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1 Introduction

It is generally believed that any consistent theory of quantum gravity on a space-time with
asymptotic boundary should have a holographic dual description in terms of a theory living
on the boundary at infinity. The dual theory can compute all the observables which make
sense in the bulk theory of quantum gravity. In the case of asymptotically flat space-time
the observables are the S-matrix elements and it has been proposed that the dual theory
is a conformal field theory [11–20, 23–25, 31–51], dubbed “celestial conformal field theory
(CCFT)”, which lives on the celestial sphere. The Lorentz group acts on the celestial
sphere as the group of global conformal transformations and when the bulk space-time is
four dimensional, one can show, starting from the subleading soft graviton theorem [10] that
CCFT should have a stress tensor [12–14] which generates local conformal transformations
on the two dimensional celestial sphere. So CCFT should have the full Virasoro symmetry
just like a more conventional two dimensional CFT. But this is not the end of the story.
Since the asymptotic symmetry group in four dimensions contains supertranslations [26–
28], CCFT should also have supertranslation symmetry [2, 5, 7, 8, 29, 30]. On top of that,
there are various other infinite dimensional current algebra symmetries, coming from soft
factorisation theorems, under which CCFT should be invariant [1, 3, 5, 19–22, 61–70]. Now,
the CCFT is supposed to compute bulk scattering amplitudes. So a natural question arises
as to how the bulk scattering amplitudes in four dimensions are constrained by the infinite
dimensional symmetries of the dual CCFT. For recent developments in this direction please
see [3–9].

The study of CCFT is facilitated by going to the Mellin space [31–51]. In Mellin space
scattering amplitudes can be written as the correlation functions of conformal primaries.1

Conformal primaries are Mellin transform of Fock space creation (annihilation) operators
which create (annihilate) asymptotic free particle states in a scattering event. They are
called conformal primaries because under Lorentz transformations, which act on the celes-
tial sphere as global conformal transformations, they transform like primary operators in
a conformal field theory. Let us now briefly describe the main results of this paper.

In this paper we focus on the Maximal Helicity Violating (MHV) gluon scattering
amplitudes in pure Yang-Mills (YM) theory with gauge group G = SU(N). These are
amplitudes of the form 〈− −+ + + · · ·〉, where two gluons have negative helicity and the
rest have positive helicity. Their explicit expressions are given by the famous Parke-Taylor
formula [77]. Now this is the first non-trivial helicity amplitude because at tree level in
pure YM theory, amplitudes of the form 〈−+ + + · · ·〉 with only one negative helicity
gluon and 〈+ + + · · ·〉 with all positive helicity gluons vanish. As a result of this at tree-
level there is no negative helicity soft gluon in the MHV-sector and also, the set of MHV
amplitudes is closed under taking collinear limits. This allows us to define, just like in the
case of gravity [5], an autonomous MHV-sector of the CCFT which computes the MHV
gluon scattering amplitudes. The gluon MHV-sector is characterised by the fact that it is
governed by the G current algebra [1, 61–66] at level zero which arises from the leading

1For a brief review of Mellin amplitudes for gluons please see the appendix A. In this appendix we also
make some comments on the notation used in the paper.
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positive helicity soft gluon theorem. There is also the subleading positive helicity soft gluon
theorem [3, 67–70] which gives rise to another infinite set of currents which play an equally
important role in the theory. The significance of the autonomous MHV sectors for gluons
and gravitons [5] is that they behave somewhat like Minimal models of two dimensional
conformal field theories and hence are exactly solvable.

Let us now consider an n-point MHV amplitude with two negative helicity gluons and
(n−2) positive helicity gluons. The main result of this paper is a system of (n−2) coupled
first order linear partial differential equations satisfied by the tree-level MHV amplitudes.
In Mellin space they are given by,CA2 ∂

∂zi
− hi

n∑
j=1
j 6=i

T ai T
a
j

zi − zj

+1
2

n∑
j=1
j 6=i

εj
(
2h̄j − 1− (z̄i − z̄j) ∂

∂z̄j

)
zi − zj

T aj P
−1
j T ai P−1,−1(i)


〈

n∏
k=1
Oak
hk,h̄k

(zk, z̄k)
〉

MHV

= 0

(1.1)

where i ∈ (1, 2, · · · , n− 2) runs over the (n − 2) positive helicity gluons in the MHV
amplitude. In the above equation, Oa

h,h̄
(z, z̄) is a gluon conformal primary with scaling

dimension (h, h̄) and a is a Lie algebra index. T a is the Lie algebra generator in the adjoint
representation and CA is the quadratic Casimir. We have also introduced the symbol εj
which is ±1 depending on whether Oaj

hj ,h̄j
(zj , z̄j) is outgoing or incoming. The operator

P−1
j acts on a gluon conformal primary Oak

hk,h̄k
(zk, z̄k) as

P−1
j O

ak
hk,h̄k

(zk, z̄k) = Oak
hk− 1

2 ,h̄k−
1
2
(zk, z̄k)δjk (1.2)

Similarly the global time translation generator P−1,−1(i) acts on the i-th positive helicity
gluon conformal primary according to

P−1,−1(i)Oai
hi,h̄i

(zi, z̄i) = εiOaihi+ 1
2 ,h̄i+

1
2
(zi, z̄i) (1.3)

Equation (1.1) can be easily transformed to momentum space and for the momentum
space MHV scattering amplitude it can be written as,CA ∂

∂zi
+
(
ωi

∂

∂ωi
− 1

) n∑
j=1
j 6=i

T ai T
a
j

zi − zj

+
n∑
j=1
j 6=i

εiωi
εjωj

(
σj + ωj

∂
∂ωj

+ (z̄i − z̄j) ∂
∂z̄j

)
zi − zj

T ai T
a
j


〈

n∏
k=1

Aak(εkωk, zk, z̄k, σk)
〉

MHV

= 0

(1.4)

Here the null momentum of an on-shell gluon has been parametrised as

p = εω(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄)
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and ε = ±1 for an outgoing (incoming) gluon. We have also denoted the momentum space
creation (annihilation) operators by Aa(εω, z, z̄, σ) where σ is the helicity of the gluon.
Note that the MHV amplitude in (1.4) includes the overall momentum conserving delta
function.

Now (1.1) or (1.4) are examples of (holographic) constraints on (hard) scattering am-
plitudes coming from the infinite dimensional symmetries of CCFT. They are obtained
in the same way as differential equations for MHV graviton scattering amplitudes were
obtained in [5]. Presumably (1.1) or (1.4), together with the Ward identities coming from
Poincare invariance, can be solved to obtain the MHV gluon scattering amplitudes. Along
this line we make a preliminary check in which we determine the leading gluon-gluon OPE
coefficients from the differential equations and our results match with those of [3, 54].

The origin of equations (1.1) and (1.4) will be discussed in great detail in section 6 but
let us mention a few things before we close this section.

1. The first two terms of (1.1) closely resemble the Knizhnik-Zamolodchikov (KZ) equa-
tion [73] satisfied by the correlation functions of current algebra primaries in WZW
model. The only difference is the prefactor hi in the second term in (1.1) and we also
have to set the level k of the current algebra to 0.

2. In WZW model the scaling dimensions of the primaries are determined in terms of
the level of the current algebra and the representation of the zero mode algebra under
which the primary transforms. But, this is not the case here. (1.1) holds for any value
of the scaling dimension (h, h̄) of the gluon primary. This is consistent with the fact
that in CCFT the scaling dimension ∆ = h+ h̄ of a (hard) primary is a continuously
varying (complex) number and therefore should not be constrained in any way.

3. The third term in (1.1) is an additional contribution coming from the (local) sub-
leading soft gluon symmetry. This has no analog in the usual KZ equation and is
most likely related to the fact that there is no Sugawara stress tensor in CCFT. This
is also very different from pure gravity where the corresponding differential equa-
tions for MHV amplitudes do not have any contribution from the subsubleading soft
graviton theorem.

It will be very interesting to understand the origin of the differential equations (1.1)
or (1.4) from the point of view of Twistor string theory [78–88]. This will also shed more
light on the true nature of the CCFT. We leave these questions for future research.

An outline of this paper is as follows. We begin in section 2 by discussing the action
of Poincare generators on gluon primary operators on the celestial sphere. The definition
of a conformal primary operator is given explicitly in section 2.1. In section 3 we consider
the leading conformal soft gluon theorem which is equivalent to the Ward identity for a
level zero Kac-Moody algebra on the celestial sphere. We specify here the commutators
involving modes of the Kac-Moody current and the Poincare generators. Using the current
algebra Ward identity we also relate here the celestial correlators involving Kac-Moody
descendants to correlation functions of gluon primary operators. Section 3.1 contains the
definition of a primary operator under the current algebra. In section 4 we consider a set
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of currents (Ja,Ka) on the celestial sphere which arise from the subleading conformal soft
gluon theorem. In section 4.1 we derive the OPE between a subleading soft gluon and
a hard gluon primary which yields an important constraint on the OPE of hard gluons
in the subleading conformal soft limit. From this OPE we also extract the definition
of descendants created by modes of (Ja,Ka) and use the Ward identity, corresponding
to the subleading soft gluon theorem, to obtain correlation functions with insertions of
these descendants. In section 4.1 the definition of a primary under the subleading soft
symmetry algebra is provided. Section 4.2 lists various useful commutation relations. In
section 5, we discuss the interpretation of the commutation relations between modes of
the subleading soft symmetry generators in the light of the fact that these generators do
not close to form a Lie algebra in the conventional sense. In sections 6 and (7) we derive
the differential equations (1.1) and (1.4) for tree-level MHV gluon amplitudes in Mellin
space and Fock space respectively. In section 8 we use the differential equation (1.1) to
determine the structure of the leading OPE for gluon primaries in Yang-Mills theory. In
particular, section 8.1 deals with the case where both gluons in the OPE are either incoming
or outgoing and in section 8.2 we consider the case where one of the gluons in the OPE
is outgoing and the other is incoming. In section 9, we illustrate how some descendant
OPE coefficients in the OPE between gluons of opposite helicities can be determined using
the underlying infinite dimensional symmetry algebras. We end the paper with a set of
appendices. Appendix A contains a brief review of celestial amplitudes and comments on
some of the notation used in this paper. In appendix B we present a detailed calculation
of the first subleading correction to the leading celestial OPE of positive helicity gluons
using the Mellin transform of the 5-point tree level MHV gluon amplitude in Yang-Mills
theory. In appendix C we use the 4-point MHV Mellin amplitude to extract the first set
of subleading terms in the OPE between opposite helicity gluon primaries.

2 Poincare invariance

Since the scattering amplitudes are Poincare invariant, generators of the Poincare group act
on the conformal primaries which live on the celestial sphere.2 The Lorentz group SL(2,C)
acts on the celestial sphere as the global conformal group and we denote its generators by(
L0, L±1, L̄0, L̄±1

)
. Their commutation relations are given by,

[Lm, Ln] = (m− n)Lm+n,
[
L̄m, L̄n

]
= (m− n)L̄m+n,

[
Lm, L̄n

]
= 0, m, n = 0,±1

(2.1)
They act on a gluon conformal primary Oa

h,h̄
(z, z̄) as,[

L1,Oah,h̄(z, z̄)
]

=
(
z2∂+ 2hz

)
Oah,h̄(z, z̄),

[
L0,Oah,h̄(z, z̄)

]
=hOah,h̄(z, z̄),

[
L−1,Oah,h̄(z, z̄)

]
=∂Oah,h̄(z, z̄)

(2.2)[
L̄1,Oah,h̄(z, z̄)

]
=
(
z̄2∂̄+ 2h̄z̄

)
Oah,h̄(z, z̄),

[
L̄0,Oah,h̄(z, z̄)

]
= h̄Oah,h̄(z, z̄),

[
L̄−1,Oah,h̄(z, z̄)

]
= ∂̄Oah,h̄(z, z̄)

(2.3)
2For a brief review of conformal primaries and Mellin amplitudes for gluons and some comments on

notations used in this paper, please see the appendix A.
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The four global space-time translation generators will be denoted by Pm,n wherem,n =
0,±1 and they are mutually commuting[

Pm,n, Pm′,n′
]

= 0 (2.4)

The commutation relations between Lorentz and global space-time translation gener-
ators are given by,

[Ln, Pm′,n′ ] =
(
n− 1

2 −m′
)
Pm′+n,n′ [L̄n, Pm′,n′ ] =

(
n− 1

2 − n′
)
Pm′,n′+n (2.5)

The translation generators Pm,n act on conformal primaries according to[
Pm,n,Oah,h̄(z, z̄)

]
= εzm+1z̄n+1Oa

h+ 1
2 ,h̄+ 1

2
(z, z̄) (2.6)

where ε = ±1 for an outgoing (incoming) gluon.

2.1 Poincare primary

It follows from the definition of a conformal primary operator that the following standard
relations hold

L1Oah,h̄(0) = L̄1Oah,h̄(0) = 0, L0Oah,h̄(0) = hOa
h,h̄

(0), L̄0Oah,h̄(0) = h̄Oa
h,h̄

(0) (2.7)

but a Poincare primary [8] must also satisfy the additional conditions

P0,−1Oah,h̄(0) = P−1,0Oah,h̄(0) = P0,0Oah,h̄(0) = 0 (2.8)

which follow from (2.6).

