coupled with lymphopenia yields severe COVID-19 outcomes by endorsing a hyperinflammatory state referred to as a
“cytokine storm.” In a cytokine-enriched environment, SARS-CoV-2 induces pyroptosis of lymphocytes via activating
NLRP3 inflammasome and caspase 1, which results in the decline in memory Th and regulatory T cell population. APC
activates Th17 cells that endorse neutrophilic inflammation and suppress adaptive immunity by activating neutrophils.
This pathogenic pathway is further potentiated via pathogenic Th1 cells’ activation by CD4+ T cells. Arrows indicate the
downstream cellular events, and red lines indicate inhibition. “↑” indicates upregulation/activation, and “↓” indicates
downregulation/suppression. AE cells: alveolar epithelial cells; APC: antigen-presenting cell; CRP: C reactive protein;
GM-CSF: granulocyte-macrophage colony-stimulating factor; IFN: interferon; IL: interleukin; NK cells: natural killer cells;
NLRF3: NLR family pyrin domain containing 3; TNF: tumor necrosis factor; VEGF: vascular endothelial growth factor.



Cells 2021, 10, 3291 6 of 21

Immunologically, RA is characterized by dysfunctional innate immunity, adaptive
immunity against “self”-antigens, and dysregulation in cytokine set-ups. CD4+ T cells
contribute to the chronic autoimmune response of RA via antigenic activation of naive CD8+
T cells, which, in turn, triggers inflammation via massive production of pro-inflammatory
mediators [38] (Figure 2). TNF-α, IL-1β, and IL-6 play crucial roles in stimulating joint
inflammation in RA [39]. The role of CD4+ T-cells in inducing chronic inflammation in the
joints of RA patients has been exposed [38]. Emerging evidence revealed the predominant
role of Th cells in the pathogenesis of RA [39]. Th1 hyperactivation in RA triggers the
secretion of pro-inflammatory mediators, such as IFN-γ, IL-2, and TNF-α [40]. In addition,
Th1 cells can recruit macrophages to act as APCs. Th2 cells also play critical roles in RA
pathogenesis, which promote B lymphocyte differentiation to produce antibodies (IgE) [38].
In addition, the Th17/IL-17 axis plays a central role in RA pathogenesis [38]. IL-17 enhances
the production of IL-6, IL-8, VEGF-A, and matrix metalloproteinases (MMP-1 and -3) in
RA synovial fibroblasts [38] (Figure 2). The enhanced plasma level of proinflammatory
cytokines (IL-1β, IL-2, IL-4, IL-6, IL-7, IL-12, IL-16, IL-17, IL-18, TNF-α, GM-CSF, IFN-γ, etc.)
and chemokines (CXCL-8, CXCL-10, CCL-1, CCL-2, CCL-3, CCL-4, CCL-5, etc.) remains
as a diagnostic feature in RA patients [41]. Thus, it is reasonable to conclude that the
pathophysiology of both SARS-CoV-2 infection and RA share a similar mechanistic pathway
of aberrant immune response resulting in hyperactivation of the cytokine–chemokine axis.
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4. Mechanistic Similarity between SARS-COV-2 Infection and RA
4.1. Angiotensin-Converting Enzyme (ACE)-Dependent Pathway

