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THE DIRICHLET PROBLEM FOR SUBLINEAR ELLIPTIC EQUATIONS

WITH SOURCE

KENTARO HIRATA AND ADISAK SEESANEA

ABSTRACT. We present a necessary and sufficient condition on nonnegative Radon mea-

sures µ and ν for the existence of a positive continuous solution of the Dirichlet problem

for the sublinear elliptic equation−∆u= µuq+ν with prescribed nonnegative continuous

boundary data in a general domain. Moreover, two-sided pointwise estimates of Brezis–

Kamin type for positive bounded solutions and the uniqueness of a positive continuous

Lq-solution are investigated.

1. INTRODUCTION

This paper deals with the existence, uniqueness and two-sided pointwise estimates of

positive continuous solutions of the Dirichlet problems for sublinear elliptic equations

involving nonnegative Radon measures.

Unless otherwise explicitly stated, we always assume that Ω is a domain in R
n (n ≥ 2)

possessing the Green function GΩ for the Dirichlet Laplacian −∆ and that it is regular for

the Dirichlet problem for the Laplace equation. When Ω 6= R
n, we write δΩ(x) for the

Euclidean distance from a point x ∈ Ω to the Euclidean boundary ∂Ω of Ω. The boundary

and closure of Ω in the one point compactification R
n ∪ {∞} are denoted by ∂ ∞Ω and

Ω
∞

, respectively. By M+(Ω), we denote the set of all nonnegative Radon measures on

Ω. Also, C+(∂
∞Ω) stands for the set of all nonnegative continuous functions on ∂ ∞Ω.

Let µ,ν ∈ M+(Ω) and f ∈C+(∂
∞Ω). We consider the Dirichlet problem

(1.1)






−∆u = µuq +ν in Ω,

u > 0 in Ω,

u = f on ∂ ∞Ω,

in the sublinear case 0 < q < 1. It will be understood in the integral sense:

(1.2) u(x) = GΩ[u
q dµ](x)+GΩ[ν](x)+H f (x) for all x ∈ Ω,

with H f being the Perron–Wiener–Brelot solution of the Dirichlet problem

(1.3)

{
∆h = 0 in Ω,

h = f on ∂ ∞Ω,

and GΩ[ψ dµ] standing for the Green potential of ψ dµ defined by

GΩ[ψ dµ](x) :=

∫

Ω
GΩ(x,y)ψ(y)dµ(y) for x ∈ Ω.

When ψ ≡ 1, we simply write GΩ[µ].
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2 KENTARO HIRATA AND ADISAK SEESANEA

A variety of classes of solutions of the Dirichlet problem for sublinear elliptic equations

with measurable coefficient a(x) and zero boundary values such as

(1.4)





−∆u = a(x)uq in Ω,

u > 0 in Ω,

u = 0 on ∂ ∞Ω,

have been investigated by many authors. See [2, 5–9, 15, 16, 18–21] for example. Among

these, Mâagli and Masmoudi [16] gave a sufficient condition for the existence of a contin-

uous solution of (1.4) in the case where Ω is an unbounded domain with compact smooth

boundary in R
n (n ≥ 3). They also gave two-sided pointwise estimates:

c−1 δΩ(x)

‖x‖n−1
≤ u(x)≤ cGΩ[a](x) for all x ∈ Ω,

where c > 1 is a constant. In [5], Brezis and Kamin established a necessary and suffi-

cient condition for the existence of a bounded solution of (1.4) when Ω = R
n. They also

obtained the uniqueness result and the sharp pointwise estimates:

c−1GRn[a](x)
1

1−q ≤ u(x)≤ cGRn[a](x) for all x ∈ R
n.

See also Cao and Verbitsky [8, 9], who characterized the existence of a larger class of

solutions, satisfying Brezis–Kamin type estimates in terms of Wolff potentials, to similar

homogeneous problems (1.4) with the p-Laplace and fractional Laplace operators in R
n.

Our first result on (1.1) is related to [16] and [5], but is new even when ν ≡ 0, or f ≡ 0,

or µ,ν are measurable functions. An important notion in our approach is the following

Kato type class of measures. By B(x,r), we denote the open ball of center x and radius r.

Definition 1.1. Let µ ∈ M+(Ω). We say that µ satisfies the GΩ-Kato condition if

lim
r→0+

(
sup
x∈Ω

∫

Ω∩B(x,r)
GΩ(x,y)dµ(y)

)
= 0,(1.5)

lim
r→0+

(
sup
x∈Ω

∫

Ω\B(0,1/r)
GΩ(x,y)dµ(y)

)
= 0.(1.6)

Note that (1.6) has no meaning when Ω is bounded. Also, if µ satisfies the GΩ-Kato

condition, then GΩ[µ] ∈ L∞(Ω) (see Lemma 2.2). The GΩ-Kato condition was utilized

earlier by the first named author [12] in the study of the Dirichlet problem for ∆u =
a(x)u−p with p > 0. In this work, we show that such GΩ-Kato conditions characterize

continuity of the corresponding Green potentials (see Lemma 2.3), and consequently the

existence of continuous solutions of (1.1) as follows.

We say that u is minimal in a class F of positive functions in Ω if u ≤ v in Ω for any

v ∈ F . For a function ψ defined on a set E, we denote by ‖ψ‖∞ the usual supremum

norm of ψ on E.

Theorem 1.2. Let 0 < q < 1. Assume that f ∈C+(∂
∞Ω) and µ,ν ∈ M+(Ω) satisfy

(1.7) ‖ f‖∞ +‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞ > 0.