3 Leading soft gluon

The leading conformally soft [52–56]3 gluon operator ja(z) with positive helicity is de-
fined as,

ja(z) = lim
∆→1

(∆− 1)Oa∆,+(z, z̄) (3.1)

where Oa∆,+(z, z̄) is a positive helicity gluon primary with scaling dimension ∆. The soft
operator ja(z) is a Kac-Moody current [1, 61–66] whose correlation function with a collec-
tion of gluon primaries is given by the leading soft gluon theorem and has the standard
form in Mellin space,〈

ja(z)
n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= −
n∑
k=1

T ak
z − zk

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

(3.2)

where
T akO

ai
hi,h̄i

(z, z̄) = ifaaibOb
hi,h̄i

(zi, z̄i)δik (3.3)

3Conformally soft graviton theorems have been studied in [52, 57, 58].
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as gluons transform in the adjoint representation. Now let us consider the modes jan of the
above current. They satisfy the algebra[

jam, j
b
n

]
= −ifabcjcm+n (3.4)

and act on a gluon primary as[
jam,Obh,h̄(z, z̄)

]
= −ifabcznOc

h,h̄
(z, z̄) (3.5)

We note that the level of the current algebra here is zero which will be further justified
by the form of the gluon-gluon OPE [9] in the MHV sector.

The commutation relations with the (Lorentz) global conformal generators are given by,

[Lm, jan] = −njam+n,
[
L̄m, j

a
n

]
= 0, m = 0,±1 (3.6)

Similarly, the commutators with the generators {Pm,n,m, n = 0,±1} of global space-
time translations are given by, [

Pm,n, j
a
p

]
= 0 (3.7)

For our purposes an important role is played by the correlation functions of the de-
scendants ja−pObh,h̄(z, z̄), p ≥ 1 with a collection of gluon primaries. These are given by

〈
ja−pObh,h̄(z, z̄)

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= J a
−p(z)

〈
Ob
h,h̄

(z, z̄)
n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

(3.8)

where the operator J a
−p(z) is defined as,

J a
−p(z)

〈
Ob
h,h̄

(z, z̄)
n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

=
n∑
k=1

T ak
(zk − z)p

〈
Ob
h,h̄

(z, z̄)
n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉
, p ≥ 1

(3.9)

3.1 Leading current algebra primary

A current algebra primary Oa
h,h̄

(z, z̄) is defined by the standard conditions

janObh,h̄(0) = 0, ∀n ≥ 1 (3.10)

and
ja0Obh,h̄(0) = −T aOb

h,h̄
(0) = −ifabcOc

h,h̄
(0) (3.11)

4 Subleading soft gluon

The subleading conformally soft [52–56] gluon operator S+a
1 (z, z̄) with positive helicity is

defined as,
S+a

1 (z, z̄) = lim
∆→0

∆Oa∆,+(z, z̄) (4.1)
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where Oa∆,+(z, z̄) is a positive helicity gluon primary with scaling dimension ∆. The cor-
relation function of S+a

1 (z, z̄) with a collection of primary gluon operators is given by the
subleading soft gluon theorem in Mellin space [3],〈

S+a
1 (z, z̄)

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= −
n∑
k=1

εk
z − zk

(
−2h̄k + 1 + (z̄ − z̄k)∂̄k

)
T ak P

−1
k

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉 (4.2)

where
T akO

ai
hi,h̄i

(zi, z̄i) = ifaaib Ob
hi,h̄i

(zi, z̄i) δki (4.3)

and
P−1
k O

ai
hi,h̄i

(zi, z̄i) = Oai
hi− 1

2 ,h̄i−
1
2
(zi, z̄i) δki (4.4)

Here εk = ±1 depending on whether the gluon primary Oak
hk,h̄k

(zk, z̄k) is outgoing or
incoming. For simplicity of notation we keep the additional label ε implicit when we write
the correlation functions of the gluons.

Now following [3, 5] we expand the R.H.S of (4.2) in powers of the coordinate z̄ of the
subleading conformally soft gluon operator S+a

1 (z, z̄) and define two currents Ja(z) and
Ka(z) whose Ward identities are given by,〈

Ja(z)
n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= −
n∑
k=1

εk
z − zk

(
−2h̄k + 1− z̄k∂̄k

)
T ak P

−1
k

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉
(4.5)

and 〈
Ka(z)

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= −
n∑
k=1

εk
z − zk

∂̄k T
a
k P
−1
k

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

(4.6)

This is equivalent to expanding the soft operator S+a
1 (z, z̄) as,

S+a
1 (z, z̄) = Ja(z) + z̄ Ka(z) (4.7)

We can now define the modes of the currents, Jan(z) and Ka
n(z), in the standard way.

Their actions on a gluon primary are given by the following commutation relations,[
Jan ,Obh,h̄(z, z̄)

]
= −εzn

(
−2h̄+ 1− z̄∂̄

)
T aP−1Ob

h,h̄
(z, z̄)

= −iεfabczn
(
−2h̄+ 1− z̄∂̄

)
Oc
h− 1

2 ,h̄−
1
2
(z, z̄)

(4.8)

and [
Ka
n,Obh,h̄(z, z̄)

]
= −εzn∂̄ T aP−1Ob

h,h̄
(z, z̄) = −iεfabczn∂̄ Oc

h− 1
2 ,h̄−

1
2
(z, z̄) (4.9)

Although the generators (Jan ,Ka
n) do not form a Lie algebra under commutation, we

will see in section 5 that when the commutators
[
Jam, J

b
n

]
,
[
Jam,K

b
n

]
and

[
Ka
m,K

b
n

]
act on

a gluon conformal primary or its descendants, the results are given by simple expressions
which look almost like closure. This is crucial for our purpose in this paper.
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4.1 OPE between S+a
1 (z, z̄) and a hard gluon conformal primary

Suppose we want to compute the OPE between S+a
1 (z, z̄) and the gluon primary Oa1

h1,h̄1
(z1, z̄1).

For this we have to expand the R.H.S of (4.2) in powers of (z − z1) and (z̄ − z̄1). So as
(z, z̄)→ (z1, z̄1) we can write,〈

S+a
1 (z, z̄)

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

=

− ε1
z − z1

(
−2h̄1 + 1

)
T a1 P

−1
1 +

∞∑
p=1

(z − z1)p−1J a−p(1)

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

+ (z̄ − z̄1)

− ε1
z − z1

∂̄1T
a
1 P
−1
1 +

∞∑
p=1

(z − z1)p−1Ka−p(1)

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

(4.10)

where the differential operators J a−p(1) and Ka−p(1) are defined as,

J a−p(1)
〈

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

= −

 n∑
j=2

εj
2h̄j − 1 + (z̄j − z̄1)∂̄j

(zj − z1)p T aj P
−1
j

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉
, p ≥ 1

(4.11)
and

Ka−p(1)
〈

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

=

 n∑
j=2

εj
∂̄j

(zj − z1)pT
a
j P
−1
j

〈 n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉
, p ≥ 1

(4.12)
From (4.10) the OPE between Sa1 (z, z̄) and Oa1

h1,h̄1
(z1, z̄1) can be extracted to be,

S+a
1 (z, z̄)Oa1

h1,h̄1
(z1, z̄1)

= − ε1
z − z1

(
−2h̄1 + 1

)
T a1 P

−1
1 O

a1
h1,h̄1

(z1, z̄1) +
∞∑
p=1

(z − z1)p−1
(
Ja−pO

a1
h1,h̄1

)
(z1, z̄1)

− (z̄ − z̄1)

ε1 ∂̄1
z − z1

T a1 P
−1
1 O

a1
h1,h̄1

(z1, z̄1) +
∞∑
p=1

(z − z1)p−1
(
Ka
−pO

a1
h1,h̄1

)
(z1, z̄1)


(4.13)

where the correlation functions with the insertion of the descendants Ja−pO
a1
h1,h̄1

(z1, z̄1) and
Ka
−pO

a1
h1,h̄1

(z1, z̄1) are given by (4.11) and (4.12), respectively.
Now (4.13) acts as a boundary condition on the OPE of two hard gluon primaries

one which is positive helicity. Using the definition (4.1) of the subleading conformally soft
gluon S+a

1 (z, z̄) we can write,

lim
∆→0

∆Oa∆,+(z, z̄)Oa1
h1,h̄1

(z1, z̄1) = (4.13) (4.14)

As we will see (4.14) is a nontrivial constraint on the OPE of two hard gluons. In-
side correlation functions (4.14) means that we first take the OPE limit (z, z̄) → (z1, z̄1)
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and then take the subleading conformal soft limit. In that limit we should always get
back (4.10).

We also note that the operator product expansion (4.13) leads to the following condi-
tions which are satisfied by any gluon primary Oa

h,h̄
(z, z̄),

JanOah,h̄(0) = 0, Ja0Obh,h̄(0) = −iεfabc(−2h̄+ 1)Oc
h− 1

2 ,h̄−
1
2
(0), ∀n > 0 (4.15)

and
Ka
nOah,h̄(0) = 0, Ka

0Obh,h̄(0) = −iεfabc∂̄Oc
h− 1

2 ,h̄−
1
2
(0), ∀n > 0 (4.16)

4.2 Commutation relations involving subleading generators

In this section we collect some useful commutation relations. These are the “classical”
commutators which can be easily obtained from the action of the generators on a primary
operator. For the convenience of the reader we gather here the actions of the Poincare and
current algebra generators on a gluon primary,[

L1,Oah,h̄(z, z̄)
]

=
(
z2∂ + 2hz

)
Oa
h,h̄

(z, z̄),
[
L−1,Oah,h̄(z, z̄)

]
= ∂Oa

h,h̄
(z, z̄) (4.17)[

L̄1,Oah,h̄(z, z̄)
]

=
(
z̄2∂̄ + 2h̄z̄

)
Oa
h,h̄

(z, z̄),
[
L̄−1,Oah,h̄(z, z̄)

]
= ∂̄Oa

h,h̄
(z, z̄) (4.18)[

Pm,n,Oah,h̄(z, z̄)
]

= εzm+1z̄n+1Oa
h+ 1

2 ,h̄+ 1
2
(z, z̄) (4.19)[

jan,Obh,h̄(z, z̄)
]

= −iznfabcOc
h,h̄

(z, z̄) (4.20)[
Jan ,Obh,h̄(z, z̄)

]
= −iεfabczn

(
−2h̄+ 1− z̄∂̄

)
Oc
h− 1

2 ,h̄−
1
2
(z, z̄) (4.21)[

Ka
n,Obh,h̄(z, z̄)

]
= −iεfabczn∂̄Oc

h− 1
2 ,h̄−

1
2
(z, z̄) (4.22)

where ε = ±1 depending on whether the gluon is outgoing or incoming. Using these we
arrive at the following commutation relations between generators,

[L1, J
a
n ] = −(n+ 1)Jan+1, [L0, J

a
n ] =

(
n− 1

2

)
Jan , [L−1, J

a
n ] = −nJan−1 (4.23)

[
L̄1, J

a
n

]
= 0,

[
L̄0, J

a
n

]
= −1

2J
a
n ,

[
L̄−1, J

a
n

]
= −Ka

n (4.24)

[L1,K
a
n] = −(n+ 1)Ka

n+1, [L0,K
a
n] =

(
n− 1

2

)
Ka
n, [L−1,K

a
n] = −nKa

n−1 (4.25)

[
L̄1,K

a
n

]
= Jan ,

[
L̄0,K

a
n

]
= 1

2K
a
n,

[
L̄−1,K

a
n

]
= 0 (4.26)

[Pm,−1, J
a
n ] = jam+n+1, [Pm,0, Jan ] = 0, m = 0,−1 (4.27)

[Pm,−1,K
a
n] = 0, [Pm,0,Ka

n] = jam+n+1, m = 0,−1 (4.28)[
jam, J

b
n

]
= −ifabcJcm+n,

[
jam,K

b
n

]
= −ifabcKc

m+n (4.29)

5 How to interpret the commutators of subleading symmetry generators

It is well known [67] that the subleading symmetry generators Jan and Ka
n do not close

under commutation. So they are not the generators of a Lie algebra symmetry in the
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ordinary sense. To see this we note that the scaling dimensions of Jan and Ka
n are given by

(−n− 1/2,−1/2) and (−n− 1/2, 1/2), respectively. Therefore the antiholomorphic scaling
dimension of the commutator amongst these generators must be an integer. But there is
no generator with integer antiholomorphic scaling dimension that can appear here and so
the generators (Jam,Ka

m) cannot form a Lie algebra.
Now, at least for the purposes of this paper, what we really need to know is how the

commutator of two subleading generators acts on a gluon primary or its descendants. For
example, in the OPE of two outgoing gluon primaries of opposite helicities given by, Oa∆1,+
and Ob∆1,−, one gets a subleading term of the form (C.27), Ja−1Ob∆1+∆2,−. In order to
calculate the OPE coefficient multiplying this operator, one has to know the structure of
the term

Jc1J
a
−1Ob∆1+∆2,− =

[
Jc1 , J

a
−1
]
Ob∆1+∆2,− (5.1)

In (5.1) we have used (4.15) which gives Jc1Ob∆1+∆2,− = 0. More generally, we will get
terms like ([

Jam, J
b
n

]
,
[
Jam,K

b
n

]
,
[
Ka
m,K

b
n

])∏
i

Jcipi
∏
j

K
dj
qj

∏
k

jekrkO
f

h,h̄
(z, z̄) (5.2)

from the OPE and we need to get simplified expressions for them. In order to do this we
start by computing the following commutators[[

Jam, J
b
n

]
,Oc

h,h̄
(z, z̄)

]
,
[[
Jam,K

b
n

]
,Oc

h,h̄
(z, z̄)

]
,
[[
Ka
m,K

b
n

]
,Oc

h,h̄
(z, z̄)

]
(5.3)

Let us focus on the first commutator. Using (4.21) and the Jacobi identity we get,[[
Jam, J

b
n

]
,Oc

h,h̄
(z, z̄)

]
= −fabdfdcezm+n

(
−2h̄+ 1− z̄∂̄

) (
−2h̄+ 2− z̄∂̄

)
Oe
h−1,h̄−1(z, z̄)

(5.4)

Again using (4.21) we can write this as[[
Jam, J

b
n

]
,Oc

h,h̄
(z, z̄)

]
= −iεfabd

(
−2h̄+ 1− z̄∂̄

) [
Jdm+n,Och− 1

2 ,h̄−
1
2
(z, z̄)

]
(5.5)

where we have used ε2 = 1. Now we take the limit (z, z̄)→ (0, 0) and from (5.5) we get[[
Jam, J

b
n

]
,Oc

h,h̄
(0)
]

= −iεfabd
(
−2h̄+ 1

) [
Jdm+n,Och− 1

2 ,h̄−
1
2
(0)
]

(5.6)

Since the mode Jan of the current Ja is defined with respect to the point (0, 0), (5.6)
can be interpreted as the relation between the descendants[

Jam, J
b
n

]
Oc
h,h̄

(0) = −iεfabd
(
−2h̄+ 1

)
Jdm+nOch− 1

2 ,h̄−
1
2
(0) (5.7)

Now we can apply the same argument to get the other two relations[
Jam,K

b
n

]
Oc
h,h̄

(0) = −iεfabd
(
−2h̄+ 1

)
Kd
m+nOch− 1

2 ,h̄−
1
2
(0) (5.8)

and [
Ka
m,K

b
n

]
Oc
h,h̄

(0) = −iεfabdKd
m+n∂̄Och− 1

2 ,h̄−
1
2
(0) (5.9)
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These are the relations that will be used in the following sections to obtain recursion
relations for subleading OPE coefficients and to define null states or primary descendants.

