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13 Abstract

14 Ants show remarkable ecological and evolutionary success due to their social life history and 

15 division of labor among colony members. In some lineages, the worker force became 

16 subdivided into morphologically distinct individuals (i.e., minor vs. major workers), allowing 

17 for the differential performance of particular roles in the colony. However, the functional and 

18 ecological significance of these morphological differences are not well understood. Here, we 

19 applied Finite Element Analysis (FEA) to explore the biomechanical differences between 

20 major and minor ant worker mandibles. Analyses were carried out on mandibles of two 

21 Pheidole species, a dimorphic ant genus. We test whether major mandibles evolved to 

22 minimize stress when compared to minors using combinations of the apical tooth and 

23 masticatory margin bites under strike and pressure conditions. Majors performed better in 

24 pressure conditions yet, contrary to our expectations, minors performed better in strike bite 

25 scenarios. Moreover, we demonstrate that even small morphological differences in ant 

26 mandibles might lead to substantial differences in biomechanical responses to bite loading. 

27 These results also underscore the potential of FEA to uncover biomechanical consequences 

28 of morphological differences within and between ant workers.

29 Key words: Cuticle; Division of labor; Finite Element Analysis; Mandible; Trulleum; 

30 Worker polymorphism. 
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31 Introduction

32 The evolution of complex societies in ants followed the advent of reproductive

33 division of labor into distinct castes, in which largely sterile and wingless individuals (i.e., 

34 workers) perform quotidian colony tasks, whereas winged individuals became specialized 

35 for colony reproduction (i.e., queens and males) [1,2]. These changes were accompanied by 

36 substantial morphological differences among reproductives and non-reproductives, with the 

37 latter giving up reproduction and dispersal capacities while experiencing both morphological 

38 and behavioral specialization [3-5]. In some ant lineages, the worker force became further 

39 subdivided into morphologically distinct subcastes (e.g., minor vs. major workers), and such 

40 differences are thought to allow differential performance of particular roles in the colony, 

41 such as seed milling and defense [6,7]. In ants, worker polymorphism evolved in several 

42 lineages, and its role in facilitating task specialization is widely recognized [6-8]. Several 

43 studies explored the genetic [9,10], ecological [11-13], and developmental [14,15] 

44 determinants of worker polymorphism in distinct ant lineages [8]. 

45 The genus Pheidole shows an interesting pattern among its almost 1,200 known 

46 species [16]: the development of dimorphic worker subcastes, represented by major and 

47 minor workers, where majors have a disproportionately larger head [6,15,17]. Pheidole 

48 species are distributed worldwide, but most of their diversity and abundance is concentrated 

49 in the tropics [18,19]. Although Pheidole species are typically considered diet generalists 

50 [17], some species might show some degree of dietary specialization [20]. Of all their food 

51 items, feeding on seeds evolved many independent times and has been indicated as an 

52 important factor to explain the lineage diversification due to behavioral and morphological 

53 adaptations related to seed harvesting and processing [21]. Since majors are specialized in 

54 tasks such as defense and food processing [17,22], their larger heads could be a consequence 

55 of evolutionary pressures towards the specialization to those tasks [23]. However, evidence 

56 gathered so far has been mixed (e.g., [24]). 

57 Understanding the main trends in the morphological evolution of Pheidole has 

58 received considerable attention in the past decade. Different approaches were employed to 

59 understand the evolution of a variety of structures, showing contrasting results to the relative 

60 contributions of size and shape to the morphological diversity of the genus [23,25-28]. 

61 However, little is known about the evolution of mandibular morphology in Pheidole. The 
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62 proximal articulations of ant mandibles are dicondylic, as expected for Pterygota [29], with 

63 both dorsal and ventral joints [30]. Ant worker mandibles are the primary structures used to 

64 interact with their environment (e.g., biting, carrying, excavating, cutting, fighting) [31]. 