Then (1.1) has a solution u ∈ C(Ω
∞
) if and only if both of µ and ν satisfy the GΩ-Kato

condition. Moreover, in this case, (1.1) has a minimal solution in C(Ω
∞
).

Condition (1.7) cannot be removed to ensure the existence of a positive solution. For the

sufficiency in Theorem 1.2, we present two different proofs, based on the Schauder fixed

point theorem and the method of successive approximations, with the help of equivalent
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conditions to the GΩ-Kato condition, a lower bound estimate for solutions and an iterated

inequality for Green potentials established recently by Grigor’yan and Verbitsky [10],

which are also useful to show the necessity part of Theorem 1.2.

Needless to say, the continuous solution of (1.1) obtained in Theorem 1.2 is bounded.

The next theorem yields in particular the Brezis–Kamin type estimates of such a solution.

Theorem 1.3. Let 0 < q < 1, let f ∈C+(∂
∞Ω) and let µ,ν ∈ M+(Ω). If u is a bounded

solution of (1.1), it enjoys the following estimates.

(i) Lower estimate:

u(x)≥ c1GΩ[µ](x)
1

1−q +GΩ[ν](x)+H f (x) for all x ∈ Ω.

(ii) Upper estimate:

u(x)≤ c
q
2GΩ[µ](x)+GΩ[ν](x)+H f (x) for all x ∈ Ω.

(iii) Uniform estimate: ‖u‖∞ ≤ c2.

Here c1 := (1−q)
1

1−q and

(1.8) c2 := max
{

1,(‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞+‖ f‖∞)
1

1−q

}
<+∞.

Remark 1.4. Note that if (1.1) has a bounded solution, then GΩ[µ] and GΩ[ν] must be in

L∞(Ω) in light of (1.2) and Lemma 3.1.

In our present study, we are also interested in integrability properties of continuous

solutions of (1.1). The lower estimate in Theorem 1.3 gives a hint of conditions for

the existence of a solution in C(Ω
∞
) ∩ Lγ(Ω,dµ). This is related to Verbitsky [21],

where the existence of a solution in Lγ(Ω,dµ) of (1.1) was characterized in terms of

GΩ[µ] ∈ L
γ

1−q (Ω,dµ) in the case where f ≡ 0 and ν ≡ 0, and to [18, 20], where the sec-

ond named author and Verbitsky characterized the existence and uniqueness of a solution

in Ẇ
1,2
0 (Ω)∩L

q
loc(Ω,dµ) of (1.1) with f ≡ 0 in terms of

GΩ[µ] ∈ L
1+q
1−q (Ω,dµ) and GΩ[ν] ∈ L1+q(Ω,dµ).

Here Ẇ
1,2
0 (Ω) is the homogeneous Sobolev (or Dirichlet) space defined as the closure of

C∞
0 (Ω) with respect to the seminorm

(1.9) ‖u‖
Ẇ

1,2
0 (Ω)

:= ‖∇u‖L2(Ω).

For (1.1) with f ≡ 0, it was further shown that the existence of a solution in Ẇ
1,2
0 (Ω)∩

L
q
loc(Ω,dµ) is equivalent to the existence of a solution in L1+q(Ω,dµ). Note that solutions

u of (1.1) with µ,ν satisfying the GΩ-Kato condition do not always satisfy ‖∇u‖L2(Ω) <
+∞ (see Corollary 6.4).

Theorem 1.5. Under the same assumptions as in Theorem 1.2. Let γ > q. Then (1.1)

has a solution u ∈C(Ω
∞
)∩Lγ(Ω,dµ) if and only if both of µ and ν satisfy the GΩ-Kato

condition and

(1.10) GΩ[µ] ∈ L
γ

1−q (Ω,dµ), GΩ[ν]+H f ∈ Lγ(Ω,dµ).

Moreover, in this case, we have the following.

(i) Problem (1.1) has a minimal solution in C(Ω
∞
)∩Lγ(Ω,dµ).

(ii) Assume that either γ = q or γ = q+ 1 and f ≡ 0 holds. Then (1.1) has exactly

one solution in C(Ω
∞
)∩Lγ(Ω,dµ).
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This paper is organized as follows. In Section 2, we provide equivalent conditions to

the GΩ-Kato condition and prove the equicontinuity of a family of certain Green poten-

tials, which is one of key tools in our approaches. In Section 3, we prove Theorem 1.3.

Two different proofs of Theorem 1.2 are given in Section 4. In Section 5, we address the

uniqueness of a positive continuous Lq-solution and prove Theorem 1.5. In the final sec-

tion 6, we give supplementary remarks on Hölder continuous solutions and the existence

of a positive C1-solution whose Dirichlet integral diverges.

2. PRELIMINARIES

We use the symbol c to denote an absolute positive constant whose value may vary at

each occurrence. For two positive functions f and g, we write f . g if f (x) ≤ cg(x) for

some positive constant c independent of variable x.

In the study of the stationary Schrödinger equation ∆u= µu in R
n, Boukricha–Hansen–

Hueber [3] gave necessary and sufficient conditions on µ ∈M+(R
n) for GRn[µ] ∈C(Rn).

We modify their arguments to provide equivalent conditions to the GΩ-Kato condition.

