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Particle size distribution (PSD) in the ocean is a fundamental property that
influences carbon export and food webs; however, PSD variation and its causes in
oligotrophic oceans are not entirely clear. Here, we used Laser In-Situ Scattering and
Transmissometry to investigate PSD (size range 5.2–119 µm) and related variables at
11 stations in the surface layer (0–20 m) of the Kuroshio region of the western North
Pacific, where strong current causes dynamic hydrographic and ecological conditions.
PSD slopes (range –3.2 to –4.2), derived from the power law model, were steeper
at onshore stations and flatter at oligotrophic stations located offshore and at lower
latitudes. Notably, slopes tended to become steeper with increasing chlorophyll a
concentration, opposing the generally observed relationship between the two variables,
whereas they became flatter with increasing transparent exopolymer particle (TEP)
concentration. Possible explanations of the above results are localized occurrence of
nanophytoplankton and TEP facilitation of particle aggregation. The results support
the hypothesis that PSD slopes are controlled by a multitude of factors, including
phytoplankton community dynamics and aggregation processes. To determine whether
TEP-induced particle aggregation enhances or suppresses carbon export, we need a
better understanding of the nature (porosity, density, and sinking velocity) of aggregates
in oligotrophic oceans.

Keywords: slope of particle size distribution, chlorophyll a, transparent exopolymer particles (TEP), Kuroshio,
nanophytoplankton, particle aggregation

INTRODUCTION

Particle size distribution (PSD) in the ocean is a fundamental property that influences oceanic
carbon export mediated by sinking particles (biological carbon pump; Guidi et al., 2008; Cael and
White, 2020; Maerz et al., 2020; Omand et al., 2020), which in turn affects the oceanic uptake of
atmospheric CO2 and the earth’s climate (Kwon et al., 2009). Also PSD is an important determinant
of oceanic food webs because physiological traits and trophic interactions of planktonic organisms
are strongly constrained by relationships with cell size (Ward et al., 2012). Understanding PSD
variation is essential for a better understanding of ocean biogeochemical cycles and food webs; yet
its causes and controls are not well understood. This knowledge gap represents a major obstacle
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to improving ocean biogeochemical models with explicit
representation of particle properties (Burd and Jackson, 2009;
Maerz et al., 2020; Omand et al., 2020).

Among several techniques for determining PSD (Lombard
et al., 2019; Giering et al., 2020), a laser diffraction analyzer
measuring light scattered by particles (Laser In-Situ Scattering
and Transmissometry; LISST) has been increasingly used to
examine PSD in the upper oceans (Reynolds et al., 2010; Barone
et al., 2015; Yamada et al., 2015; Leroux et al., 2018). The size
range of particles determined by LISST is typically 3–200 µm.
Because linear dimensions of the major phytoplankton groups
(e.g., diatoms, coccoliths, haptophytes, and dinoflagellates),
except for picocyanobacteria and picoeukaryotes, are within
this size range, PSD determined by LISST provides information
concerning phytoplankton size composition (Barone et al., 2015;
White et al., 2015), although the particles detected by LISST also
contain detrital particles and aggregates (Leroux et al., 2018).

Power law exponent (PSD slope) is a useful representation of
the PSD (the steeper the slope, the higher the contribution of
smaller particles) (Kostadinov et al., 2012; White et al., 2015).
PSD slopes often become flatter with increasing chlorophyll
a (Chl.a) concentration (Buonassissi and Dierssen, 2010; Xi
et al., 2014), consistent with a general shift in phytoplankton
communities from predominantly smaller to larger cells along a
gradient of increasing biomass and productivity (Malone, 1971;
Chisholm, 1992). However, in the western Arctic Ocean, Yamada
et al. (2015) obtained apparently contradictory results. They
found that PSD slopes in a productive shelf region were steeper
than those in an oligotrophic basin area. They hypothesized
that PSD slopes became flatter due to particle aggregation
during lateral transport of particles. They also suggested that the
aggregation process was promoted by transparent exopolymer
particles (TEP; Alldredge et al., 1993; Passow, 2002), which are
sticky and enhance particle aggregation (Engel, 2000; Jennings
et al., 2017; Mari et al., 2017). These results suggest that
PSD slopes may be influenced by multiple factors, including
phytoplankton size composition and aggregation processes;
however, factors controlling PSD slope in oceanic environments
remain to be clarified.

We collected PSD data using LISST in the upper water column
(<20 m) along the western boundary current of the North
Pacific (Kuroshio), covering a latitudinal range from 22◦ to
34◦ North. The Kuroshio region is generally characterized by a
warm, oligotrophic conditions, with phytoplankton communities
generally dominated by pico- and nanophytoplankton (Endo
and Suzuki, 2019) similar to the station ALOHA in the North
Pacific subtropical gyre (White et al., 2015). However, along
strong northward flows of the Kuroshio current, nutrient inputs
to the euphotic zone are enhanced due to boundary exchange
and diapycnal mixing (Nagai et al., 2019; Pelegrí et al., 2019),
which leads to an increase in phytoplankton biomass and a shift
in cell size composition toward larger phytoplankton, depending
on season and location (Kobari et al., 2019; Nagai et al.,
2019). Furthermore, since the Kuroshio current passes ridges
with many small islands and seamounts, surface nutrification
caused by a topographic flow disturbance (Island Mass Effect)
appears to contribute to enhancing productivity in the region