65 Mandibular movement is powered by two muscles, the craniomandibularis internus (0md1), 

66 whose contraction closes the mandibles, and the craniomandibularis externus (0md3), 

67 responsible for the opening process [29,30]. The 0md1 fibers attach to the mandible through 

68 a mandibular cuticular projection called mandibular apodeme [32]. The angle of attachment 

69 to the apodeme, combined with sarcomere length, are directly related to the velocity and 

70 force of the mandibular movement [33], so that 0md1 is considered the key to the versatility 

71 of ant mandibles [34,35], being much more developed than the 0md3 [30,32,35]. In Pheidole 

72 majors the 0md1 is remarkably large, with its increase in size compared with minors being 

73 achieved at the expense of the glandular, digestive, and nervous system in the head [36]. 

74 Fibers of the 0md1 also continue to develop even for days after the adult emergence in both 

75 subcastes, and this characteristic correlates to behavioral development in workers [37].

76 Regardless of the importance of mandibles to many aspects of ant life history, little 

77 is known about how morphological variation between species or worker subcastes relates to 

78 bite loading demands, except for one specialized snap-jaw species [38]. Worker 

79 polymorphism can lead to behavioral specialization, mainly through variation in mandible 

80 morphology [39-41], but biomechanical approaches to directly assess this relationship in ants 

81 are scarce [38]. To understand how mandible morphology relates to the biomechanical 

82 demands of biting, it is important to employ approaches that allow for the direct assessment 

83 of bite loading conditions. Finite Element Analysis (FEA) is a numerical method that 

84 approximates the mechanical simulation of loading conditions in structures of interest. By 

85 applying loads and defining the boundary conditions (movement restrictions) on the structure, 

86 FEA estimates the mechanical response, i.e., how stress flows along the structure according 

87 to its shape [42,43]. By employing FEA, one can assess how variation in mandibular 

88 morphology among ant species as well as between castes and subcastes translates into the 

89 capacity of mandibles to deal with bite loading demands [38], as also explored for the 

90 evolution of mandible form in dragonflies [44], stag beetles [45-47], and the functional 

91 morphology of the mouthparts of the reticulated beetle Priacma serrata (LeConte) [48]. 

92 Biomechanical approaches employing FEA have also revealed important aspects of the 
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93 evolution of other insect structures, such as wings and the mechanics of flight [49,50] and 

94 the evolution of insect head capsules [51,52].

95 To improve our understanding of morphological evolution in Pheidole species, and 

96 the role of morphological differentiation to improve task specialization in polymorphic ants, 

97 we simulate several bite scenarios in silico by applying FEA [42,43] on 3D models of minor 

98 and major mandibles of two Pheidole species. We hypothesize that major mandibles are 

99 better able to mitigate stress than those of minors, given their greater robustness. 

100 Alternatively, if each worker subcaste has mandibles optimized to perform different tasks, 

101 majors and minors could perform better in distinct biting scenarios. Interspecific differences 

102 are expected between the more distinct mandibles of majors, which can suggest changes in 

103 the capacity to deal with hard food items, given the specialized roles of those workers [17,22]. 

104 Alternatively, differences between species in minor worker mandibles will suggest that even 

105 small morphological distinctions can lead to biomechanical idiosyncrasies.
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106 Methods

107 Studied species

108 Colonies of Pheidole hetschkoi Emery and P. cf. lucretii were collected in an urban 

109 fragment of Atlantic Forest in Curitiba, Paraná, Brazil (25º26'45.9''S 49º13'55.5''W). Those 

110 species were selected due to their high abundance and ease of collection in the study area, as 

111 well as because of the morphological discrepancies observed mainly between major worker 

112 mandibles, which suggested possible biomechanical idiosyncrasies in the response to bite 

113 loading demands that could affect species dietary amplitudes. Majors of P. hetschkoi are 

114 sturdy, with larger heads (Fig.1a) and more robust mandibles than P. cf. lucretii majors, 

115 which have also smaller heads and are slender (Fig.1c). Minors differ little between species 

116 in mandible shape (Fig. 1b and d). Pheidole hetschkoi harvest and accumulate seeds in their 

117 nests, which was never recorded for P. cf. lucretii (author’s pers. obs.). Voucher specimens 

118 are deposited at the Entomological Collection Padre Jesus Santiago Moure, Department of 

119 Zoology, Federal University of Paraná, Brazil. 

120

121 CT scanning and image processing

122 One specimen of each subcaste and species were scanned with a ZEISS Xradia 510 

123 Versa X-ray microCT scanner at the Okinawa Institute of Science and Technology, using the 

124 software ZEISS Scout and Scan Control System. Exposure time of each specimen varied 