For the sake of convenience, we make the notational convention that B(z,r) = (Rn ∪

{∞})\B(0,1/r) and

(2.1)

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y) =

∫

Ω\B(0,1/r)
GΩ(x,y)dµ(y),

when z = ∞. Since GΩ(·,y) vanishes continuously on ∂ ∞Ω for each y ∈ Ω by the assump-

tion that Ω is regular for the Dirichlet problem, we note that GΩ[µ] is extended to Ω
∞

as

a lower semicontinuous function on Ω
∞

, by assigning its value 0 on ∂ ∞Ω.

Lemma 2.1. Let µ ∈ M+(Ω). Then the following are equivalent:

(a) µ satisfies the GΩ-Kato condition,

(b) lim
r→0+

(
sup
x∈Ω

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y)

)
= 0 for any z ∈ Ω

∞
,

(c) lim
r→0+

(
sup

z∈Ω
∞

(
sup
x∈Ω

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y)

))
= 0.

Proof. (a) ⇒ (b). Let z∈Ω. We see from the domination principle ( [1, Theorem 5.1.11])

that

sup
x∈Ω

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y) = sup

x∈Ω∩B(z,r)

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y)

≤ sup
x∈Ω∩B(z,r)

∫

Ω∩B(x,2r)
GΩ(x,y)dµ(y).

By (1.5), the right hand side goes to zero as r → 0+. The case z = ∞ of (b) is equivalent

to (1.6) by our convention (2.1). Hence (b) follows.

(b) ⇒ (c). We only consider the case where Ω is unbounded. An argument below can

be modified easily to the case of bounded domains. Let ε > 0. For each z ∈ Ω
∞

, we find

rz > 0 such that

sup
x∈Ω

∫

Ω∩B(z,2rz)
GΩ(x,y)dµ(y)< ε.

Since Ω
∞

is compact, there exist z1, . . . ,zℓ−1 ∈Ω and zℓ =∞ such that Ω
∞
⊂

⋃ℓ
i=1 B(zi,ri),

where ri := rzi
and B(zℓ,rℓ) := (Rn ∪{∞})\B(0,1/rℓ). Let δ := min{r1, . . . ,rℓ,1/(2rℓ)}
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and let w ∈ Ω
∞

. Then there is j ∈ {1, . . . , ℓ} such that w ∈ B(z j,r j). If j ∈ {1, . . . , ℓ−1},

then B(w,δ )⊂ B(w,r j)⊂ B(z j,2r j), and so

sup
x∈Ω

∫

Ω∩B(w,δ )
GΩ(x,y)dµ(y)≤ sup

x∈Ω

∫

Ω∩B(z j,2r j)
GΩ(x,y)dµ(y) < ε.

If j = ℓ, then B(w,δ )⊂ (Rn ∪{∞})\B(0,1/(2rℓ)) = B(zℓ,2rℓ), and so

sup
x∈Ω

∫

Ω∩B(w,δ )
GΩ(x,y)dµ(y) ≤ sup

x∈Ω

∫

Ω∩B(zℓ,2rℓ)
GΩ(x,y)dµ(y)< ε.

These yield that

sup
w∈Ω

∞

(
sup
x∈Ω

∫

Ω∩B(w,δ )
GΩ(x,y)dµ(y)

)
< ε,

and hence (c) follows.

(c) ⇒ (a). This follows by taking x = z ∈ Ω and z = ∞. �

As above, the finite covering argument yields the following.

Lemma 2.2. Let µ ∈ M+(Ω) satisfy the GΩ-Kato condition. Then GΩ[µ] ∈ L∞(Ω).

The restriction of µ to a Borel set E is denoted by µ|E .

Lemma 2.3. Let µ ∈ M+(Ω) and c3 > 0. Then the following are equivalent:

(a) µ satisfies the GΩ-Kato condition,

(b) GΩ[µ|E ] ∈C(Ω
∞
) for any Borel subset E of Ω,

(c) GΩ[µ] ∈C(Ω
∞
),

(d) the family {GΩ[ψ dµ] : ψ ∈ Ψ} is equicontinuous on Ω
∞

, where

Ψ := {ψ ∈ L∞(Ω) : 0 ≤ ψ ≤ c3 a.e. on Ω}.

Moreover, in this case, GΩ[ψ dµ] vanishes continuously on ∂ ∞Ω for each ψ ∈ Ψ.

Proof. (d) ⇒ (c). Trivial.

(c) ⇒ (b). As mentioned in front of Lemma 2.1, GΩ[µ|E ] has a lower semicontinuous

extension to Ω
∞

. Also, GΩ[µ|E ] = GΩ[µ]−GΩ[µ|Ω\E ] and the right hand side is upper

semicontinuous on Ω
∞

. Therefore GΩ[µ|E ] ∈C(Ω
∞
).

(b) ⇒ (a). Let z∈Ω. Observe that µ({z})= 0 since µ({z})GΩ(z,z)≤GΩ[µ](z)<+∞.

By the absolutely continuity of integrals, we have

(2.2) lim
r→0+

∫

Ω∩B(z,r)
GΩ(x,y)dµ(y) = 0 for each x ∈ Ω

∞
.

This is true for z ∈ ∂ ∞Ω by the same reasoning. Since GΩ[µ|Ω∩B(z,r)] ∈C(Ω
∞
) for each

r > 0, the Dini theorem ensures that the convergence in (2.2) is uniform for x ∈ Ω
∞

. Thus

(a) follows from Lemma 2.1.

(a) ⇒ (d). We only consider the case Ω 6= R
n. The case Ω = R

n can be handled

similarly if replacing δΩ(z) to 1 below. Let ψ ∈ Ψ, let z ∈ Ω, let 0 < κ < 1 and let ε > 0.