(Hasegawa, 2019; Nagai et al., 2021). Despite dynamic and
unique hydrographic and ecological features of the Kuroshio
region, which are distinct from those of the central North
Pacific Subtropical Gyre, data are limited regarding export flux
in the region (Oguri et al., 2003; Hung and Gong, 2007; Qu
et al., 2018). To our knowledge, no studies have examined PSD
slopes in the Kuroshio region. In order to gain insights into
processes involved in regulation of particle dynamics in the
Kuroshio region, we examined spatial variability of PSD slopes
using LISST. We hypothesized that PSD slopes are influenced
by multiple environmental factors, including concentrations of
Chl.a, prokaryotic abundance, and exopolymer substances such
as TEP and Coomassie stained particles (CSP).

MATERIALS AND METHODS

Study Area
This study was carried out during the R/V Hakuho Maru
KH-15-4 cruise in November 2015, as part of the project “The
Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries:
SKED” aimed at examining physical, chemical, and ecological
characteristics of the Kuroshio region (Saito, 2013). Seawater
sampling was conducted along three transect lines (150–185 km),
each of which consisted of 3–4 sampling stations positioned
across the Kuroshio axis (Figure 1 and Table 1). The axis of the
current may shift over a wide distance (on the order of 100 km),
toward onshore or offshore within weeks (Yamashiro and
Kawabe, 1996). Therefore, the most recent current information
[Quick Bulletin of Ocean Conditions (QBOC) of the Japan
Coast Guard)] at the time of the cruise was used to determine
geographic positions of sampling stations. In total, 11 stations
were sampled from the three transect lines, which hereafter, are
regarded to represent the upstream (U-line), midstream (M-line),
and downstream (D-line) of the flow path (Figure 1 and Table 1).

Particle Volume, Abundance, and
Particle Size Distribution Slope
Calculations
Particle volume and PSD in seawater from the surface (0 m)
to a depth of 20 m were measured using LISST (100X, Sequoia
Scientific, Bellevue, WA, United States), following Agrawal
and Pottsmith (2000). LISST is a laser diffraction analyzer
used to measure light scattered by particles on 32 concentric,
logarithmically spaced ring detectors. The volumetric particle
concentration in each size class is estimated from inversion
modeling based on the Mie theory (Agrawal and Pottsmith,
2000). The LISST instrument may overestimate particle volume
in the upper LISST bins when salinity fluctuations occur in a
stratified field (Styles, 2006) and may underestimate the lower
LISST bins in environments with low particulate concentrations
or high ambient light conditions (Andrews et al., 2011). To
minimize these effects, we used a size class range of 5.2–119 µm
(20 LISST bins). The LISST instrument was mounted on a winch
wire and lowered slowly through the water column, at a mean
winch speed of 0.15 m s−1 and with a 1 s data collection
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FIGURE 1 | Locations of sampling stations during the KH-15-4 cruise. The
map and contour graphs were created using Ocean Data View
(http://odv.awi.de/). Detailed information for each station is given in Table 1.
The location of the Kuroshio Current during the cruise was obtained from the
Japan Coast Guard (see text) and is shown as a green line. Transect lines are
also shown in black boxes.

interval. A depth profiler (ACTD-CMP, JFE Advantech Co. Ltd.,
Hyogo, Japan) was attached to the protection frame of the
LISST instrument.

Total particle volume (µL L−1) was calculated as an integral
of the whole size window (5.2–119 µm). Volumetric size
distribution data were used to calculate PSD (in abundance),
assuming that particles are spheres. Then PSD was formulated by
the following power-law equation (Bader, 1970; Kostadinov et al.,
2009; Buonassissi and Dierssen, 2010):

N (D) = N0

(
D
D0

)ξ
(1)

Where N(D) is the number of particles per volume of seawater
normalized by the size bin width (particles L−1 µm−1). D is the
particle diameter (µm). D0 is a reference diameter, here 1 µm. N0
is the particle differential number concentration at D0 (particles

L−1 µm−1), and ξ is the power-law slope of the PSD. We used a
linear regression on log transformed data.

Seawater Sampling and Determination of
Environmental Variables
Seawater samples were collected using clean 12-L Niskin
bottles (Model 1010X; General Oceanics) mounted on a
conductivity-temperature-depth, carousel, multi-sampling
system (CTD/CMS) (SBE11Plus; Sea-Bird Electronics). Surface
seawater (0 m) was collected using a clean bucket.