125 from one to five seconds, under an “Air” filter and 4x objective. The voltage was set between 

126 30 and 50keV, from 4 to 5W of power, under a “normal” field mode and intensity levels of 

127 15,000 and 17,000 across the whole specimen. Scan time varied from 27 to 30 minutes, 

128 generating 801 projections from full 360-degree rotations. Model reconstruction was 

129 performed with XMReconstructor, and mandibles segmentation was carried in ITK-snap 

130 3.8.0 [53]. For mesh generation and simplification, we used the software MeshLab [54], and 

131 to generate 3D mandible models for FEA simulations we used the software Fusion 360 

132 (AUTODESK). Ant mandibles are internally hollow, and their cuticle varies in thickness 

133 along the mandible axis, characteristics that can influence mechanical behavior and structure 

134 stiffness, and we incorporated these aspects in our 3D reconstructions to model realistic 

135 mandible morphologies (Supplementary Material File S1).

136
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137 FEA simulations

138 FEA is a numerical method that approximates the mechanical responses of a 

139 structure submitted to loading demands [43] which, in the case of biological structures, could 

140 represent the demands of biting, running, jumping, and so on [42]. Here, the structures of 

141 interest are the Pheidole worker mandibles, and the loading demands refer to different bite 

142 conditions. To quantify the mechanical response of a structure to external loading, FEA 

143 requires the discretization of the structure into small parts, resulting in the finite element 

144 mesh composed of elements of pre-defined shape and a specific number of points, called 

145 nodes, used to solve the equations [55,56]. Displacements on nodes are calculated to estimate 

146 stress and strain based on the structure’s material properties and shape [42]. We used 10-

147 node tetrahedral elements (C3D10) to generate the finite element mesh. The number of 

148 elements varied for each model, as well as the size of each element between subcastes, to 

149 adapt meshes to each morphology (Table 1). 

150 We performed linear static simulations of four distinct biting scenarios for each 

151 species and subcastes, divided into two categories, namely strike and pressure, which reflect 

152 different aspects of mandible movement in terms of force and velocity. In all simulations, we 

153 defined the constrained and loaded regions to capture the mechanical response at the exact 

154 moment that the mandible hits or presses an object. Therefore, we did not intend to simulate 

155 the conditions during the mandibular closing movement. In strike scenarios, a condition 

156 associated with faster movements, we define the mandible articulations with the head (dorsal 

157 - dma and ventral - vma) as the constrained regions, applying static load on the apical tooth 

158 or the masticatory margin (at and mm, Figure 2a). In pressure scenarios, associated with 

159 slower mandible movements but powerful bites, in addition to the mandibular joints, we also 

160 constrained the apical tooth or the mm. We applied the load to the region of 0md1 insertion, 

161 following the direction of contraction (Figure 2b) to simulate the use of mandibles for food 

162 compression. We constrained nodal displacement in x, y, and z directions and applied a 1 N 

163 load uniformly distributed among nodes in all simulations. We modeled the mandible cuticle 

164 as an isotropic and linearly elastic material, setting Young’s modulus as 2.75 GPa and the 

165 Poisson’s ratio as 0.3, based on measures from the cuticle of ant mandibles available in the 

166 literature [57]. Given that we intended to investigate how variation in mandible morphology 

167 affects the mechanical responses to the same loading demands in different biting conditions, 
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168 the only source of variation for each biting simulation between species and workers was the 

169 morphology of the mandibles. Therefore, we can test if some morphologies are better suited 

170 for specific biting conditions. We present FEA stress results based on Tresca failure criterion, 

171 more suitable for brittle fracture, which determines an equivalent stress value under which 

172 the material will possibly fail when subjected to combined load [58]. We used Abaqus 6 

173 (Dassault Systèmes) to run the FEA simulations. Mandible 3D solid models are available on 

174 the supplementary material (Supplementary Material File S1).