We can see that the L.H.S of (5.7), (5.8) and (5.9) are linear in the subleading symmetry
generators. But, they also depend on the scaling dimension of the gluon primary on which
the commutators are acting and also the gluon primary appearing on the R.H.S has shifted
dimension compared to the one appearing on the l.h.s. This is a signature of the fact that
the generators do not form a Lie algebra. This is perhaps the closest one can come towards
forming a closed algebra out of Jan and Ka

n when they act on states in a Hilbert space and,
as we will see, this is sufficient for finding (subleading) OPE coefficients as we will see in
section 9.

Before we end this section we would like to mention the result when the commutator
acts on a level-1 descendant. They are given by,[

Jam, J
b
n

]
JcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Jem+nJ

c
pOdh− 1

2 ,h̄−
1
2
(0) (5.10)[

Jam,K
b
n

]
JcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nJ
c
pOdh− 1

2 ,h̄−
1
2
(0) (5.11)[

Ka
m,K

b
n

]
JcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nJ
c
p ∂̄Odh− 1

2 ,h̄−
1
2
(0) (5.12)[

Jam, J
b
n

]
Kc
pOdh,h̄(0) = −iεfabe(−2h̄+ 1)Jem+nK

c
pOdh− 1

2 ,h̄−
1
2
(0) (5.13)[

Jam,K
b
n

]
Kc
pOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nK
c
pOdh− 1

2 ,h̄−
1
2
(0) (5.14)[

Ka
m,K

b
n

]
Kc
pOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nK
c
p∂̄Odh− 1

2 ,h̄−
1
2
(0) (5.15)[

Jam, J
b
n

]
jcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Jem+nj

c
pOdh− 1

2 ,h̄−
1
2
(0) (5.16)[

Jam,K
b
n

]
jcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nj
c
pOdh− 1

2 ,h̄−
1
2
(0) (5.17)[

Ka
m,K

b
n

]
jcpOdh,h̄(0) = −iεfabe(−2h̄+ 1)Ke

m+nj
c
p∂̄Odh− 1

2 ,h̄−
1
2
(0) (5.18)

The above relations, say for example (5.10), can be obtained by starting from the
commutator [[

Jam, J
b
n

]
,
[
Jcp ,Odh,h̄(z, z̄)

]]
(5.19)

The above relations have obvious generalisations to a general descendant and are
given by,[
Ja

m,J
b
n

]∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
Of

h,h̄
(0)=−iεfabx(−2h̄+1)Jx

m+n

∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
Of

h− 1
2 ,h̄− 1

2
(0)

(5.20)[
Ja

m,K
b
n

]∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
Of

h,h̄
(0)=−iεfabx(−2h̄+1)Kx

m+n

∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
Of

h− 1
2 ,h̄− 1

2
(0)

(5.21)[
Ka

m,K
b
n

]∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
Of

h,h̄
(0)=−iεfabx(−2h̄+1)Kx

m+n

∏
i

Jci
pi

∏
j

Kdj
qj

∏
k

jek
rk
∂̄Of

h− 1
2 ,h̄− 1

2
(0)

(5.22)
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We do not need these more general relations in this paper but, it will be interesting to
check their consistency with explicit calculations performed using scattering amplitudes.
For example, a good check of this will be to compute subleading OPE coefficients in the
gluon-gluon OPE directly from the (MHV) scattering amplitude and compare them with
the results from the recursion relations obtained using (5.20), (5.21) and (5.22). Our
derivation of these relations has been somewhat hand waving. We leave a more rigorous
derivation to future work.

6 Differential equation for MHV gluon amplitudes in Mellin space

In this section we will derive a differential equation for Mellin transformed tree level n-point
MHV gluon amplitudes in Yang-Mills theory.

Consider the celestial OPE between two positive helicity outgoing gluon primaries in
Yang-Mills theory. We will denote these operators below as Oa∆,+(z, z̄) and Oa1

∆1,+(z1, z̄1)
where the subscript (+) denotes that both operators have positive helicity. In order to
arrive at the proposed differential equation, we will be interested in the contribution from
descendants which constitute the first subleading correction to the leading singular term
in this OPE. This was recently obtained in [9] and is given by

Oa∆,+(z, z̄)Oa1
∆1,+(z1, z̄1) = −iB(∆− 1,∆1 − 1)

[
faa1x

z − z1
+ ∆− 1

∆ + ∆1 − 2 f
aa1xL−1

+i
( ∆− 1

∆ + ∆1 − 2 δ
axδa1y + ∆1 − 1

∆ + ∆1 − 2 δ
ayδa1x

)
jy−1

]
Ox∆+∆1−1,+(z1, z̄1) + · · ·

(6.1)

where Ox∆+∆1−1,+(z1, z̄1) is a positive helicity (outgoing) gluon primary. The leading pri-
mary OPE coefficient is given by the Euler beta function, B(∆−1,∆1−1). The dots above
denote contributions from descendants at further subleading orders in (z − z1), (z̄ − z̄1).
In [9] the above OPE was extracted from the Mellin transform of the tree-level 4-point
MHV gluon amplitude. We refer the reader to section B of the appendix in this paper for
a derivation of (6.1) from the Mellin transform of the 5-point MHV gluon amplitude.

Now let us take the subleading conformal soft limit ∆→ 0 in the above OPE. We then
obtain

lim
∆→0

∆Oa∆,+(z, z̄)Oa1
∆1,+(z1, z̄1)

=
[(∆1 − 2)
z − z1

ifaa1x − ifaa1xL−1 + (δaxδa1y − (∆1 − 1)δayδa1x) jy−1

]
Ox∆1−1,+(z1, z̄1) + · · ·

(6.2)
According to our discussion in section 4.1, in the subleading conformal soft limit the

OPE should obey the general constraint given by equation (4.14). Therefore as ∆ → 0
in (6.1) we should get

lim
∆→0

∆Oa∆,+(z, z̄)Oa1
∆1,+(z1, z̄1) =

[(∆1 − 2)
z − z1

T a1 P
−1
1 + Ja−1

]
Oa1

∆1,+(z1, z̄1) + · · · (6.3)

where

T aP−1
1 O

a1
∆1,+(z1, z̄1) = ifaa1xOx∆1−1,+(z1, z̄1) (6.4)
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Then comparing (6.2) and (6.3) we see that the leading singular terms in the OPE
match. But the subleading terms appear to be different. Therefore in order for the OPE
in (6.1) to be consistent with the subleading soft gluon theorem we must have the following
relation[
δa1xJa−1 + ifaa1xL−1P

−1
1 − (δaxδa1y − (∆1 − 1)δayδa1x) jy−1P

−1
1

]
Ox∆1,+(z1, z̄1) = 0 (6.5)

Multiplying the above by ifaa1b and using the relation

faa1bfaa1c = CA δ
bc (6.6)

where CA is the quadratic Casimir of the adjoint representation, we can express (6.5) as[
CAL−1 + ∆1 j

a
−1T

a
1 + Ja−1T

a
1 P1

]
Oa1

∆1−1,+(z1, z̄1) = 0 (6.7)

Further shifting ∆1 → ∆1 + 1 in (6.7) we get[
CAL−1 + (∆1 + 1) ja−1T

a
1 + Ja−1T

a
1 P1

]
Oa1

∆1,+(z1, z̄1) = 0 (6.8)

Up to this point we have been considering the gluon primary in (6.7) to be outgoing.
But this can be easily generalised to the case of an incoming positive helicity gluon. In
that case we simply get an additional minus sign before the third term in (6.8). Thus for
an incoming positive helicity gluon we have[

CAL−1 + (∆1 + 1) ja−1T
a
1 − Ja−1T

a
1 P1

]
Oa1

∆1,+(z1, z̄1) = 0 (6.9)

Therefore in general we have the condition

Ψa(z, z̄) =
[
CAL−1 − (∆ + 1) jb−1j

b
0 − Jb−1j

b
0P−1,−1

]
Oa∆,+(z, z̄) = 0 (6.10)

where P−1,−1 is the global time translation generator which acts on a gluon primary as
P−1,−1Ob∆,+ = εOb∆+1,+. Here ε = ±1 for an outgoing (incoming) gluon. Note that in
obtaining (6.10) we have used the definition (3.11) of a current algebra primary according
to which

ja0Ob∆,+(z, z̄) = −ifabcOc∆,+(z, z̄) = −T aOb∆,+(z, z̄) (6.11)

Now consider the linear combination of descendants denoted as Ψa(z, z̄) in (6.10). Ap-
plying the definition of a Poincare and current algebra primary from sections 2.1 and (3.1)
and using the commutation relations given in section 4.2, it can be easily checked that4

L1Ψa(z, z̄) = L̄1Ψa(z, z̄) = P0,−1Ψa(z, z̄) = P−1,0Ψa(z, z̄) = 0 (6.12)

ja0 Ψb(z, z̄) = −ifabcΨc(z, z̄), jamΨb(z, z̄) = 0, ∀m ≥ 1 (6.13)
4In (6.12) and (6.13), the modes of the symmetry generators have been defined with respect to the

point (z, z̄).
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Equations (6.12) and (6.13) together imply that Ψa(z, z̄) is in fact a primary operator
with respect to the Poincare group and the current algebra associated to the leading soft
gluon theorem.5 In fact, one can easily check that the null-state Ψa is uniquely determined
by the primary-state conditions under the Poincare group and leading soft gluon SU(N)
current algebra. Thus Ψa(z, z̄) is a null field and we can consistently set Ψa(z, z̄) to zero
within celestial MHV gluon amplitudes.

Now let us insert (6.10) within Mellin transformed tree-level MHV gluon amplitudes.
Below we will denote the gluon primaries as Oak

hk,h̄k
(zk, z̄k). The negative helicity gluons

in the MHV amplitude will be labelled by (n− 1) and n. Then for every positive helicity
gluon i ∈ (1, 2, · · ·n− 2) we get a decoupling relation〈 [

CAL−1(i)− 2hi ja−1(i)ja0 (i)− Ja−1(i)ja0 (i)P−1,−1(i)
] n∏
k=1
Oak
hk,h̄k

(zk, z̄k)
〉

MHV
= 0 (6.14)

where we have used 2hi = ∆i + 1 for a positive helicity gluon primary. The index (i)
accompanying L−1, j

a
0 , j

a
−1, J

a
−1 and P−1,−1 above denotes that these modes act on the

i-th positive helicity gluon. Then using the representation of L−1, j
a
−1, J

a
−1 in terms of

differential operators, we obtain from (6.14) with i ∈ (1, 2, · · · , n− 2)CA2 ∂

∂zi
− hi

n∑
j=1
j 6=i

T ai T
a
j

zi − zj

+1
2

n∑
j=1
j 6=i

εj
(
2h̄j − 1− (z̄i − z̄j) ∂

∂z̄j

)
zi − zj

T aj P
−1
j T ai P−1,−1(i)


〈

n∏
k=1
Oak
hk,h̄k

(zk, z̄k)
〉

MHV

= 0

(6.15)

We have thus obtained (n − 2) linear first order partial differential equations (PDEs)
for tree-level n-point gluon MHV amplitudes in Mellin space. The (n−2) PDEs correspond
to the (n− 2) positive helicity gluons in the n-point MHV amplitude.

Now let us note that the structure of (6.15) is similar to the Knizhnik-Zamolodchikov
(KZ) equation [73] obeyed by correlation functions of primary operators in WZW theory.
The KZ equation is given by(k + CA

2

)
∂

∂zi
−

n∑
j=1
j 6=i

T ai T
a
j

zi − zj

〈φa1
h1,h̄1

(z1, z̄1) · · ·φan
hn,h̄n

(zn, z̄n)
〉

= 0 (6.16)

where φai
hi,h̄i

are the primary operators and k is the level of the current algebra. In the
context of our paper, we will take these operators to transform in the adjoint representation

5Since the subleading symmetry generators do not form a closed (Lie) algebra we do not impose “primary-
state” condition under subleading soft symmetry. This will require further study and we hope to come back
to this in future.