Nutrient concentrations [NO3
−, NO2

−, NH4
+, PO4

3−,
and Si(OH)4] were determined at an onshore laboratory by
colorimetry (QuAAtro; BLTEC, Japan) using seawater samples
stored frozen. For the Si(OH)4 measurement, after defrosting,
samples were stirred and stored in the dark at 4◦C for 24 h before
measurement. Detection limits for these analyses were about
0.02 µM. In addition, we measured PO4

3− and NO3
−
+ NO2

−

on board, using a highly sensitive method, at selected stations
where nutrient concentrations were expected to be below the
detection limit of the regular colorimetric method. We used a
high sensitivity colorimetric system consisting of an autoanalyzer
(AutoAnalyzer II, Technicon, United States), capillary cells (quid
Waveguide Capillary Cells; 50 and 100-cm lengths for NO3

− and
NO2

− and PO4
3−, respectively; World Precision Instruments,

United States), and a spectrometer (USB4000, Ocean Optics,
United States) (Hashihama et al., 2010). For these measurements,
samples were stored at 4◦C until analysis and measured on
board within 3 h after sample collection. The detection limit was
0.002 µM. Dissolved inorganic nitrogen (DIN) was defined as the
sum of NO3

−, NO2
−, and NH4

+ concentrations. Concentrations
below the detection limit were considered to be 0 µM.

Concentrations of two types of exopolymer particles, TEP
(containing acidic polysaccharides) and CSP (containing
proteins), were determined according to Passow and Alldredge
(1995) for TEP and Cisternas-Novoa et al. (2014) for CSP. Surface
and 10-m seawater samples (300 mL; duplicates for each depth)
were filtered through 0.4-µm pore size polycarbonate filters
(47 mm diameter; Whatman, Maidstone, United Kingdom) with
a vacuum of less than 150 mmHg. TEP were stained with 1 mL of
0.02% w/v of a cationic dye, Alcian blue (8GX; Sigma-Aldrich),

TABLE 1 | Locations of sampling stations deployed during the KH-15-4 cruises.

Transect linea Station code Sampling date (mm/dd/yyyy) Latitude (◦N) Longitude (◦E) Bottom depth (m)

D-line D1 11/18/2015 33.33 133.80 129

D2 11/18/2015 33.00 133.75 963

D3 11/17/2015 32.50 134.00 1,847

D4 11/16/2015 32.00 134.20 4,356

M-line M1 11/13/2015 28.80 127.00 230

M2 11/11/2015 28.50 127.16 998

M3 11/11/2015 28.00 127.67 1,231

M4 11/11/2015 27.50 128.16 878

U-line U1 11/09/2015 23.50 122.00 4,754

U2 11/08/2015 23.00 122.50 5,393

U3 11/08/2015 22.50 123.00 3,068

aThe upstream (U-line), midstream (M-line), and downstream (D-line) of the Kuroshio Current, respectively.
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dissolved in 0.06% v/v acetic acid. CSP were stained with 1 mL of
0.04% Coomassie Brilliant Blue (G-250, SERVA electrophoresis),
dissolved in 0.2-µm prefiltered seawater. Excess dyes were
washed with Milli-Q water. Filters were frozen at −20◦C prior
to colorimetric determination in the onshore laboratory. For
TEP measurements, filters were soaked in 6 mL of 80% sulfuric
acid for 2 h, and the absorbance at 787 nm was measured
using a spectrophotometer (UV-1800; Shimadzu, Kyoto, Japan).
For measurement of filter blanks, 300 mL surface seawater
samples were passed through a 0.2-µm prefilter before use. The
absorbance of the blank value was on average 0.019 ± 0.004
(mean ± SD, n = 9) (a blank measurement was made at three
selected stations of U1, M4, and D2). The mean absorbance of
samples was at least three times higher than the blank value.
For CSP measurements, filters were soaked in 4 mL of 50%
isopropyl alcohol with 3% SDS. Tubes were sonicated in a water
bath (50–60 kHz) for 2 h at 37◦C and absorbance was measured
at 615 nm using a spectrophotometer (UV-1800; Shimadzu).
Blanks were treated in the same way as for TEP determination.
The absorbance of the blank was on average 0.040 ± 0.009
(mean ± SD, n = 6) (a blank measurement was made at three
selected stations of U1, M4, and D2). The mean absorbance
of samples was at least 1.2 (generally > 2) times higher than
the blank value.

To calculate TEP and CSP concentrations, the mean filter
blank value was first subtracted from the absorbance for each
sample. Then these concentrations were calculated using the
calibration factor determined with xanthan gum (for TEP)
or bovine serum albumin (BSA, for CSP). TEP and CSP
concentrations were expressed in terms of µg xanthan gum
equivalent per liter (µg Xeq. L−1) and µg BSA equivalent per liter
(µg BSAeq. L−1), respectively.

Chlorophyll a concentrations were determined by fluorometry
(model 10-AU; Turner Designs, Sunnyvale, CA, United States)
after extraction of Chl.a with N,N-dimethylformamide from
samples collected on glass fiber filters (GF/F, 25 mm, Whatman).

To determine prokaryote abundance, a 2 mL seawater
sample was collected in a sterile cryogenic vial (Nalgene, MA,
United States) and fixed by adding 100 µL of 20% glutaraldehyde
(final concentration 1%). The fixed sample was frozen in liquid
nitrogen and then stored in a freezer (−80◦C) until analysis in
the onshore laboratory. Following Yang et al. (2010), samples
were stained with SYBR Green I (final concentration of 10−4

of commercial stock; Invitrogen, CA, United States). After
addition of size reference beads (1 µm diameter; Molecular
Probes, OR, United States), samples were analyzed using a flow
cytometer (FACSVerse; Becton Dickinson, NJ, United States)
equipped with a 15-mW, 488-nm, air-cooled laser and a
standard filter set. Data were analyzed using FACSuite software
(Becton Dickinson).