175
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176 Results

177 FEA simulations

178 Stress distribution results are shown in Figure 3. Given that the volume of each 

179 model varies, and that we used idealized loads and material properties, we chose not to 

180 interpret absolute stress values. Instead, we will focus on qualitative differences among 

181 simulations by rescaling the stress ranges based on a reference model to facilitate 

182 comparisons between species, subcastes, and biting scenarios (Supplementary Material Fig. 

183 S1). Therefore, relative differences in stress distribution between simulations indicate 

184 mandibular biomechanical distinctions to assimilate loading conditions.

185

186 Major worker mandibles

187 When displacement restrictions were applied on the mandibular joints, those regions 

188 expectedly showed high-stress levels, but stresses had to spread to other regions to be 

189 effectively absorbed. Starting from the dma, stresses dissipate mainly along the mandible’s 

190 external face (ef) and trulleum (tr, Fig. 3c, d, g, h, k, l, o, p). Indeed, the trulleum and the 

191 canthellus (ca, Fig. 3c, d) were important to concentrate stresses coming from the dma in all 

192 simulations. Stresses from the vma spread mainly along the external margin (em) and through 

193 its surroundings along the internal (if) and external faces of the mandible (Fig. 3c, d, g, h, k, 

194 l, o, p). Contrasting different biting scenarios, higher stresses are found when only the apical 

195 tooth is employed, mainly at strike (Fig. 3c, d, k, l). This result indicates that ants face marked 

196 mechanical restrictions whether they only use the apical tooth. Pressure scenarios generated 

197 higher stresses around the basal region of the if (Fig. 3k, l, o, p), whereas strike scenarios 

198 concentrated more stress near the mm, an expected consequence of load application (Fig. 3c, 

199 d, g, h). However, the key aspect related to the different biting scenarios is the higher 

200 stress levels in dma and vma in the strike (Fig. 3c, d, g, h) versus pressure simulations (Fig. 

201 3k, l, o, p), which indicates that strike causes higher mechanical demands in the mandibular 

202 joints than pressure.

203 The main aspect that influences stress dissipation differences between species is the 

204 presence of a groove in the if. When applying a load or constraining the mm of majors, the 

205 mm concavity (defined by the masticatory margin and a parallel carina ventrolaterally) of 

206 both species concentrates stress, but much of the stress spreads in direction to the if. Pheidole 
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207 hetschkoi has a deeper groove near the mm, which acts as an important stress concentrator, 

208 mainly in strike scenarios on the mm (ifg, Fig. 3g). While P. cf. lucretii also shows stress 

209 concentration at the same region in this biting scenario, those stresses spread more 

210 extensively along the if (Fig. 3h), which suggests that its groove is shallow and does not act 

211 as a stress concentrator. The ef curvature also differs between species, but there are no 

212 substantial differences in stress dissipation patterns (Fig. 3c, d, g, h, k, l, o, p). The dissipation 

213 through the ef is more restricted to the articulation surroundings, given the robustness of the 

214 mandibular base, which could explain why there is not a conspicuous effect of the ef 

215 curvature in the stress dissipation pattern between species. Stresses were proportionately 

216 higher in the P. cf. lucretii mandible, through most mandibular regions and all biting 

217 scenarios, but the differences are more striking in pressure scenarios (Fig. 3l, p). 

218

219 Minor worker mandibles

220 There is a distinguished stress concentration around the more constricted region of 

221 the if, a trend that occurs mainly in strike simulations, especially when the load was applied 

222 on the mm (Fig. 3e, f). This constriction acts as a stress concentrator in minors due to their 

223 slender mandibles in comparison to majors. When the results of different species are 

224 compared, P. cf. lucretii simulations show proportionately higher stresses than P. hetschkoi 

225 in general (Fig. 3b, f, j, n), contrary to the expectation that minors mandibles would not differ 

226 in mechanical performance. The overall lower stress levels found in mm strike simulations 

227 of the P. hetschkoi minor seems to reflect the presence of well-developed teeth along its mm. 

228 It is noticeable that the mm teeth absorb great levels of stress (Fig. 3e) so that their absence 

229 leads to higher stress levels along the mandible surfaces in strike simulations of P. cf. lucretii 

230 minor, as well as in majors of both species. The higher stresses along the if in P. cf. lucretii 

231 minor mandible, compared to P. hetschkoi minor mandible, draw attention to the mechanical 

232 limitations associated with worn mandibles, as is the case of the P. cf. lucretii minor mandible 

233 modeled, which can lead to behavioral switches in task performance along the worker 

234 lifetime.