– 15 –



J
H
E
P
1
0
(
2
0
2
1
)
1
1
1

of the zero mode algebra and so the superscript ai is a Lie algebra index. Let us now
compare the differential equation (6.15) and the KZ equation (6.16).

First of all, for an n-point correlation function of primaries in WZW theory there are
n differential equations because every primary in WZW theory is degenerate. This should
be contrasted with the case of MHV amplitudes where an n-point MHV amplitude satisfies
(n−2) differential equations corresponding to (n−2) positive helicity gluons. This is related
to the fact that within the MHV sector, governed by leading and subleading current algebras
coming from positive helicity soft gluon, negative helicity gluons have no null states. This
is a major difference.

Secondly, note that the coefficient of the ∂zi term in (6.15) is CA/2, where CA is the
quadratic Casimir of the adjoint representation. In the KZ equation (6.16), this coefficient
is given by (k + CA/2). At a superficial level this is consistent with the fact that in our
case the SU(N) current algebra has level k = 0.

Now let us consider the second term within the square brackets in (6.15). This arises
from the ja−1(i)ja0 (i) piece in (6.14). The analogous term is also present in the KZ equa-
tion (6.16) but, the coefficient of this term in our case depends on the holomorphic confor-
mal weight hi of the primary operator Oai

hi,h̄i
(zi, z̄i) whose null state gives rises to (6.15).

This is an important difference which plays a crucial role due to the following reason.
In WZW theory, the KZ equation follows from the existence of a Sugawara stress tensor.

From the expression of the Sugawara stress tensor it also follows that the holomorphic
conformal weight of a current algebra primary is given by [73, 74]

hr = Cr
2k + CA

(6.17)

where Cr is the quadratic Casimir of the representation r, under which the primary operator
transforms. Here we are considering r to be the adjoint representation and so Cr = CA.

The null state relation which gives rise to the usual KZ equation holds only when the
primary operator, with respect to which the null state is defined, has (holomorphic) weight
given by (6.17). But (6.14) and consequently (6.15) hold for arbitrary values of the scaling
dimensions for the positive helicity gluon primaries in the MHV amplitude.6 The coefficient
hi in front of the second term in (6.14), (6.15) plays a crucial role in ensuring this.

Finally let us discuss the third term within the square brackets in (6.15). This arises
due to the subleading soft gluon symmetry. There is no counterpart of this term in the
KZ equation (6.16). Thus compared to the usual KZ equation, this can be regarded as
a correction term. Another consequence of this term is that unlike the KZ equation, the
differential operators acting on the celestial MHV amplitude are not purely holomorphic.

Recently in [71] a Sugawara construction of the stress tensor was performed for celestial
CFTs by studying Mellin transformed gluon amplitudes in Yang-Mills theory in the limit

6Here we are assuming that the dimensions ∆i of primary operators can be analytically continued off the
principal series where ∆i = 1 + iλi with λi ∈ R. For tree-level amplitudes, the fact that such an analytic
continuation is possible is evident from the explicit expressions of the corresponding Mellin amplitudes.
See [19] for a discussion on how conformal primaries with general dimensions can be expressed in terms of
contour integrals over the principal series.
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where a pair of gluons become conformally soft. However it was observed that within
correlation functions, this stress tensor generates the correct conformal transformations
only for the (leading) conformally soft gluons but fails to do so for the hard gluon primaries.
This indicates that the Sugawara construction does not yield the full stress tensor in the
celestial CFT putatively dual to Yang-Mills theory. The possibility that the full stress
tensor may include contributions in addition to the Sugawara stress tensor was also pointed
out in [33, 72]. The additional term coming from the subleading soft gluon symmetry in
the differential equation (6.15) that we have obtained, further suggests that the standard
form of the Sugawara construction involving only the leading current ja(z), may not apply
to celestial CFTs and most likely the subleading currents (Ja(z),Ka(z)) play an important
role in any such construction.

In the following sections we will study the implications of this differential equation for
the celestial OPE of gluon primary operators in Yang-Mills theory. In particular we will
show that the leading celestial OPE of gluons can be determined using this equation.

7 Differential equation for MHV gluon amplitudes in momentum space

The differential equation (6.15) was derived for the Mellin transformed gluon amplitude.
We can also write down an equivalent form of this equation for the amplitude in Fock
space. Let us denote the tree-level Fock space MHV amplitude as〈 n∏

k=1
Aak(εkωk, zk, z̄k, σk)

〉
MHV

(7.1)

where ε = ±1. Aak(ωk, zk, z̄k, σk) and Aak(−ωk, zk, z̄k, σk) are annihilation and creation
operators respectively for the external gluons with helicity σk in the S-matrix. In (7.1) we
will take gluons (1, 2, · · · , n− 2) to have positive helicity. Then gluons (n− 1) and n have
negative helicity.

Now in order to recast (6.15) to momentum space, we make the following substitutions

∆i → −ωi∂ωi , P−1,−1(i)→ εiωi, P−1
i → ω−1

i (7.2)

Applying an inverse Mellin transform we can replace the correlation function in (6.15)
with the Fock space amplitude (7.1). Thus we obtain the differential equationCA ∂

∂zi
+
(
ωi

∂

∂ωi
− 1

) n∑
j=1
j 6=i

T ai T
a
j

zi − zj

+
n∑
j=1
j 6=i

εiωi
εjωj

(
σj + ωj

∂
∂ωj

+ (z̄i − z̄j) ∂
∂z̄j

)
zi − zj

T ai T
a
j


〈

n∏
k=1

Aak(εkωk, zk, z̄k, σk)
〉

MHV

= 0

(7.3)

As in (6.15), here we have (n− 2) partial differential equations labelled by the index i
in (7.3) which runs over the (n − 2) positive helicity gluons in the MHV amplitude. Also
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note that the amplitude appearing above is the full tree level scattering amplitude and so
explicitly includes the delta function which imposes overall energy-momentum conservation.
Therefore the partial derivative with respect to z̄j in (7.3) has a nontrivial action on the
amplitude (7.1).

8 Leading OPE from differential equation

In this section we will show that the leading structure of the celestial OPE of gluons can
be determined using the differential equation (6.15).

8.1 OPE for outgoing (incoming) gluons

Let us first consider the celestial OPE between a positive helicity gluon primary Oa1
∆1,+(z1, z̄1)

and another gluon primary denoted by Oa2
∆2,σ2

(z2, z̄2). The spin σ2 of the second gluon
primary will be left unspecified for now. We will also take both these gluons to be outgoing.
Then let us assume that the leading OPE in this case takes the following general form

Oa1
∆1,+(z1, z̄1)Oa2

∆2,σ2
(z2, z̄2) = −i zp12z̄

q
12 f

a1a2xCp,q (∆1,∆2, σ2)Ox∆,σ(z2, z̄2) + · · · (8.1)

where z12 = (z1−z2), z̄12 = (z̄1− z̄2). Ox∆,σ(z2, z̄2) is the leading primary operator that can
appear in the OPE and Cp,q (∆1,∆2, σ2) is the associated OPE coefficient. The dots denote
possible contributions from descendants. The conformal dimension and spin of Ox∆,σ(z2, z̄2)
are given by

∆ = ∆1 + ∆2 + p+ q, σ = p− q + σ2 + 1 (8.2)

Our objective now is to determine the values of p, q and the OPE coefficient
Cp,q (∆1,∆2, σ2). In carrying out this analysis, we will assume that the structure of the
OPE in (8.1) holds for arbitrary values of the dimensions ∆1 and ∆2 with p, q and σ2 fixed.
This was also done in [5] in the context of the celestial OPE of gravitons in Einstein gravity.
As in [5], our results below will further justify this assumption. We will see that the values
of p, q and Cp,q (∆1,∆2, σ2) obtained using the differential equation (6.15) precisely match
with the corresponding results of [54], where the leading celestial OPE was derived from
the Mellin transform of the splitting function which appears in the leading collinear limit
in gluon scattering amplitudes in Yang-Mills theory [59].

Let us now write the differential equation (6.15) asCA
2

∂

∂z1
− h1

n∑
j=2

T aj T
a
1

z1 − zj
+ 1

2

n∑
j=2

εj(2h̄j − 1− (z̄1 − z̄j) ∂
∂z̄j

)
(z1 − zj)

T aj P
−1
j T a1 P−1,−1(1)


×
〈
Oa1

∆1,+(z1, z̄1)Oa2
∆2,σ2

(z2, z̄2)
n∏
k=3
Oak
hk,h̄k

(zk, z̄k)
〉

MHV

= 0

(8.3)

where ε1 = ε2 = 1. Using (8.3) we can derive a recursion relation for the leading OPE
coefficient as follows. Let us substitute the leading OPE (8.1) inside the correlator in (8.3).
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Then it is evident that at leading order in the OPE limit, the z12, z̄12 dependence on the
l.h.s. of (8.3) will be of the form zp−1

12 z̄q12. Assuming that (8.3) is satisfied order by order
in the OPE regime (z12 → 0, z̄12 → 0), we can then set the coefficient of the zp−1

12 z̄q12 term
to zero. Consequently we obtain the following recursion relation(

pCA f
a1a2b + 2h1f

aa1xfxbyfya2a
)
Cp,q(∆1,∆2, σ2)

= (2h̄2 − 1 + q)faa1xfxbyfya2aCp,q(∆1 + 1,∆2 − 1, σ2)
(8.4)

where 2h1 = ∆1 − 1 and 2h̄2 = ∆2 − σ2. Then applying the identity

faa1xfxbyfya2a = 1
2 CA f

a1a2b (8.5)

where CA is the quadratic Casimir of the adjoint representation, we get from (8.4)

(∆1 + 2p+ 1)Cp,q(∆1,∆2, σ2) = (∆2 − σ2 + q − 1)Cp,q(∆1 + 1,∆2 − 1, σ2) (8.6)

In the ensuing discussion, it will be convenient for us to express (8.6) in another form.
For this purpose, let us first note the following relation due to the invariance of the OPE
under global time translations [3]

Cp,q(∆1,∆2, σ2) = Cp,q(∆1 + 1,∆2, σ2) + Cp,q(∆1,∆2 + 1, σ2) (8.7)

Then shifting ∆2 → ∆2 + 1 in (8.6) and using (8.7) we get

(∆1 + 2p+ 1)Cp,q(∆1,∆2, σ2) = (∆1 + ∆2 + 2p+ q − σ2 + 1)Cp,q(∆1 + 1,∆2, σ2) (8.8)

We shall now derive another recursion relation for the leading OPE coefficient by
appealing to the subleading soft gluon theorem in a similar fashion as in [3]. Consider the
action of the subleading soft symmetry generator Ja0 on a gluon primary. This is given
by (4.8)

Ja0O
b,σ
∆ (z, z̄) = −iεfabc(−2h̄+ 1− z̄∂z̄)Oc,σ∆−1(z, z̄) (8.9)

where ε = ±1 for an outgoing (incoming) gluon. Then requiring both sides of the OPE (8.1)
to transform in the same way under the action (8.9) we get7

faa1xfxa2y(∆1 + q − 2)Cp,q(∆1 − 1,∆2, σ2) + faa2xfa1xy(∆2 − σ2 − 1)Cp,q(∆1,∆2 − 1, σ2)
= faxyfa1a2x(∆1 + ∆2 + 2q − σ2 − 2)Cp,q(∆1,∆2, σ2)

(8.10)

Multiplying both sides of (8.10) by fyba and using the identity (8.5) we then obtain

(∆1 + q − 2)Cp,q(∆1 − 1,∆2, σ2) + (∆2 − σ2 − 1)Cp,q(∆1,∆2 − 1, σ2)
= 2(∆1 + ∆2 + 2q − σ2 − 2)Cp,q(∆1,∆2, σ2)

(8.11)

7Note that in order to arrive at (8.10) we have set z2 = z̄2 = 0 in the OPE (8.1).
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In order to easily determine the values of p and q let us bring (8.11) into the same
form as (8.8). To achieve this, we shift ∆1 → ∆1 + 1 in (8.11). This gives,

(∆1 + q − 1)Cp,q(∆1,∆2, σ2) + (∆2 − σ2 − 1)Cp,q(∆1 + 1,∆2 − 1, σ2)
= 2(∆1 + ∆2 + 2q − σ2 − 1)Cp,q(∆1 + 1,∆2, σ2)

(8.12)

Then using (8.6) we can eliminate Cp,q(∆1 + 1,∆2 − 1, σ2) from (8.12) and obtain[
∆1 + q − 1 + (∆1 + 2p+ 1)(∆2 − σ2 − 1)

∆2 − σ2 + q − 1

]
Cp,q(∆1,∆2, σ2)

= 2(∆1 + ∆2 + 2q − σ2 − 1)Cp,q(∆1 + 1,∆2, σ2)
(8.13)

Now we can solve for p, q using equations (8.8) and (8.13). These equations admit
nontrivial solutions provided we have

∆1 + q − 1
2p+ ∆1 + 1 + ∆2 − σ2 − 1

∆2 − σ2 + q − 1 = 2(∆1 + ∆2 + 2q − σ2 − 1)
∆1 + ∆2 + 2p+ q − σ2 + 1

(8.14)

Note that the differential equation (8.3) holds for any value of ∆1. Further as mentioned
before, the values of p, q in the celestial OPE (8.1) do not depend on ∆1,∆2. Consequently
we can vary ∆1 and ∆2 independently in (8.14). Thereby the only non-trivial solution of
the above equation is8

p = −1, q = 0 (8.15)

This is precisely what we expect in pure Yang-Mills theory. Then substituting (8.15)
in (8.2) we immediately get

∆ = ∆1 + ∆2 − 1, σ = σ2 (8.16)