Data Averaging for the Depth Layer
Between 0 and 20 m
Depth resolution differed depending on variables. To facilitate
the comparison of PSD slope with other variables in the upper
water column, we calculated the mean value of each variable over

the depth layer between 0 and 20 m (Supplementary Table 1).
PSD data (particle volume and abundance) were first obtained
with a depth interval of 1 m, averaged for a depth range from
0 to 20 m, and then used for the calculations of particle volume
and abundance for each station. For the calculation of PSD slope,
all data obtained with a depth interval of 1 m were pooled
for each station and then used for the calculation of the slope.
This pooling procedure was used because, with a 1-m interval
data acquisition, the particle signal was often undetectable in
larger size bins (>50 µm). To make the size range of particles
used for the PSD slope calculation consistent among stations
(i.e., 5.2–119 µm), we pooled LISST data for the depth of 0–
20 m. Temperature and salinity data determined with the CTD
logger were first binned to 1 m, and then mean values from
surface to a depth of 20 m were calculated. Seawater samples for
determining concentrations of nutrients, TEP, CSP, and Chl.a as
well as prokaryote abundance were sampled at 1–4 depths within
0–20 m (Supplementary Table 1).

Statistical Analysis
Spearman rank order correlation analysis among variables
(because the normality assumption was not fulfilled for some
variables) and linear regression analysis were performed
using SigmaPlot 13.0 (Systat Software, Inc., San Jose,
CA, United States).

RESULTS

Data on PSD parameters (volume, abundance, and slope) and
environmental variables were collected in the upper water
column (0–20 m) at 11 stations (Table 1). Because depth
resolution differed among PSD and environmental variables
(Supplementary Table 1), depth-averaged values of these
variables (except for the PSD slope which was calculated by
pooling the data, see “Materials and Methods”) were calculated
for each station and used to examine geographic variation
of these variables and relationships among them. Although
temperature and salinity varied little within the layer (0–
20 m), other variables displayed vertical heterogeneities of
variable extent (as indicated by mean and standard deviation
in Table 2). Although this may introduce biases to the
analysis of relationships among variables, we assumed that
depth-averaged data capture major features characterizing
geographic variation of PSD and environmental variables in
the study region.

Temperature and Salinity
Surface seawater temperature generally decreased from south
to north with the maximum temperature (28.0◦C) recorded at
station U3 and the minimum (23.7◦C) at station D1 (Figure 2A
and Table 2). Salinity at stations located along the offshore
transect of the current axis was 0.1–0.4 higher (34.8 at U3, M2,
M3, M4, D3, and D4 except for U2; Figure 2B and Table 2) than
stations located along the onshore transect of the current axis
(34.4–34.7 at U1, M1, D1, and D2). The salinity was similarly
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TABLE 2 | Mean values of each variable in the depth of 0–20 ma.

Station
code

Temperature
(◦C)

Salinity DIN
(µM)a

PO4
3−

(µM)a
Si(OH)4
(µM)a

Chl.a
(µg L−1)

Prokaryote
abundance
(×108 cells

L−1)

TEP (µg
Xeq. L−1)

CSP (µg
BSAeq. L−1)

Particle
volume

(5.2–119 µm,
µL L−1)

Particle
abundance

(5.2–119
µm, ×105

particles L−1)

ξ (5.2–
119 µm)

D1 23.7 (0.1) 34.6 (0.0) 0.16
(0.07)

0.023
(0.016)

1.65
(0.12)

0.82
(0.09)

11.7 (0.0) 39 (10) 5.5 (1.1) 0.36 (0.28) 5.1 (3.6) −4.2

D2 23.9 (0.0) 34.7 (0.0) 0.20
(0.06)

0.023
(0.004)

1.65
(0.02)

0.89
(0.05)

9.8 (0.1) 26 (20) 9.2 (1.0) 0.83 (1.57) 5.9 (2.6) −4.1

D3 25.1 (0.0) 34.8 (0.0) 0.07
(0.05)

0.008
(0.004)

0.88
(0.01)

0.36
(0.01)

8.0 (0.2) 47 (11) 6.8 (1.3) 0.25 (0.23) 2.9 (4.0) −3.9

D4 24.4 (0.0) 34.8 (0.0) 0.03
(0.01)

0.003
(0.004)

0.96
(0.02)

0.21
(0.01)

7.4 (0.1) 33 (6) 7.8 (1.3) 0.66 (1.74) 3.3 (5.5) −3.9

M1 24.5 (0.0) 34.4 (0.0) 0.28
(0.01)

0.040
(0.007)

1.50
(0.02)

0.87
(0.05)

12.0 (0.3) 55 (26) 7.4 (1.6) 0.42 (0.49) 5.1 (1.8) −4.1

M2 26.0 (0.0) 34.8 (0.0) 0.03
(0.02)

<0.002
(0.000)

0.78
(0.01)

0.25
(0.01)

7.1 (0.1) 56 (6) 4.5 (0.7) 0.32 (0.30) 1.7 (2.0) −3.4

M3 28.0 (0.1) 34.8 (0.0) 0.03
(0.01)