235 Regarding the biting scenarios, pressure in minors results in higher stresses on the 

236 mandibular internal and external faces of both species when compared to majors (Fig. 3i, j, 

237 m, n). As occurred in pressure scenarios for majors, stresses along the if concentrate near the 
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238 base of the mandible, where the load was applied. However, in minors, the mandible base is 

239 slender, which can explain why the mandibular surfaces in minors are proportionately more 

240 stressed in pressure than in strike simulations. 
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241 Discussion

242 In this study, we apply FEA in mandibles of Pheidole workers to simulate different 

243 biting scenarios and investigate how morphological differences in mandible morphology 

244 reflect their responses to those bite loading demands. Our results demonstrate how the 

245 mandible morphology of dimorphic workers can be optimized for particular tasks and draws 

246 attention to the role of specific mandibular regions or structures to deal with the stresses 

247 generated by their bite. Most extant lineages preserve the primitive ant mandible shape, 

248 which consists on a blade whose masticatory margin possess a row of teeth for cutting and 

249 grasping [59], and that can be divided into two components, a basal thick stem, and a distal 

250 triangular blade [32]. Our results indicate that the increased thickness of the mandible basal 

251 region may conform to the high loading demands experienced by the mandibular articulations 

252 with the head. Most of the stresses generated on the apical tooth dissipate along the external 

253 margin towards the mandibular base, in both species and subcastes, avoiding the spread of 

254 considerable stresses through the more delicate mandibular surfaces. In strike simulations on 

255 the masticatory margin, the presence of well-developed teeth results in stresses being 

256 concentrated on the teeth instead of spreading through the internal face of the mandible. 

257 Majors of Pheidole, in which the masticatory margin is toothless, show high levels of stress 

258 in the masticatory margin concavity that is not entirely absorbed in this region. Interestingly, 

259 they have a deeper groove on their mandible internal face, especially P. hetschkoi, which 

260 helps to concentrate stresses near the more robust masticatory margin instead of spreading 

261 through the internal face of the mandible. Although alleviating the stress level in the 

262 mandibular articulations, such stress concentration can be harmful in cases in which the 

263 structure is submitted to cycles of loading, leading to structural failure due to material fatigue 

264 [60].

265 An important aspect of Pheidole mandibular morphology to bite mechanics is the 

266 role of the trulleum and the canthellus on stress concentration. The trulleum is a concavity 

267 near the dma that is delimited by a cuticular ridge called canthellus, a configuration that is 

268 present only in some myrmicine ants [30]. The function of the trulleum was hitherto unknown, 

269 although it was suggested that it could act as an additional stabilization of the mandible [32]. 

270 Here we demonstrate for the first time the importance of the trulleum and the canthellus to 

271 assist in stress concentration along the dma, avoiding the spread of stresses through the more 
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272 delicate mandibular surfaces. This is an interesting discovery, given that the dma seems to 

273 concentrate higher stresses in general than the vma. Given the suggested functional role of 

274 those mandibular regions outlined by our results, it would be interesting to investigate the 

275 biomechanical responses of mandibles that lack the development of this structure to 

276 understand how stresses dissipate from dma without those important stress concentrators, 

277 especially in ant species with similar loading demands as Pheidole mandibles. Although 

278 many ant lineages share the common mandible triangular shape as Pheidole species [32], 

279 other subtle morphological characteristics could assist in stress concentration (e.g., the 

280 cuticular thickness around this region and the mandible curvature pattern). Differences in 

281 mandible use and diet can also influence the amount of stress in the mandibular articulations 

282 (e.g., a diet rich in liquid food represents much lower bite loading demands than one 

283 composed of seeds or arthropods).