Applying the Harnack inequality to the positive harmonic function GΩ(·,y) on Ω \ {y},

we see that there exists a function c : (0,1)→ (0,+∞) satisfying c(κ)→ 0 as κ → 0, and

1

1+ c(κ)
GΩ(z,y)≤ GΩ(x,y)≤ {1+ c(κ)}GΩ(z,y)
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for all x ∈ B(z,κ2δΩ(z)) and y ∈ Ω\B(z,κδΩ(z)). Therefore, for all x ∈ B(z,κ2δΩ(z)),
∫

Ω\B(z,κδΩ(z))
|GΩ(x,y)−GΩ(z,y)|dµ(y)≤ c(κ)‖GΩ[µ]‖∞,

and so by Lemma 2.2,
∫

Ω\B(z,κδΩ(z))
|GΩ(x,y)−GΩ(z,y)|dµ(y)≤

ε

2
,

whenever κ is small enough. Also, it follows from Lemma 2.1 that
∫

B(z,κδΩ(z))
GΩ(x,y)dµ(y) ≤

ε

4
for all x ∈ Ω,

if κ is sufficiently small. These estimates imply that

|GΩ[ψ dµ](x)−GΩ[ψ dµ](z)| ≤ c3

∫

Ω
|GΩ(x,y)−GΩ(z,y)|dµ(y)≤ c3ε,

whenever x ∈ B(z,κ2δΩ(z)) and κ is sufficiently small. Thus GΩ[ψ dµ] is continuous at

z uniformly for ψ ∈ Ψ. If z ∈ ∂Ω, then by Lemma 2.1 there exists r > 0 such that
∫

Ω∩B(z,r)
GΩ(x,y)dµ(y) < ε for all x ∈ Ω.

Since GΩ[µ|Ω\B(z,r)] ∈C(Ω∩B(z,r)) and vanishes at z, we see that GΩ[µ] vanishes con-

tinuously at z. Hence GΩ[ψ dµ](x) → 0 uniformly for ψ ∈ Ψ as x → z. In the same

way, we can show that GΩ[ψ dµ](x) → 0 uniformly for ψ ∈ Ψ as x → ∞. Hence (d) is

proved. �

3. PROOF OF THEOREM 1.3

The following lower estimate for supersolutions of sublinear elliptic equations and iter-

ated inequality for Green potentials established recently by Grigor’yan and Verbitsky [10]

are helpful tools in our approaches.

Lemma 3.1 ( [10, Theorem 1.3]). Let 0 < q < 1 and µ ∈ M+(Ω). If u ∈ L
q
loc(Ω,dµ) is a

positive solution of the integral inequality u ≥ GΩ[u
q dµ] in Ω, then

u(x)≥ (1−q)
1

1−q GΩ[µ](x)
1

1−q for all x ∈ Ω.

Lemma 3.2 ( [10, Lemma 2.5]). Let µ ∈ M+(Ω) and s ≥ 1. Then

GΩ[µ](x)
s ≤ sGΩ[GΩ[µ]

s−1 dµ](x) for all x ∈ Ω.

Proof of Theorem 1.3. Let u be any bounded solution of (1.1). Then

u(x) = GΩ[u
q dµ](x)+GΩ[ν](x)+H f (x) for x ∈ Ω.

Note from the maximum principle that H f (x)≤ ‖ f‖∞ for x ∈ Ω. If ‖u‖∞ ≥ 1, then

‖u‖∞ ≤ ‖u‖q
∞‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞+‖ f‖∞

≤ ‖u‖q
∞

(
‖GΩ[µ]‖∞ +

‖GΩ[ν]‖∞ +‖ f‖∞

‖u‖
q
∞

)

≤ ‖u‖q
∞(‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞ +‖ f‖∞).

(3.1)

Therefore we obtain the uniform estimate ‖u‖∞ ≤ c2. Substituting this into

u(x)≤ ‖u‖q
∞GΩ[µ](x)+GΩ[ν](x)+H f (x) for x ∈ Ω,
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we can get the upper estimate. Thanks to Lemmas 3.1 and 3.2, we get the lower estimate

u(x)≥ (1−q)
q

1−q GΩ[GΩ[µ]
q

1−q dµ](x)+GΩ[ν](x)+H f (x)

≥ (1−q)
q

1−q (1−q)GΩ[µ](x)
1

1−q +GΩ[ν](x)+H f (x),
(3.2)

as desired. �

4. PROOF OF THEOREM 1.2

First, we give a proof of the necessity in Theorem 1.2. For the sufficiency, we present

two different proofs based on the Schauder fixed point theorem and the method of suc-

cessive approximations.

4.1. A proof of the necessity.

Proof of Theorem 1.2 (necessity). Suppose that (1.1) has a solution u ∈ C(Ω
∞
). Then

GΩ[u
q dµ] = u−GΩ[ν]−H f on Ω

∞
. Since the right hand side is upper semicontinu-

ous on Ω
∞

, we have GΩ[u
q dµ],GΩ[ν] ∈C(Ω

∞
). Appealing to Lemma 2.3, the measures

uq dµ and ν satisfy the GΩ-Kato condition. In order to show that µ satisfies the GΩ-

Kato condition, we need an additional argument. Let z ∈ Ω
∞

and r > 0. For the sake of

simplicity, we write ωr := µ|Ω∩B(z,r). Using Lemmas 3.1 and 3.2, we get for all x ∈ Ω,

GΩ[u
q dωr](x)≥ (1−q)

q
1−q GΩ[GΩ[µ]

q
1−q dωr](x)

≥ (1−q)
q

1−q GΩ[GΩ[ωr]
q

1−q dωr](x)

≥ (1−q)
1

1−q GΩ[ωr](x)
1

1−q .