0.003
(0.004)

0.67
(0.01)

0.15
(0.02)

7.0 (0.2) 56 (2) 7.9 (1.7) 0.41 (0.84) 1.6 (1.3) −3.5

M4 25.4 (0.0) 34.8 (0.0) 0.03
(0.01)

0.010
(0.007)

0.89
(0.01)

0.25
(0.01)

12.0 (4.2) 66 (4) 6.8 (1.0) 0.56 (1.17) 2.5 (2.3) −3.6

U1 26.6 (0.2) 34.4 (0.1) <0.02
(0.00)

0.010
(0.000)

0.87
(0.02)

0.10
(0.01)

8.4 (0.2) 61 (7) 1.2 (1.4) 0.04 (0.05) 0.1 (0.1) −3.2

U2 27.3 (0.0) 34.6 (0.0) 0.02
(0.01)

0.008
(0.004)

0.66
(0.02)

0.07
(0.00)

6.1 (0.1) 59 (5) 5.2 (1.4) 0.34 (0.36) 1.1 (0.5) −3.7

U3 28.0 (0.1) 34.8 (0.0) <0.02
(0.00)

<0.002
(0.000)

0.68
(0.02)

0.06
(0.00)

6.3b 65 (8) 5.8 (2.3) 0.39 (0.56) 1.2 (1.4) −3.2

aMean and standard deviation (in parenthesis) of data collected from 2 to 20 depths for each station, except for prokaryote abundance at U3 (see Supplementary
Table 1 for the number of measurements for each variable at each station). For ξ , only single value was obtained for each station because the data, collected with an
interval of 1 m, were pooled for calculation of the PSD slope (see text). DIN, dissolved inorganic nitrogen; Chl.a, chlorophyll a; TEP and CSP, transparent exopolymer
particles and Coomassie stained particles, respectively; ξ , PSD slope. DIN concentration was defined as the sum of NO3

−, NO2
− and NH4

+ concentrations. Nutrient
concentrations were measured by both a regular and a nanomolar level colorimetric methods. When concentrations were below the detection limit (0.02 µM for DIN,
0.002 µM for PO4

3−), values were shown as <0.02 and <0.002 µM, respectively. See text for details.
bOnly single value was obtained.

FIGURE 2 | Environmental variables in the Kuroshio region observed during the KH-15-4 cruise. (A) Temperature, (B) Salinity. The location of the Kuroshio Current
during the cruise and transect lines are shown as in Figure 1. Values for each parameter are shown in Table 2.

low at stations located on the current axis (U1) and offshore (U2)
(Figure 2B and Table 2).

Nutrient, Chlorophyll a Concentrations,
and Prokaryote Abundance
Concentrations of DIN, PO4

3−, and Si(OH)4 varied in the range
of <0.02–0.28, <0.002–0.040, and 0.66–1.65 µM, respectively,
with relatively high concentrations at three onshore stations

of the D- and M-lines (D1, D2, and M1, Figures 3A–C and
Table 2). Nanomolar-level determination of PO4

3− revealed
that offshore stations were depleted in phosphorus with
concentration ranges from <0.002 to 0.010 µM (Figure 3B and
Table 2). Nutrient concentration was negatively correlated with
temperature (Table 3). Chlorophyll a concentrations varied in the
range of 0.06 and 0.89 µg L−1, with a tendency to increase with
increasing latitude (Figure 3D and Table 2). Similar to nutrient
distribution, the highest levels of Chl.a (0.82–0.89 µg L−1) were
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FIGURE 3 | Chemical and biological variables in the Kuroshio region observed during the KH-15-4 cruise. (A–C) Nutrient [DIN: dissolved inorganic nitrogen, PO4
3−

and Si(OH)4] concentrations, (D) chlorophyll a (Chl.a) concentration, (E) prokaryote abundance. Data are shown as in Figure 2 and values are also shown in Table 2.

found at three onshore stations on the D- and M-lines (D1, D2,
and M1). The most southerly stations on the U-line (U1, U2, and
U3) are oligotrophic, characterized by low Chl.a (50.1 µg L−1)
and low nutrient (DIN and PO4

3−) concentrations (Table 2).
Prokaryote abundance (range 6.1 × 108–12.0 × 108 cells L−1)
generally followed that of Chl.a concentration (Figure 3E and
Table 2).

Transparent Exopolymer Particle and
Coomassie Stained Particles
Transparent exopolymer particle concentrations (range
26–66 µg Xeq. L−1) displayed a latitudinal gradient, with
the highest concentrations at stations on the U-line, followed
by stations on the M- and D lines (Figure 4A and Table 2). The
difference in TEP concentrations between onshore and offshore
stations was less pronounced (Table 2). TEP concentration was
significantly positively correlated with temperature (Table 3),
and negatively with Chl.a concentration (Table 3). Correlations
between TEP concentration and salinity and prokaryote

abundance were insignificant (Table 3). Spearman rank order
correlations for all variables are shown in Supplementary
Table 2. The CSP distribution was complex (range 1.2–9.2 µg
BSAeq. L−1), with no clear geographic pattern across latitude
and locations relative to the Kuroshio axis (Figure 4B and
Table 2).