Immune-inflammatory disorders can be associated with ACE/ACE2 imbalance [42].
ACE promotes the conversion of angiotensin I to angiotensin II, while ACE2 catalyzes
the conversion of angiotensin II to angiotensin-1–7, which exhibits anti-inflammatory,
anti-fibrotic, anti-apoptotic, anti-proliferative, and vasorelaxation effects. ACE2 maintains
renin-angiotensin system (Ras) homeostasis to restore normal physiological processes
in critical tissues/organs. The role of ACE2 in SARS-CoV-2 infection stands itself as an
irony. ACE2 as a receptor serves as a potential cellular target for SARS-CoV-2 to enter the
target cells [43] (Figure 3). ACE2 binding is essential for the entry of SARS-CoV-2 into the
host cells; however, recent evidence revealed a key role of heparan sulfate in facilitating
their interaction and thereby potentiating SARS-CoV-2 cell entry and infection [44,45]. In
contrast, ACE2 as an enzyme plays a protective role in SARS-CoV-2 infection [43]. The
S-protein of SAR-CoV-2 binds to ACE2, resulting in a suppression of ACE2 expression and
promoting COVID-19 pathogenesis [46]. Inhibition of ACE2/angiotensin-1–7 activates
rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MAPK) cascade,
which in turn shares identical pathological signalling in both COVID-19 and RA [47]
(Figure 3). ACE2 activators have been proposed to produce dual benefits in COVID-19
treatment: firstly, by inhibiting the binding of S-protein of SARS-CoV-2 to ACE2 and
secondly by offering the protective effect of the ACE2 enzyme [48]. ACE2 activation can
also be beneficial in RA, which can mitigate inflammation, vasoconstriction, oxidative
stress, apoptosis, proliferation, and migration in synovial tissue (Figure 3). ACE activa-
tion promotes the accumulation of angiotensin II, which could be pathologically involved
in both COVID-19 and RA. In an inflammatory milieu, angiotensin II is known to trig-
ger inflammatory responses and vascular permeability by enhancing the production of
prostaglandins and VEGF [49]. These inflammatory mediators further endorse nuclear
factor kappa-light-chain-enhancer of activated B cells’ (NF-κB) activation, which intensifies
the inflammatory responses and promotes infiltration of inflammatory cells into damaged
tissues [49]. Moreover, angiotensin II can endorse lymphocyte proliferation and activation,
as well as the formation of free radicals in leucocytes [50]. ACE inhibitors and angiotensin
receptor blockers have been regarded to be beneficial in COVID-19, delaying the binding
of SARS-CoV-2 by activating ACE2 and increasing the availability of angiotensin-1–7 [48].
Pharmacological inhibition of ACE and angiotensin II can reduce the risk of mortality
in COVID-19 patients [49]. ACE inhibitors limit the production of pro-inflammatory cy-
tokines by suppressing NF-κB activation, and this anti-inflammatory mechanism can be
effective against both diseases [51]. ACE inhibitors have been proven to improve vascular
endothelial function in RA patients [50]. Thus, it could be said that both COVID-19 and RA
share a common mechanistic pathway of immunopathogenesis mediated through aberrant
ACE/ACE2 activities.
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Figure 3. Angiotensin-converting enzyme (ACE)-dependent pathway showing the mechanistic similarity between SARS-
CoV-2 infection (A) and RA (B). ACE catalyses the conversion of angiotensin I to angiotensin II, which is involved in the
pathogenesis of both COVID-19 and RA by promoting inflammation, fibrosis, vasoconstriction, and apoptotic activities. In
contrast, ACE2 catalyses the conversion of angiotensin II to angiotensin-1-7 and shares identical protective functions in
both COVID-19 and RA. Arrows indicate the downstream cellular events, and red lines indicate inhibition. “↑” indicates
upregulation/activation, and “↓” indicates downregulation/suppression. ACE: angiotensin-converting enzyme; ACE2:
angiotensin-converting enzyme 2; AT1R: angiotensin II receptor type 1; IFN: interferon; IL: interleukin; JAK: janus tyrosine
kinase; MAPK: mitogen-activated protein kinase; MMP: matrix metalloproteinase; NF-κB: nuclear factor kappa-light-chain-
enhancer of activated B cells; PKC: protein kinase C; STAT: signal transducer and activator of transcription; TNF: tumor
necrosis factor; VEGF: vascular endothelial growth factor.
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4.2. Macrophage-Mediated Pathway