The leading OPE (8.1) for outgoing gluon primaries then takes the form

Oa1
∆1,+(z1, z̄1)Oa2

∆2,σ2
(z2, z̄2) ∼ − if

a1a2x

z12
C−1,0 (∆1,∆2, σ2)Ox∆1+∆2−1,σ2(z2, z̄2) (8.17)

where σ2 = ±1. Now we can determine the OPE coefficient as follows. After substituting
p = −1, q = 0, equation (8.8) as well as (8.13) reduces to

C−1,0(∆1 + 1,∆2, σ2) = ∆1 − 1
∆1 + ∆2 − σ2 − 1 C−1,0(∆1,∆2, σ2) (8.18)

Then using the above in the recursion relation (8.7) we obtain

C−1,0(∆1,∆2 + 1, σ2) = ∆2 − σ2
∆1 + ∆2 − σ2 − 1 C−1,0(∆1,∆2, σ2) (8.19)

8A simple way to see this is by taking ∆1 or ∆2 to be large in (8.14). For example, keeping ∆2 fixed
and taking ∆1 large in (8.14) we immediately get q = 0. Similarly in the limit where ∆2 becomes large we
easily find that p = −1. The assumption that ∆1,∆2 can be analytically continued off the principal series
is again implicit here.
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Recursion relations of the form in (8.18) and (8.19) were also obtained using time
translation invariance and the global subleading soft gluon symmetry in [3]. The solution
of these equations is given by

C−1,0(∆1,∆2, σ2) = αB(∆1 − 1,∆2 − σ2) (8.20)

where B(x, y) is the Euler-Beta function. The constant α is as of yet undetermined. We
can fix it by using the leading conformal soft limit. Consider ∆1 → 1 in (8.17). Then
matching with the Ward identity (3.2) gives α = 1. Thus for outgoing gluons, we get

C−1,0(∆1,∆2, σ2) = B(∆1 − 1,∆2 − σ2) (8.21)

In the case where both gluon primaries are incoming, an identical analysis again gives
p = −1, q = 0. The OPE coefficient also takes the same form as in (8.20). However in
order to determine the overall constant we should note that the Kac-Moody current for an
incoming gluon is given by

ja,−(z, z̄) = − lim
∆→1

(∆− 1)Oa,−∆,σ(z, z̄) (8.22)

where the superscript (−) above denotes an incoming gluon. Due to this minus sign in
comparison to (3.1) for an outgoing gluon, the leading OPE coefficient for incoming gluons
is given by

C−1,0(∆1,∆2, σ2) = −B(∆1 − 1,∆2 − σ2) (8.23)

The OPE coefficients in (8.21) and (8.23) precisely match with the corresponding
results derived in [3, 54].

8.2 Outgoing-incoming OPE

We will now deal with the case where one of the gluon primaries in the celestial OPE
is outgoing and the other is incoming. Here we will take the outgoing gluon primary to
have positive helicity and denote it as Oa1

∆1,+(z1, z̄1). The incoming gluon primary will be
denoted by Oa2,−

∆2,σ2
(z2, z̄2) where the superscript (−) denotes that it is incoming. We will

not fix the spin of the incoming gluon and so σ2 = ±1.
In this case, both an outgoing and an incoming gluon primary can contribute to the

OPE at leading order. Then as in the previous subsection we begin by assuming the
following general form of the leading OPE

Oa1
∆1,+(z1, z̄1)Oa2,−

∆2,σ2
(z2, z̄2)

= −ifa1a2xzp12z̄
q
12

[
C+
p,q (∆1,∆2, σ2)Ox,+∆,σ(z2, z̄2) + C−p,q (∆1,∆2, σ2)Ox,−∆,σ(z2, z̄2)

]
+ · · ·

(8.24)

where Ox,+∆,σ and Ox,−∆,σ in the r.h.s. of (8.24) respectively denote the outgoing and incoming
primaries which contribute to the leading OPE. Their conformal dimension and spin are

∆ = ∆1 + ∆2 + p+ q, σ = p− q + σ2 + 1 (8.25)
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In (8.24) C±p,q (∆1,∆2, σ2) is the OPE coefficient corresponding to the outgoing (in-
coming) primary that appears in the OPE. The dots denote possible contributions from
descendants.

Now following exactly the same steps as in the previous subsection 8.1 we can obtain
a recursion relation for the leading OPE coefficients using the differential equation (8.3).
Here we get

(2p+ ∆1 + 1)C±p,q(∆1,∆2, σ2) + (∆2 − σ2 − 1 + q)C±p,q(∆1 + 1,∆2 − 1, σ2) = 0 (8.26)

Then applying the global subleading soft symmetry generator Ja0 to the OPE (8.24)
we get another recursion relation analogous to (8.11)

(∆1 + q − 2)C±p,q(∆1 − 1,∆2, σ2)− (∆2 − σ2 − 1)C±p,q(∆1,∆2 − 1, σ2)
= ±2(∆1 + ∆2 + 2q − σ2 − 2)C±p,q(∆1,∆2, σ2)

(8.27)

Let us also note that invariance of the OPE (8.24) under global time translations yields

C±p,q(∆1,∆2, σ2) = ±
[
C±p,q(∆1 + 1,∆2, σ2)− C±p,q(∆1,∆2 + 1, σ2)

]
(8.28)

Then using (8.28) and performing similar manipulations as before we can rewrite (8.26)
and (8.27) as follows

(2p+ ∆1 + 1)C±p,q(∆1,∆2, σ2) = ±(∆1 + ∆2 + 2p+ q − σ2 + 1)C±p,q(∆1 + 1,∆2, σ2)
(8.29)

and [
∆1 + q − 1 + (∆1 + 2p+ 1)(∆2 − σ2 − 1)

∆2 − σ2 + q − 1

]
C±p,q(∆1,∆2, σ2)

= ±2(∆1 + ∆2 + 2q − σ2 − 1)C±p,q(∆1 + 1,∆2, σ2)
(8.30)

The system of equations (8.29) and (8.30) have the same form as the analogous equa-
tions (8.8) and (8.13) obtained in the case of the OPE between two outgoing (incoming)
gluons. It then follows by similar arguments that they admit non-trivial solutions iff

p = −1, q = 0 (8.31)

This is again the expected result in Yang-Mills theory. The OPE coefficients can now
be obtained by solving (8.28) and (8.29) with p = −1, q = 0 in the same way as shown in
the previous subsection 8.1. We then get

C+
−1,0(∆1,∆2, σ2) = αB(∆2 − σ2, 2−∆1 −∆2 + σ2)

C−−1,0(∆1,∆2, σ2) = βB(∆1 − 1, 2−∆1 −∆2 + σ2)
(8.32)

where α, β are constants. These can be fixed by using the leading conformal soft limit. In
order to determine β we can put p = −1, q = 0 in the OPE (8.24) and then take ∆1 → 1.
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The leading conformal soft theorem (3.2) then implies β = 1. Similarly considering the
limit ∆2 → 1 in the OPE (8.24) and comparing with the Ward identity (3.2) gives α = −1.
Thus finally the leading OPE coefficients in the case of outgoing-incoming gluon OPE are
given by

C+
−1,0(∆1,∆2, σ2) = −B(∆2 − σ2, 2−∆1 −∆2 + σ2)

C−−1,0(∆1,∆2, σ2) = B(∆1 − 1, 2−∆1 −∆2 + σ2)
(8.33)

Again the above results for the OPE coefficients are in perfect agreement with [3].

9 Subleading OPE coefficients from symmetry

In this section we will illustrate how the OPE coefficients of descendants in the celestial
OPE between gluon primaries can be determined using the underlying symmetries. For
the OPE between positive helicity gluons, some of the descendant OPE coefficients were
obtained in [9] using translation, global conformal and leading soft gluon current algebra
symmetries. Here we will consider the mixed helicity case, i.e., the OPE between a positive
helicity and a negative helicity gluon primary. We will see that the subleading soft gluon
symmetry plays a crucial role here.

Let us denote the gluon primaries whose OPE we want to consider as Oa∆1,+(z1, z̄1)
and Ob∆2,−(z2, z̄2). We will also consider both of these to be outgoing. Then as shown in
section C of the appendix in this paper, upto the first subleading order this OPE is given by

Oa∆1,+(z, z̄)Ob∆2,−(z2, z̄2)

∼ B(∆1− 1,∆2 + 1)
[
− if

abx

z12
+ ∆1 δ

bx ja−1 + (∆1− 1)
(∆1 + ∆2) δ

bxJa−1P−1,−1

]
Ox∆1+∆2−1,−(z2, z̄2)

(9.1)

where P−1,−1Ox∆1+∆2−1,− = Ox∆1+∆2,−. In the appendix, section C we have derived this
result from the Mellin transform of the 4-point MHV gluon amplitude in Yang-Mills theory.
Although we have obtained this from the 4-point Mellin amplitude, the above form of the
mixed helicity OPE is expected to hold within any n-point tree level MHV gluon amplitude
in Yang-Mills.

Now it is important to note that in the OPE (9.1), at order O(z0
12z̄

0
12), we encounter

descendants associated to both the leading soft gluon current algebra as well the sublead-
ing soft gluon symmetry algebra. These are given by the operators ja−1Ox∆1+∆2−1,− and
Ja−1Ox∆1+∆2,− respectively in (9.1). We will now show that the OPE coefficients for these
descendants can also determined using symmetries as follows.

In general, we can have the following descendants appearing at O(1) in the mixed-
helicity OPE

L−1Oa∆,−, ja−1Ob∆,−, Ja−1P−1,−1Ob∆,− (9.2)

The above operators are linearly independent. This is because the vanishing condi-
tion (6.10) holds only for a positive helicity gluon primary. This will be further justified
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by our analysis below. Then the general form of the O(1) term in the mixed helicity OPE
can be written as

Oa∆1,+(z, z̄)Ob∆2,−(0) ⊃ B(∆1− 1,∆2 + 1)
[
α1f

abxL−1 +α2 δ
bxja−1 +α3 δ

bxJa−1P−1,−1

]
Ox∆1+∆2−1,−(0)

(9.3)
where α1, α2, α3 are constants which we want to determine. The leading OPE coefficient
B(∆1−1,∆2+1) can be obtained using the differential equation (6.15) as shown in section 8.
Also note that we have placed the operator Ob∆2,− at the origin, without loss of generality.

Now let us apply the subleading soft symmetry mode Jc1 to the OPE in (9.3). Then
using (4.15) and applying the commutation relations listed in sections 4.2 and (5) we get
the recursion relation

iα1f
cxdfabx + (α2 − (∆1 + ∆2)α3 − 1) f caxfxbd = 0 (9.4)

The coefficients α1, α2, α3 in the above equation do not carry any Lie algebra indices.
This equation should then hold for any allowed values of the free indices (a, b, c, d). Thus
we can set for example a = c in (9.4). The structure constants being antisymmetric then
immediately gives us

α1 = 0 (9.5)

Similarly setting a = b in (9.4) we get

α2 − (∆1 + ∆2)α3 − 1 = 0 (9.6)

Now it can be easily checked that applying the current algebra mode jc1 yields exactly
the same recursion relation as in (9.4). Then in order to fix α2 we can apply L1 to both
sides of (9.3). Again using the relevant commutation relations from section 4.2 we obtain

iα1(∆1 + ∆2)faby + (α2 −∆1)faby = 0 (9.7)

Substituting α1 = 0 from (9.5) into the above equation we get

α2 = ∆1 (9.8)

Finally we can solve for α3 from (9.4) by putting in the value of α2 obtained above.
This yields

α3 = α2 − 1
∆1 + ∆2

= ∆1 − 1
∆1 + ∆2

(9.9)

We thus find that the values of α1, α2, α3 obtained in (9.5), (9.8) and (9.9) precisely
agree with those extracted directly from the Mellin amplitude. Now it is easy to see
that (9.3) is already invariant under the action of the translation generator P−1,0. It is
also straightforward to check that these values of the descendant OPE coefficients satisfy
the recursion relations that follow from applying the translation generator P0,−1 to the
OPE (9.3). The fact that all these recursion relations are mutually consistent and admit a
unique solution further justifies the absence of the null state relation (6.10) for a negative
helicity gluon primary.
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A Brief review of Celestial or Mellin amplitudes for massless particles

The Celestial or Mellin amplitude for n gluons in four dimensions is defined as the Mellin
transformation of the n-particle S-matrix element, given by [31, 32]

Mn
(
{zi, z̄i, hi, h̄i, ai}

)
=

n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i Sn

(
{ωi, zi, z̄i, σi, ai}

)
(A.1)

where σi = ±1 denotes the helicity of the i-th gluon and the on-shell momenta are
parametrized as,

pi = ωi(1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i), p2
i = 0 (A.2)

ai denotes the Lie algebra index carried by the i-th gluon. The scaling dimensions
(hi, h̄i) are defined as,

hi = ∆i + σi
2 , h̄i = ∆i − σi

2 (A.3)

The Lorentz group SL(2,C) acts on the celestial sphere as the group of global conformal
transformations and the Mellin amplitudeMn transforms as,

Mn

(
{zi, z̄i, hi, h̄i, ai}

)
=

n∏
i=1

1
(czi + d)2hi

1
(c̄z̄i + d̄)2h̄i

Mn

(
azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄
, hi, h̄i, ai

)
(A.4)

This is the familiar transformation law for the correlation function of primary operators
of weight (hi, h̄i) in a 2-D CFT under the global conformal group SL(2,C).