Particle Volume, Abundance, and the
Particle Size Distribution Slope
Particle volume (range 0.04–0.83 µL L−1) and abundance
(0.1 × 105–5.9 × 105 particles L−1) increased from south (U-
line) to north (D-line), whereas variability across the Kuroshio
axis was less pronounced (Figures 5A,B and Table 2). The
PSD slope was derived as the slope of the linear regression
relating log N(D) against log D/D0 (Eq. 1). Data fitted the model
well, with the determination coefficient, r2, between 0.90 and
1.00 and p value < 0.001 (Figure 6 and Table 4). The PSD
slope (range –3.2 to –4.2) tended to become steeper from south
to north, although the steepest slopes (–4.1 to –4.2) occurred
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TABLE 3 | Spearman rank order correlations (r) between temperature and nutrients, transparent exopolymer particles, and environmental/biological variablesa.

Nutrients Environmental/biological variables

DIN PO4
3− Si(OH)4 Temp Sal Chl.a Prok

Temp −0.70 −0.53 −0.93 TEP 0.77 0.26 −0.65 −0.23

aSignificant difference (p< 0.05) is described in bold. Variable symbols are as follows: Temp, temperature; Sal, salinity; DIN, dissolved inorganic nitrogen; Chl.a, chlorophyll
a; Prok, prokaryote abundance; TEP, transparent exopolymer particles.

FIGURE 4 | Exopolymeric particle variables in the Kuroshio region observed during the KH-15-4 cruise. (A,B) Concentrations of transparent exopolymer particles
(TEP), and Coomassie stained particles (CSP), respectively. Data are shown as in Figure 2 and values are shown in Table 2.

at on-shore stations on the D- and M-lines (D1, D2, and
M1) (Figure 5C and Table 2). The PSD slope was positively
correlated with temperature and TEP (Figures 7A,B), whereas
it was negatively correlated with Chl.a, particle abundance
(Figures 7C,D) and nutrients (Supplementary Figures 1A–
C). The PSD slope was not significantly correlated with either
prokaryote abundance or CSP (Supplementary Figures 2A,B).

DISCUSSION

Comparison of Particle Size Distribution
Slopes in the Kuroshio Region With
Those in the Gulf Stream and the Central
Subtropical Gyre
The range of PSD slope that we obtained in the Kuroshio
region was –3.2 to –4.2. Previous studies conducted in coastal
and offshore of upper oceans ranged from –2.0 to –5.9
(Supplementary Table 3). Particle size distribution slope values
obtained by different studies must be compared with caution,
because the slope value may depend on size range and fitting
method (Barone et al., 2015). Keeping this in mind, it is
worthwhile to compare the PSD slope in the Kuroshio region
to the study by Buonassissi and Dierssen (2010) who examined
the PSD slope in the Gulf Stream (the western boundary current
of the North Atlantic) and surrounding regions. They reported
that the slope varied in the range of –2.9 to –4.1, with a gradual
decrease from the shelf, across the Gulf Stream to the Sargasso
Sea. This slope range agrees well with that which we obtained
in the Kuroshio region. In contrast, at Station ALOHA in the
North Pacific Subtropical Gyre, Barone et al. (2015) reported

that the PSD slope varied in the range of –4.2 to –5.9 (data
obtained after logarithmic transformation), steeper than those
obtained in the Kuroshio region. Although PSD data based on
the LISST determination are limited in oceanic environments,
the above data suggest that there is a broad geographic gradient
of PSD slope from the shelf (flatter slope) toward the central
subtropical gyre (steeper slope) across western boundary current.
However, as we discuss in the following sections, there was
intriguing geographic variation in PSD slope in the Kuroshio
region, providing a useful test of the hypothesis that PSD slopes
are affected by multiple environmental factors.

Particle Size Distribution Slope Variation
and Its Relationship With Chlorophyll a
A notable feature of PSD slope variation in the Kuroshio region
is that it became steeper with increasing Chl.a concentration.
This is remarkable since this opposes previous observations that
PSD slope measured by LISST becomes flatter with increasing
Chl.a concentration (Buonassissi and Dierssen, 2010; Xi et al.,
2014). The latter is consistent with the notion that smaller
phytoplankton generally prevail over larger phytoplankton under
oligotrophic conditions (Chisholm, 1992; Irwin et al., 2006). Our
results obtained in the Kuroshio region contradict this general
trend because PSD slope was flattest at the most oligotrophic
stations (U-line) and steepest at nutrient-rich onshore stations
(D1, D2, and M1) where Chl.a concentrations were high.

One explanation of this apparent discrepancy is that the
steeper PSD slope found at onshore stations on the D- and
M-lines (D1, D2, and M1) may reflect an occurrence of
nanophytoplankton at these stations. High particle abundance at
these stations, accompanied by the steep PSD slope, is consistent
with the idea that phytoplankton cells within size categories
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FIGURE 5 | Particle parameters in the Kuroshio region observed by Laser In-Situ Scattering and Transmissometry (LISST) during the KH-15-4 cruise. (A–C) Total
particle volumes, abundance, and the slope of the particle size distribution slope (ξ ) in the size range of 5.2–119 µm, respectively. Data are shown as in Figure 2
and values are shown in Table 2.