Macrophages present in bronchial and synovial tissues are heterogeneous (Figure 4).
Healthy lungs represent alveolar macrophages expressing fatty-acid-binding protein 4
(FABP4), which help in maintaining gas exchange and compliance. During SARS-CoV-2
infection, the number of FABP4-expressing (FABP4positive) alveolar macrophages is sub-
stantially reduced, and thus gas exchange is compromised [52] (Figure 4). Bronchoalveolar
lavage fluids from COVID-19 patients exhibit more distinct types of macrophages than
resident macrophages present in healthy alveoli [53]. The alveolar tissue of COVID-
19 patients abundantly presents two distinct macrophage clusters expressing ficolin-1
(FCN1), which can be differentiated by their relative expression of secreted phosphoprotein
1/osteopontin (SPP1) [53]. These are categorized as only FCN expressing macrophages
(FCNpositive) and macrophages that express both FCN and SPP1 (FCNpositiveSPP1positive).
FCNpositive macrophages are probably involved in COVID-19 pathogenesis through a
strong adaptive immune response mediated through CD8+ T cells. However, their
specific pathological role is yet to be established. Similarly, synovial tissue also repre-
sents distinct macrophage subsets in RA patients as compared to healthy people [54]
(Figure 4). In healthy joints, macrophage clusters expressing triggering of receptors
expressed on myeloid cells 2 (TREM2), such as TREM2high and TREM2low in associa-
tion with the macrophages expressing both the folate receptor beta (FOLR2) and lym-
phatic vessel endothelial hyaluronan receptor 1 (LYVE1), constitute synovial tissue lin-
ing. The macrophages expressing FOLR2 in association with LYVE1, inhibitor of DNA
binding 2 (ID2), or intercellular adhesion molecule 1 (ICAM1) form the synovial sub-
lining. These are categorized as FLOR2positiveLYVE1positive, FLOR2positiveID2positive, and
FLOR2positiveICAM1positive macrophage clusters (Figure 4). As compared to healthy joints,
synovial tissue of RA patients additionally represents two distinct types of macrophage
clusters: one is highly expressing CD48 and S100A12 (S100 calcium-binding protein
A12/calgranulin C), while another is expressing both CD48 and SPP1 (Figure 4). Both
CD48highS100A12positive and CD48positiveSPP1positive macrophage clusters have been re-
vealed to be associated with RA pathogenesis via producing pro-inflammatory mediators
such as IL-1β, IL-6, TNF-α, MMPs, and chemokines and inducing pathogenesis to the
adjacent stromal tissue [53]. FCNpositive and FCNpositiveSPP1positive macrophages in bron-
choalveolar lavage fluids from COVID-19 patients share a transcriptional homology with
pathogenic CD48highS100A12positive and CD48positiveSPP1positive macrophage clusters in
the synovial tissue of RA patients (Figure 4) [53]. In addition, both share similar functional
characteristics in the respective tissues [53]. Similarly, FABP4positive alveolar macrophages
in the bronchoalveolar lavage fluids from healthy individuals share transcriptional and
functional homology with TREM2 expressing synovial macrophages in healthy joints
(Figure 4) [53]. Both TREM2positive and FOLR2positiveLYVE1positive macrophages resolve
inflammation by activating anti-inflammatory mediators and repair stromal cells by re-
cruiting Mer receptor tyrosine kinase (MerTK) and its ligand growth arrest-specific protein
6 precursor (GAS6) [53]. MerTK, a member of the TAM family with its ligands GAS6 and
vitamin K-dependent protein S (PROS1), contributes to an inflammation-alleviating effect.
FABP4positive macrophages express Axl receptor tyrosine kinase (Axl) and PROS1, which
aids in reducing COVID-19’s severity. Both FABP4positive and TREM2positive macrophages
share a similar functional role of a homeostatic brake on inflammation in alveolar and syn-
ovial tissues, respectively (Figure 4). Taken together, the alveolar macrophages in healthy
individuals share homologies in transcriptomic profiles and regulatory pathways with the
macrophages in synovial tissue of healthy individuals. Similarly, macrophages in the alveo-
lar tissue of COVID-19 patients are homologous to that of the synovial macrophages in RA
patients. Thus, both SARS-CoV-2 infection and RA share a common mechanistic pathway
of immunopathogenesis driven by the activities of analogous macrophage clusters.
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Figure 4. Macrophage-mediated pathway showing the mechanistic similarity between SARS-CoV-2 infection and RA.
Schematic diagram showing the pro-inflammatory function of distinct macrophage subsets in the normal (left side) and
SARS-CoV-2 infected (right side) alveolar tissue (A) and synovial tissue (B) of normal (left side) and RA patients (right
side). The identity of distinct participating macrophage subsets is shown at the bottom. Arrows indicate the downstream
cellular events; double-headed arrows represent the similarity in transcriptomic homology and regulatory activities.
“+” indicates positive expression, and “-“ indicates negative expression. FABP4: fatty acid-binding protein 4; FCN1: ficolin-1;
FOLR2: folate receptor beta; ICAM1: intercellular adhesion molecule 1; IFN: interferon; IL: interleukin; LYVE1: lymphatic
vessel endothelial hyaluronan receptor 1; S100A12: S100 calcium-binding protein A12/calgranulin C; SPP1: secreted
phosphoprotein 1/osteopontin; TAMR: TAM receptor; TREM2: triggering receptor expressed on myeloid cells 2.
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5. Therapeutic Management and Challenges
5.1. Recommendation for Anti-Rheumatic Drugs in the COVID-19 Setting