284 Our results also underscore how more robust major mandibles are better suited to 

285 deal with pressure biting than the minors' slender mandibles, which surprisingly show higher 

286 performance in strike scenarios. These results agree with the specialized roles played by 

287 major workers in the colony. The behavioral repertoire of major workers is particularly 

288 limited, being frequently restricted to defense and/or food processing [17,22]. Indeed, when 

289 minors are experimentally removed from the colony, major workers take over many of their 

290 tasks, although with decreased efficiency [22,61]. Major mandibles meet the demands to deal 

291 with the processing of hard food items through pressure, with their toothless masticatory 

292 margin spreading bite forces evenly around the food item.  Seed consumption is considered 

293 an important aspect in the evolution of several myrmicine genera, such as Pheidole, 

294 Pogonomyrmex, and Solenopsis [21,62]. However, the influence of granivory on 

295 morphological evolution, especially regarding the dimorphism in the Pheidole worker caste, 

296 is still poorly known [24]. Here, we demonstrate for the first time how ant mandible 

297 morphology can be tuned to deal with the mechanical demands of processing hard food items, 

298 such as seeds and arthropod cuticles, through the better performance of majors' mandibles in 

299 pressure biting conditions. Also, mandibles of P. hetschkoi majors show an even better 

300 performance in pressure bite than P. cf. lucretii, suggesting that majors of P. hetschkoi can 

301 deal better with harder food items than P. cf. lucretii. These results may lead to the possibility 

302 of food partitioning among Pheidole coexisting species and agree with the habit of seed 
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303 consumption by P. hetschkoi, which demands higher bite forces and consequently leads to 

304 higher stress levels on the mandibles.

305 In general, Pheidole minor mandibles show a more serrated and sharped mm, with 

306 well-developed teeth, whereas majors have mandibles that are blunter and that show broader 

307 mm [39]. However, the particular specimen of P. cf. lucretii minor worker included in our 

308 study showed high levels of teeth wear, allowing us to assess the consequences of teeth wear 

309 on bite loadings. Teeth concentrate the forces generated by the masticatory muscles on 

310 smaller areas, with the potential to improve the initiation of fracture in the gripped object 

311 [63]. The importance of teeth on task efficiency was demonstrated for leaf-cutting ants, in 

312 which workers specialized to cut leaves switch to carrying them once their teeth are worn to 

313 a certain degree, reducing their cutting efficiency [64]. In Pheidole, minors perform a wide 

314 range of tasks in the colony [17,22], but information on the role of teeth wear on the 

315 probability of task switch in minors is scarce. Here we demonstrate the possible mechanical 

316 consequences of teeth wear in ant mandibles, comparing the relative amount of stress 

317 generated during masticatory margin strike simulations in P. hetschkoi and P. cf. lucretii 

318 minors. Our results indicated that P. cf. lucretii has relatively higher stresses than P. 

319 hetschkoi, mainly along its internal face of the mandible, which drives higher stresses at the 

320 mandibular articulations with the head. Further studies on task allocation and mandible 

321 morphology in dimorphic ant species can address if teeth wear generates task switch, and 

322 biomechanical studies can reveal how teeth wear reduces task efficiency [64]. Also important 

323 is to understand if cuticle hardening by heavy metal bioaccumulation in the mandible 

324 masticatory margin [57,65] could help mitigate the stress levels reaching the mandibular 

325 faces and articulations, as suggested for genital damage in bush crickets [66].

326 The morphological evolution of Pheidole might be strongly driven by differences in 

327 size [23], which tends to evolve at higher rate than shape [18,25,27]. More recently, studies 

328 applying geometric morphometrics approaches validated the prominence of size to explain 

329 the morphological disparity in the genus but also pointed to different evolutionary rates and 

330 levels of integration between head and mesosoma shape and size [27,28]. Pheidole 

331 morphological diversification seems to be very constrained [23], in contrast to their 

332 ecological disparity [18,67], as reflected in the widespread distribution of the genus 

333 throughout most of the terrestrial ecosystems [19]. Field observations demonstrate that, 
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334 despite the relative morphological resemblance in Pheidole species, they can show 

335 considerable ecological and behavioral diversity [68,69]. Here we demonstrate that even 

336 small morphological differences in mandible shape between species can lead to 

337 biomechanical specialization, mainly in major’s food processing capacity, as suggested by 

338 descriptions of the mandibular morphology variation in Pheidole species [39]. This 

339 biomechanical specialization can expand the diet range of species and contribute to food 

340 partitioning [20,70,71], decreasing the degree of competition and allowing for species 

341 coexistence [72]. 