FIGURE 6 | Particle size distribution, following the power-law model (Eq. 1) with double logarithmic transformation, in the size range of 5.2–119 µm. The data were
averaged for a depth range of 0–20 m. The least squares linear regression line is given for each station. Statistical parameters of the regression are presented in
Table 4.

close to the lower limit of our LISST measurement (5.2 µm)
were abundant in these samples. In fact, in the Kuroshio region,
previous studies have found that nanophytoplankton, including
Prymnesiophytes, became dominant in response to the mixing
of oligotrophic Kuroshio water with continental shelf water (Xu
et al., 2019). Also, microscopic analysis of coastal waters in Tosa
Bay near stations D1 and D2 indicated that nanoplanktonic
diatoms (Chaetoceros) often dominated communities following
seasonal inputs of nutrients (Hirota et al., 2002; Ichikawa and
Hirota, 2004). Although we lack the data of nanophytoplankton
abundance at our sampling stations, we speculate that the
occurrence of nanoplankton at three onshore stations (D1, D2,
and M1) may have resulted in a steeper PSD slope than those
at other stations. There are other potential factors that caused

a steeper PSD slope at onshore stations. These factors include
impacts of zooplankton grazing and fecal pellet production
(Emerson and Roff, 1987; Stamieszkin et al., 2015, 2017; Kobari
et al., 2019) and loadings of small particles from terrestrial and
benthic sources (Tang et al., 2019).

Possible Impacts of Transparent
Exopolymer Particle-Induced
Aggregation on Particle Size Distribution
Slope Variation
Another factor that may affect PSD variation in the Kuroshio
region is particle aggregation. The aggregation rate is formulated
as a product of particle abundance, encounter rate, and stickiness
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TABLE 4 | Parameters of particle size distribution of each regression linea.

Station code Slope (ξ )b log N0
b r2 nc

D1 −4.1 ± 0.1 8.0 ± 0.1 0.99 20

D2 −4.1 ± 0.1 8.3 ± 0.1 1.00 20

D3 −3.8 ± 0.2 7.3 ± 0.3 0.94 20

D4 −3.9 ± 0.2 7.6 ± 0.2 0.97 20

M1 −4.1 ± 0.2 7.9 ± 0.3 0.95 20

M2 −3.3 ± 0.2 6.5 ± 0.2 0.96 20

M3 −3.4 ± 0.2 6.6 ± 0.3 0.95 20

M4 −3.4 ± 0.2 6.7 ± 0.4 0.92 20

U1 −3.2 ± 0.1 5.9 ± 0.2 0.96 20

U2 −3.7 ± 0.2 7.3 ± 0.3 0.96 20

U3 −3.2 ± 0.3 6.3 ± 0.4 0.90 20

aSee text for the explanation of the equation.
bValues are means ± standard errors.
cNumber of bins.

(Burd and Jackson, 2009). Therefore, aggregation is strongly
enhanced by increasing particle stickiness. Although the shape
and slope of PSD are determined by aggregation processes in
a complex manner, particle stickiness represents one of factors
affecting PSD slope through its influence on aggregate geometry

(Li et al., 2004; Burd and Jackson, 2009). In fact, a microcosm
study using diatoms revealed that, when the ratios of TEP amount
to total solid volume were high, aggregates were more porous as
indicated by their lower fractal dimensions (Engel and Schartau,
1999). Using a numerical simulation model, Li et al. (2004)
suggested that, at steady state, the PSD slope becomes flatter
when the aggregate fractal dimension is lower. Our data showing
that the PSD slope tended to diminish with increasing TEP
concentration are consistent with the hypothesis that PSD slope is
diminished by TEP-induced formation of porous aggregates with
low fractal dimension. This hypothesis explains the observation
that PSD slope was flattest at the most oligotrophic stations
(U-line) where TEP concentration was high.

The extent of the enhancement of stickiness due to the
presence of TEP can be assessed by using an empirical model
relating stickiness (α) to the ratio of TEP to Chl.a (TEP:Chl.a)
(Engel, 2000); α = 6.38 × 10−4 (TEP:Chl.a) – 3.3 × 10−3.
Using this model, we found that stickiness of particles varied
widely (35-fold) among stations (range 0.02–0.69) and is
significantly positively correlated with PSD slope (Spearman’s
r = 0.86, p< 0.001; Supplementary Figure 3 and Supplementary
Table 4). This result is consistent with the notion that TEP
diminished the PSD slope via the enhancement of stickiness and
its impacts on PSD slope (Li et al., 2004). We note that the

FIGURE 7 | Relationships between the slope of particle size distribution (ξ ) in the size range of 5.2–119 µm and other variables. Scatter plots of the PSD slope (ξ )
against (A) temperature, (B) concentration of transparent exopolymer particles (TEP), (C) concentration of chlorophyll a (Chl.a), and (D) particle abundance in the
size range of 5.2–119 µm. Linear regression line (solid line), 95% confidence interval (dotted line) and statistical parameters are given for each graph.
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derivation of the equation relating TEP:Chl.a to α is based on
experimental results using diatom-dominated coastal seawater
(Engel, 2000). Whether this equation applies to pico- and
nanophytoplankton communities in the Kuroshio region needs
to be verified in future studies.