Since uq dµ satisfies the GΩ-Kato condition as mentioned above, we have

lim
r→0+

(
sup
x∈Ω

GΩ[ωr](x)

)
= 0.

Therefore, by Lemma 2.1, µ satisfies the GΩ-Kato condition as well. �

4.2. A proof based on the Schauder fixed point theorem. In the rest of this section,

we assume that µ,ν ∈ M+(Ω) satisfy the GΩ-Kato condition. We note from Lemma 2.2

that GΩ[µ],GΩ[ν] ∈ L∞(Ω).
Taking Theorem 1.3 into account, we consider the following function class. Let

w0(x) := (1−q)
1

1−q GΩ[µ](x)
1

1−q +GΩ[ν](x)+H f (x) for x ∈ Ω.

We see from (1.7) and the minimum principle that w0 is positive on Ω. With the constant

c2 defined by (1.8), we let

B :=
{

w ∈C(Ω
∞
) : w0(x)≤ w(x) ≤ c2 for x ∈ Ω

}
,

and consider the operator on B defined by

Tf [w](x) :=

{
GΩ[w

q dµ](x)+GΩ[ν](x)+H f (x) for x ∈ Ω,

f (x) for x ∈ ∂ ∞Ω.

We equip C(Ω
∞
) with the uniform norm ‖ ·‖∞, so that it is complete. Also, we see that B

is closed and convex in C(Ω
∞
).

Lemma 4.1. Tf [B]⊂ B.
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Proof. Let w ∈ B. Since Ω is regular for the Dirichlet problem, we have H f ∈ C(Ω
∞
)

and H f (x)→ f (ξ ) as x → ξ ∈ ∂ ∞Ω. This and Lemma 2.3 derive Tf [w] ∈ C(Ω
∞
). Also,

since w(x) ≥ w0(x) ≥ (1− q)
1

1−q GΩ[µ](x)
1

1−q , we can obtain w0(x) ≤ Tf [w](x) ≤ c2 for

all x ∈ Ω by repeating similar arguments to (3.1) and (3.2). Thus the lemma follows. �

Lemma 4.2. Tf [B] is relatively compact in C(Ω
∞
).

Proof. Observe from H f ∈ C(Ω
∞
) and Lemma 2.3 that Tf [B] is equicontinuous on Ω

∞
.

Since Tf [B] is uniformly bounded by Lemma 4.1, this lemma follows from the Ascoli–

Arzelá theorem. �

Lemma 4.3. Tf is continuous on B.

Proof. Let w1,w2 ∈ B. Using the inequality

|aq −bq| ≤ |a−b|q for all a,b ≥ 0,

we have for all x ∈ Ω,

|Tf [w1](x)−Tf [w2](x)| ≤
∫

Ω
GΩ(x,y)|w1(y)−w2(y)|

q dµ(y)

≤ ‖GΩ[µ]‖∞‖w1 −w2‖
q
∞.

Taking the supremum for x ∈Ω on the left hand side yields the continuity of Tf on B. �

Proof of Theorem 1.2 (sufficiency). By virtue of Lemmas 4.1, 4.2 and 4.3, we can apply

the Schauder fixed point theorem to get u ∈ B satisfying Tf [u] = u on Ω
∞

. Since u(x) ≥
w0(x)> 0 for all x ∈ Ω, this u is the desired one. �

4.3. A proof based on the method of successive approximations. An idea of the fol-

lowing proof is based on Verbitsky [21] and the second named author and Verbitsky [18].

Proof of Theorem 1.2 (sufficiency). We define a sequence {u j} inductively by

u0(x) := (1−q)
1

1−q GΩ[µ](x)
1

1−q ,

u j(x) := GΩ[u
q
j−1 dµ](x)+GΩ[ν](x)+H f (x) for j ∈ N.

Then u1 > 0 in Ω by (1.7). Also, by Lemma 3.2, we have for all x ∈ Ω,

u1(x)≥ GΩ[u
q
0 dµ](x) = (1−q)

q
1−q GΩ[GΩ[µ]

q
1−q dµ](x)

≥ (1−q)
q

1−q (1−q)GΩ[µ](x)
1

1−q = u0(x).

By induction, we see that {u j} is nondecreasing. Also,

‖u j‖∞ ≤ ‖u j−1‖
q
∞‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞ +‖ f‖∞ for j ∈ N.

Since GΩ[µ],GΩ[ν] ∈ L∞(Ω) by Lemma 2.2, this implies that {u j} ⊂ L∞(Ω) and

‖u j‖∞ ≤ ‖u j‖
q
∞‖GΩ[µ]‖∞ +‖GΩ[ν]‖∞+‖ f‖∞,

which derives ‖u j‖∞ ≤ c2 by the same way as in (3.1). Therefore {u j} converges point-

wisely to a positive u ∈ L∞(Ω). The monotone convergence theorem shows that u(x) =
GΩ[u

q dµ](x)+GΩ[ν](x)+H f (x) for all x ∈ Ω, which also yields u ∈C(Ω
∞
) and u = f

on ∂ ∞Ω by Lemma 2.3. This completes the proof. �

Remark 4.4. The solution u obtained in the above proof is minimal in the sense that u ≤ v

in Ω for any solution v ∈C(Ω
∞
) of (1.1). In fact, u0 ≤ v in Ω by Lemma 3.1, and, in view

of the definition of u j, we can get inductively that u j ≤ v in Ω.
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5. PROOF OF THEOREM 1.5