Patients with RA generally represent a compromised immune system, which makes
them susceptible to SARS-CoV-2 infection [25]. Treatment with immunosuppressant drugs
may further increase the risk of acquiring SARS-CoV-2 infection [22]. In addition, clinical
features of RA flares and SARS-CoV-2 infection frequently overlap [29]. Both RA- and
COVID-19-positive patients represent some common symptoms like arthralgia, myalgia,
and other inflammatory disorders. RA-mediated interstitial lung disease often mimics
COVID-19 symptoms. Moreover, RA patients frequently represent increasing evidence
of comorbidities [55]. Thus, clinical management of RA itself stands as a challenging task
in the present COVID-19 setting. Among the possible therapeutic options, the American
College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR)
recommended several guidelines regarding the use of RA medication in the COVID-19 pan-
demic [56,57]. Glucocorticoids have been recommended at the lowest possible dose even
in COVID-19-positive cases, and sudden withdrawal has been discouraged. Non-steroidal
anti-inflammatory drugs (NSAIDs) have been proposed to be continued unless severe
COVID-19 outcomes present to multiple organs. Among disease-modifying antirheumatic
drugs (DMARDs), conventional synthetic DMARDs (csDMARDs) have been recommended
to be continued; however, leflunomide, methotrexate, and sulfasalazine are suggested to be
avoided in suspected or confirmed COVID-19 cases. All biological DMARDs (bDMARDs)
except for IL-6 inhibitors and all targeted synthetic DMARDs (tsDMARDs) have been
advised to be discontinued in suspected or confirmed cases of COVID-19. Regarding
re-initiation of DMARDs, ACR recommended restarting these drugs within 7–14 days
of symptom resolution or within 10–17 days of the positive report for symptomatic and
asymptomatic patients, respectively [55]. However, treatment resumption is required on
an individual basis for patients recuperating from a serious illness [56]. Thus, adjustments
to medication should be done on an individual basis considering disease severity, and
specific attention must be given to the recommendations of using antirheumatic drugs
in the COVID-19 setting by different professional rheumatology associations, such as the
ACR and the EULAR.

5.2. Challenges with Anti-Rheumatic Agents in the COVID-19 Setting

Despite this, no direct association has been established between specific RA medi-
cation and the COVID-19 development or outcomes, and some reports claimed that RA
patients exhibit an increased risk of serious infections (Table 1). Accumulating evidence
showed the protective role of glucocorticoids in COVID-19, which is predominantly me-
diated through their immunosuppressive effects to overturn hyperinflammatory states
in the late phases of SARS-CoV-2 infection [29]. The World Health Organization (WHO)
recommended glucocorticoid treatment in severe/critical COVID-19 cases. In contrast,
Russell and colleagues claimed that glucocorticoids are not clinically effective against
COVID-19 lung injury [58]. Moreover, a report claimed that a moderate-to-high dose of
glucocorticoids can increase the risk of poor outcomes [59]. In a small cohort, Haberman
and colleagues also found that glucocorticoid treatment worsens COVID-19 outcomes in
patients with inflammatory arthritis [30]. According to the Global Rheumatology Alliance
and other reports, glucocorticoids (≥10 mg/day) are associated with an increased rate of
hospitalization for COVID-19 in patients with rheumatic diseases [23]. Glucocorticoids
at high doses have been regarded as a potential risk factor for COVID-19 patients repre-
senting rheumatic diseases [60]. RA patients chronically receiving glucocorticoids have
been advised to avoid abrupt withdrawal of the drugs even after acquiring SARS-CoV-2
infection and to continue glucocorticoid treatment with the lowest possible doses [25].
Thus, the dose of a glucocorticoid stands critical in this aspect.