We can also define a modified Mellin amplitude9 as in [35, 36],

Mn
(
{ui, zi, z̄i, hi, h̄i, ai}

)
=

n∏
i=1

∫ ∞
0

dωi ω
∆i−1
i e−i

∑n

i=1 εiωiuiSn
(
{ωi, zi, z̄i, σi, ai}

)
(A.5)

where u can be thought of as a time coordinate and εi = ±1 for an outgoing (incoming)
particle. Under (Lorentz) conformal tranansformation the modified Mellin amplitude Mn

transforms as,

Mn

(
{ui, zi, z̄i, hi, h̄i, ai}

)
=

n∏
i=1

1
(czi + d)2hi

1
(c̄z̄i + d̄)2h̄i

Mn

(
ui

|czi + d|2
,
azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄
, hi, h̄i, ai

)
(A.6)

9The exponentials in (A.5) can also be thought of as convergence factors. It is good to have them because,
as discussed in [53], the Mellin amplitude for gluons, as defined in (A.1), is only marginally convergent.
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Under global space-time translation, u → u + A + Bz + B̄z̄ + Czz̄, the modified
amplitude is invariant, i.e,

Mn
(
{ui +A+Bzi + B̄z̄i + Cziz̄i, zi, z̄i, hi, h̄i, ai}

)
=Mn

(
{ui, zi, z̄i, hi, h̄i, ai}

)
(A.7)

Now in order to make manifest the conformal nature of the dual theory living on the
celestial sphere it is useful to write the (modified) Mellin amplitude as a correlation function
of conformal primary operators. So let us define a generic conformal primary operator as,

Oa,ε
h,h̄

(z, z̄) =
∫ ∞

0
dω ω∆−1Aa(εω, z, z̄, σ) (A.8)

where ε = ±1 for an annihilation (creation) operator of a massless gluon of helicity σ and
Lie algebra index a. Under (Lorentz) conformal transformation the conformal primary
transforms like a primary operator of scaling dimension (h, h̄)

O′a,ε
h,h̄

(z, z̄) = 1
(cz + d)2h

1
(c̄z̄ + d̄)2h̄

Oa,ε
h,h̄

(
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
(A.9)

Similarly in the presence of the time coordinate u we have,

O′a,ε
h,h̄

(u, z, z̄) =
∫ ∞

0
dω ω∆−1e−iεωuAa(εω, z, z̄, σ) (A.10)

Under (Lorentz) conformal transformations

O′a,ε
h,h̄

(u, z, z̄) = 1
(cz + d)2h

1
(c̄z̄ + d̄)2h̄

Oa,ε
h,h̄

(
u

|cz + d|2
,
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
(A.11)

In terms of (A.8), the Mellin amplitude can be written as the correlation function of
conformal primary operators

Mn =
〈

n∏
i=1
Oai,εi
hi,h̄i

(zi, z̄i)
〉

(A.12)

Similarly using (A.10), the modified Mellin amplitude can be written as,

Mn =
〈

n∏
i=1
Oai,εi
hi,h̄i

(ui, zi, z̄i)
〉

(A.13)

A.1 Comments on notation in the paper

Note that conformal primaries carry an additional index ε which distinguishes between an
incoming and an outgoing particle. In the paper, for notational simplicity, we omit this
additional index unless this plays an important role. So in most places we simply write the
(modified) Mellin amplitude as,

Mn =
〈

n∏
i=1
Oai
hi,h̄i

(zi, z̄i)
〉

(A.14)

or
Mn =

〈
n∏
i=1
Oai
hi,h̄i

(ui, zi, z̄i)
〉

(A.15)

Similarly in many places in the paper we denote a gluon conformal primary of weight
∆ = h+ h̄ by Oa∆,σ where σ = ±1 is the helicity (= h− h̄). Since we are considering pure
Yang-Mills, we can further simplify the notation to Oa∆,± by omitting the σ = ±1.
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B OPE from 5-point MHV gluon amplitude

In this section of the appendix we will consider the Mellin transform of the 5-point tree-
level MHV gluon amplitude in Yang-Mills theory. Our main objective here is to show that
the OPE in (6.1) which was obtained in [9] from the 4-point MHV amplitude also holds
within the 5-point Mellin amplitude.

B.1 5-point MHV gluon amplitude

The tree-level 5-point gluon amplitude in Yang-Mills theory can be expressed as [75]

A(1a1 , 2a2 , 3a3 , 4a4 , 5a5) = (ig)3 ∑
ρ∈S3

fa1aσ2x1fx1aσ3x2fx2aσ4a5A(1, ρ(2), ρ(3), ρ(4), 5) (B.1)

where g is the Yang-Mills coupling. fabc’s are Lie algebra structure constants. The sum
above runs over a basis of 3! color-stripped partial amplitudes denoted by A(1, ρ(2), ρ(3),
ρ(4), 5). This is an over-complete basis. Owing to BCJ relations [76], any 4 of the sub-
amplitudes in (B.1) can be written in terms of 2 linearly independent sub-amplitudes. Let
us choose this BCJ basis to be given by the sub-amplitudes

A(1, 2, 3, 4, 5), A(1, 4, 3, 2, 5) (B.2)

Then the remaining sub-amplitudes are given by [76]

A(1, 2, 4, 3, 5) = α1A(1, 2, 3, 4, 5) + α2A(1, 4, 3, 2, 5)
A(1, 3, 2, 4, 5) = α3A(1, 2, 3, 4, 5) + α4A(1, 4, 3, 2, 5)
A(1, 3, 4, 2, 5) = α5A(1, 2, 3, 4, 5) + α6A(1, 4, 3, 2, 5)
A(1, 4, 2, 3, 5) = α7A(1, 2, 3, 4, 5) + α8A(1, 4, 3, 2, 5)

(B.3)

where the αi’s are given by the following kinematic factors

α1 = s45(s12 + s24)
s24s35

, α2 = −s14s25
s24s35

, α3 = s12(s24 + s45)
s13s24

, α4 = −s14s25
s13s24

,

α5 = −s12s45
s13s24

, α6 = s14(s24 + s25)
s13s24

, α7 = −s12s45
s35s24

, α8 = s25(s14 + s24)
s35s24

(B.4)
Here sij = (pi + pj)2, with pi being the momenta of the external particles. Now our

interest here will be in the MHV configuration. For this we will take the helicities of the
gluons in (B.1) to be σ1 = σ2 = −1, σ3 = σ4 = σ5 = 1. Then using (B.3) we obtain

A(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)

= (ig)3
[

(c1 + c2α1 + c3α3 + c4α5 + c5α7)A(1−, 2−, 3+, 4+, 5+)

+ (c6 + c2α2 + c3α4 + c4α6 + c5α8)A(1−, 4+, 3+, 2−, 5+)
] (B.5)
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where the ci’s denote the following color structures

c1 = fa1a2x1fx1a3x2fx2a4a5 , c2 = fa1a2x1fx1a4x2fx2a3a5 , c3 = fa1a3x1fx1a2x2fx2a4a5

c4 = fa1a3x1fx1a4x2fx2a2a5 , c5 = fa1a4x1fx1a2x2fx2a3a5 , c6 = fa1a4x1fx1a3x2fx2a2a5

(B.6)

Now parametrising the null momenta of the external gluons in the amplitude as

pµi = εiωiq
µ
i , qµi = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i) , i = 1, 2, 3, 4, 5 (B.7)

where εi = ±1 and using the Parke-Taylor formula for MHV amplitudes [77], we can
write (B.5) as

A(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)

= −(ig)3

2
ω1ω2
ω3ω4ω5

z3
12

z15z23z35

[X1
z45

+ z12
z15z25

(
1− z45

z15

)−1
X2

](
1− z45

z35

)−1 (B.8)

where X1,X2 are given by

X1 = c1 + c2
z45z̄45
z35z̄35

ε4ω4
ε3ω3

+ c3
z12z̄12
z13z̄13

ε2ω2
ε3ω3

+ z12z̄12z45z̄45
z25z̄25

(
1− z45

z25

)−1 (
1− z̄45

z̄25

)−1 [
(c3 − c4) 1

z13z̄13

ε5ω5
ε3ω3

+ (c2 − c5) 1
z35z̄35

ε1ω1
ε3ω3

]
(B.9)

and

X2 = c6 + c4
ε4ω4
ε3ω3

z15z̄15
z13z̄13

(
1− z45

z15

)(
1− z̄45

z̄15

)
+ c5

ε2ω2
ε3ω3

z25z̄25
z35z̄35

+
[
(c5− c2) ε1ω1

ε3ω3

z15z̄15
z35z̄35

+ (c4− c3)ε5ω5
ε3ω3

z15z̄15
z13z̄13

](
1− z45

z15

)(
1− z̄45

z̄15

)(
1− z45

z25

)−1 (
1− z̄45

z̄25

)−1

(B.10)
Note that we have written the amplitude in this particular form (B.8) to facilitate the

extraction of the celestial OPE between gluons 4+a4 and 5+a5 in the next subsection.

B.2 Mellin transform of 5-point gluon MHV amplitude

Let us now consider the Mellin transform of the 5-point gluon MHV amplitude in (B.5).
Here we will use the modified Mellin transform prescription which is reviewed in section A.10

For convenience in what follows we will set the Yang-Mills coupling constant g = 2. The
modified Mellin amplitude is given by

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)

=
〈
Oa1

∆1,−(1)Oa2
∆2,−(2)Oa3

∆3,+(3)Oa4
∆4,+(4)Oa5

∆5,+(5)
〉

=
∫ ∞

0

5∏
i=1

dωiω
∆i−1
i e

−i
5∑
i=1

εiωiui
A(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)δ(4)

( 5∑
i=1

εiωiq
µ
i

) (B.11)

10The Mellin transform prescription of [32] can also be used here since it is convergent for tree-level gluon
amplitudes. The celestial OPE finally will be the same irrespective of wether it is obtained from the usual
Mellin amplitude or its modified version involving the time coordinates, ui.
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where Oai∆i,±(i) denotes a gluon primary operator with dimension ∆i = 1 + iλi. The
subscript (±) here denotes the spin of the operator. The label (i) collectively denotes the
coordinates (zi, z̄i, ui) at null infinity where the i-th gluon primary is inserted.

Now we are interested in extracting the celestial OPE between the gluons (4+a4 , 5+a5).
We will further take them to outgoing and so ε4 = ε5 = 1. Then let us define

ω4 = ωpt, ω5 = (1− t)ωp (B.12)

where t ∈ [0, 1]. The delta function imposing overall energy-momentum conservation
in (B.11) can be expressed in the following form

δ(4)
( 5∑
i=1

εiωiq
µ
i

)
= 1

4 ωP
δ

(
x− x̄− t z45

(
x

z35
− x̄

z25

)
− t z̄45

(
x

z̄25
− x̄

z̄35

)

+t z45z̄45

(
x

z35z̄25
− x̄

z25z̄35

)) 3∏
i=1

δ(ωi − ω∗i )

(B.13)

where we have defined

ω∗i = εiωP (σi,1 + t z45 σi,2 + t z̄45 σi,3 + t z45z̄45 σi,4), i ∈ (1, 2, 3) (B.14)

and

x = z12z35z̄13z̄25, x̄ = z13z25z̄12z̄35 (B.15)

The σi,j ’s in (B.14) are given by

σ1,1 = −z25z̄35
z12z̄13

, σ1,2 = z̄35
z12z̄13

, σ1,3 = z25
z12z̄13

, σ1,4 = − 1
z12z̄13

σ2,1 = z15z̄35
z12z̄23

, σ2,2 = − z̄35
z12z̄23

, σ2,3 = − z15
z12z̄23

, σ2,4 = 1
z12z̄23

σ3,1 = −z25z̄15
z23z̄13

, σ3,2 = z̄15
z23z̄13

, σ3,3 = z25
z23z̄13

, σ3,4 = − 1
z23z̄13

(B.16)

The representation of the delta function in (B.13) enables us to localise the integrals
with respect to ω1, ω2, ω3 in (B.11). This leaves us with integrals over ωP and t. The
ωP -integral can be easily done and we get∫ ∞

0
dωP ω

iΛ−1
P exp [−iωP (U1 + z45 tU2 + z̄45 tU3 + z45z̄45 tU4 + tu45)]

= Γ(iΛ)
(iU1)iΛ

[
1 + t

U1
(z45U2 + z̄45U3 + z45z̄45U4 + u45)

]−iΛ (B.17)

where

Λ =
5∑
i=1

λi, U1 =
3∑
i=1

σi,1ui5, U2 =
3∑
i=1

σi,2ui5, U3 =
3∑
i=1

σi,3ui5, U4 =
3∑
i=1

σi,4ui5

(B.18)
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Then using (B.17) and the expression of the 5-point MHV amplitude obtained in (B.8)
we finally get

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)

=−iN
∫ 1

0
dt tiλ4−1(1− t)iλ5−1

3∏
i=1

Θ(εi(σi,1 + z45 tσi,2 + z̄45 tσi,3 + z45z̄45 tσi,4)) I1(t)I2(t)

(B.19)

In the above integral the theta functions

Θ(εi(σi,1 + z45 tσi,2 + z̄45 tσi,3 + z45z̄45 tσi,4)), i = 1, 2, 3 (B.20)

simply impose the condition that
(
ω∗i
ωP

)
≥ 0. This is required because in the original

integral (B.11), the energy variables satisfy ωi ≥ 0. The prefactor N in (B.19) is given by

N = z3
12

z15z23z35
(ε1σ1,1)1+iλ1(ε2σ2,1)1+iλ2(ε3σ3,1)iλ3−1 Γ(iΛ)

(iU1)iΛ
(B.21)

and I1(t), I2(t) in the integrand in (B.19) are

I1(t) =
(

1 + z45 t
σ1,2
σ1,1

+ z̄45 t
σ1,3
σ1,1

+ z45z̄45 t
σ1,4
σ1,1

)1+iλ1 (
1 + z45 t

σ2,2
σ2,1

+ z̄45 t
σ2,3
σ2,1

+ z45z̄45 t
σ2,4
σ2,1

)1+iλ2

×

(
1 + z45 t

σ3,2
σ3,1

+ z̄45 t
σ3,3
σ3,1

+ z45z̄45 t
σ3,4
σ3,1

)iλ3−1 [
1 + t

U1
(z45 U2 + z̄45 U3 + z45z̄45 U4 +u45)

]−iΛ
×

δ

(
x− x̄− t z45

(
x

z35
− x̄

z25

)
− t z̄45

(
x

z̄25
− x̄

z̄35

)
+ t z45z̄45

(
x

z35z̄25
− x̄

z25z̄35

))
(B.22)

and

I2(t) =
[
X1(t)
z45

+ z12
z15z25

(
1− z45

z15

)−1
X2(t)

](
1− z45

z35

)−1
(B.23)

In (B.23), X1(t),X2(t) are given by (B.9) and (B.10) respectively after substituting the
parametrisation of ω4, ω5 in (B.12) and setting ωi = ω∗i , i = 1, 2, 3.