We first recall some basic notion of Sobolev spaces (see [11, 17] for example). The

Sobolev space W 1,2(Ω) consists of all functions u∈ L2(Ω) such that ‖∇u‖∈ L2(Ω), where

∇u is the vector of weak partial derivatives of u of order 1. The corresponding local space

W
1,2
loc (Ω) is the set of all functions u in Ω such that the restriction u|D ∈W 1,2(D) for every

relatively compact open subset D of Ω. By W
1,2
0 (Ω) and Ẇ

1,2
0 (Ω), we denote the closures

of C∞
0 (Ω) with respect to the usual Sobolev norm and the seminorm (1.9), respectively.

Then W
1,2
0 (Ω)⊂ Ẇ

1,2
0 (Ω)⊂W

1,2
loc (Ω). It is known that u∈W

1,2
loc (Ω) has a quasicontinuous

representative ũ, namely, ũ = u a.e. in Ω and, for each ε > 0, there is an open set O ⊂ Ω
such that cap2(O)< ε and the restriction ũ|Ω\O is finite and continuous on Ω\O .

Let Ẇ−1,2(Ω) denote the dual space to Ẇ
1,2
0 (Ω). The following result is due to Brezis

and Browder [4] (cf. [17, Theorem 2.39]).

Lemma 5.1 ( [4]). Let µ ∈ Ẇ−1,2(Ω)∩M+(Ω) and u ∈ Ẇ
1,2
0 (Ω). Then ũ ∈ L1(Ω,dµ)

and

〈µ,u〉=

∫

Ω
ũdµ.

Lemma 5.2 ( [20, Lemma 5.4]). Let 0 < q < 1 and µ,ν ∈ M+(Ω). Suppose that there

exists a positive supersolution u ∈ L
q
loc(Ω,dµ)∩Ẇ

1,2
0 (Ω) of −∆u = µuq +ν in Ω. Then

−∆u ∈ Ẇ−1,2(Ω)∩M+(Ω) and ν ∈ Ẇ−1,2(Ω).

Lemma 5.3. Assumptions are the same as in Theorem 1.5. If u,u ∈ C(Ω
∞
)∩Lq(Ω,dµ)

are solutions of (1.1) such that u ≤ u in Ω, then u = u in Ω.

Proof. When µ(Ω)= 0, the equation in (1.1) becomes −∆u= ν , and therefore the unique-

ness of (1.1) is well known. Let us consider the case µ(Ω)> 0. Since u and u are bounded

and superharmonic in Ω, it follows from [11, Corollary 7.20] that u,u ∈W
1,2
loc (Ω) and

∫

Ω
∇u ·∇φ dx =

∫

Ω
uqφ dµ +

∫

Ω
φ dν,(5.1)

∫

Ω
∇u ·∇φ dx =

∫

Ω
uqφ dµ +

∫

Ω
φ dν(5.2)

for all φ ∈C∞
0 (Ω). Note also that u = f = u on ∂ ∞Ω.

Let D be a relatively compact open subset of Ω which is regular for the Dirichlet prob-

lem. Then the restrictions u,u ∈W 1,2(D)∩C(D). Set

w := u−HD
u and w := u−HD

u ,

where HD
u stands for the Perron–Wiener–Brelot solution of (1.3) with Ω = D and f = u.

Note that w and w depend on D, as we take limits of those as D → Ω at the last step. We

see from [11, Corollary 9.29] that w,w ∈W
1,2
0 (D)∩C(D) and these are positive in D by

the minimum principle. Moreover, since ∆(w−w) = ∆(u−u) = µ(uq −uq) ≥ 0 in D in

the distributional sense, we have w ≤ w in D by the maximum principle. Also, (5.1) and

(5.2) yield that for all φ ∈C∞
0 (D),

∫

D
∇w ·∇φ dx =

∫

D
uqφ dµ +

∫

D
φ dν,(5.3)

∫

D
∇w ·∇φ dx =

∫

D
uqφ dµ +

∫

D
φ dν.(5.4)
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By Lemma 5.2, we see that Radon measures uq dµ , uq dµ and ν belong to Ẇ−1,2(D). Thus

Lemma 5.1 ensures that (5.3) and (5.4) are valid for all φ ∈ Ẇ
1,2
0 (D)∩C(D). Applying

(5.3) with φ = w and (5.4) with φ = w, we have
∫

D
∇w ·∇wdx =

∫

D
uqwdµ +

∫

D
wdν,

∫

D
∇w ·∇wdx =

∫

D
uqwdµ +

∫

D
wdν.

Subtracting in each side, we get

(5.5)

∫

D
(uqw−uqw)dµ =

∫

D
(w−w)dν ≤ 0.

By the definitions of w and w, we see that

(5.6) uqw−uqw = uquq(u1−q −u1−q)+HD
u (uq −uq)−uq(HD

u −HD
u ) in D.

Thus, by (5.5) and (5.6),
∫

D
uquq(u1−q −u1−q)dµ +

∫

D
HD

u (uq −uq)dµ ≤
∫

D
uq(HD

u −HD
u )dµ.