342 Our results provide a biomechanical basis to understand how mandible 

343 morphological evolution can improve task specialization in polymorphic ants and help 

344 developing a general understanding of form-function relationships in ant mandibles. 

345 Morphological polymorphism in the worker caste can expand the range of prey items that a 

346 species can handle, as demonstrated for some army ants in the genus Eciton [11,12]. In the 

347 highly polymorphic genus Cephalotes, which together with Procryptocerus is Pheidole’s 

348 sister lineage, some workers have the head modified into a flat surface used to obstruct and 

349 close the nest entrance, protecting the colony against invasion [73]. In some fire ants, such 

350 as Solenopsis geminata (Fabricius), the degree of worker polymorphism is associated with 

351 higher levels of division of labor, with major workers being specialized in seed milling 

352 [62,74]. Division of labor in leaf-cutting ants is associated with morphological distinctions 

353 among worker mandibles, as demonstrated for the polymorphic genus Atta [41]. In addition, 

354 refined morphological descriptions of Pheidole workers mandibles suggest that differences 

355 in the masticatory margin can improve task specialization [39]. 

356 Although the role of worker polymorphism for division of labor in ants is well 

357 established [8], we show that, by applying biomechanical approaches we can advance our 

358 understanding about the functional role of morphological disparity, as demonstrated here for 

359 Pheidole workers. Polymorphic ant lineages are ideal models to investigate form-function 

360 relationships, and the morphological differentiation of their mandibles should be studied in 

361 detail, given the importance of this structure to worker interactions with the environment. 

362 Future studies can contribute to our knowledge on the evolution of ant mandibles morphology 

363 by investigating the role of metal bioaccumulation [75-77] and the consequent cuticle 

364 hardening [57,65] in the mechanical response of mandibles to bite loading demands. 
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365 Additionally, biomechanical approaches investigating the variation in bite force in 

366 morphologically polymorphic ant lineages can provide valuable information for the evolution 

367 of task specialization [39], and to understand how mandible morphology can be optimized to 

368 deal with powerful or fast movements [38].

369
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610 Table 1. Size measurements of each worker and characteristics of each finite element mesh.

Specimen Mesh superficial 
area (mm2)

Element 
edge length 

(mm)

Number 
of 

elements

Voxel 
size 
(µm)

Mandible 
length 
(mm)

Head width 
(mm) 

P. hetschkoi 2.35 0.023 449488 5.30876 1.10 1.84

M
aj

or

P. cf. lucretii 1.011 0.023 278634 4.49981 0.85 1.18

P. hetschkoi 0.503 0.0035 881691 3.89985 0.65 0.80

M
in

or

P. cf. lucretii 0.25 0.0035 392790 4.04989 0.47 0.58

611  
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612 Figure captions

613 Fig. 1. 3D models of Pheidole workers heads. Pheidole hetschkoi (a) major and (b) minor 

614 worker. Pheidole cf. lucretii (c) major and (d) minor worker.

615

616 Fig. 2. Loaded and constrained regions in strike (a) and pressure (b) biting simulations. In (a) 

617 and (b), black arrows indicate the direction and region of load, and dashed lines enclose the 

618 constrained regions for each simulation. al: atala; at: apical tooth; bm: basal margin; dma: 

619 dorsal mandibular articulation; ef: external mandibular face; em: external margin; if: internal 

620 face of the mandible; mm: masticatory margin; vma: ventral mandibular articulation; 0md1: 

621 muscle craniomandibularis internus.

622

623 Fig. 3. Tresca stress results (rescaled to range between 0-1) for the four biting scenarios 

624 (rows), from minors and majors of both Pheidole species (columns). Each letter depicts a 

625 distinct simulation. Color represents a proportional value of stress in relation to the maximum 

626 value considered for each simulation, indicated as 1.00, and grey represents extremes values 

627 above the maximum considered. at: apical tooth; ca: canthellus; dma: dorsal mandibular 

628 articulation; ef: external mandibular face; em: external margin; if: internal face of the 

629 mandible; ifg: groove on the internal face of the mandible; mm: masticatory margin; tr: 

630 trulleum; vma: ventral mandibular articulation.

631
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