Some reports claimed that the use of NSAIDs does not produce any serious adverse
manifestation in COVID-19 patients [61] (Table 1). The Australian Rheumatology Asso-
ciation and the National Institute for Health and Clinical Excellence (NICE) guidelines
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recommended that RA patients with long-term treatment with NSAIDs may continue
their medication in the COVID-19 setting [29]. In contrast, the ACR recommended stop-
ping NSAIDs in the cases of severe COVID manifestations [29]. The role of NSAIDs in
the course of viral infections is still controversial. Recent preclinical data showed that
although NSAIDs could suppress the inflammatory response in SARS-CoV-2 infection,
they simultaneously impair humoral immune response against SARS-CoV-2 infection by
dampening the production of protective antibodies [62]. In addition, ibuprofen and keto-
profen can aggravate the risk of secondary infections [63]. In contrast, some observations
argued with the negative effects of ibuprofen and other NSAIDs in the COVID-19 setting
and mentioned their prophylactic effects in COVID-19 [64,65]. Although ibuprofen can
activate ACE2, which serves as a gateway for SARS-CoV-2 infection, it simultaneously
endorses anti-inflammatory activity of Ras in the lungs and reduces the internalization of
SARS-COV-2 spike protein by suppressing ADAM metallopeptidase domain 17 (ADAM17)
and transmembrane protease serine 2 (TMPRSS2) activities [64,65]. The French Society
of Pharmacology and Therapeutics recommended that the use of NSAIDs be avoided for
symptomatic treatment in non-severe COVID-19 cases [65]. In a recent retrospective multi-
centre observational study, non-selective COX inhibitors (aspirin and acetaminophen) were
found to be associated with increased severity and mortality in COVID-19 patients includ-
ing patients with pre-existing arthritis [66]. Fever is regarded as one of the indications of
SARS-CoV-2 infection. Thus, the use of NSAIDs in the COVID-19 setting may delay in
diagnosis of SARS-CoV-2 infection due to their antipyretic principle. However, treatment
with selective COX-2 inhibitors (diclofenac, meloxicam, and celecoxib) was not found to
be associated with an increase in COVID-19 severity [66]. Thus, it may be said that the
effects of NSAIDs represent drug-specific risk profiles in the COVID-19 setting, and it is
not worthy to mention their effects in a generalized way under a single class.

Hydroxychloroquine and chloroquine are commonly used as csDMARDs directed for
the treatment of RA. Both these antimalarial drugs justify the theoretical requirements to
be effective against COVID-19 [67]. Thus, these drugs were initially included in COVID-19
management. However, their effects remain controversial in COVID-19 management, and
different sets of observations were reported in different clinical studies [1]. According
to a previous report, these agents are not only ineffective in COVID-19 management
but also possess the potential to cause more harm than benefit [29]. Patients chronically
treated with hydroxychloroquine or chloroquine as anti-RA drugs before the COVID-19
pandemic did not exhibit any difference in COVID-19 outcomes compared to the patients
who did not receive these antimalarial drugs [68]. Increasing evidence of COVID-19
death has been observed due to the cardiotoxic effect (arrhythmia) of these drugs used in
the treatment of COVID-19 [25,59,69]. Chloroquine and hydroxychloroquine treatment
have been found to develop QT prolongation in almost 10% of COVID-19 patients [1].
Thus, the WHO recommended against the use of hydroxychloroquine and chloroquine
for COVID-19 treatment [70]. The ACR has also recommended a temporary suspension
of hydroxychloroquine and chloroquine for RA patients in the setting of SARS-CoV-2
infection [25,59]. Similarly, the uses of other csDMARDs, such as leflunomide, methotrexate,
and sulfasalazine have been advised to stop momentarily in RA patients during active
SARS-CoV-2 infection (Table 1).

Considering the mechanistic similarity between RA and COVID-19 disease pathogen-
esis, it has been postulated that bDMARDs would be effective in the COVID-19 setting.
However, the effect of bDMARDs in the COVID-19 setting remains highly controversial
(Table 1). According to the National Health Service (NHS) England, RA patients treated
with bDMARDs, such as tocilizumab, rituximab, and TNF inhibitors increase the risk of
acquiring SARS-CoV-2 infection compared to the patients treated with csDMARDs [29]. In
contrast, others were not in agreement with the claim of the NHS [25]. According to the
data from the GRA global registry, out of 7263 COVID-19 positive cases among rheumatic
patients, 2188 (30.13%) patients were under the treatment with bDMARDs [24]. Now
coming to the continuation of bDMARDs in rheumatic patients in COVID-19 condition,
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anti-TNF therapy has been found to lower the disease severity and mortality [71]. GRA
global registry data also claimed that using bDMARDs treatment (a largest subgroup
of 52% RA patients used TNF inhibitors) by RA patients before acquiring SARS-CoV-2
infection significantly decreases the risk of hospitalization [24]. Anti-IL-6 (tocilizumab)
treatment also had positive or equivocal results on COVID-19 outcomes [72]. In spite of
the recommendation by some medical societies against the initiation or continuation of
bDMARDs (including anti-TNF drugs) in the places where COVID-19 has been circulating
in the community, the use of anti-IL-6 agents has been regarded to be safer [73]. The
tendency of anti-TNF drugs to increase viral infection risk has been accounted for in this
aspect. The risk of severe and opportunistic infections in RA patients under the treatment
of tsDMARDs is roughly similar to that of bDMARDs in the COVID-19 setting [74]. Among
tsDMARDs, janus kinase (JAK) inhibitors, such as baricitinib, tofacitinib, and upadacitinib,
were studied in different trials [74]. Emerging evidence revealed that JAK inhibitors could
possibly increase the risk of venous thromboembolism [75]. JAK inhibitors were also found
to impair the IFN-mediated anti-viral response and to increase the risk of secondary infec-
tion [74]. Thus, medical associations recommended a temporary suspension of tsDMARDs
to RA patients following COVID-19 exposure (Table 1). Precautionary withdrawal of
DMARDs could simultaneously raise the chance of disease relapse and morbid outcomes
in RA patients [76]. Thus, it would be a challenging task for the clinicians to treat RA
patients after acquiring SARS-CoV-2 infection, who are maintained with DMARD drugs for
RA management. However, the recommendations by different professional rheumatology
associations, such as ACR and EULAR would serve as guidelines in this aspect.