Note that 0 ≤ HD
u (uq − uq) ≤ ‖u‖∞uq and 0 ≤ uq(HD

u −HD
u ) ≤ ‖u− u‖∞uq in D, and

uq ∈ L1(Ω,dµ) by assumption. Since HD
u →Hu =H f and HD

u →Hu =H f as D expands to

Ω (see [1, Theorem 6.3.10]), it follows from the monotone convergence and the Lebesgue

dominated convergence theorems that
∫

Ω
uquq(u1−q −u1−q)dµ +

∫

Ω
H f (u

q −uq)dµ ≤ 0.

Both integrands on the left hand side are nonnegative. Therefore u = u µ-a.e. in Ω. By

the integral representations (1.2) of u and u, we conclude that u = u in Ω. This completes

the proof. �

We need the following characterization of weighted norm inequalities established by

Verbitsky.

Lemma 5.4 ( [21, Theorem 1.1]). Let p > 1, let 0 < r < p and let µ ∈ M+(Ω). Then

there exists a constant c > 0 such that

‖GΩ[ψ dµ]‖Lr(Ω,dµ) ≤ c‖ψ‖Lp(Ω,dµ) for ψ ∈ Lp(Ω,dµ)

if and only if GΩ[µ] ∈ L
pr

p−r (Ω,dµ).

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. The necessity follows immediately from (1.2) and the lower esti-

mate in Theorem 1.3. Let us show the sufficiency. As in the proof of Theorem 1.2 in Sec-

tion 4.3, we construct a nondecreasing sequence {u j} converging to a solution u ∈C(Ω
∞
)

of (1.1). We claim that {u j} ⊂ Lγ(Ω,dµ). In fact, u0 ∈ Lγ(Ω,dµ) by assumption. If

u j−1 ∈ Lγ(Ω,dµ), then Lemma 5.4 with r = γ and p = γ
q

gives

‖u j‖Lγ(Ω,dµ) ≤ ‖GΩ[u
q
j−1 dµ]‖Lγ (Ω,dµ)+‖GΩ[ν]+H f‖Lγ(Ω,dµ)

. ‖u j−1‖
q

Lγ (Ω,dµ)
+‖GΩ[ν]+H f‖Lγ(Ω,dµ) <+∞.

Thus the claim follows by induction. Moreover, since u j−1 ≤ u j, we have in the same

manner as in (3.1)

‖u j‖Lγ(Ω,dµ) . (1+‖GΩ[ν]+H f ‖Lγ(Ω,dµ))
1

1−q <+∞.
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Letting j →+∞, we get u ∈ Lγ(Ω,dµ), as desired.

Finally, we show the uniqueness. As mentioned in Remark 4.4, problem (1.1) has a

minimal solution u ∈C(Ω
∞
)∩Lγ(Ω,dµ). Let u ∈C(Ω

∞
)∩Lγ(Ω,dµ) be any solution of

(1.1). Then u ≤ u in Ω. If γ = q, then u = u in Ω by Lemma 5.3. On the other hand, if

γ = q+1 and f ≡ 0, then u,u ∈ Ẇ
1,2
0 (Ω) by [18, Theorem 1.1]. Therefore u = u in Ω by

their continuity and [20, Theorem 6.3]. This completes the proof. �

6. REMARKS

In this section, we suppose that the dimension n ≥ 3.

6.1. Hölder continuous solution. Let 0 < α < 1. By C0,α(Ω), we denote the set of all

α-Hölder continuous functions in Ω. Also, C
0,α
loc (Ω) stands for the set of all functions

u ∈C0,α(E) for every compact subset E of Ω.

Corollary 6.1. Let 0 < q < 1, let f ∈C+(∂
∞Ω) and let µ,ν ∈ M+(Ω) satisfy (1.6) and

(1.7). Assume that there exist α ∈ (0,1) and c4 > 0 such that the inequality

(6.1) ω(B(x,r)∩Ω)≤ c4rn−2+α for all x ∈ Ω and r > 0

holds for both of ω = µ and ω = ν . Then there exists a solution u ∈C
0,α
loc (Ω)∩C(Ω

∞
) of

(1.1).

Proof. Using the formula:
∫

B(x,r)
‖x− y‖2−n dω(y) = r2−nω(B(x,r))+(n−2)

∫ r

0
t1−nω(B(x, t))dt,

and GΩ(x,y). ‖x−y‖2−n, we see from (6.1) that µ and ν satisfy (1.5). By Theorem 1.2,

there exists a solution u ∈C(Ω
∞
) of (1.1). Let D be a relatively compact open subset of Ω

and let ω := uqµ|D+ν|D. Then the local Riesz decomposition theorem for superharmonic

functions shows that there exists a positive harmonic function h on D such that u(x) =
h(x)+GRn[ω](x) for all x ∈ D. By the way, we have for all x ∈ R

n and r > 0,

ω(B(x,r))≤ ‖u‖q
∞µ(B(x,r)∩D)+ν(B(x,r)∩D)≤ crn−2+α ,

where a constant c depends only on c4, q, f , µ , ν . Therefore it follows from [13, Lemma

6.1] that GRn[ω] ∈C0,α(D), and so u ∈C
0,α
loc (D). �

6.2. Solution whose Dirichlet integral diverges. Recall that if Ω is a bounded Lipschitz

domain in R
n, then there exist positive constants c and β ≤ 1 such that

(6.2) GΩ(x,y)≤ c

(
δΩ(x)

‖x− y‖

)β ( δΩ(y)

‖x− y‖

)β

‖x− y‖2−n for all x,y ∈ Ω.