B.3 Mellin transform of 4-point gluon MHV amplitude

Here we will obtain the modified Mellin transform of the tree-level 4-point MHV gluon
amplitude which is required in order to extract the OPE from the 5-point Mellin ampli-
tude (B.19). Since we shall be interested in taking the OPE between gluons (4+a4 , 5+a5)
in (B.19), it will be convenient to denote the momentum space gluon amplitude here as
A(1−a1 , 2−a2 , 3+a3 , 5+x). We will also take the gluon labelled by 5+x to be outgoing.

The color-dressed 4-point MHV amplitude is given by

A(1−a1 , 2−a2 , 3+a3 , 5+x)

= (ig)2
(
fa1a2yfya3xA(1−, 2−, 3+, 5+) + fa1a3yfya2xA(1−, 3+, 2−, 5+)

) (B.24)
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where A(1−, 2−, 3+, 5+) and A(1−, 3+, 2−, 5+) are color-stripped partial amplitudes. Now
applying the BCJ relation [76]

A(1−, 3+, 2−, 5+) = s12
s13

A(1−, 2−, 3+, 5+) (B.25)

we can express (B.24) as

A(1−a1 , 2−a2 , 3+a3 , 5+x) = (ig)2
(
fa1a2yfya3x + fa1a3yfya2x s12

s13

)
A(1−, 2−, 3+, 5+)

(B.26)

Then parametrising the null momenta as

pµi = εiωiq
µ
i , qµi = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i) , i = 1, 2, 3, 5 (B.27)

we get from (B.26)

A(1−a1 , 2−a2 , 3+a3 , 5+x)

= −(ig)2
(
fa1a2yfya3x + fa1a3yfya2x ε2ω2

ε3ω3

z12z̄12
z13z̄13

)
ω1ω2
ω3ω5

z3
12

z15z23z35

(B.28)

Now let us compute the modified Mellin transform of (B.28). In order to relate this to
the factorisation of the 5-point Mellin amplitude in the (4+, 5+) OPE channel we will take
the dimension of the primary corresponding to the gluon 5+x in (B.28) to be ∆4 + ∆5− 1.
Then the Mellin amplitude is

M(1−a1 , 2−a2 , 3+a3 , 5+x)

=
〈
Oa1

∆1,−(1)Oa2
∆2,−(2)Oa3

∆3,+(3)Ox∆4+∆5−1,+(5)
〉

=
∫ ∞

0
dω5ω

∆5−1
5 e−iω5u5

3∏
i=1

dωiω
∆i−1
i e

−i
3∑
i=1

εiωiui
A(1−a1 , 2−a2 , 3+a3 , 5+x)δ(4)

( 3∑
i=1

εiωiq
µ
i +ω5q

µ
5

)
(B.29)

The momentum conservation imposing delta function in the above integral can be
represented as

δ(4)
( 3∑
i=1

εiωiq
µ
i + ω5q

µ
5

)
= 1

4 ω5

3∏
i=1

δ(ωi − ω∗i )δ (x− x̄) (B.30)

where

ω∗i = εiω5 σi,1, i = 1, 2, 3. (B.31)

The σi,1’s in (B.31) were specified in (B.16). Note that using the definition of x, x̄
given in (B.15) it follows that the delta function δ(x− x̄) above imposes the constraint

r = r̄ (B.32)
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where r and r̄ are the cross-ratios

r = z12z35
z13z25

, r̄ = z̄12z̄35
z̄13z̄25

(B.33)

Now using (B.30) in (B.29) localises the integrals with respect to ωi, i = 1, 2, 3. Then
doing the remaining integral over ω5 we get∫ ∞

0
dω5 ω

iΛ−1
5 exp (−iω5U1) = Γ(iΛ)

(iU1)iΛ (B.34)

where

Λ =
5∑
i=1

λi, U1 =
3∑
i=1

σi,1ui5 (B.35)

Therefore the 4-pt Mellin amplitude takes the form (with g = 2)

M(1−a1 , 2−a2 , 3+a3 , 5+x) = z3
12

z14z23z34
(ε1σ1,1)1+iλ1(ε2σ2,1)1+iλ2(ε3σ3,1)iλ3−1 Γ(iΛ)

(iU1)iΛ×

(fa1a2xfxa3a4 − r fa1a3xfxa2a4) δ(x− x̄)
3∏
i=1

Θ(εiσi,1)

(B.36)

Let us also note that N defined in (B.21) which appears as a prefactor in the 5-point
Mellin amplitude in (B.19) is simply related to the 4-point Mellin amplitude as

M(1−a1 , 2−a2 , 3+a3 , 5+x) = (fa1a2xfxa3a4 − r fa1a3xfxa2a4)N δ(x− x̄)
3∏
i=1

Θ(εiσi,1)

(B.37)

B.4 OPE decomposition of 5-point Mellin amplitude

We shall now extract the celestial OPE between gluon primaries Oa4
∆4,+ and Oa5

∆5,+ from the
5-point Mellin amplitude. For this purpose we will set u45 = 0 and expand (B.19) around
z45 = 0, z̄45 = 0. Now note that expanding the theta functions in (B.19) generates delta
function contributions whose arguments are functions of zij , z̄ij with (i, j) ∈ (1, 2, 3, 5).
We will assume that the operators which do not participate in the OPE are all inserted
at separated points at null infnity and thereby such contact terms can be ignored. The
contributions of interest here will then only come from expanding the integrands I1(t), I2(t)
in (B.19).

Here we will restrict attention to the leading and the first subleading terms in the OPE
regime. The leading term corresponds to the Mellin transform of the collinear splitting
function [59]. The subleading terms in the Mellin amplitude can likely be related to the
subleading corrections to the leading collinear limit in the momentum space amplitude
which has been studied in [60].
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B.4.1 Leading term

Using (B.22) and (B.23), it is easy to see that the terms from I1(t) and I2(t) which
contribute at leading order in the OPE limit (z45 → 0, z̄45 → 0) are given by

I1(t)
∣∣∣
O(1)

= δ(x− x̄) (B.38)

and

I2(t)
∣∣∣
O(z−1

45 )
= 1
z45
X1(t)

∣∣∣
O(1)

= 1
z45

(
c1 −

r̄(1− r)
(1− r̄) c3

)
= (c1 − rc3) (B.39)

where in obtaining the last equality in (B.39) we have used the fact on the support of
δ(x− x̄) we get r = r̄. Then doing the t-integral and using (B.37), we find that the 5-point
Mellin amplitude factorises as

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)

= − if
a4a5x

z45
B(∆4 − 1,∆5 − 1)M(1−a1 , 2−a2 , 3+a3 , 5+x) + · · ·

(B.40)

where B(x, y) is the Euler Beta function and the dots denote subleading terms. Then (B.40)
implies that the leading celestial OPE is

Oa4
∆4,+(z4, z̄4)Oa5

∆5,+(z5, z̄5) ∼ − if
a4a5x

z45
B(∆4 − 1,∆5 − 1)Ox∆4+∆5−1,+(z5, z̄5) (B.41)

This of course agrees with the expected result [3, 54].

B.4.2 Subleading terms: O(z0
45z̄0

45)

We now want to consider the subleading term of order O(z0
45z̄

0
45) in the OPE decompo-

sition. This will correspond to the contribution of descendants in the celestial OPE. Let
us first gather the relevant terms from I1(t) and I2(t) which can contribute at this order.
From (B.22) we get

I1(t)
∣∣∣
O(z45)

= z45 t

[
Z δ(x− x̄) + ∂z5δ(x− x̄)

]
(B.42)

where Z is given by

Z =
(

(1 + iλ1)σ1,2
σ1,1

+ (1 + iλ2)σ2,2
σ2,1

+ (iλ3 − 1)σ3,2
σ3,1
− iΛ
U1
U2

)
(B.43)

Then from (B.23) we have

I2(t)
∣∣∣
O(z−1

45 )
= 1
z45
X1(t)

∣∣∣
O(1)

= 1
z45

(
c1 −

r̄(1− r)
(1− r̄) c3

)
(B.44)
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and

I2(t)
∣∣∣
O(1)

= 1
z45
X1(t)

∣∣∣
O(z45)

+ 1
z35
X1(t)

∣∣∣
O(1)

+ z12
z15z25

X2(t)
∣∣∣
O(1)

= (c1 − r c3)
z35

+
(
− 1
z15

+ 1
z25

)
(c6 − c5 + (1− r)(c3 − c4)) + c2

( 1
z25
− 1
z35

)
+ t

( 1
z15
− 1
z25

)
c3

(B.45)

Using (B.42), (B.44), (B.45) and performing the t-integral in (B.19), we find the
O(z0

45z̄45) contribution to the 5-point Mellin amplitude in the OPE regime to be given by

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)
∣∣∣
O(z0

45z̄
0
45)

= −iB(∆4− 1,∆5− 1)N
[ ∆4− 1

(∆4 + ∆5− 2) (Z δ(x− x̄) + ∂z5δ(x− x̄))
(
c1−

r̄(1− r)
(1− r̄) c3

)
+((c1− r c3)

z35
+
(
− 1
z15

+ 1
z25

)
(c6− c5 + (1− r)(c3− c4)) + c2

( 1
z25
− 1
z35

))
δ(x− x̄)

+ ∆4− 1
(∆4 + ∆5− 2)

( 1
z15
− 1
z25

)
c3 δ(x− x̄)

] 3∏
i=1

Θ(εiσi,1)

(B.46)

We can simplify the above further by noting the following identity

r̄(1− r)
(1− r̄) ∂z5δ(x− x̄) = r ∂z5δ(x− x̄) +

( 1
z15
− 1
z25

)
δ(x− x̄) (B.47)

Applying (B.47) in (B.46) then gives

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)
∣∣∣
O(z0

45z̄
0
45)

= −iB(∆4− 1,∆5− 1)N
[ ∆4− 1

(∆4 + ∆5− 2) (Z δ(x− x̄) + ∂z5δ(x− x̄)) (c1− r c3)

+
((c1− r c3)

z35
+
(
− 1
z15

+ 1
z25

)
(c6− c5 + (1− r)(c3− c4)) + c2

( 1
z25
− 1
z35

))
δ(x− x̄)

] 3∏
i=1

Θ(εiσi,1)

(B.48)
Now at this order in the OPE we expect to find descendants created by the action of

L−1 and the current algebra mode ja−1. In order to demonstrate this we need to know the
action of these modes on the 4-point Mellin amplitude. We will now evaluate each of these
in turn. First let us consider the correlator〈

Oa1
∆1,−(1)Oa2

∆2,−(2)Oa3
∆3,+(3)

(
L−1Ox∆4+∆5−1,+(5)

)〉
= L−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+x)
= ∂z5M(1−a1 , 2−a2 , 3+a3 , 5+x)

(B.49)
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Using the expression of the 4-point Mellin amplitude obtained in (B.37) the above can
be straightforwardly evaluated and we obtain11

fa4a5xL−1M(1−a1 , 2−a2 , 3+a3 , 5+x)

=
[
(c1 − rc3)N [Z δ(x− x̄) + ∂z5δ(x− x̄)] + (c1 − rc3)

( 1
z15

+ 1
z35

)
N δ(x− x̄)

−r
( 1
z25
− 1
z35

)
c3N δ(x− x̄)

] 3∏
i=1

Θ(εiσi,1)

(B.50)

where Z is given by (B.43). The other correlation function of interest here is〈
Oa1

∆1,−(1)Oa2
∆2,−(2)Oa3

∆3,+(3)
(
ja4
−1O

a5
∆4+∆5−1,+(5)

)〉
= J a4

−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)
(B.51)

This can be easily calculated using (3.9). We then get

J a4
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)

= −i
[ 1
z15

fa4a1x(fxa2yfya3a5 − r fxa3yfya2a5) + 1
z25

fa4a2x(fa1xyfya3a5 − r fa1a3yfyxa5)

+ 1
z35

fa4a3x(fa1a2yfyxa5 − r fa1xyfya2a5)
]
N δ(x− x̄)

3∏
i=1

Θ(εiσi,1)

(B.52)

For our purposes it is more convinient to write the above in terms of the independent
color structures ci given in (B.6). We then arrive at

J a4
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)

= i

[ 1
z15

(−c5 + r c6) + 1
z25

(c5− c2− r (c4− c3)) + 1
z35

(c2− c1− r (c6− c4))
]
N δ(x− x̄)

3∏
i=1

Θ(εiσi,1)

(B.53)
Now it can be easily shown that the term appearing in the second line of (B.48) is

simply

[(c1− r c3)
z35

+
(
− 1
z15

+ 1
z25

)
(c6− c5 + (1− r)(c3− c4)) + c2

( 1
z25
− 1
z35

)]
N δ(x− x̄)