Table 1. Indications, contraindications, and recommendations of the important anti-rheumatic drugs used in COVID-19 setting.

Class of Drugs Drugs Indications Risk
Manifestations

Recommendations for
RA Patients Acquiring

COVID-19 Infection
References

Glucocorticoids
Dexamethasone,
hydrocortisone,

methylprednisolone.

Immunosuppressive
agents and reduction in
inflammation (during

late phases of infection),
mortality, and length of

hospitalization.

Increase the risk of
acquiring infection; a

moderate-to-high dose
can yield poor

outcomes.

Continue at the lowest
possible dose; however,
sudden withdrawal is

not recommended.

[23,25,59,69,77–79]

NSAIDs

Naproxen,
celecoxib,
etoricoxib,
ibuprofen,
ketoprofen,

aspirin, acetaminophen.

Suppress inflammation
and reduce fever.

Impair humoral
immune response,
increase the risk of

bacterial infection, and
increase severity and

mortality (non-selective
COX inhibitors).

Continue unless the
patient with severe

systemic
manifestations.

[62,65,66]

csDMARDs
Antimalarials

Hydroxychloroquine,
chloroquine.

Not clearly understood,
believed to exhibit
antiviral effect via

preventing viral entry,
transport, and

post-invasion events.
Hydroxychloroquine is

more potent and less
toxic.

Dangerous when
overdosed,

cardiovascular side
effect (QT prolongation).

Maculopathy, retinal
alteration, G6PD
deficiency, and

hypersensitivity are
other contraindications.

Special attention is
required for injections.

Temporary suspension
for RA patients with

suspected/confirmed
SARS-CoV-2 infection,
patients with chronic
heart failure, and/or
patients receiving QT

prolonging agents, such
as azithromycin.

[25,67,69,80–84]

Other csDMARDs
Methotrexate,
leflunomide,
sulfasalazine.

Immunosuppressive
agents; suppress

inflammation.

Increase the risk of poor
outcomes. Combination

therapy yields poorer
outputs then
monotherapy.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection.

[25,59,69]

bDMARDs
Anti-TNF drugs

Adalimumab,
infliximab,

certolizumab pegol,
etanercept, golimumab,

secukinumab.

Suppress inflammation
and reduce GM-CSF,

VEGF, CRP, and blood
coagulation.

Increase the risk of
acquiring infection,

hypersensitivity, and
few cases of poor

outcomes.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection.

[25,29,69,71,84,85]
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Table 1. Cont.

Class of Drugs Drugs Indications Risk
Manifestations

Recommendations for
RA Patients Acquiring

COVID-19 Infection
References

Anti-IL-1 drugs
Anakinra,

canakinumab,
rilonacept.

Suppress inflammation,
prevent overpowering

of innate immunity,
improve oxygen

saturation, reduce
neutrophil counts, and

inhibit Th17 cell
induction.

Increase the risk of
acquiring infection and

hypersensitivity.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection.

[25,69,84,86–88]

Anti-IL-6 drugs Tocilizumab,
sarilumab.

Suppress inflammation,
prevent immune

damage to target cells,
improve oxygen

saturation and reduce
CRP, neutrophil counts,

and fever.

Increase the risk of
acquiring infection.
Hypersensitivity,

thrombocytopenia,
leukopenia,

aminotransferase
elevation, and

gastrointestinal
perforations (rare) are

other contraindications.