See [14, Section 2] for example. If Ω has a C1,1-boundary, then we can take β = 1. For

α ∈ R, let

dµα(x) := δΩ(x)
−α dx.

Lemma 6.2. Let Ω be a bounded Lipschitz domain in R
n (n ≥ 3) and let β be as above.

If α < 1+β , then µα satisfies the GΩ-Kato condition.
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Proof. Let x ∈ Ω and r > 0. Put ρ(x) := min{r,δΩ(x)/2}. Then
∫

Ω∩B(x,r)
GΩ(x,y)dµα(y)

=

∫

Ω∩B(x,ρ(x))
GΩ(x,y)δΩ(y)

−α dy+

∫

Ω∩B(x,r)\B(x,ρ(x))
GΩ(x,y)δΩ(y)

−α dy

=: I1 + I2.

If ρ(x) = r, then I2 = 0 and

I1 .

∫

Ω∩B(x,ρ(x))
‖x− y‖2−nδΩ(y)

−α dy . δΩ(x)
−αr2 .

{
r2 if α ≤ 0,

r2−α if α > 0.

We consider the case ρ(x) = δΩ(x)/2. Then I1 . δΩ(x)
2−α . r2−α . Let N be the smallest

natural number such that r ≤ 2NδΩ(x) and take η ∈ ∂Ω so that ‖η − x‖ = δΩ(x). Then

B(x,2kδΩ(x))⊂ B(η,2k+1δΩ(x)) for every integer k ≥ 0. Recall that if τ >−1, then
∫

Ω∩B(ξ ,R)
δΩ(x)

τ dx . Rn+τ for ξ ∈ ∂Ω and R > 0.

These, together with (6.2), yield that

I2 .

∫

Ω∩B(x,r)\B(x,ρ(x))
‖x− y‖2−n−β δΩ(y)

β−α dy

.
N

∑
k=0

(2kδΩ(x))
2−n−β

∫

Ω∩B(x,2kδΩ(x))\B(x,2k−1δΩ(x))
δΩ(y)

β−α dy

.
N

∑
k=0

(2kδΩ(x))
2−n−β (2k+1δΩ(x))

n+(β−α)

. δΩ(x)
2−α

N

∑
k=0

2k(2−α) . r2−α .

Therefore, in any cases, µα satisfies the GΩ-Kato condition (1.5). �

Lemma 6.3. Assume that Ω is a bounded C1,1-domain in R
n (n ≥ 3). Let 0 < q < 1, let

γ > 0 and let α ∈ R. Then problem

(6.3)





−∆u = µα uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

has a solution u ∈ L
q
loc(Ω) with

(6.4)

∫

Ω
‖∇u‖2uγ−1 dx <+∞

if and only if

α <
2γ +1+q

γ +1
.

Proof. In light of [18, Theorem 1.1], it suffices to show that
∫

Ω
GΩ[µα ](x)

γ+q
1+q dµα (x)<+∞ ⇐⇒ α <

2γ +1+q

γ +1
.
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(=⇒) Suppose to the contrary that α ≥ (2γ +1+q)/(γ +1). Then

(2−α)
γ +q

1−q
−α ≤−1.

Since

GΩ[µα ](x)&

∫

Ω∩B(x,δΩ(x)/2)
‖x− y‖2−nδΩ(y)

−α dy & δΩ(x)
2−α

for all x ∈ Ω, we have∫

Ω
GΩ[µα ](x)

γ+q
1−q dµα(x)&

∫

Ω
δΩ(x)

(2−α) γ+q
1−q

−α
dx =+∞.

(⇐=) Note that α < 2. Let x ∈ Ω. We split GΩ[µα ](x) = I1 + I2, where

I1 :=
∫

B(x,δΩ(x)/2)
GΩ(x,y)dµα (y),

I2 :=
∫

Ω\B(x,δΩ(x)/2)
GΩ(x,y)dµα(y).

It is easy to see that I1 . δΩ(x)
2−α . Also, in a manner similar to the proof of Lemma 6.2,

we can estimate I2 as follows. Let N be the smallest natural number such that diamΩ ≤
2NδΩ(x). Then, by (6.2) with β = 1,

I2 .
N

∑
k=0

(2kδΩ(x))
−nδΩ(x)

∫

B(x,2kδΩ(x))
δΩ(y)

1−α dy

. δΩ(x)
2−α

N

∑
k=0

2k(1−α)

. Fα(x) :=






δΩ(x)
2−α if α > 1,

δΩ(x)
2−α log

2diamΩ

δΩ(x)
if α = 1,

δΩ(x) if α < 1.

Therefore GΩ[µα ](x). Fα(x), and so
∫

Ω
GΩ[µα ](x)

γ+q
1+q dµα(x).

∫

Ω
Fα(x)

γ+q
1+q δΩ(x)

−α dx <+∞.

Thus the lemma is proved. �

Corollary 6.4. Assume that Ω is a bounded C1,1-domain in R
n (n ≥ 3). Let 0 < q < 1,

let γ > 0 and let
2γ +1+q

γ +1
≤ α < 2.

Then (6.3) has a solution u ∈C1(Ω)∩C(Ω), but fails to have a solution u ∈ L
q
loc(Ω) with

(6.4).

Proof. By Lemma 6.2 and Theorem 1.2, there exists a solution u ∈C(Ω) of (6.3). Since

µαuq ∈ L∞
loc(Ω), we observe that u ∈C1(Ω). The second assertion follows from Lemma

6.3. �
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