High concentrations of TEP in oligotrophic environments
with lower Chl.a concentrations are likely a consequence of
physiological responses of phytoplankton to nutrient limitations.
In fact, as revealed by the nanomolar-level determination of
nutrients, DIN and PO4

3−, concentrations at stations located
on the U-line were low, varying in the range of <0.02–0.02
and <0.002–0.010 µM, respectively. Bar-Zeev et al. (2011)
observed high concentrations of TEP in the oligotrophic eastern
Mediterranean Sea. They suggested that high solar irradiance
combined with limited nutrient availability resulted in excretion
of excess carbon as TEP.

The higher TEP concentration may have promoted
aggregation not only of autotrophic cells such as Synechococcus
and Prochlorococcus (Malfatti and Azam, 2009; Cruz and
Neuer, 2019), but also detrital particles (both organic and
inorganic) and hetetrorophic cells, including bacteria. In fact,
TEP-induced aggregate formation may be enhanced by clay
minerals (Deng et al., 2015) and bacteria (Yamada et al., 2016;
Cruz and Neuer, 2019). Another class of exopolymer, CPS, can
also enhance particle aggregation (Yamada et al., 2018). Although
our data showed that neither bacterial abundance nor CPS
concentration was significantly correlated with PSD slope in the
Kuroshio region, their role in controlling aggregate formation in
oligotrophic environments requires further scrutiny.

Stickiness is not a sole factor controlling particle aggregation.
For particles within the size range of our LISST measurements
(5.2–119 µm), the dominant collision mechanism of particles is
turbulent sheer, which brings particles together, and in addition,
may cause aggregates to break up (Burd and Jackson, 2009). The
investigated region is characterized by high turbulence generated
by energy originating from collision of the Kuroshio Current
with the continental shelf or from its passage through straits
and over seamounts and ridges (Island mass effect, Hasegawa,
2019; Nagai et al., 2021). Turbulence is also promoted by
frequent passage of typhoons (Camargo et al., 2007; Kossin et al.,
2016). The possibility that turbulence affects PSD slopes in the
Kuroshio region, through its impact on particle aggregation and
disaggregation, the latter being enhanced by physical disturbance
caused by zooplankton (Alldredge et al., 1990; Kiorboe et al.,
2014), deserves further investigation.

Biogeochemical Implications
Our data suggest that TEP-induced aggregation led to the
diminishment of PSD slope at the most oligotrophic sites of
the Kuroshio region. Aggregation of small particles, including
pico- and nanoplankton, and the detritus derived from these
organisms, may lead to formation of aggregates with high
sinking velocity (Bach et al., 2016), which may represent a
major mechanism driving carbon export in oligotrophic oceans
(Richardson and Jackson, 2007; Guidi et al., 2016). A recent
model study revealed that carbon transfer efficiency, defined as
the fraction of carbon delivered to deep waters relative to carbon

exported from the base of the euphotic zone, depends on the
PSD slope: the flatter the slope, the higher the carbon transfer
efficiency (Omand et al., 2020). These results imply that carbon is
efficiently transferred to greater depths at oligotrophic sites of the
Kuroshio region.

However, there is an alternative view with regard to the role
of TEP-induced aggregation in carbon transfer in the oceans.
The density and settling velocity of individual TEP is generally
thought to be low, and TEP-induced aggregation may result in
formation of less dense, porous aggregates (Engel and Schartau,
1999; Azetsu-Scott and Passow, 2004; Mari, 2008; Mari et al.,
2017). Jennings et al. (2017) hypothesized that, in oligotrophic
regions (Gulf Stream and Sargasso Sea), TEP without sufficiently
dense (ballast) particles might ascend and accumulate in surface
layers, leading to longer residence times in the upper ocean
of aggregates containing large amounts of TEP. Nagata et al.
(2021) compiled data on TEP distributions in deep oceanic water
columns, suggesting that TEP-induced enhancement of particle
export is potentially large only in marginal seas and coastal
environments where ballast particles are supplied, whereas such
an effect would be minimal in open ocean environments.
Different views on the role of TEP in carbon transfer highlight
a need of future research on variation and control of porosity,
density, and sinking (or ascending) velocities of aggregates in
oligotrophic oceanic environments.

CONCLUSION

From LISST observations carried out along the Kuroshio Current
in southeast Japan, we found that PSD slopes tend to become
steeper with increasing Chl.a concentration, contrary to the
generally observed trend. We also found that they become flatter
with increasing TEP concentrations. Possible explanations of
these results include localized occurrence of nanophytoplankton
and TEP facilitation of particle aggregation. The data support the
hypothesis that PSD slopes in the Kuroshio region are controlled
by a multitude of factors, including phytoplankton community
dynamics and aggregation processes. Different scenarios are
possible concerning biogeochemical consequence of PSD slope
variation in the Kuroshio region. To determine whether TEP-
induced particle aggregation enhances or suppresses carbon
export, we need a better understanding of the nature of aggregates
(porosity, density, and sinking velocity) in the Kuroshio region.
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