Initiation or
continuation is

recommended even in
COVID-19-positive

cases.

[68,84,89–92]

Anti-IL-17 drugs

Brodalumab,
ixekizumab
(LY2439821),

secukinumab (AIN457).

Suppress inflammation;
inhibit the production
of IL-1, IL-8, and IL-6;

exhibit
immune-modulatory

effect; and reduce
neutrophil recruitment.

Increase the risk of
acquiring infection.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection.

[25,69,85,93]

Anti-IL-23 drugs

Guselkumab,
risankizumab,
tildrakizumab,
ustekinumab.

Suppress inflammation,
inhibit IL12/IL-23p40 or

IL-23p19, and inhibit
Th17 cell induction.

Increase the risk of
acquiring infection and

hypersensitivity.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection.

[25,69,85,88]

tsDMARDs
JAK inhibitors

Baricitinib,
ruxolitinib,
tofacitinib,

upadacitinib.

Decrease virus
infectivity, inhibit
type-I/II cytokine
receptors, reduce

inflammation, and
decrease neutrophil

counts.

Impair IFN-mediated
anti-viral response,
increase the risk of

secondary infection,
venous

thromboembolism, and
hypersensitivity.

Suspension for RA
patients with

suspected/confirmed
SARS-CoV-2 infection

[25,69,74,75,84,94]

bDMARDs: biological disease-modifying antirheumatic drugs; csDMARDs: conventional synthetic disease-modifying antirheumatic drugs;
CRP: C reactive protein; GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; JAK: janus tyrosine kinase; NSAIDs:
non-steroidal anti-inflammatory drugs; tsDMARDs: targeted synthetic disease-modifying antirheumatic drugs; Th cells: T helper cells;
TNF: tumor necrosis factor; VEGF: vascular endothelial growth factor.

5.3. Monitoring RA Patients in the COVID-19 Setting

In the ongoing COVID-19 pandemic, the monitoring of RA patients is a significant
challenge for rheumatologists. Patients with RA are known to be more susceptible to
a multitude of infections, which advises against physically visiting the physicians on a
routine basis during the COVID-19 setting. The COVID-19 lockdown also aids in this
issue. Thus, in the absence of routine clinical assessment, it is really a challenging task
for the rheumatologists to follow effective disease control protocol to alleviate disease
activity. So, the situation forced rheumatologists to develop effective strategies to provide
optimum patient care. Recent reports showed that telemedicine is gaining popularity
in this situation [95]. It allows patients with stable disease conditions to reduce their
visits to the clinic through adopting virtual consultation with rheumatologists. In India,
rheumatologists have been preferring voice-over-IP service followed by video consultations
and emails to provide virtual care [96].

Telephonic consultations supported by supplemental information, such as laboratory
tests and photos of suspected manifestation areas, have also been found to be fruitful
to avoid physical visits [97,98]. In this aspect, the RA impact of disease (RAID) score, a
patient-derived score covering seven health areas: pain, fatigue, functional capacity, sleep
quality, coping, physical well-being, and emotional well-being, has gained the reasonable
confidence of rheumatologists for the virtual clinic to assess a composite measure of the dis-
ease activity [99]. Regarding flare assessment in the RA questionnaire, a self-reported flare
can also serve as a potential tool in telehealth follow-ups with rheumatologists [100,101].
However, these teleconsultations do not allow proper clinical examinations, which are criti-
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cal for a precise diagnosis. Since it is difficult to anticipate when the ongoing pandemic will
end, rheumatologists must put in extra effort to build an appropriate telemedicine system
that will ensure high-quality healthcare to RA patients [101]. In general, patients with stable
disease activity could be advised to reduce their visits to clinics and to use virtual platforms
for demonstrating disease activities, if required. However, patients who require frequent
visits to the clinics for their disease severity and those who require other therapeutic re-
quirements, or in case of emergency, could be advised to take all precautionary measures
to avoid acquiring infection or to stop spreading the infection (for COVID-19-positive RA
patients) [102].