3∏
i=1

Θ(εiσi,1)

= −
[ 1
z15

(−c5 + r c6) + 1
z25

(c5− c2− r (c4− c3)) + 1
z35

(c2− c1− r (c6− c4))
]
N δ(x− x̄)

3∏
i=1

Θ(εiσi,1)

= iJ a4
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)

(B.54)

11Since we are interested in the 4-point correlator at separated points on the celestial sphere, we do not
differentiate the theta functions in (B.37) with respect to z5 while evaluating (B.49).
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In order to arrive at our desired result let us also note the following useful relation

i
(
J a5
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a4)−J a4

−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)
)

=
[
−(c1 − rc3)

( 1
z15

+ 1
z35

)
+ r c3

( 1
z25
− 1
z35

)]
N δ(x− x̄)

3∏
i=1

Θ(εiσi,1)
(B.55)

Then applying (B.50), (B.53) and (B.55) in equation (B.48) we finally get

M(1−a1 , 2−a2 , 3+a3 , 4+a4 , 5+a5)
∣∣∣
O(z0

45z̄
0
45)

= −iB(∆4− 1,∆5− 1)
[ ∆4− 1

(∆4 + ∆5− 2) f
a4a5xL−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+x)

+ ∆4− 1
(∆4 + ∆5− 2) iJ

a5
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5) + ∆5− 1

(∆4 + ∆5− 2) iJ
a4
−1(5)M(1−a1 , 2−a2 , 3+a3 , 5+a5)

]
(B.56)

The above result implies that upto the order under consideration here, the celestial
OPE for positive helicity outgoing gluon primaries is given by

Oa4
∆4,+(z4, z̄4)Oa5

∆5,+(z5, z̄5) ∼ −iB(∆4 − 1,∆5 − 1)
[
fa4a5x

z45
+ (∆4 − 1)

(∆4 + ∆5 − 2)f
a4a5xL−1

+i
( (∆4 − 1)

(∆4 + ∆5 − 2)δ
a4xδa5y + (∆4 − 1)

(∆4 + ∆5 − 2)δ
a4yδa5x

)
jy−1

]
Ox∆4+∆5−1,+(z5, z̄5)

(B.57)

This matches with the corresponding result obtained in [9].

C Mixed helicity OPE from 4-pt MHV gluon amplitude

In this section, using the 4-point Mellin amplitude, we will obtain the first subleading
correction to the leading OPE between a positive helicity and a negative helicity gluon
primary.

C.1 4-point Mellin amplitude

Consider the color-dressed 4-point MHV gluon amplitude A(1−a1 , 2+a2 , 3+a3 , 4−a4). This
is given by

A(1−a1 , 2+a2 , 3+a3 , 4−a4) = (ig)2
(
fa1a2xfxa3a4 + fa1a3xfxa2a4 s34

s24

)
A(1−, 2+, 3+, 4−)

(C.1)

where

A(1−, 2+, 3+, 4−) = − 〈14〉3

〈12〉〈23〉〈34〉
(C.2)

Using the (ωi, zi, z̄i) parametrisation of null momenta, we get from (C.1)

A(1−a1 , 2+a2 , 3+a3 , 4−a4)

= (ig)2
(
fa1a2xfxa3a4 + fa1a3xfxa2a4 ε3ω3

ε2ω2

z34z̄34
z24z̄24

)
ω1ω4
ω2ω3

z3
14

z12z23z34

(C.3)
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The modified Mellin transform of (C.3) is then

M(1−a1 , 2+a2 , 3+a3 , 4−a4)

=
〈
Oa1

∆1,−(1)Oa2
∆2,+(2)Oa3

∆3,+(3)Oa4
∆4,−(4)

〉

=
∫ ∞

0

4∏
i=1

dωiω
∆i−1
i e

−i
4∑
i=1

εiωiui
A(1−a1 , 2+a2 , 3+a3 , 4−a4)δ(4)

( 4∑
i=1

εiωiq
µ
i

) (C.4)

where ∆i = 1 + iλi. Now we shall be interested in extracting the celestial OPE between
Oa3

∆3,+(3) and Oa4
∆4,−(4) from the Mellin amplitude (C.4). We will also take both of them to

be outgoing, i.e., ε3 = ε4 = 1. Then let us make the following change of variables in (C.4).

ω3 = ωP t, ω4 = ωP (1− t) (C.5)

The momentum conservation imposing delta function can be written as

δ(4)
( 4∑
i=1

εiωiq
µ
i

)
= 1

4ε1ω1ε2ω2z2
12

2∏
i=1

δ (ωi−ω∗i ) δ
(
z̄14−

ωP t

ε1ω1

z23
z12

z̄34

)
δ

(
z̄24 + ωP t

ε2ω2

z13
z12

z̄34

)
(C.6)

where12

ω∗i = εiωP (σi,1 + z34 tσi,2) , i = 1, 2 (C.7)

and

σ1,1 = z24
z12

, σ2,1 = −z14
z12

, σ1,2 = −σ2,2 = − 1
z12

(C.8)

Applying the delta function (C.6), the ω1, ω2 integrals can be trivially done. Then
using (C.3) and performing the integral over ωP , the Mellin amplitude can be expressed as

M(1−a1 , 2+a2 , 3+a3 , 4−a4) = −iN
∫ 1

0
dt tiλ3−1(1− t)iλ4+1

3∏
i=1

Θ(εi(σi,1 + z34 tσi,2)) I(t)

(C.9)

where the theta functions above impose
(
ω∗i
ωP

)
≥ 0. The prefactor N and the integrand

I(t) are given by

N = iε1ε2
z3

14
z3

12z24
(ε1σ1,1)iλ1(ε2σ2,1)iλ2−2 Γ(iΛ)

(iU1)iΛ
(C.10)

12In this section for simplicity of notation, we will often use the same symbols to denote similar quantities
which also occur in section B. In all such cases, to avoid confusion, we urge the reader to note the relevant
definitions which have been explicitly provided in the respective sections.
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with Λ =
4∑
i=1

λi, U1 =
2∑
i=1

σi,1ui4 and

I(t) = 1
z34

(
1− z34

z24

)−1 [
fa1a2xfxa3a4 − z12z34

z14z24

(
1− z34

z14

)−1
fa1a3xfxa2a4

]
×

(
1 + z34 t

σ1,2
σ1,1

)iλ1

×
(

1 + z34 t
σ2,2
σ2,1

)iλ2−2 [
1 + t

U1
(z34 U2 + u34)

]−iΛ
×

δ

z̄14 −
t

σ1,1

(
1 + z34 t

σ1,2
σ1,1

)−1
z23
z12

z̄34

 δ
z̄24 + t

σ2,1

(
1 + z34 t

σ2,2
σ2,1

)−1
z13
z12

z̄34


(C.11)

In (C.9) we have again set the Yang-Mills coupling g = 2. Now let us also note the
expression of the 3-point Mellin amplitude in terms of which the 4-point Mellin amplitude
factorises in the (3+, 4−) OPE channel. This can be easily derived and is given by

M(1−a1 , 2+a2 , 4−x) =
〈
Oa1

∆1,−(1)Oa2
∆2,+(2)Ox∆3+∆4−1,−(4)

〉
= fa1a2xN δ(z̄14)δ(z̄24)

3∏
i=1

Θ(εi(σi,1))
(C.12)

with N defined in (C.10).

C.2 OPE decomposition of 4-point Mellin amplitude

We can now extract the mixed helicity celestial OPE in the (3+, 4−) channel by setting
u34 = 0 in (C.9) and expanding the integrand I(t) around z34 = 0, z̄34 = 0. As before, in
order to avoid irrelevant contact terms we will simply set z34 = 0 inside the argument of
the theta functions in the Mellin integral in (C.9).

C.2.1 Leading term

The leading term in (C.9) as z34 → 0 is

M(1−a1 , 2+a2 , 3+a3 , 4−a4) ≈ −iN
∫ 1

0
dt tiλ3−1(1− t)iλ4+1 fa1a2xfxa3a4 δ(z̄14)δ(z̄24)

z34

3∏
i=1

Θ(εi(σi,1))

= − if
a3a4x

z34
B(∆3− 1,∆4 + 1)M(1−a1 , 2+a2 , 4−x)

(C.13)
From the above result we get the leading celestial OPE to be

Oa3
∆3,+(z3, z̄3)Oa4

∆4,−(z4, z̄4) ∼ − if
a3a4x

z34
B(∆3 − 1,∆4 + 1)Ox∆3+∆4−1,−(z4, z̄4) (C.14)

This agrees with the result obtained in [3, 54].
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C.2.2 Subleading terms: O(z0
34z̄0

34)

Using (C.11), we find the O(z0
34z̄

0
34) term from the 4-pt Mellin amplitude to be

M(1−a1 , 2+a2 , 3+a3 , 4−a4)
∣∣∣
O(z0

34z̄
0
34)

= −iB(∆3 − 1,∆4 + 1)
[

iλ3
(iλ3 + iλ4 + 2)f

a1a2xfxa3a4

(
− iλ1
z24
− (iλ2 − 2)

z14
+ iΛ
U1

u12
z12

)
+
(
−f

a1a4xfxa2a3

z24
+ fa1a3xfxa2a4

z14

)]
M̃(1−, 2+, 4−)

(C.15)

where

M̃(1−, 2+, 4−) = N δ(z̄14)δ(z̄24)
3∏
i=1

Θ(εi(σi,1)) (C.16)

is the modified Mellin transform of the color-stripped 3-point amplitude A(1−, 2+, 4−).
Now the r.h.s. of (C.15) can be expressed in terms of a linear combination of 3-point

Mellin amplitudes which involve descendants created by the action of Ja−1 and ja−1 respec-
tively. In order to show this, let us first consider the correlator〈
Oa1

∆1,−(1)Oa2
∆2,+(2)

(
Ja3
−1O

a4
∆3+∆4,−(4)

)〉
= J a3

−1(4)P−1,−1(4)M(1−a1 , 2+a2 , 4−a4) (C.17)

where

J a3
−1(4)P−1,−1(4)M(1−a1 , 2+a2 , 4−a4)

=
2∑
i=1

εi
(
2h̄i − 1 + ui4∂ui + z̄i4∂z̄i

)
2zi4

T a3
i P−1

i P−1,−1(4)M(1−a1 , 2+a2 , 4−a4)
(C.18)

and

P−1,−1(4)M(1−a1 , 2+a2 , 4−a4) = i∂u4M(1−a1 , 2+a2 , 4−a4) (C.19)

Note that since we are using here the modified Mellin transform, the differential opera-
tor representation of Ja3

−1 explicitly includes the ui coordinates. This is obtained from (4.11)
by making the replacement

2h̄i → 2h̄i + ui4∂ui . (C.20)

In order to evaluate (C.18), it is useful to note that since the derivatives with respect
to z̄i act only on the anti-holomorphic delta functions in the 3-point Mellin amplitude, we
can use the identity

z̄i4 ∂z̄i (δ(z̄14)δ(z̄24)) = −δ(z̄14)δ(z̄24), i = 1, 2 (C.21)
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Then it can be easily shown that

J a3
−1(4)P−1,−1(4)M(1−a1 , 2+a2 , 4−a4)=−i

[
(iλ1f

a3a1yfya2a4−(iλ2−2)fa3a2yfa1ya4) z12
z14z24

− iΛ
U1

(
u14
z14

fa3a1yfya2a4 + u24
z24

fa3a2yfa1ya4

)]
M̃(1−, 2+, 4−)

(C.22)

Now let us consider the following 3-point correlator
〈
Oa1

∆1,−(1)Oa2
∆2,+(2)

(
ja3
−1O

a4
∆3+∆4−1,−(4)

)〉
= J a3

−1(4)M(1−a1 , 2+a2 , 4−a4) (C.23)

Using (3.9) this is simply given by

J a3
−1(4)M(1−a1 , 2+a2 , 4−a4) = i

(
fa3a1xfxa2a4

z14
+ fa3a2xfa1xa4

z24

)
M̃(1−, 2+, 4−) (C.24)

Then using (C.22) and (C.24) we get the following relation

fa1a2xfxa3a4

(
− iλ1
z24
− (iλ2 − 2)

z14
+ iΛ
U1

u12
z12

)
M̃(1−, 2+, 4−)

= iJ a3
−1(4)P−1,−1(4)M(1−a1 , 2+a2 , 4−a4) + i(2 + iλ3 + iλ4)J a3

−1(4)M(1−a1 , 2+a2 , 4−a4)
(C.25)

Gathering the above results, (C.15) can finally be written as

M(1−a1 , 2+a2 , 3+a3 , 4−a4)
∣∣∣
O(z0

34z̄
0
34)

= −iB(∆3− 1,∆4 + 1)
[ ∆3− 1

(∆3 + ∆4) iJ
a3
−1(4)P−1,−1(4) + i∆3J

a3
−1(4)

]
M(1−a1 , 2+a2 , 4−a4)

(C.26)

Thus upto the first the subleading order, the celestial OPE between outgoing gluon
primaries of opposite helicities is given by

Oa3
∆3,+(z3, z̄3)Oa4

∆4,−(z4, z̄4)

∼ −iB(∆3− 1,∆4 + 1)
[
fa3a4x

z34
+ i(∆3− 1)

(∆3 + ∆4) δ
a4xJa3

−1P−1,−1 + i∆3 δ
a4x ja3

−1

]
Ox∆3+∆4−1,−(z4, z̄4)

(C.27)
where P−1,−1Ox∆3+∆4−1,− = Ox∆3+∆4,−. The above OPE manifestly satisfies both the
leading as well as the subleading conformal soft gluon theorem.
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