6. Discussion

The clinical features of immune-inflammatory activities in SARS-CoV-2-infected alve-
olar structures share a pathological resemblance with the immunoreactive activities in the
joints of RA patients. The establishment of localized acute inflammation mediated through
excessive release of pro-inflammatory mediators is the hallmark of disease pathogenesis
in both cases. Mechanistically, dysfunctional immune response endorses a hyperinflam-
matory state in alveolar tissue following SARS-CoV-2 infection referred to as a “cytokine
storm.” In the cytokine-enriched environment, SARS-CoV-2 induces pyroptosis of lympho-
cytes, which results in the decline in memory Th cells and regulatory T lymphocytes. In
addition, SARS-CoV-2 recruits APCs to trigger pathogenic Th17 cell activation, which in-
duces neutrophilic inflammation and suppresses adaptive immune responses by activating
neutrophils. In a “cytokine storm microenvironment,” CD4+ T cells recruit pathogenic
Th1 cells, which aid in COVID-19 pathogenesis via macrophage activation. Immunologi-
cally, immune dysfunction against self”-antigens, as well as cytokine dysregulation, are
hallmarks of RA. APC endorses Th2 and Th17 cell activation in the lymph node. CD4+ T
cells in association with naive CD8+ T cells induce chronic autoimmune response and elicit
inflammation via endorsing Th1/Th17 activation in synovial tissue. The activated Th1/IL-
17 axis elicits the production of pro-inflammatory mediators, activates immune cells, and
endorses B lymphocyte differentiation to produce autoantibodies in synovial tissue. In
synovial fibroblasts, Th17 triggers the production of IL-17, which further promotes osteo-
clast development by recruiting pro-inflammatory cytokines, VEGF, RANKL, GM-CSF, and
MMPs. Thus, the aberrant immune-inflammatory response resulting in hyperactivation of
the cytokine–chemokine axis plays a crucial role in the pathogenesis of both COVID-19
and RA. With the emerging evidence that both RA and COVID-19 share similar patho-
logical mechanisms in the affected tissues, it has been aimed to decipher the mechanistic
overlapping between COVID-19 and RA immune-inflammatory features. Both COVID-19
and RA share common mechanistic pathways of pathogenesis mediated through aberrant
ACE/ACE2 activities, as well as being driven by the activities of analogous macrophage
clusters. The viral entry to the host cells depends on ACE2 binding of the spike protein
of SARS-CoV-2 resulting in a suppression of ACE2 protein expression. Suppression of
ACE2 and activation of ACE in alveolar tissues and joints share an identical mechanistic
pathway of disease pathogenesis in both COVID-19 and RA, respectively. In addition, the
alveolar macrophages in COVID-19 patients are homologous to that of the macrophages in
joints of RA patients as seen with the macrophages in healthy alveolar tissue and joints,
which strongly suggests that both COVID-19 and RA share similar mechanistic pathways
of macrophage-mediated disease pathogenesis.

Towards effective therapeutic management, the use of anti-rheumatic drugs, such as
glucocorticoids, NSAIDs, csDMARDs, bDMARDs, and tsDMARDs was critically reviewed
along with their usefulness and contraindications in the COVID-19 setting. Although
several anti-rheumatic drugs exhibited promise in certain clinical settings, careful investi-
gation is obligatory to achieve their precise therapeutic utility in SARS-CoV-2-infected RA
patients. Recognition of the immune-inflammatory mechanism of disease pathogenesis
in both the diseases and the need for anti-rheumatic and anti-inflammatory drugs was
largely underlined. Given the fact that several anti-rheumatic drugs do not influence
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COVID-19 severity/risk, RA patients may continue taking anti-rheumatic drugs during the
pandemic. However, advice to RA patients on whether to stop or continue anti-rheumatic
drugs requires careful testing of all disease-related parameters including severity, age, and
comorbidities. In this line, we identified the immediate challenges and forwarded key
recommendations by different professional rheumatology associations regarding the use
of anti-rheumatic drugs in the COVID-19 setting for better clinical management of RA
patients. Finally, routine monitoring of RA patients in the COVID-19 pandemic and the
emerging prospects of telemedicine and virtual consultation were discussed.

7. Conclusions

Conclusively, COVID-19 and RA share similar immune-inflammatory features of dis-
ease pathogenesis executed by analogous mechanistic pathways. However, the treatment
of RA patients in the COVID-19 setting itself stands as a challenging task. Implementation
of individualized clinical surveillance of RA patients considering the disease severity and
appropriate risk-benefit study referring to the recommendations of using anti-rheumatic
drugs in the COVID-19 setting by different professional rheumatology associations would
stand as the optimal therapeutic strategy for effective disease control during the COVID-19
pandemic. Finally, it is advisable to use virtual consultation by the patients with stable RA
activity during this pandemic era, while the patients with RA flares are recommended to
take all precautionary measures during visiting the clinics to prevent acquiring/spreading
SARS-CoV-2 infection.
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